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Chapter 1

Introduction

Mine clearing is a long and dangerous task. A lot of time is lost clearing areas free of mines
that were selected just to be on the safe side [1]. Deminers are looking forward to methods
that can reduce the suspected areas.

Researchers are now considering the possibility to perform this area reduction by means of
airborne surveys [6, 7]. Human photo-interpreters are, to date, unchallenged in the analysis
of these images. Unfortunately in order to survey all suspected areas of a country and have
the resolution needed to detect relevant minefield indicators, a tremendous amount of data is
to be collected. This makes the analysis a very time-consuming task.

Image processing, by speeding up some repetitive tasks or pointing some regions of interest
to the analyst, could be useful.

The project Airborne minefield detection: pilot project was launched to study the feasibility
of detecting the boundaries of minefields by airborne survey. A first campaign took place in
Belgium for testing and in the final campaign, in Mozambique, an aircraft equipped with
several sensors has been flown over suspected minefields in Buzi, Bandua, Mameme and
Songo [7].

As part of the Royal Military Academy, a partner of this project, the Signal and Image
Centre (RMA/SIC) was involved in image processing and especially in investigating what
image processing could bring to airborne minefield detection. RMA/SIC has focused on the
possibility to improve and speed up the image interpretation by means of image processing
tools. This report presents the global work of RMA/SIC in the scope of this project. More
details on the participation of RMA/SIC in the first phase of tests in Belgium can be found
in [2].

Image processing tools can be used in two distinct ways to speed up the interpretation.
First, it can be used to help the detection by selecting regions of interest that would be
afterwards studied by a photo-interpreter. Second, image processing can provide the photo-
interpreter with enhanced images to help the interpretation. In the first case, the photo-
interpreter is given some areas to study where there might be something of interest. In the
second the photo-interpreter is given new information, or information displayed in a new way,
to improve the understanding of a given zone and help the classification as useful minefield
indicator or false alarm. In both cases, some minefield indicators must be defined.

The work of RMA/SIC here involves two steps. First, some indicators have been selected
for their relevances in minefield detection as well as for their easiness to be automatically
detected on the available images. Then detectors devoted to each of these indicators have
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been implemented.
In the next chapter, we describe how image processing should be used in this framework.
In chapter 3, the proper way to selected minefield indicators is discussed.
Then we present some indicators we developed: an anti-tank mine indicator in chapter 4,

a pole detector in chapter 5, a detector of elongated minefields in chapter 6 and the use of
stereovision in chapter 7.

Satellite imagery was also used in the scope of this project. Chapter 8 presents how
image processing may be used with these images.

The goal of this project was to study the potential of airborne surveys and remote sensing
for the detection of minefield boundaries. Even if this approach proves to be efficient, we are
still faced with the huge amount of data (especially because of the high resolution needed).
Therefore the use of compression tools is clearly indicated. In chapter 9 the compression
ratio reached as well as the effect of the image degradation are presented.

In an operational context, the semi-automatic tools developed have to be integrated in a
Graphical User Interface (GUI). A presentation of what a Graphical User Interface dedicated
to image processing is opportune. Our own GUI enhanced with features dedicated to this
project is described in chapter 10.

Finally, some recommendations for developing and using image processing tools in future
projects of airborne minefield detection are given in chapter 11. They concern the constraints
that minefield indicators and indicator detectors must fulfill in order to be able to be used in
such a semi-automatic procedure. Other constraints about the images and the way to collect
them to improve the detection of indicators are also given.



Chapter 2

Semi-automatic image processing
tools for minefield detection

The close analysis of the way a human photo-interpreter works makes it clear that image
processing alone could not compete with human beings who use knowledge about history,
geography, hydrology and, more generally, a large amount of information not always obviously
correlated with the problem. Moreover one part of the job of photo-interpreters is to design
a procedure of detection on a case-by-case basis. Such an approach is not easy to implement
in computer algorithms. Even techniques such as artificial intelligence or expert systems may
lack the adaptability of a human being.

Therefore we argue that there are two promising uses of image processing. Image process-
ing can speed up the process by detecting minefield indicators to be defined by the photo-
interpreters together with specialists in image processing. How to use these indicators, once
detected, to infer the presence of a minefield is left to photo-interpreters. It can also be used
to enhance regions of interest provided by either other image processing tools or a human
being.

Human detection

Region of interest
enhancement

Semi-automatic

Data collection

Indicator selection

Detector and enhancement tool design 

Decision

Indicator pre-selection

detection of regions of interest

Figure 2.1: Semi-automatics scheme
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Chapter 3

Selection of minefield indicators

Minefield indicators must be relevant, that is, their presence must significantly increase the
probability to find a minefield in the neighbourhood of that indicator. For that reason,
minefield indicators must be provided by photo-interpreters after an investigation in the
country and with the help of local people or professional deminers. But these indicators must
also be detectable by image processing. The ideal indicator candidate is simple: a model
must be easily designed from the original description. Since the detector should be as general
as possible, the model and therefore the indicator must be as independent as possible from
the environment. For instance if a soil disturbance is an indicator of the presence of a mine
in the ground, then a buried mine should create more or less the same kind of disturbances
as often as possible. Otherwise a detector of soil disturbances is of little help: it may detect
natural disturbances and not react to a buried mine

This report deals with the following indicators used with visible and colour infrared images:

• anti-tank mines on the ground (chapter 4)

• poles indicating the limitations of minefields and their alignments (chapter 5)

• elongated areas since in the zones of Mozambique we studied, minefields have often this
shape (chapter 6)

• trenches and foxholes (chapter 7)

In the next chapters, detectors developed for each of these indicators will be described
and the obtained results will be presented and commented.

11
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Chapter 4

Detection of anti-tank mines on the
ground

4.1 The model of mine used

Figure 4.1: Mine used to tune the algorithms

As pointed out by many partners, where mines are laid, some vegetation anomalies (e.g.
missing vegetation) can be seen. Unfortunately, a huge amount of such regions exists and
to reach a reasonable false alarm rate, complementary mine characteristics (specific patterns,
signature in different spectral bands, etc) have to be introduced in the model. Therefore the
typical spectral response (visible and near infrared) of an anti-tank mine lying on the ground
was used. A typical example of such a mine may be found in minefield C. Test minefield C is
part of the test minefield designed in Leopoldsburg (Belgium) by SEDEE/DOVO (Dienst voor
Opruiming en Vernietiging van Ontploffingstuigen / Service d’Enlèvement et de Destruction

13
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NOK profile > Nmin NOK profile < Nmin

for each maximum (Gmaxi)
Maximum detection

Contrast estimation

Analyse radial lines (j)

Compute gray level at maximum slope

NOK profile++

GMG

Reject maximum

Gmin(i) = median(GMG(i)) Gmin(j) = (max+B)/2

Reject profile

Significant contrast Low contrast

Profile is sigmoidal
Profile is linear

Candidate region (i) = Growing(G>Gmin(i))

Figure 4.2: Growing for mine detection

des Engins Explosifs), the bomb disposal unit from the Belgian army. Note that Test minefield
C was designed to be the training minefield for the project. For that reason all information
about it had been made available to our Consortium. An example of a surface anti-tank mine
is presented in Figure 4.1.

4.2 Principle of the detection

Mines appear as circular like bright blobs in the blue channel (this channel corresponds to the
green colour in the Colour Infrared images). Therefore the detection algorithm first locates
the pixel with the largest value (Gmax) in the blue band. A growing is then performed around
those local maxima (see Figure 4.2). The growing algorithm starts from the local maxima
and grows the region as long as the candidate pixel grey level is bigger than a given value
Gmin. This approach is classic in image processing and the problem is often to select a good
threshold (Gmin). For this application, we used some knowledge about the searched object
to compute automatically the appropriate threshold.

4.3 Contrast estimation

Knowing the approximate size of the searched mines and the resolution of the image, a circle
(CB) that is certainly outside the mine (if the local maximum indeed corresponds to a mine)
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Figure 4.3: Radial lines for the search of the threshold

G(0.8)

GMG

G(0.2)

MG

RG

C

max

Figure 4.4: Sigmoidal profile

C

GMG

max

B

Figure 4.5: Linear profile

may be drawn on the image (see Figure 4.3). It is thus possible to estimate the background
(B) value on that circle. This is done by computing the median of the grey level distribution
on that circle. The contrast (C) is then defined as the difference between the grey level at
local maximum and the background estimated value. If the contrast is too small, the local
maximum is rejected and no growing is performed.

4.4 Threshold estimation

If the contrast is large enough, the best threshold is computed by analyzing the grey level
profile inside the circle CB. For this, the grey level profile on a number of radial lines (Ri), orig-
inating from the local maximum and stopping at the background circle (CB), are considered
(see Figure 4.3).

Each of these profiles is classified either as sigmoidal (Figure 4.4) or linear (Figure 4.5).
This classification is based on the ratio maximum gradient (MG)/reference gradient. The
reference gradient is the slope of the line linking the points G (0.8) and G (0.2) corresponding
respectively to a decrease of 0.2 and 0.8 times the local contrast (C). If this ratio is large
enough, the profile is well curved and the maximum gradient point may be determined reliably
(for linear profiles, GMC becomes very sensitive to noise). For each radial line on which the
maximum gradient ratio is large enough (sigmoidal profile), the grey level at the maximum
gradient point (GMG) is stored in a table of valid thresholds.

If enough valid thresholds are found (GMC), the median of those thresholds is used as



16 Royal Military Academy

overall threshold. If an insufficient number of threshold grey levels are found, we deal with a
linear grey value profile and the threshold is chosen as (max-B)/2 (see figure 4.5).

Figure 4.6 presents the results of the growing algorithm around mine 281 of minefield C.
Figure 4.7 presents the blue band (on which the growing is performed) of the same area.

As can be seen on the window displayed by clicking the mine location (see Figure 4.8), the
type of the mine was encoded; it is an anti-tank mine lying on the ground. The mine is well
detected but some other regions are also found. To reduce the false alarm rate, geometrical
and radiometric attributes (using all available spectral bands) are computed for each mine
candidate and a criterion based on those attributes is then used.

