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Abstract— We study the performance of space-time adaptive
processing (STAP) applied to coherent multistatic radar. The
radars we consider are passive (receive only) but are synchronized
in order to allow coherent processing of the data among the
different radars. One of the major benefit of multistatism is
that the full velocity vectors of the targets can be measured.
Furthermore, we study the feasibility of estimating the clutter
covariance matrix, required to compute the STAP filter. We show
that range-dependence effects cause the usual sample matrix
inversion (SMI) scheme to fail and we propose a method able to
cope with arbitrary multistatic geometries.

I. INTRODUCTION

Multistatic radars have recently gained a lot of interest [1]–
[3]. In [4], [5], multistatic radars are shown to increase the
localization accuracy of the targets. In [6], [7], the benefit of
non-coherent multistatic radar processing is analyzed. How-
ever, they rely on the knowledge of the i+n covariance matrix
but do not address the problem of its estimation.

The multistatic radar we consider consists in several non
collocated mutually coherent bistatic radars. In particular, we
consider one transmitter and several receivers. The transmit
platform, possibly moving, illuminates the whole area of
interest. The (moving) receive platforms, for instance UAVs,
each carry an antenna array of arbitrary shape with several
channels. The objective of the system is to detect ground
moving targets buried in clutter signal.

The scenario considered for the illustrations is depicted in
Fig. 1. The arrows indicate the velocity vector of each receiver.
Each oval represents the isorange for each bistatic radar at the
range of the target.

We assume that the receivers of each platform are synchro-
nized and that the response of the matched filter performing the
pulse compression on each platform is delayed such that the
response of the target arrives in phase at a reference channel
on each platform, in a similar way as what is described in [8].
We also assume that the target consists in one single scatterer,
such that the target echo can be considered coherent regardless
of the look angle. Both assumptions are in line with what is
done in [4], [5].

The paper is organized as follows. In Section II, we re-
view the signal modeling and the particularities of STAP for
multistatic radar. In Section III, we present the clutter power
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Fig. 1. Scenario considered in the paper.

spectrum (PS) locus in the case of multistatic radar, while the
range-dependency of the clutter signal statistics is analyzed in
Section IV. Finally, in Section V we propose the generalization
of a range-dependence compensation method able to cope
with arbitrary multistatic radar. Section VI presents end-to-
end results and Section VII concludes.

II. SIGNAL MODELING

Platform p carry Np receive channels with arbitrary but
known locations, and there is a total of N =

∑P

p=1
Np

channels where P is the total number of platforms. At each
receive channel, the signal is matched filtered and sampled
in order to produce M samples in time. The sampling of the
matched filtering output is performed such that the relative
phase for a stationary reflector that would be located at the
target position is constant at the reference receive channel of
each platform.

Let us denote the lexically-ordered Np × M space-time
samples received at platform p by yp. The received space-
time samples at all channels of all platforms can be stacked
and noted

y = [yT
1 , y

T
2 , . . . , y

T
P ]T . (1)
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Fig. 2. Clutter power spectrum locus corresponding to (a) the receivers on platform Rx1 alone, (b) the receivers on platform Rx2 and Rx3 and (c) the
combination of all the receivers on all platforms.

In the presence of a target located at ~rt, the received signal
can be modeled as

y = αs(θ(~rt)) + y
i+n (2)

where α is the deterministic complex amplitude of the target
signal. Since we consider the target coherent among the
different receivers, α is identical for all receive platforms.
Similarly to (1), s(θ) is the stacking of the P steering vectors
sp(θp) corresponding to each individual bistatic radar

s(θ) = [sT
1 (θ1), s

T
2 (θ2), . . . , s

T
P (θP )]T . (3)

The vector θ is the vector of parameters that governs the
steering vector and is formed by the stacking of P vectors
of parameters corresponding to each bistatic radar θ =
[θT

1 , θT
2 , . . . , θT

P ]T . Each vector of parameters θp contains the
elevation angle θ and the azimuth angle ϕ of the look direction
of the corresponding steering vector. Note that, in a multistatic
setup, the vector of parameters θp is typically different for each
bistatic radar, this dependence being indicated by the subscript
p. The notation θ(~rt) denotes the vector of parameters such
that the steering vector of each bistatic radar looks towards
the location ~rt, in this case the location of the target.