The criterion is the following: the candidate must fulfil three conditions.

• The size of the holes in the candidate area should not exceed 20 % of the total area.

• Its area should be between 5 and 200 pixels.

• Its color should be at a mean angular distance smaller than 80 degrees from blue.

Figure 4.9 presents the attributes used and the result after filtering. In the presented
region all false alarms were rejected, keeping only the actual mine.

Figure 4.10 presents the mine candidates found using the same approach on a part of the
visible image.
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Figure 4.6: Result of growing around mine C281 on Colour Infrared image
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Figure 4.7: Blue band corresponding to Figure 4.6
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Figure 4.8: Mine description
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Figure 4.9: Criteria and results after filtering
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Figure 4.10: Mine-like objects detected on visible image, with what seems to be a false alarm
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Figure 4.11: Close-up of the
mine

Figure 4.12: Contour of the
mine

Figure 4.13: Circle estima-
tion of the contour

4.5 Detection of partially occluded circles

The shape of the candidate regions may be used as discriminating feature. Mines lying on
the ground present circular shapes. However, the mine is often partially occluded and we
developed an algorithm that is able to recognize circular shapes even if they are partially
occluded. A measure of the circularity is returned together with an estimation of the radius.
The radius provides a better estimation of the size of the object than the visible area (partial
occlusion) and is thus more discriminating.

The algorithm estimates a circle that goes through most of the pixels of a given list.
Robust statistics are useful here when it is known that the pixels should lie along a part of
a circle but some of them can be wrong and very far from the circle [4]. Several triplets
of pixels are selected in the list and the circles defined by these three pixels are computed.
For each circle, the distances of all the pixels of the lists to this circle and the percentiles of
these distances are computed. The circle selected is the one giving the smallest percentiles of
errors. The number of triplets is computed so that the probability to have at least one triplet
without erroneous pixel, and thus a correct circle, is higher than 0.99.

Figure 4.11 shows a close-up of an anti-tank mine on the ground seen in colour infrared.
Only a part of the mine is seen. The blue appearance is due to the fact that the colour green
is seen blue in colour infrared.

Figure 4.12 shows the contour of the mine detected. Because of the occluded part, the
shape is not circular.

Figure 4.13 shows the circle estimated from the previous contour. It is a good approxi-
mation of the position and size of the mine. If an absolute co-ordinate system is available,
it is possible to have an approximation of the real size of the mine and then an indication of
which type of mine we are dealing with.

4.6 Evaluation

The following images present the result of the automatic mine detection on the full visible and
colour infrared images. Note that the size of the visible image is about 400 megabytes and
that this image covers a region of about 500 m2. The full image was processed in about 30
minutes on a Pentium Pro (200 MHz, 64 megabyte RAM) running under Linux. The position
of known mines has been superimposed on both images. (Dots are known mines and crosses
are mines proposed by the algorithm).
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On the visible image (see Figure 4.14), a V-shaped minefield of anti-tank mines lying
on the ground has been detected. Note that no mines of minefield C has been found. The
anti-tank mine 281 (anti-tank mine lying on the ground and well visible) was first detected
but rejected by the attribute-based filter. Using a better filter criterion, it could be possible
to keep that mine without increasing the false alarm rate but little effort was spent for this
fine-tuning because we believe that an algorithm that learns from example should be used in
practice. This could not be tested because the database contains too few examples. In this
context a learning scheme would probably lead to poor results (over-training = learning by
heart rules that are only valid for the training set and that may not be extrapolated to new
data).

On the colour infrared image that presents minefield C at a higher resolution but with
only a small neighbouring region (the V-shaped minefield is not in the image, see Figure 4.15),
three anti-tank mines (on and below the surface) of minefield C have been detected. Note
that for the buried anti-tank mines, it is a stick lying near the mine that is detected. Even if
the stick may be considered as a valid mine indicator, they were found ’by chance’ because
the algorithm was not developed to find such objects. We concentrated our efforts on the
detection of indicators that could be useful in Mozambique and it appears that such sticks
are not relevant in Mozambique. As a conclusion, the tool was developed to find anti-tank
mine lying on the ground. Most of those mines were detected and the false alarm rate is
reasonable. Even two buried mines were found because a stick left in the vicinity of the mines
was detected. We believe that the false alarm rate could be reduced by further developments.
As an example many false alarms in the colour infrared are found in the trees. A tree detection
algorithm could reduce the false alarm rate significantly.

Although limited, the results presented in this chapter have shown that significant process
acceleration can be reached by means of image processing. By removing the false alarms
found in the trees of the colour infrared image, the found alarms could be grouped in about
10 regions of interest. If the photo-interpreter takes 30 seconds to look at each region of
interest, 5 minutes would be needed to analyze the scene. Whereas if a full visual inspection
was carried out at full resolution, the photo-interpreters would typically spend at least one
minute for a region of 1,000 by 1,000 pixels. 150 such regions have to be analyzed for a full
coverage of the colour infrared image leading to about two hours of interpretation. A process
acceleration of about 60 may thus be expected. Such a speed-up would be very useful in an
operational context where the amount of data to be analyzed would be tremendous. Without
image processing and with the same assumptions as above, 650 man-hours would be needed
for a complete visual inspection of a scene of 10 km2.
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Figure 4.14: Results on a visible image
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Figure 4.15: Results on a colour infrared image
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Chapter 5

Detection of poles

5.1 Introduction

Some minefield in the Buzi area has been laid with a defensive purpose and is clearly marked
by poles to warn the local people. These poles may be detected by semi-automatic tools. See
Section 5.2. Furthermore these poles are aligned. In Section 5.3, pole alignments are looked
for to reduce the number of false alarms.

5.2 Detection of individual poles

A pole as seen on airborne imagery is characterized by a V-shape. One branch is the pole
itself and the other is the shadow of the pole. The poles and the shadows are characterized
by elongated homogeneous regions that are in general well contrasted with the background.
Those regions are limited by two parallel lines. The shadows are always dark and, in the case
of the Buzi minefield, so are the poles.

Figure 5.1: Projective projection of poles
and shadows

Figure 5.2: Theoretical positions of poles
and shadows in an image (the poles are rep-
resented with thick lines, the shadows with
thin lines)

27
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Histogram-based

threshold selection

Thresholding
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direction

Lines in shadow direction

Pole candidates

Lines in pole direction

Figure 5.3: Pole detector

Usually, the poles are rather vertical. Therefore, all shadows are in the same direction.
That direction may be computed if the orientation of the photo and the location of the
sun is known (time of the day). The poles are imaged through a perspective projection
(see Figure 5.1).

Therefore, as shown in Figure 5.2, all pole projection lines converge through the same
point, in the image or outside the image. If the height of the poles is known, the length of
the projection may be computed. This length is maximal in the corners and minimal in the
middle (principal point) of the image. The length of the horizontal projection is constant on
a vertical line (and vice-versa).

A pole detector has been built, using this very special configuration of directions (Fig-
ure 5.3).

First the histogram of grey levels is computed. It is used to select the threshold. The
image is then thresholded to segment the dark regions. A number of false alarms may be
rejected by keeping only regions with appropriate size. The contours of those regions are
then computed (see Figure 5.4). Those contours are approximated by polygons to get a good
estimation of the contour direction.

The contours may be classified as pole, shadow or false alarm according to their direction
(see Figure 5.5).

Figure 5.6 presents a typical candidate obtained after thresholding and size-based filtering.
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Figure 5.4: Thresholding of a pole

Figure 5.7 presents a typical example of remaining candidate pairs that are composed of
two parallel lines with appropriate distance and appropriate direction. The number of false
alarms could further be reduced by keeping only candidates for which the two parts of the V
are found.
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Figure 5.5: Pole detection

Figure 5.6: Close-up of the thresholding Figure 5.7: Remaining candidate
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Figure 5.8: Alignment of poles

5.3 Detection of alignment of poles

The method used has two steps that follow the detections of poles previously described.
First the Hough transform is computed to find the orientation along which there is the

largest number of detected poles. The method accepts some errors in the alignment.
Then a regularity is searched in the chosen alignment. For this the ordinates of the poles

detected along their common orientation axis are considered. The largest common divider of
these numbers is the estimation of the distance between two poles. The algorithm, called the
modified Euclidean algorithm [5], takes care of imprecision in the detection of the positions of
the poles and the possibility to have not detected some of the poles.

Figure 5.8 shows the results that can be obtained automatically. All the white segments
are pole candidates. For the example here, no filtering based on the direction has been made.
Yet, the algorithm finds the two rows of poles. On the figure the left and right ends of the
upper minefield boundary are shorter than the lower boundary because either a pole has been
missed in the initial detection or it was not present in the image.

5.4 Conclusion

The pole detector presented here is efficient, fast and can be used on very large images.
The detection of aligments reduces drastically the number of false alarms while not being
handicapped by the non-detection of some of the poles. Used together these two algorithms
are efficient tools to detect areas that are delimited by alignments of poles.
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Chapter 6

Detection of elongated areas

6.1 Introduction

The minefield of Buzi (Mozambique) is an elongated area five-meter wide. Areas that are
suspected minefields are not used by local population. There are no cultures and vegetation
grow naturally, which may not be the case of areas just outside the suspected minefield. Since
the vegetation on the minefield is different from the vegetation outside, especially in colour
infrared, an elongated area with specific colour and texture is a good indicator.

Figure 6.1 presents a part of the Buzi minefield on which the methods developed for semi
automatic detection of elongated areas will be presented.

Figure 6.1: Part of Buzi minefield
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Figure 6.2: Contour-based approach result

Two approaches have been developed for the detection of elongated areas. In both cases
the image is first segmented to extract uniform regions. The result of the first approach is
presented in Figure 6.2. This approach uses the contours of the segmented regions to detect
elongated structure. The second approach uses the skeleton of the segmented regions to detect
elongated structures. The result of that approach is presented in Figure 6.3.

The segmentation method is explained in section 6.2. The contour and skeleton-based
approaches are then described respectively in sections 6.3 and 6.4.

6.2 Segmentation

The segmentation process is the first step of the detection of elongated areas. The objective
of such a detector is to pre-filter the available images to present only regions of interest
to the photo-interpreter. In such an approach, the detector has to be launched on large
images to provide regions of interest without the intervention of the photo-interpreter. The
selected algorithm should therefore be fast and work in an unsupervised mode. This leads us
to the choice of the unsupervised k-means algorithm. Once the k-means algorithm has been
selected, one has still to define the input features and the type of distance used. Typically, the
Euclidean or the Mahalanobis distances are used. Experience showed that the Mahalanobis
distance leads to better results. This is due to the fact that this latter distance automatically
adapts itself to the data distribution in the feature space.

The features used as input for the k-means algorithms should be selected with care as they
highly condition the quality of the results as well as the amount of memory and computation
power needed. We selected colour components in various colour spaces (RGB or HSV) and
their variances.
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Figure 6.3: Skeleton-based approach result

It was anticipated that the HSV (Hue, Saturation, Value) colour space would give better
results as similar colour should lead to simpler clusters (thin in the H direction) more compat-
ible with the implicitly hypothesized Gaussian distribution. However the H component is an
angular coordinate. It therefore exhibits a discontinuity barrier and the clustering algorithm
becomes somewhat more complicated because it has to take that barrier into account. The
variance feature was used because it is a simple texture indicator.

To detect the searched structures (several kilometers long and about 5 meters wide),
the full resolution image is not needed. The features are therefore computed at a coarser
resolution by computing the mean and average of the colour component on n by n adjacent
windows. This leads to a down-sampling by a factor n (typically 20). By this procedure,
down-sampling and feature computation are advantageously combined. This leads to a good
estimation of the local variance.

Experience showed that, as expected, HSV-based segmentation are better than RGB-
based segmentation. However the use of the variance did not give any improvement. On
the contrary it degraded the result by over-segmenting the regions of interest. This may be
explained by the fact that the variance computation is a high pass filter which amplifies the
noise. Furthermore, no significant texture variation is seen on the test images.

The segmentation obtained using the HSV mean as features is presented in Figure 6.4.
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Figure 6.4: Segmentation Result
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Contour extraction

Polygonal approximation

Follow parallel lines

Sementation

Figure 6.5: Contour-based detector processing scheme

6.3 Contour-based detector for elongated areas

Figure 6.5 presents the implemented processing scheme. The contours of the segmented
regions are computed. Amongst those contours, two parallel borders at appropriate distances
and with appropriate length are searched and returned as minefield candidates.

To decide whether two borders are parallel, their directions have to be computed. To get
a reliable estimation of their directions, the polygonal approximation of the contours is used.

The contours extracted on Figure 6.4 are presented on Figure 6.6 and their polygonal
approximation is shown in Figure 6.7.

The contour polygonal approximation is then used to search for parallel borders. Of course
the segmentation is imperfect and the research for parallel borders must not fail in presence of
gaps in the borders. For this, a gap bridging capability is introduced in the algorithm. This
gap bridging is very powerful as the structure may be followed as long as only one border is
detected (the two borders must be detected at some part to initiate the following and at the
end to confirm the candidate).

To start the grouping procedure, a connection structure is computed encoding for each
line the possible prolongation as well as possible parallel segments (opposite borders). An
elongated structure is started when two parallel lines are found at a distance (W0) within given
bounds (prior knowledge of the width of the minefield). The minimal length and covering of
the two initial segments may also be specified. An elongated structure of width given by the
distance between the two initial lines is followed in both directions.

For each border of the lines the following constraints are used:

• perpendicular distance < T1 (see Figure 6.8)
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Figure 6.6: Contours

• angle < T2 for straight lines (see Figure 6.9)

• cover < T3 (see Figure 6.10)

• same gradient direction (same border of region)

Additional constraints are applied to the opposite borders of the elongated area:

• opposite gradient direction (opposite border of region)

• sufficiently parallel: angle < T4 (see Figure 6.11)

• cover > T5 (see Figure 6.12)

• distance (W) compatible with the seed borders distance (W0) W-W0 < T6

Once the borders of the elongated structures have been found, the middle (median line)
of that structure may be computed. The median lines found using the contour polygonal
approximation of Figure 6.7 are shown in Figure 6.13. By keeping only long median lines,
the minefield candidates presented on Figure 6.14 are retained. Those candidates are then
presented to photo-interpreter for further inspection.
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Figure 6.7: Polygonal approximation

T1

Figure 6.8:
Constraint:
perpendicular
distance

T2

Figure 6.9:
Constraint: angle

T3

Figure 6.10: Constraint: cover
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T4

Figure 6.11: Constraint: sufficiently paral-
lel

T5

Figure 6.12: Constraint: opposite cover

Figure 6.13: Median of parallel borders
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Figure 6.14: Detected minefield candidates
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Segmentation

Skeleton extraction

Skeleton filtering

Skeleton part grouping and
polygonal approximation

Figure 6.15: Skeleton-based detector processing scheme

6.4 Skeleton-based detector for elongated areas

Figure 6.15 presents the processing scheme used. The skeleton of the segmented regions and
the width (distance from the skeleton to the border) of those regions are computed. Those
skeletons are then filtered to keep only the parts that belong to regions with appropriate
width. The remaining skeleton parts are grouped to provide elongated region median lines.
Finally, the long median lines are kept as minefield candidates.

The skeleton of a region is the line at equal distance of the two borders. The skeleton may
be computed by searching for ridges of the distance map. Indeed those ridges are at equal
distance of at least two contour points. It is time consuming to compute an exact distance
map. Therefore the chamfer algorithm which provides a fast and good approximation of the
distance map has been used. That algorithm uses the contour image corresponding to the
segmented image as input and propagates the distances to those contours in two passes the
first works left to right and top down and the second from the right to the left and bottom up.
We implemented a generalized version of the classic chamfer algorithm by also propagating
the x and y coordinates of the closest point as well as the colour of that point. Using x and
y output images, it is possible to recover the closest contour point or the two equidistant
contour points for the ridges of the map (the skeleton).

The chamfer distance map corresponding to regions of Figure 6.4 may be seen on Fig-
ure 6.16.

The skeleton found on the chamfer distance map presented in Figure 6.16 is shown in
Figure 6.17.

The middle of the searched area is part of the obtained skeleton but a lot of parasite
skeleton parts are present. To remove those undesired parts, the skeleton is filtered as follows:
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Figure 6.16: Chamfer distance map

• Keep only parts for which the distance to the border is compatible with the width of a
minefield. The distance to the border may be read on the chamfer map. The result of
this filtering is shown on Figure 6.18.

The remaining skeleton parts are then linked if they fulfill the following criteria:

• Parts are in the same region of the segmented image

• Extremity sufficiently close

• Segment linking two parts stays in the same region that the region in which the two
parts are.

• Prolongation sufficiently straight.

• Compatible width (distance from skeleton to border).

The grouped skeleton parts provide the median line of elongated structures. Those median
lines are shown on Figure 6.19. A polygonal approximation of the median lines are then com-
pute and sufficiently long lines are kept as minefield candidates. Those candidates are shown
in Figure 6.20 and should be considered by the photo-interpreter for further investigation.
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Figure 6.17: Skeleton

Figure 6.18: Filtered skeleton
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Figure 6.19: Linked skeleton parts

Figure 6.20: Long skeleton parts
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6.5 Conclusion

These methods have been developed for the detection of elongated minefields. But the meth-
ods present very good results as the minefield was detected with only one false alarm that
the interpreter would easily interpret as a road.

Regarding the processing time, both algorithms are foreseen to be used on downsampled
images and are fast. The time consuming part is the segmentation which was therefore
designed to be fast.

On a 300 megabyte image, the segmentation took around fifteen minutes on a Pentium II
at 400 MHz under Linux with 256 megabyte RAM. See Table 6.1 for details.

Algorithm Time

Conversion into HSV 3min 20s

Downsampling and feature computation 5min 46s

K-means classification 5min 25s

Contour-based minefield detection 20s

Skeleton-based minefield detection 9s

Total 16min 11s 14min 20s

Table 6.1: Computation time



Chapter 7

Detection of trenches and foxholes

7.1 Introduction

The minefields of Bandua and Mameme were designed to protect military camps. Remains
of these camps are good indicators for minefields. If the place of a former camp is detected,
then the presence of a defensive minefield may be inferred. In this chapter, we show how
stereovision may be used to detect semi-automatically the difference in depths due to trenches
or foxholes. Relevant and easy to detect, they are good candidates for minefield indicators.

P1 P2

O1 O2

IM1 IM2
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Figure 7.1: Stereovision principles

Just as we are able to have an idea about the depths of objects from the two images that
we receive from our two eyes, it is possible to build a three-dimensional representation of a
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Figure 7.2: Rectified left image Figure 7.3: Rectified right image

scene from two images taken from two different points of view. The principles are given in
Figure 7.1.

A point M in space in seen on the pixel P1 on image IM1 and pixel P2 on image IM2.
These pixels are the intersection on the lines between M and the optical centres O1 and O2,
and the image planes. P1 and P2 are called matched pixels. If we can, for each pixel on one
image, find its matching pixels on the other images, then it is possible to find the position of
M by triangulation.

A three-stage process is applied: rectification, matching and reconstruction.

7.2 Rectification

First a rectification is performed so that any couple of matched pixels are on the same row on
the two images. That way, the search of the match is a one-dimensional problem (the search
is done along one row of the image) and not a two-dimensional problem (we do not search in
the whole image). This reduces the complexity of the task. In a manual rectification, couples
of matched pixels, one on each image, are chosen manually and then a re-computation of
the two images is performed so that matched pixels are on the same row on each image. In
automatic rectification, the selection of these couples is automatic. These points are the basis
for the weak calibration of the sensors [8]. That allow then a geometric transformation of the
images. This transformation can be seen as a virtual modification of the sensor parameters
and the relative positions of the sensors so that matched pixels are on the same row on each
image. Figure 7.2 and Figure 7.3 show examples of a rectified stereo pair.