The unwanted interference (clutter) plus noise (i+n) signal
component is denoted by y

i+n and can be expressed as the
stacking of the i+n signal component measured by each bistatic

radar as in (1)

y
i+n = [yi+nT

1 , y
i+nT

2 , . . . , y
i+nT

P ]T . (4)

The i+n signal component of each bistatic radar can be
modeled as [9], [10]

y
i+n
p =

Nc∑

i=0

api
cpi

sp(θpi
) + np, (5)

where the sum is conducted over Nc clutter patches spread
along the isorange. The coefficients api

denote the (complex)
reflectivity of clutter patch i along the isorange, cpi

is a known
factor that groups the geometric terms of the radar equation
(range attenuation, antenna radiation pattern, ...), sp(θpi

) is the
steering vector of the bistatic radar p that looks in the direction
of clutter patch i denoted θpi

and n is the thermal noise. It
should be noted that θpi

depend on the isorange considered
and the isorange considered depends on the range of interest,
which, in the case of (2), is the range of the target determined
by its location ~rt. Equation (5) can be rewritten as

y
i+n
p = Scpap + np, (6)

where Scp
= [cp1

sp(θp1
), cp2

sp(θp2
), . . . , cpNc

sp(θpNc
)] and

ap = [ap1
, . . . , apNc

]. Similarly, (4) can be rewritten as

y
i+n = Sca + n, (7)
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Fig. 3. Clutter PS locus (and its projection on the vertical and horizontal planes) at different ranges around the target’s range and corresponding to (a) the
bistatic radar Tx-Rx1 alone, (b) the bistatic radar Tx-Rx2 and Tx-Rx3 and (c) the combination of all the bistatic radars.

where Sc = [ST
c1

, . . . , ST
cP

]T and a = [aT
1 , . . . , aT

P ]T .
The optimum STAP filter is given by

w = γR−1
s(θ(rt)), (8)

where γ is a constant and R is the i+n covariance matrix

R = E{yi+ny
†
i+n}. (9)

The optimum estimate of α is obtained by computing

z = w
†
y. (10)

The received clutter signal results from reflection by clutter
patches located along an isorange on the ground. As illustrated
in Fig. 1, in general, the isoranges of different bistatic radars
will be different. Hence, in general, the clutter signal com-
ponent present in the space-time samples of different receive
platforms will be uncorrelated1 as noted in [6]. In this case,
the covariance matrix R has a block-diagonal structure and
its inverse also has a block-diagonal structure with each block
being the inverse of the corresponding block in the covariance
matrix. Equation (10) thus reduces to the coherent summation
of contributions obtained from each receive platform.

However, if the isoranges corresponding to two different
bistatic radars overlap, correlation between the clutter compo-
nents cannot be excluded. This case is illustrated in Fig. 1,
where the platforms Rx2 and Rx3 are so close to each other
that the isoranges totally overlap. Notice that, since each
receive platform might have a different velocity, two nearly
collocated platforms are not strictly equivalent to a phased
array. This is where a coherent multistatic radar differs from
the coherent combination of the output of several bistatic radar.

III. CLUTTER POWER SPECTRUM

The power spectrum (PS) of the clutter offers a powerful
means to analyze the behavior of the clutter signal. Let us first
review the 4D clutter PS locus introduced in [11]. The clutter
signal results from reflections from clutter patches along the

1Possible correlation where the isoranges intersect is neglected as the look-
angle will in general be very different.

isorange on the ground. The signal from each clutter patch will
be seen by the array on a single receive platform as a plane
wave with a particular direction of arrival (DOA) and with
a particular Doppler frequency. The DOA can be measured
in terms of the 3 spatial frequencies corresponding to the 3D
spatial coordinate system. The clutter PS locus is thus defined
in a 4D space and can be thought of as if the isorange was
imaged in the 4D spectral domain. The concept of clutter PS
locus can be extended to several bistatic radars, but, as noted
in [12], its interpretation is less straightforward. The 4D clutter
PS locus of different combinations of the bistatic radars in
the case of the scenario of Fig. 1 is represented in Fig. 2
as two 3D projections. Figure 2(a) presents the 4D clutter
PS locus of a single bistatic radar, leading to a single 4D
curve. Figure 2(b) presents the 4D clutter PS locus of two
bistatic radars with receive platforms located close to each
other but having a different velocity vector, leading to two
different curves that only differ in Doppler frequency. As can
be seen on the lower graph of this figure, the clutter PS locus
of these two bistatic radars are superimposed in the spatial
domain indicating that the clutter is seen with similar spatial
frequencies. Finally, Fig. 2(c) presents the 4D clutter PS locus
of all the bistatic radars considered in our scenario. This figure
is a superposition of Figs. 2(a) and (b).

The formal link between the 4D clutter PS locus and the
4D clutter PS is detailed in [11]. We can summarize it by
saying that the clutter PS energy is located around the clutter
PS locus. This is why the clutter PS locus is such a powerful
tool to understand the behavior of the clutter signal.

IV. RANGE DEPENDENCY

The computation of the STAP filter (8) requires an estimate
of the i+n covariance matrix R. This estimate is typically
obtained by averaging estimates obtained at ranges around
the range of interest [?], [10], [13]. This method provides an
unbiased estimation of the true covariance matrix only if the
averaged estimates are independent and identically distributed
(IID). The fact that the space-time snapshots at different ranges



are not IID is essentially due to a geometry-induced range-
dependence effect. The range dependence of the clutter PS
locus for the considered scenario is depicted in Fig. 3. The
range dependence of the clutter PS locus is an indication
of the range dependence of the clutter PS. Averaging clutter
covariance matrix estimates obtained at different ranges will
“smear” out the clutter PS along the clutter PS locus and bias
the covariance-matrix estimate.

V. RANGE-DEPENDENCE COMPENSATION

We now present a generalization to multistatic STAP of
the method presented in [14]. This method is based on the
maximum likelihood (ML) estimation of the scattering coeffi-
cients a of (7) in a Bayesian framework. From these values,
an estimate of the i+n covariance matrix can be obtained using
(7) and (9)

R = ScAS†
c + σ2I (11)

where A = diag{ã2
11

, . . . , ã2
PNc

} with ã2
pi

= E{|api
|2} and

σ2 is the variance of the thermal noise.
From [14], the ML estimate of a can be obtained by

a = W †
y

i+n (12)

where
W † = (S†

cR−1
n Sc + R−1

a )−1S†
cR

−1
n (13)

with Rn the covariance of the thermal noise, assumed white
Gaussian, with

Rn = σ2I, (14)

and Ra containing the a priori knowledge we have about a.
Since a represent a single realization of the complex amplitude
of the signal scattered by the clutter, we will assume it is
independent and complex-Gaussian distributed [15], [16] and
take Ra proportional to the identity matrix.

This method is very similar to that of [17], where a least-
squares (LS) solution is obtained with

W † = (S†
cSc)

−1S†
c . (15)

However, due to the lack of the regularization term R−1
a in

the LS solution, it only exists if S†
cSc has full rank. This

means that the number of clutter patches Nc considered in
the model (5) must be smaller than or equal to the rank of
S†

cSc. This approach requires an ad-hoc method to estimate
the number of clutter patches Nc. In our approach, by using
a regularization term, the exact value of Nc is not critical
as long as the number of clutter patches is sufficient so that
(5) accurately approximates the underlying continuous clutter
integral [9].

We will now briefly analyze the performance of this es-
timator. A more detailed analysis and a comparison of this
method in the case of a bistatic configuration is presented
in [14]. By repeating the estimation of a at ranges around
the range of interest, a map of the coefficients a is obtained.
Figure 4 depicts the amplitude of the estimated scattering
coefficients |a1i

| for the bistatic radar Tx-Rx1 in the case of
a simulated homogeneous ground cover. The value of |a1i

|
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Fig. 4. Estimated clutter reflectivity |a1| at all ranges (in dB).

are depicted as a function of their actual location on the
ground. Due to speckle [16], the estimated values will exhibit
random variations. In fully-developed speckle, the value of the
amplitude of the scattering coefficients |a| would be Rayleigh-
distributed [15], [16]. The histogram of the amplitude of the
estimated scattering coefficients |a1i

| can be compared with
the theoretical distribution in Fig. 5. As can be seen, an
excellent match is obtained.
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Fig. 5. Comparison of the obtained scattering coefficient amplitude distri-
bution with the Rayleigh-distributed theoretical model P (|a1i

|).

An estimate of ãpi
at the range of interest can be obtained

by performing a spatial averaging of |ap|
2 around that range.