7.3 Matching

Then the matching is done for each pixel on one image. For that, we compute the correlation
between a window centred on the pixel and windows centred on each pixel on the correspond-
ing row on the other image. The estimated matched pixel is the one that gives the highest
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Figure 7.4: Disparity map

correlation value. Then a value called disparity is associated to each pixel, representing the
number of column that the pixel must be shift to match the column of its correspondent in
this other image. This disparity may be real, and not only integer. Such sub-pixel matching is
used to reach higher accuracy. This method implies that the images are textured. Otherwise,
such as in some areas in Bandua where the ground has a very homogeneous colour, results
may be poor. The method used here is based on [3]. The results of this step is a disparity
map. See Figure 7.4.

7.4 Reconstruction

If enough information about the way the images were taken is available, a three-dimensional
reconstruction is possible giving heights or depths for all pixels. This reconstruction needs
the parameters of the position and orientation of the camera (and therefore the aircraft), the
height of the aircraft and the calibration parameters of the sensor. Without these data, only
a projective reconstruction is possible, which is enough for the present application.

Figures 7.5 and 7.6 show an example of a trench in Bandua as seen on colour infrared
image. On the right, the projective reconstruction is shown. We can clearly see the shape of
the trench.

The second example (Figure 7.7 and 7.8) is a foxhole in Mameme. For display purposes,
only half of the reconstruction is shown. There again, the presence of the foxhole is visible.
Unlike in the previous example, here some smoothing has been applied to take care of small
ground irregularities.

In these two examples, the rectification was performed manually. This work can be ex-
panded in two directions: a metric reconstruction (to have height, since for the moment,
the reconstruction being projective, there is no meaning in the Z-axis) and an automatic
rectification.
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Figure 7.5: Trenches in Bandua
Figure 7.6: Projective reconstruction of the
trenches

Figure 7.7: Foxhole in Mameme
Figure 7.8: Projective reconstruction of the
foxhole
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7.5 Conclusion

Using stereovision, it was possible to precisely reconstruct the three-dimensional profiles of
minefield indicators such as foxholes or trenches.

There are two ways to use these three-dimensional profiles. A detection based on the colour
or the texture, or both, may be used to detect trenches and foxholes. These first detectors
should not use three-dimensional information in order to be fast enough. They would therefore
provide an important number of false alarms. The three-dimensional algorithms could then
be used to recover the 3D profile and reject false alarms. Then the photo-interpreter could
study more carefully the remaining candidates.

The reconstruction of the three-dimensional profiles may also be provided to the photo-
interpreter at demand.
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Chapter 8

Analysis of satellite imagery

8.1 Introduction

Satellite imagery was also integrated in the scope of the project to see whether it can show
minefield indicators. For the development of semi-automatic tools to speed up the interpre-
tation of these images, we concentrated on the extraction of water areas. Such areas are
interesting because they are often of strategic importance. This is why defensive minefields
might be expected around dams, for instance. Therefore, it is interesting to make the detec-
tion of these areas automatic so that a photo-interpreter can inspect them to search for other
minefield indicators.

8.2 Extraction of water areas

Two strategies are envisaged. In the first one, it is assumed that there is a significative number
of pixels belonging to the water class. This hypothesis is not unrealistic as the coordinates
of image corners are well known and as we assume that geographical information such as the
rough position of lakes or rivers are known. Thus, in a first step, the method analyses a part
of the image (typical sizes range from 512x512 to 1,000x1,000) and performs a learning on
this part; it extracts the parameters characterizing the present classes, then looks for these
classes in the entire image. The other strategy does not involve a learning phase; it directly
works on the whole image.

Different algorithms are used: histogram analysis (see subsection 8.2.1) and classification
methods (see subsection 8.2.2).

8.2.1 Histogram analysis

Methods

The Thematic Mapper (TM) images in the fifth band offers the best contrast between water
and non-water areas. Thus, in a part of image where there is water, two important modes
should be present, and the lowest one should contain the water pixels. In a strategy without
learning, it is wise to change first all pixels of 0 value to 255, that is the pixels that appeared
because of geometrical correction, as illustrated in Figure 8.1. Indeed, if this precaution is
not taken, the lobe containing water may undergo the influence of this important class.
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Figure 8.1: Pixels whose values come from
geometrical correction

Grey level

Histogram

input_s
input_h * max

max

Figure 8.2: Inputs

Several algorithms are proposed for extracting the histogram modes; all have similar
input/output and involve three steps.

Here are the input parameters:

• the histogram smoothing window,

• the minimum surface (input s) of the histogram mode (in fraction of the entire image),

• the minimum value of the histogram at the extreme of the lobes (in fraction of the
absolute maximum of the histogram) (input h) as shown on Figure 8.2

The output of the program is the list of the extreme values of each of the detected lobes.

First the histogram is smoothed over a window whose size [2w+1] is a program parameter
(typically 2w+1=7). That is, the histogram at g is the mean of the histogram h from g-w
to g+w. Second, all local extrema of the smoothed histogram are extracted, including the
extremes of landing intervals. Then there are various methods to detect the lobes.

(a) The first method tests if there is a lobe between two local minima. Let mini be a
minimum, and cumu(g) be the cumulative histogram at grey level g. If

h(mini) < input h ∗ max(h)

h(mini+1) < input h ∗ max(h)

and

cumu(mini+1) − cumu(mini) > input s ∗ image size

the algorithm considers the range from mini to mini+1 as a lobe.

(b) The second method searches for the absolute minimum and checks if there is a lobe either
from 0 to this absolute minimum or from this minimum to 255. The lobe is present in
the interval [a b] if a or b is an absolute minimum and if

h(abs min) < input h ∗ max(h)

and

cumu(b) − cumu(a) > input s ∗ image size
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Then each subinterval is recursively analyzed to extract a sub-lobe; the procedure stops
when it cannot find any other minimum or the integral of the histogram over the subin-
terval is too small.

The third method and the fourth method look for the absolute maximum absmax of the
histogram and assume that there is one mode around that value.

(c) In the third method, the first next minimum at the left min left, i.e.

min left < absmax

and at the right, i.e.
min right > absmax

that are valid, i.e.
h(min xx) < input h ∗ max(h)

are considered. The integral of the histogram over the two intervals [0 min left] and
[min right 255] are computed. The interval over which this integral is the largest is a
candidate for a secondary lobe if it is larger than input s ∗ image size; let us call it the
secondary interval, and its complement, the primary interval; both intervals are then
recursively analyzed by the same procedure.

(d) The fourth method is the same except that instead of considering the next nearest mini-
mum, the absolute minimum at the left and at the right are considered. If none of them
gives a partial histogram large enough, the next absolute minima are considered.

These methods have been tested on several TM images.

Summary of the results

• on a part of the image that contains water (default parameters: half smoothing win-
dow = 3, input s = 0.01, input h = 0.8)

(a) 0-26 27-199

(b) 0-27 27-199

(c) 0-27 27-255

(d) 0-27 27-255

• over a whole image with 0 pixels changed to 255

(a) 27-206 251-255

(b) 0-206 206-255

(c) 0-217 217-255

(d) 0-206 206-255

• over a whole image that do not contain pixels generated by the geometrical correction

(a) 27-206
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(b) 0-206

(c) —

(d) —

In conclusion, only the method that considers all minima is able to separate the water area
in the strategy without learning. Moreover, several methods also show another class of bright
pixels (i.e from 199 or 206 to 255); we will display these pixels in section 8.3.

In Figure 8.3, we show the borders of the regions thresholded at 27. We may observe that
the river and the lake borders are relatively well identified; however, many small rivers are
probably not water areas and some parts of the river are also lost near the dam. The next
step would be to start from these borders and to stretch them so that they fit local maxima
of the gradient.
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Figure 8.3: Water in satellite image on Songo area
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Figure 8.4: Water detection by classification

8.2.2 Classification methods

An iterative algorithm, the k-means, performs the classification. This algorithm assigns
feature vectors into clusters on the basis of the nearest neighbour condition. The data are first
transformed using Karhunen-Loeve transform. After this transform, the first images contain
most of the relevant information. The grey level of the first two images are then used as
feature vectors.

The classification result is given in Figure 8.4 with the tm840903 data. The water areas
are detected.
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8.3 Detection of bright spots

While developing the algorithms for water area detection, bright spots were found. We do not
have a clear idea of what they are and whether they could be useful for minefield detection.
In order to have a photo-interpreter tell us what they are, they have been detected.

In a first experimentation, the thresholding methods used to extract water areas provided
us with a high threshold (i.e from 199 or 206 to 255) which has been used to extract borders
of bright spots shown on Figure 8.5.

As a second method, coloured composition makes some small regions appearing distinc-
tively; they are made of bright pixels in the third band and dark pixels in the fifth band. A
thresholding method is used on the composition of image by taking the pixels that are the
brightest in band three (900/1,000) and the darkest (200/1,000) in band 5. Results are shown
in Figure 8.6.

This should however be checked by a photo-interpreter.