It should be stressed that the map of the estimated ground
scattering coefficient obtained exhibits exactly the same char-
acteristics as for SAR single-look complex (SLC) images.
Hence, the classical multilooking methods can be applied. For
instance, in order to preserve the structure possibly present
in the clutter reflectivity map and due to the ground cover
inhomogeneity, more sophisticated spatial filtering methods
such as [18] could be used.



It should be noted that this method assumes perfect knowl-
edge of the configuration parameters (Tx and Rx locations and
velocities, antenna array element positions, ...) to be able to
compute the multistatic space-time steering vectors.

The estimation of the coefficients ap needs to be done
individually for each bistatic radar unless their clutter is
correlated. This is the case, for instance, in the scenario we
considered in this paper, with Rx2 and Rx3: a2 and a3 will
be identical.

If several bistatic radars are considered, different overlap-
ping maps of |ap| would typically be obtained. The values of
|api

|2 at the same location obtained by different bistatic radars
may not simply be averaged. Indeed, the scattering coefficients
depend in a very subtle way on the geometry (incidence angle)
but also for instance on the surface roughness. Inversion using
geophysical models such as [15], [19] for soil, [20], [21]
for sea-ice, and [22] for ocean surface could be attempted.
However, besides the fact that very few bistatic model exist
and without taking into account the feasibility of the inversion,
it would be very demanding for a relatively small gain.

We now summarize the method, which consists in 3 steps:
(a) an analysis step, where the ground scattering coefficients
a is estimated at ranges around the range of interest; (b) an
averaging step where the clutter reflectivity |api

|2 is spatially
averaged to yield ã2

pi
. At this step, inhomogeneities in the

ground cover can be taken into account in the spatial averag-
ing; (c) a synthesis step, where a clutter covariance matrix is
synthesized using the estimate of the mean clutter reflectivity
ã2

pi
along the isoranges at the ranges of interest.

VI. END-TO-END RESULTS

The results of the method in terms of SINR losses are
illustrated in Figs. 6, 7, and 8. Figures 6 and 7 present the
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Fig. 6. SINR loss as a function of the target’s velocity when considering
the clairvoyant clutter covariance matrix.

SINR loss diagram in function of the 2D velocity of the
target. As can be seen, there is a large “hole” at zero velocity,

corresponding to the clutter notch. Monostatic radars are only
sensitive to the radial velocity component, which means that
targets traveling perpendicular to the line of sight of the radar
are indistinguishable from clutter. There is a similar issue with
bistatic radars [23] where targets having a velocity tangential
to the isorange will exhibit zero bistatic Doppler. This explains
the light-gray diagonal line that corresponds to the velocities
for which the target appear static to the bistatic radars Tx-Rx2

and Tx-Rx3. There is another – barely visible – light-gray line
corresponding to the bistatic radars Tx-Rx1. Figure 7 presents
the SINR loss diagram obtained using the sample covariance
matrix (with diagonal loading) as covariance matrix estimate.
As can be seen from the very low value, the performance is
highly degraded due to the range dependency of the clutter
statistics. The diagram that is obtained (but not shown) after
range dependency compensation is visually indistinguishable
from the one obtained using the clairvoyant covariance matrix.
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Fig. 7. SINR loss as a function of the target’s velocity when considering
the sample covariance matrix with diagonal loading (SCM+DL).

Finally, Fig. 8 presents a comparison of the SINR loss
that would be obtained using (a) the clairvoyant covariance
matrix, (b) the sample covariance matrix plus diagonal loading
(SCM+DL) and (c) the proposed ML-based method as covari-
ance matrix estimator. As can be seen, the performance of the
method is almost identical to that obtained in the clairvoyant
case, while the SCM+DL estimate is essentially useless.

VII. CONCLUSIONS

We considered a multistatic radar consisting of multiple
mutually coherent bistatic radars. If the bistatic isoranges,
along which the clutter patches are located, are disjoint,
independence of the clutter signal can be assumed. In this
case, the clutter covariance matrix estimation problem reduces
to the independent estimation of the clutter covariance matrix
of bistatic radars. This is not the case if the isoranges overlap
and, generally if signals of different bistatic radars are corre-
lated. We analyzed the range dependency of the clutter signal
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statistics in this case and showed that, if unaccounted for, this
dependency would bias the covariance matrix estimate and
severely affect the detection performance. We then proposed
a generalization of a ML-based clutter reflectivity estimation
method to arbitrary coherent multistatic configurations leading
to a covariance matrix estimation method. The proposed
method is shown to achieve excellent performance on synthetic
data.
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