8.4 Conclusion

Several methods exist to detect water areas. They all work correctly when applied to find
large areas such as lakes or seas. For rivers that are small for the image resolution, some
errors may occur. However the methods provide a set of valuable regions of interest that may
be studied further using other indicators and knowledge about these parts of the country.
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Figure 8.5: Bright spots
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Figure 8.6: Combination
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Chapter 9

Compression

(optional)
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coding
Entropy Output

data

Input
data transform
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Figure 9.1: WT compression scheme

9.1 Motivation

Compared to human beings, image processing faces a particular difficulty: the large sizes of
the images. That is due to the fact that, if image processing has to be used, imagery must
be transfered into digital form. Because of the size of the images, disk storage may be a
problem. However, it is possible to reduce the sizes of the images without drawbacks. Tests
have been performed with an image of 350 megabytes (minefield of Buzi in colour infrared).
With a loss-less wavelet-based algorithm, the compression ratio was 1.5. This low compression
ratio may be due to the scanning of the images that was performed at a resolution near the
grain size of the film. Therefore very little correlation in the grey levels of pixels in the same
neighbourhood is present. And most of compression algorithms use this correlation to reduce
the size of the data. In order to reach better compression ratio, lossy algorithms are needed.
However the acceptable error between the original image and the compressed image depends
on the application. If an image is to be used for human analysis, it depends on the size of the
details to be searched. We found out that on the images we had, a compression ratio of 10
leads to a loss of quality not perceptible visually. If, on the contrary, the image is to be used
for image processing, then a compression error acceptable is an error where the algorithm still
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performs correctly. For the pole detection algorithm, we found out that even a compression
ratio of 30 did not affect the detector.

The next section presents the principle of the method and the compression ratio that can
be reached. The section 9.4 shows results of the pole detector applied to compressed images.

9.2 The method

Our wavelet-based compression algorithm was chosen because its performance in lossless com-
pression is better than JPEG, it is competitive with other wavelet-based methods (same com-
pression ratio and faster), and it allows also lossy compression. Subsection 9.2.1 describes the
principle of the method. Subsection 9.2.2 lists the satellite images that were used for testing.
Subsection 9.2.3 presents the entropy coding. The results of lossless and lossy compression
can be found in subsection 9.2.4. However since this algorithm compress each band sepa-
rately and the bands are usually correlated, the algorithm can be improved by de-correlation
as described in subsection 9.2.5.

9.2.1 Principle

Our WT (Wavelet Transform) compression handles any bit depth, smaller or equal to 16-
bit per pixel. The input image is first transformed in a scale-space representation (the
S-transform), followed by a prediction stage (P) to further remove eventual remaining re-
dundancies. Several iterations of the S+P transform may be applied recursively in order to
get a finer scale-space representation. If a lossy compression is to be performed, the Wavelet
Transform coefficients are quantized. The resulting coefficients are then entropy coded using
an algorithm similar to the JPEG Variable Length Coding (VLC) followed by Arithmetic
Coding (AC). Figure 9.1 shows the principle of the wavelet compression.

One level of the 2D S+P transform is obtained first, by performing the 1D S+P transform
(the scale-space transform (S) followed by the prediction (P)) on all the lines of the block.
Then by performing the same 1D S+P transform on all the columns of the resulting coefficient
block. The transform process is recursive. The transformation is first applied to the whole
block and produces four quadrants. It is then re-applied to the upper left quadrant of the
resulting coefficients block. These operations will be executed in integer arithmetic, and hence
do not require any form of approximation.

The following equations specify the functional definition of the direct scale-space (S) trans-
form for a 1D integer sequence of length N :

{

Tn = ⌊(O2n + O2n+1)/2⌋
Tn+N/2 = O2n − O2n+1

With n = 0 . . . N
2
− 1

The downward truncation of a number x is denoted by ⌊x⌋.
The S transform is based on the fact, that the least significant bit of the sum and the least

significant bit of the difference are redundant. The transformed sequence is also an integer
sequence. The lower part of the transformed sequence (from T0 to TN

2
−1

) is a low-pass filtered

and dyadic down-sampled version of the original sequence; the S transform can be recursively
applied to it. The second part (from TN

2

to TN−1) contains the high-frequency content of the

original sequence and is also down-sampled.
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The original sequence can be obtained from the transformed one using the following equa-
tions:

{

O2n = Tn + ⌊(Tn+
N

2

+ 1)/2⌋

O2n+1 = O2n − Tn+
N

2

With n = 0 . . . N
2
− 1

The prediction stage further removes redundancies in the second part of the transformed
sequence using predictive coding. This predictive coding can be parameterized; our coder
offers a choice of four different parameters set (no prediction, predictor A, predictor B, pre-
dictor C).

In order the make the S+P transform approximately a unitary transform, WT coefficients
are multiplied by a factor according to the quadrant they belong to. These factors are positive
power of two.

During coding quadrants are scanned from the top left to the bottom right. Within
a quadrant, WT coefficients are coded using a left-to-right / right-to left scanning. Each
coefficient is associated to a class (number of significant bits) and the class is passed to
an arithmetic coder for entropy coding (contextual adaptive coding). The position of the
coefficient within its respective class (and the sign of the coefficient) is then binary coded.

Our coder is able either to code the full image as a single block of pixels or either to
subdivide it into sub-blocks of small sizes (16x16, 32x32, 64x64). The block-by-block coding
offers several advantages:

• It allows to limit the computer resources needed to code the full image

• It allows the use of restart marker between blocks allowing performing error detection
and recovery. The frequency of apparition of these markers is parameterized with a
user-defined restart interval (RI).

• Finally, it allows to implement easily the coder on multi-processors architecture (tests
performed on bi-pentium machines)

9.2.2 Test Images

Scenes Band dimensions

tm840903 3313x2935x8bits

tm860909 3313x2935x8bits

tm900904 3313x2935x8bits

tm920909 3313x2935x8bits

tm950902 3313x2935x8bits

Table 9.1: LANDSAT TM scenes

Each scene contains 7 spectral bands: Blue (1), Green (2), Red (3), Near InfraRed (4),
Near InfraRed (5), Thermal InfraRed (6), Near InfraRed (7).

All bands pixels are stored on 8 bit integer (256 grey levels). Each pixel is related to a
square of 30m x 30m on ground, except for the thermal infrared band (6) where the ground
resolution is 60m x 60m. That latter band is interpolated (zero order interpolator) in order
to have the same dimensions as the other bands.
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9.2.3 Zero Order Entropy

The entropy is a typical measure to estimate the information content of a sequence of events
(here events are pixel values). The zero order entropy is expressed in bits per pixel (bpp). It
is related to the theoretical maximum compression ratio that can be obtained using a zero
order entropy coder (using probabilities of occurrences of events without taking into account
any contextual information).
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0th Entropy bits per pixel Ratio

tm840903-b1 4.47 1.79

tm840903-b2 4.06 1.97

tm840903-b3 5.21 1.54

tm840903-b4 5.53 1.45

tm840903-b5 6.54 1.22

tm840903-b6 4.46 1.79

tm840903-b7 5.59 1.43

Mean 5.12 1.60

tm860909-b1 3.60 2.22

tm860909-b2 2.90 2.76

tm860909-b3 3.82 2.09

tm860909-b4 4.69 1.71

tm860909-b5 6.29 1.27

tm860909-b6 3.89 2.06

tm860909-b7 5.32 1.50

Mean 4.36 1.94

tm900904-b1 4.37 1.83

tm900904-b2 3.83 2.09

tm900904-b3 4.62 1.73

tm900904-b4 5.14 1.56

tm900904-b5 6.08 1.32

tm900904-b6 4.49 1.78

tm900904-b7 5.20 1.54

Mean 4.82 1.69

tm920909-b1 4.05 1.98

tm920909-b2 3.65 2.19

tm920909-b3 4.60 1.74

tm920909-b4 4.99 1.60

tm920909-b5 6.06 1.32

tm920909-b6 4.35 1.84

tm920909-b7 5.35 1.50

Mean 5.15 1.74

tm950902-b1 4.11 1.95

tm950902-b2 3.74 2.14

tm950902-b3 4.65 1.72

tm950902-b4 5.02 1.60

tm950902-b5 6.02 1.33

tm950902-b6 3.89 2.06

tm950902-b7 5.26 1.52

Mean 4.67 1.76

Total Mean 4.82 1.75

Table 9.2: Theoretical maximum compression ratio
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9.2.4 Lossless and Lossy compression

Introduction

Using Wavelet coder: S+P(B), VLC, AC, 64x64 blocks, RI = 0

• L0: All bit planes are coded (Lossless compression)

• L1: 1 bit plane not coded (Lossy compression)

• L4: 2 bit planes not coded (Lossy compression)

• L9: 3 bit planes not coded (Lossy compression)

• L15: 4 bit planes not coded (Lossy compression)

Intermediate lossy steps are possible with the coder.

Compression times

The typical compression time for the test images ranges from 9 to 12 seconds (times excluding
IO) for lossless compression. For lossy compression the computation time ranges from 4
seconds (high loss) to 12 seconds (quasi-lossless) on Pentium II 333 NT.

Compression ratios

See Table 9.3.

Maximum absolute error

The maximum absolute error (MAE) is the maximum absolute difference that is found be-
tween pixel values of the original image and their lossy compressed-decompressed counter-
parts. See Table 9.4.

Root mean square error

The root mean square error (RMSE) is a typical measure of the visual loss that occurs after
compression. It is defined as:

RMSE =

√

∑

i,j (Ii,j − Ĩi,j)2

N

Where Ii,j and Ĩi,j denote respectively the original and compressed-decompressed images and
N denotes the number of pixels in the image. See table 9.5.
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Ratio L0 L1 L4 L9 L15

tm840903-b1 3.00 3.47 6.50 17.87 54.37

tm840903-b2 3.48 4.13 8.63 22.61 62.71

tm840903-b3 2.63 2.98 4.90 10.42 24.37

tm840903-b4 2.47 2.77 4.33 8.45 18.75

tm840903-b5 1.94 2.10 2.88 4.73 9.25

tm840903-b6 5.39 6.89 18.77 42.67 80.07

tm840903-b7 2.37 2.64 4.05 7.92 17.57

Mean 3.04 3.57 7.15 16.38 38.16

tm860909-b1 3.28 3.83 8.02 30.19 156.16

tm860909-b2 4.33 5.41 15.23 57.24 179.08

tm860909-b3 3.51 4.16 8.99 25.96 78.32

tm860909-b4 3.08 3.59 6.63 15.45 37.91

tm860909-b5 2.02 2.20 3.09 5.26 10.71

tm860909-b6 5.73 7.38 21.16 52.01 99.17

tm860909-b7 2.44 2.73 4.27 8.59 19.14

Mean 3.48 4.19 9.63 27.81 82,93

tm900904-b1 2.84 3.14 5.05 15.67 72.78

tm900904-b2 3.43 3.93 7.73 27.15 85.62

tm900904-b3 2.69 2.96 4.58 11.00 33.15

tm900904-b4 2.45 2.67 3.86 7.86 21.32

tm900904-b5 1.88 1.99 2.50 3.73 7.36

tm900904-b6 5.69 7.12 17.66 36.47 66.49

tm900904-b7 2.23 2.40 3.28 5.96 15.38

Mean 3.03 3.46 6.38 15.41 43.16

tm920909-b1 2.82 3.12 4.99 15.45 77.34

tm920909-b2 3.51 4.03 8.17 29.47 91.96

tm920909-b3 2.75 3.03 4.77 11.92 36.68

tm920909-b4 2.61 2.86 4.32 9.57 26.93

tm920909-b5 1.89 2.02 2.53 3.80 7.59

tm920909-b6 5.64 7.08 17.63 37.01 71.54

tm920909-b7 2.17 2.32 3.12 5.45 13.55

Mean 3.06 3.49 6.50 16.09 46.51

tm950902-b1 2.78 3.06 4.83 14.23 70.58

tm950902-b2 3.43 3.93 7.73 27.13 85.17

tm950902-b3 2.73 3.00 4.70 11.50 34.46

tm950902-b4 2.53 2.76 4.08 8.59 23.46

tm950902-b5 1.91 2.03 2.57 3.91 7.97

tm950902-b6 6.01 7.55 19.37 41.86 76.69

tm950902-b7 2.22 2.39 3.25 5.90 15.35

Mean 3.09 3.53 6.65 16.16 44.81

Total Mean 3.14 3.65 7.26 18.37 51.11

Table 9.3: Compression ratios
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MAE L0 L1 L4 L9 L15

tm840903-b1 0 1 5 8 13

tm840903-b2 0 1 4 8 13

tm840903-b3 0 1 4 9 17

tm840903-b4 0 1 5 9 15

tm840903-b5 0 1 5 9 18

tm840903-b6 0 1 4 5 8

tm840903-b7 0 1 5 9 16

Mean 0 1 4.57 8.14 14.29

tm860909-b1 0 1 4 7 9

tm860909-b2 0 1 4 7 8

tm860909-b3 0 1 4 8 13

tm860909-b4 0 1 4 8 15

tm860909-b5 0 1 5 10 18

tm860909-b6 0 1 3 5 8

tm860909-b7 0 1 5 9 17

Mean 0 1 4.14 7.71 12.57

tm900904-b1 0 1 5 8 15

tm900904-b2 0 1 4 9 14

tm900904-b3 0 1 4 8 15

tm900904-b4 0 1 4 10 16

tm900904-b5 0 1 4 10 20

tm900904-b6 0 1 4 6 12

tm900904-b7 0 1 5 9 16

Mean 0 1 4.29 8.57 15.43

tm920909-b1 0 1 5 9 15

tm920909-b2 0 1 4 8 15

tm920909-b3 0 1 5 9 15

tm920909-b4 0 1 5 9 17

tm920909-b5 0 1 5 9 21

tm920909-b6 0 1 4 8 13

tm920909-b7 0 1 5 9 17

Mean 0 1 4.71 8.71 16.14

tm950902-b1 0 1 5 10 14

tm950902-b2 0 1 5 7 13

tm950902-b3 0 1 5 9 15

tm950902-b4 0 1 5 9 16

tm950902-b5 0 1 5 9 18

tm950902-b6 0 1 3 6 12

tm950902-b7 0 1 5 10 18

Mean 0 1 4.71 8.57 15.14

Total Mean 0 1 4.48 8.34 14.71

Table 9.4: Maximum absolute error
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RMSE L0 L1 L4 L9 L15

tm840903-b1 0 0.41 0.93 1.48 1.97

tm840903-b2 0 0.39 0.87 1.31 1.75

tm840903-b3 0 0.41 0.96 1.63 2.38

tm840903-b4 0 0.41 0.97 1.68 2.56

tm840903-b5 0 0.42 1.02 1.88 3.22

tm840903-b6 0 0.31 0.62 0.88 1.19

tm840903-b7 0 0.41 0.98 1.74 2.65

Mean 0 0.39 0.91 1.51 2.25

tm860909-b1 0 0.40 0.92 1.42 1.83

tm860909-b2 0 0.38 0.79 1.13 1.45

tm860909-b3 0 0.40 0.87 1.30 1.69

tm860909-b4 0 0.40 0.90 1.44 2.01

tm860909-b5 0 0.42 1.02 1.86 3.10

tm860909-b6 0 0.30 0.59 0.84 1.11

tm860909-b7 0 0.41 0.98 1.70 2.55

Mean 0 0.39 0.87 1.38 1.96

tm900904-b1 0 0.38 0.91 1.60 2.01

tm900904-b2 0 0.38 0.87 1.32 1.68

tm900904-b3 0 0.38 0.92 1.63 2.29

tm900904-b4 0 0.38 0.93 1.71 2.63

tm900904-b5 0 0.38 0.93 1.80 3.42

tm900904-b6 0 0.29 0.62 0.93 1.25

tm900904-b7 0 0.38 0.93 1.79 2.93

Mean 0 0.37 0.87 1.54 2.32

tm920909-b1 0 0.38 0.91 1.61 2.02

tm920909-b2 0 0.38 0.87 1.30 1.64

tm920909-b3 0 0.38 0.84 1.61 2.22

tm920909-b4 0 0.38 0.92 1.66 2.43

tm920909-b5 0 0.38 0.93 1.80 3.41

tm920909-b6 0 0.29 0.62 0.93 1.27

tm920909-b7 0 0.38 0.93 1.80 3.03

Mean 0 0.37 0.86 1.53 2.29

tm950902-b1 0 0.38 0.91 1.63 2.07

tm950902-b2 0 0.38 0.87 1.32 1.68

tm950902-b3 0 0.38 0.92 1.61 2.26

tm950902-b4 0 0.38 0.93 1.69 2.54

tm950902-b5 0 0.38 0.93 1.80 3.38

tm950902-b6 0 0.27 0.60 0.89 1.20

tm950902-b7 0 0.38 0.93 1.79 2.94

Mean 0 0.36 0.87 1.53 2.30

Total Mean 0 0.38 0.88 1.50 2.22

Table 9.5: Root mean square error
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9.2.5 Improving lossless compression using spectral de-correlation

The wavelet coder reduces the entropy of the original image by means of the wavelet transform
that is a good tool to spatially de-correlate pixel values.

The aim of the spectral de-correlation is to try to take into account the information content
of a previously coded image (reference) to code the current image.

Linear prediction

This was done using linear prediction:

• Predict the pixels of the image to compress using pixels of the reference image using a
linear function

ILPC = aLPCR + bLPC

• Code the difference between current pixel (I) and prediction (In fact, code the residual
image)

The linear predictor coefficients (LPC A and LPC B) are estimated using residual mini-
mum variance criteria (least square minimization).

CRIT =
∑

i,j

(Ii,j − ILP
i,j )2

CRIT =
∑

i,j

(Ii,j − (aLPCRi,j + bLPC))2

CRIT =
∑

i,j

I2
i,j

− 2aLPC
∑

i,j

Ii,jRi,j

− 2bLPC
∑

i,j

Ii,j

+ a2

LPC

∑

i,j

R2
i,j

+ 2aLPCbLPC
∑

i,j

Ri,j

+ b2

LPC

Using partial derivative and solving for aLPC and bLPC, one can easily find the linear
predictor coefficients that minimize the criteria.

Correlation factors

A good estimation the correlation between bands can be obtained by computing the covariance
and correlation matrixes. The elements of the covariance matrix are computed as follow:

CVARi,j =

∑M
k=1

(

xk
i x

k
j

)

N
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Where xk
i and xk

j are the kth pixel values (mean normalized) of respectively image i and j,
and N is the number of image pixels.

The correlation matrix is just computed using a proper normalization of the covariance
matrix; this normalization scales the axis to deal with unit variances:

CORi,j =
CVARi,j

√

CVARi,iCVARj,j

During computation of the linear predictor coefficients and correlation factors, zero pixels
are excluded (images mask due to geometric rectification). This allows avoiding a statistical
bias due to the large number of zero pixels.
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Linear prediction & Scene tm840903

See Table 9.6 to Table 9.12.

Image Mean Std Oth Entropy Ratio

tm840903-b1 96.17 5.43 4.47 3.00

Residual image

Image Reference Cor. LPC A LPC B. Std Oth Entropy Ratio

tm840903-b1 tm840903-b2 0.92 1.22 45.48 2.14 3.15 2.99

tm840903-b1 tm840903-b3 0.59 0.35 76.62 4.38 3.88 3.17

tm840903-b1 tm840903-b4 0.24 0.09 90.91 5.27 4.36 3.03

tm840903-b1 tm840903-b5 0.26 0.05 91.13 5.25 4.34 3.03

tm840903-b1 tm840903-b6 0.00 0.00 97.25 5.43 4.47 3.00

tm840903-b1 tm840903-b7 0.25 0.09 91.33 5.25 4.35 3.02

Table 9.6: tm840903 (1)

Image Mean Std Oth Entropy Ratio

tm840903-b2 41.57 4.09 4.06 3.48

Residual image

Image Reference Cor. LPC A LPC B. Std Oth Entropy Ratio

tm840903-b2 tm840903-b1 0.92 0.69 -25.09 1.61 2.76 3.36

tm840903-b2 tm840903-b3 0.74 0.33 23.17 2.76 3.02 3.86

tm840903-b2 tm840903-b4 0.42 0.12 34.66 3.72 3.81 3.56

tm840903-b2 tm840903-b5 0.39 0.05 35.78 3.77 3.84 3.53

tm840903-b2 tm840903-b6 0.04 0.02 37.77 4.09 4.03 3.46

tm840903-b2 tm840903-b7 0.36 0.10 36.42 3.82 3.89 3.49

Table 9.7: tm840903 (2)
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Image Mean Std Oth Entropy Ratio

tm840903-b3 55.93 9.18 5.21 2.63

Residual image

Image Reference Cor. LPC A LPC B. Std Oth Entropy Ratio

tm840903-b3 tm840903-b1 0.59 1.00 -40.15 7.41 4.60 2.69

tm840903-b3 tm840903-b2 0.74 1.65 -12.83 6.20 3.98 2.83

tm840903-b3 tm840903-b4 0.87 0.56 23.63 4.52 4.13 3.05

tm840903-b3 tm840903-b5 0.85 0.25 27.62 4.76 4.24 2.92

tm840903-b3 tm840903-b6 0.46 0.61 -39.54 8.15 5.04 2.60

tm840903-b3 tm840903-b7 0.78 0.47 30.75 5.73 4.55 2.78

Table 9.8: tm840903 (3)

Image Mean Std Oth Entropy Ratio

tm840903-b4 57.79 14.30 5.53 2.47

Residual image

Image Reference Cor. LPC A LPC B. Std Oth Entropy Ratio

tm840903-b4 tm840903-b1 0.24 0.63 -2.87 13.88 5.39 2.48

tm840903-b4 tm840903-b2 0.42 1.46 -2.87 12.99 5.09 2.54

tm840903-b4 tm840903-b3 0.87 1.36 -18.05 7.04 4.56 2.65

tm840903-b4 tm840903-b5 0.93 0.43 10.03 5.41 4.41 2.65

tm840903-b4 tm840903-b6 0.51 1.06 -107.42 12.28 5.51 2.43

tm840903-b4 tm840903-b7 0.80 0.74 17.73 8.62 5.10 2.43

Table 9.9: tm840903 (4)

Image Mean Std Oth Entropy Ratio

tm840903-b5 111.84 31.00 6.54 1.94

Residual image

Image Reference Cor. LPC A LPC B. Std Oth Entropy Ratio

tm840903-b5 tm840903-b1 0.26 1.47 -29.29 29.96 6.29 1.94

tm840903-b5 tm840903-b2 0.39 2.97 -11.59 28.51 6.01 1.96

tm840903-b5 tm840903-b3 0.85 2.89 -49.63 16.08 5.73 1.93

tm840903-b5 tm840903-b4 0.93 2.01 -4.14 11.72 5.52 2.00

tm840903-b5 tm840903-b6 0.68 3.04 -360.89 22.84 6.40 1.89

tm840903-b5 tm840903-b7 0.94 1.90 9.20 10.33 5.30 2.09

Table 9.10: tm840903 (5)
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Image Mean Std Oth Entropy Ratio

tm840903-b6 155.40 6.89 4.46 5.39

Residual image

Image Reference Cor. LPC A LPC B. Std Oth Entropy Ratio

tm840903-b6 tm840903-b1 0.00 -0.01 156.48 6.89 4.47 5.27

tm840903-b6 tm840903-b2 0.04 0.07 152.52 6.88 4.44 4.94

tm840903-b6 tm840903-b3 0.46 0.35 136.05 6.11 4.44 3.68

tm840903-b6 tm840903-b4 0.51 0.25 141.14 5.92 4.48 3.84

tm840903-b6 tm840903-b5 0.68 0.15 138.60 5.08 4.20 3.68

tm840903-b6 tm840903-b7 0.79 0.35 136.31 4.23 4.01 3.41

Table 9.11: tm840903 (6)

Image Mean Std Oth Entropy Ratio

tm840903-b7 53.92 15.35 5.59 2.37

Residual image

Image Reference Cor. LPC A LPC B. Std Oth Entropy Ratio

tm840903-b7 tm840903-b1 0.25 0.72 -15.04 14.85 5.34 2.38

tm840903-b7 tm840903-b2 0.36 1.34 -1.98 14.33 5.18 2.40

tm840903-b7 tm840903-b3 0.78 1.31 -19.15 9.59 5.15 2.36

tm840903-b7 tm840903-b4 0.80 0.86 4.41 9.26 5.20 2.36

tm840903-b7 tm840903-b5 0.94 0.47 1.69 5.12 4.24 2.73

tm840903-b7 tm840903-b6 0.79 1.76 -219.48 9.43 5.25 2.31

Table 9.12: tm840903 (7)
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Linear prediction & Scene tm950902

See Table 9.13 to Table 9.19.

Image Mean Std Oth Entropy Ratio

tm950902-b1 90.36 4.15 4.11 2.78

Residual image

Image Reference Cor. LPC A LPC B. Std Oth Entropy Ratio

tm950902-b1 tm950902-b2 0.83 1.10 49.42 2.30 3.12 2.77

tm950902-b1 tm950902-b3 0.78 0.50 65.84 2.60 3.28 2.85

tm950902-b1 tm950902-b4 0.67 0.32 75.31 3.08 3.51 2.83

tm950902-b1 tm950902-b5 0.63 0.13 77.93 3.23 3.58 2.84

tm950902-b1 tm950902-b6 0.16 0.19 64.23 4.09 3.92 2.78

tm950902-b1 tm950902-b7 0.53 0.20 80.45 3.51 3.70 2.81

Table 9.13: tm950902 (1)

Image Mean Std Oth Entropy Ratio

tm950902-b2 37.07 3.12 3.74 3.43

Residual image

Image Reference Cor. LPC A LPC B. Std Oth Entropy Ratio

tm950902-b2 tm950902-b1 0.83 0.63 -19.61 1.73 2.73 3.16

tm950902-b2 tm950902-b3 0.92 0.45 15.17 1.21 2.23 3.70

tm950902-b2 tm950902-b4 0.82 0.29 23.16 1.78 2.75 3.61

tm950902-b2 tm950902-b5 0.78 0.12 25.39 1.95 2.88 3.57

tm950902-b2 tm950902-b6 0.23 0.20 9.36 3.04 3.49 3.42

tm950902-b2 tm950902-b7 0.68 0.19 27.57 2.30 3.12 3.48

Table 9.14: tm950902 (2)
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Image Mean Std Oth Entropy Ratio

tm950902-b3 48.80 6.42 4.65 2.73

Residual image

Image Reference Cor. LPC A LPC B. Std Oth Entropy Ratio

tm950902-b3 tm950902-b1 0.78 1.21 -60.16 4.03 3.87 2.49

tm950902-b3 tm950902-b2 0.92 1.90 -21.47 2.48 3.20 2.76

tm950902-b3 tm950902-b4 0.92 0.67 16.93 2.58 3.21 3.12

tm950902-b3 tm950902-b5 0.87 0.28 22.13 3.20 3.56 2.95

tm950902-b3 tm950902-b6 0.25 0.45 -13.71 6.22 4.48 2.72

tm950902-b3 tm950902-b7 0.73 0.43 27.77 4.41 4.00 2.81

Table 9.15: tm950902 (3)

Image Mean Std Oth Entropy Ratio

tm950902-b4 47.63 8.73 5.02 2.53

Residual image

Image Reference Cor. LPC A LPC B. Std Oth Entropy Ratio

tm950902-b4 tm950902-b1 0.67 1.42 -80.83 6.52 4.51 2.29

tm950902-b4 tm950902-b2 0.82 2.31 -38.08 5.01 4.16 2.45

tm950902-b4 tm950902-b3 0.92 1.25 -13.57 3.53 3.66 2.76

tm950902-b4 tm950902-b5 0.88 0.39 10.56 4.17 3.91 2.68

tm950902-b4 tm950902-b6 0.16 0.39 -6.56 8.68 4.89 2.52

tm950902-b4 tm950902-b7 0.66 0.53 21.46 6.60 4.52 2.52

Table 9.16: tm950902 (4)

Image Mean Std Oth Entropy Ratio

tm950902-b5 95.52 19.95 6.02 1.91

Residual image

Image Reference Cor. LPC A LPC B. Std Oth Entropy Ratio

tm950902-b5 tm950902-b1 0.63 3.01 -176.89 15.55 5.63 1.78

tm950902-b5 tm950902-b2 0.78 4.98 -89.14 12.48 5.35 1.86

tm950902-b5 tm950902-b3 0.87 2.69 -35.93 9.93 5.08 1.98

tm950902-b5 tm950902-b4 0.88 2.00 0.39 9.46 5.02 2.01

tm950902-b5 tm950902-b6 0.37 2.04 -189.14 18.57 5.91 1.91

tm950902-b5 tm950902-b7 0.89 1.63 15.55 9.08 4.94 2.06

Table 9.17: tm950902 (5)
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Image Mean Std Oth Entropy Ratio

tm950902-b6 139.79 3.58 3.89 6.01

Residual image

Image Reference Cor. LPC A LPC B. Std Oth Entropy Ratio

tm950902-b6 tm950902-b1 0.16 0.14 127.22 3.53 3.66 4.80

tm950902-b6 tm950902-b2 0.23 0.26 130.16 3.48 3.65 4.71

tm950902-b6 tm950902-b3 0.25 0.14 133.02 3.46 3.64 4.81

tm950902-b6 tm950902-b4 0.16 0.06 136.73 3.53 3.67 5.21

tm950902-b6 tm950902-b5 0.37 0.07 133.54 3.33 3.59 4.63

tm950902-b6 tm950902-b7 0.55 0.18 130.90 2.98 3.45 4.11

Table 9.18: tm950902 (6)

Image Mean Std Oth Entropy Ratio

tm950902-b7 49.118 10.92 5.26 2.22

Residual image

Image Reference Cor. LPC A LPC B. Std Oth Entropy Ratio

tm950902-b7 tm950902-b1 0.53 1.40 -77.22 9.25 4.96 2.12

tm950902-b7 tm950902-b2 0.68 2.36 -38.31 8.05 4.79 2.19

tm950902-b7 tm950902-b3 0.73 1.24 -11.15 7.50 4.70 2.28

tm950902-b7 tm950902-b4 0.66 0.82 10.08 8.19 4.81 2.27

tm950902-b7 tm950902-b5 0.89 0.49 2.62 4.97 4.09 2.51

tm950902-b7 tm950902-b6 0.55 1.69 -186.41 9.11 4.96 2.22

Table 9.19: tm950902 (7)
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Figure 9.2: Histogram of a CIR image Figure 9.3: Histogram of satellite image

9.3 Influence of scanning on compression

Figure 9.2 shows the histogram of a part of the infrared band of a colour infrared airborne
image. Figure 9.3 shows the histogram on a part of the infrared band of a TM image. The
CIR histogram shows a jitter, unlike the TM histogram.

Figure 9.4 presents a row of the colour infrared image, and Figure 9.5 a row of the Thematic
mapper image.

Figure 9.4: One row in CIR image Figure 9.5: One row in TM image

Finally, Figure 9.6 shows the Fourier transform of the colour infrared image, and Figure 9.7
the Fourier transform of the Thematic Mapper image. There are far more high frequencies in
the airborne image than in the satellite image. These high frequecies make the compression
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Figure 9.6: FFT of CIR image Figure 9.7: FFT of TM image

difficult. They come partly from the high resolution of the scanning of the image.
A way to solve this problem in the case of lossy compression is to prefilter the image

before the compression. The compression ratio becomes then similar to the ratio of TM
images. Figure 9.8 shows the Fourier transform of a prefiltered colour infrared image. High
frequencies have been reduced.

Figure 9.8: FFT of a prefiltered CIR image
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Figure 9.9: Original image

9.4 Pole detector on compressed image

The pole detection algorithm described in section 5.2 works on the luminance image. To test
the effect of compression artifacts on the performance of that detector, a typical part of the
Buzi minefield presenting four poles has been selected. The corresponding image is presented
in Figure 9.9. The luminance image has then been computed and compressed with various
compression ratios. A compression ratio of 1.41 was reached with the lossless method.

Table 9.20 presents the compression ratio, the maximum error and the RMS error for 6
levels of lossy compression (polesLossyN). The number N represents the number of bit planes
that were discarded.

The results obtained when a prefiltering is applied are presented in Table 9.21. The results
are worse in term or MAE and RMSE, but visually, the compressed image is much closer to
the original. This is due to the inadequacy of RMSE to measure the visual quality of an
image.
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Scenes Compression Ratio MAE RMSE

poles.rma 1.41 0 0

polesLossy1 1.48 1 0.41

polesLossy2 1.77 4 0.98

polesLossy3 2.34 9 1.82

polesLossy4 3.69 17 3.78

polesLossy5 8.72 34 7.49

polesLossy5 6 18.10 47 9.20

polesLossy6 31.74 60 10.45

Table 9.20: Compression ratios

Scenes Compression Ratio MAE RMSE

poles.rma 2.86 0 0

polesLossy1 3.30 222 15.25

polesLossy2 5.26 222 15.34

polesLossy3 9.76 222 15.54

polesLossy4 15.22 222 15.70

polesLossy5 24.55 220 16.03

polesLossy6 38.31 222 16.56

Table 9.21: Compression ratios with prefiltering
.

The pole detector has been launched on all the compressed/decompressed images. Even
with the highest compression ratio (38.31) all poles were still detected. We may thus conclude
that the pole detector is highly robust to compression artifacts.

Figure 9.10 presents the results of the pole detector when applied to most compressed
image with lossless compression. On Figure 9.11, the results on the most compressed image
with lossy compression without prefiltering (polesLossy6). Results with prefiltered images are
similar.
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Figure 9.10: Results on compressed image (lossless)
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Figure 9.11: Results on the compressed image (lossy)
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9.5 Conclusion

When comparing the compression ratio obtained using lossless compression on Landsat and
airborne colour infrared images, it appears, that the compression ratio is much lower for
airborne colour infrared (1.4) than for Landsat images (3.14). This may be explained by the
higher textural content of the airborne images. This high textural content is partly due to
the high resolution used for scanning in order to retain the fine details of the images but that
scanning resolution is also at the limit of the grain and the grain texture begins to appear.

For those image, lossy compression should thus be used to reach a significant reduction
of data volume. Typically, up to a compression ratio of ten, the degradation of the image is
hardly visible. Of course, the precise degradation limit is function of the kind of details that
are used by the photo interpreter as mine indicators.

When semi-automatic detection of minefield indicators are considered, the degradation
limit and the corresponding compression ratio are function of the indicator and the algorithm
used for the detector. Typically, for the pole detector presented in section 5.2 even compression
ratio as high as 40 did not hinder the detector.

For the multi-spectral images (Landsat or colour), spectral correlation may be used to
increase the compression ratio. This approach has been evaluated on the Landsat images.
Even though the correlation between the bands is rather high, the increase of the compression
ratio remains rather limited. Typically, for lossless compression the compression ratio is
increase by 10 %. This may be explained by the fact that even if the prediction is good,
the variance of the residual errors is small but the spatial correlation is much lower than
the original image (the criterion of the compression does not take into account the spatial
correlation) and the gain of spatial decorrelation is thus reduced.



Chapter 10

Graphical user interface

It is the final stage of a semi-automatic image processing tool to be integrated into a complete
environment where the user can launch tools and study the results in the most interactive way.
Graphical User Interfaces (GUI) and Geographical Information Systems (GIS) are such tools.
In this chapter, the dedicated features of our GUI that were used for the visual inspection of
the database are presented.

The RMA/SIC visualization tools is able to display virtual images such as image mosaics.
These virtual images are made of the composition of several sub-images stored on the disk.
The advantage of our tool is that the co-registration of the sub-images and the mosaic is
performed in real-time without using temporary disk space.
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Figure 10.1: Part of a mosaic image

Figure 10.1 shows part of a virtual image made of ort6000 and ort12000, two images from
Aerodata. Only the ort6000 part of the mosaic is activated.
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Figure 10.2: Mosaic image with all sub-images activated

In figure 10.2, the ort12000 part of the mosaic is also activated. The orth6000 part is in
front of the ort12000 one.
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Figure 10.3: Large mosaic image

In figure 10.3, a large image mosaic made of scan1084 and scan1105, two images from
Eurosense is shown.
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Figure 10.4: Snapshot of the registration GCP selection process

Our visualization tool also allows the user to geocode / register one or more images by
means of a Ground Control Point (GCP) tool. These GCP are used to compute the parameters
of a polynomial transformation. These parameters are then stored in an ASCII header file
that is associated with the original image. The pair made of the original image file and the
header file allows the visualization tool to register interactively the image to any other image
projection. Figure 10.4 shows a snapshot of the registration GCP selection process.
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Figure 10.5: Interactive registration process

Figure 10.5 shows the interactive registration process; ort6000, ort12000 and scan1105
images are co-registered in real-time to the projection of the scan1084 image.
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Figure 10.6: Interactive registration process on virtual images

Figure 10.6 shows that the same operation can be performed on virtual images. Here the
image mosaic made of the Aerodata images (ort6000 and ort12000) is co-registered with the
image mosaic made of the scan1084 and scan1105 RGB images.
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Figure 10.7: Vectorial information

Our visualization tool is able to display vectorial information on top of images such as
GIS data. The user can edit these vectorial objects, define object attributes, export the data,
etc. Some of these objects may define a region of interest; the user has the ability to move
around these regions of interest.

Figure 10.7 shows the mines present in the test field C. Mines characteristics are encoded
as vectorial object attributes.
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Figure 10.8: Scattergram and graph tool

Several analysis tools are available in our environment. The Scattergram tool displays
a 2D histogram of occurrences of grey level pairs using the data from two different spectral
bands. This tool is useful for multi-spectral image analysis. The Graph tool displays a grey
level cut (profiles) of different images. Figure 10.8 shows part of the colour infrared scan1084
images and the scattergram and graph computed on it. The scattergram is computed using
the green and blue band of the colour infrared RGB images.
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Chapter 11

Recommendations

Based on the experience obtained in this project, it is possible to draw some conclusion on how
to choose good minefield indicators, build a good detector and collect the data, to improve
the image processing work.

11.1 How to choose the indicators

As already mentioned, indicators must fulfill two conditions: be valid indicators for a photo-
interpreter and be simple enough to allow an automatic detection. The first constraint means
that the presence of the indicator must really improve the confidence in the presence of a
minefield. The second means that a detector, as defined in the next paragraph, can be
implemented. It is also a good idea, but not a necessity, to choose indicators which would
take a long time to be detected by a human interpretation, because of their small sizes for
instance. That way, image processing could really be a valuable addition to the tools of the
photo-interpreters.

11.2 How to build the detectors

Once the indicators have been chosen, the detectors must be built. If the detector is to be
launched prior to any human investigation, such as a pole detector presented previously, then
it must be able to work on very large images. In the examples presented here, the pole
detector and the anti-tank mine detector divide large images into several smaller overlapping
ones, perform the detection on all these sub-images and then merge the results.

The speed of the detector is also important. If the detector is to speed up the work
of a photo-interpreter, then it must run on a reasonable time using reasonable computation
power for economical reasons. This limit is only a qualitative guideline and it is not possible to
precisely define it, since the computing power at a given cost is increasing fast. Any algorithm
could probably be used if the computation power is made available, but if the method used
must be economically viable, then the complexity of the algorithm must remain limited.

11.3 How to collect the data

Obviously, the data must be collected with their use kept in mind. Once the indicators have
been chosen, then the most adequate sensors can be known, both in terms of principles and
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resolution. The detectors can also provide some constraints. For instance, the pole detector
presented here uses the shadow of the poles. Images taken when the shadows are clearly visible
will help the detection, typically the flights should not take place at night or at midday. For
the use of stereovision, a delicate phase is the rectification, whether it is performed manually
or automatically. If the two stereoscopic images could be taken in such a way that the images
were originally rectified then again the quality of the result of the detector would be improved.
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