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ABSTRACT

This paper presents a new method to perform sea/ice discrimination in single-pass ERS-2 scattero-

meter data. Existing methods are first reviewed and compared in a consistent framework. Next, the

ice probability according to the individual existing methods is learned through the use of a neural

network. Finally, the individual criteria are combined together in order to increase the sea-ice dis-

crimination accuracy. The proposed method is shown to provide an acceptable performance even on

single-pass data, i.e., without requiring temporal averaging.
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1. INTRODUCTION

Besides the study of the ice coverage at the poles, discrimination between open sea and ice is relevant

to sea-surface wind extraction using scatterometer data since no wind can be extracted over ice-

covered areas. Indeed, winds obtained from ERS-2 σo triplets, (σo
f , σo

m, σo
a) measured respectively by

the fore, mid and aft antenna, are ambiguous and removing this ambiguity requires spatial coherence

of the wind field. Hence, having erroneous wind vectors disturbs the wind ambiguity removal process.

Moreover, from an operational point of view and taking into account the near real-time dissemination
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requirement, it is advantageous to be able to discriminate ice from open-sea using only the data

acquired during the pass being processed.

Several criteria for ice discrimination have been proposed in the literature. In Section 2, these

different criteria are reviewed. Section 3 compares the performances of each of these criteria in

order to assess the conditions under which they are discriminant. This is done using a neural network

architecture. The network is trained to “learn” the ice-probability according to the considered training

set. After training, the network is able to provide an ice probability based on one single measurement.

In the same section, we propose to combine the output of individual criteria to a single result. Finally,

the performance of the overall scheme is discussed.

2. REVIEW OF EXISTING SEA/ICE DISCRIMINATION CRITERIA

2.1. Introduction

The basis of the discrimination is that the statistics of the σo measurements over sea is different than

that of measurements over ice, as illustrated in figure 1. However, the ice and sea scatterers are not
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Figure 1. Scatter plot of the σo over ice and over sea for node 5 (low incidence angle). Left: projection in the

σo
f = σo

a plane, Right: projection in the σo
m = 0 plane.

always well separated. In particular, for higher incidence angle, both classes can get very close to

each other as figure 2 illustrates.

Besides the raw σo-triplet, other classification metrics have been proposed in the literature. These

will be reviewed below. The graphs in the following sections are obtained using data corresponding
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Figure 2. Scatter plot of the σo over ice and over sea for node 15 (high incidence angle). Left: projection in the

σo
f = σo

a plane, Right: projection in the σo
m = 0 plane.

to two passes over the North pole on December 30th 1999.

2.2. Isotropy

In,1, 2 a measure of the isotropy of the backscattering is proposed as discriminating criterion. The

isotropy factor is defined as

A =

∣
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∣

(1)

where the σ are provided in dB.

Open sea typically results in a high isotropy factor, while sea-ice corresponds to rather low

isotropy factor values. However, when the wind is blowing parallel or perpendicular to the ground

track, a low isotropy value will be observed over sea. Indeed, in this case, the capillary waves gener-

ated by the wind are propagating perpendicular or parallel to the satellite ground track hence the fore

and aft measurements will have similar values.

Figure 3 (left) illustrates the repartition of isotropy factor between sea and ice for the various

incidence angles. Clearly, the isotropy factor corresponding to sea-ice is typically small. However, as

can be seen, small isotropy factor over open sea are possible too.
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Figure 3. Scatter plot of the isotropy factor (left) and of the derivative of sigma (right), illustrating the distribu-

tion of the sea and ice nodes.

2.3. Derivative of backscatter in function of the incidence angle

In,3 the derivative of the σo w.r.t. the incidence angle was proposed as discriminating criterion. The

derivative is approximated by

D = −
(σ f +σa)/2−σm

(θ f +θa)/2−θm
(2)

where the σo values are in dB and the incidence angle values in degrees. Notice that, due to the use

of the zero-gyro mode following the gyroscopes anomaly, the incidence angles of the fore and of the

aft beam cannot be assumed equal anymore4 hence the modification of the original formula given in.3

Measurements over ice typically result in a lower D than measurements over sea, at least when the

incidence angle is not too high.

From figure 3 (right) illustrating the repartition of the derivative between sea and ice nodes for the

various incidence angles, it is clear that the criterion is more discriminant for low incidence angles

(low node number, near swath).

2.4. Distance to wind model

The (Euclidean) distance to the wind model was also proposed5 as a criterion. The reasoning be-

hind this criterion is that measurements acquired over sea should lie close to the wind model, while

measurements performed over ice might be located further away from the wind model.



Figure 4 (left) shows that this criterion is hardly discriminating for medium incidence angle. This

is related to the fact that for medium incidence angles, σ0 measurements over ice are actually very

close to the wind model.
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Figure 4. Scatter plot of the distance to the wind model (left) and distance to ice model (right), illustrating the

distribution of the sea and ice nodes.

2.5. Distance to ice model

Several models of the σo over ice where proposed.6, 7 The idea is to use the euclidean distance to

the ice-model as discriminating factor. The models selected in this document is the ERS ice model

described in.7 This model can however be generalized to other types of scatterometers. The model

consists in an incidence angle-dependent line. For the details of the computation, the reader is referred

to.7

As can be seen in figure 4 (right), this metric is essentially discriminant for low incidence angles.

Indeed, for higher incidence angles, the distribution of ice and sea nodes tends to be closer to each

other as can be seen in figures 1 and 2.

3. SEA ICE DISCRIMINATION

3.1. Introduction

Typically, the criteria described in the previous section are thresholded to determine whether the

measurement made corresponds to open sea or to ice.1, 7 That threshold is also typically dependent on



the incidence angle. However, a binary threshold does not take into account the fact that, in ambiguous

cases, it is not possible to make a decision based only on one single σ0-triplet measurement. In,7 a

decision algorithm using 4 classes (sea, ice, mixed and not valid) is proposed. This algorithm is based

on an incidence-angle dependent thresholding of the distances to the ice model and to the wind model.

The existence of the mixed class acknowledges the fact that some nodes cannot clearly be classified

as ice or sea.

These decision methods provide a binary (quaternary) answer regarding the status of the consid-

ered measurement point (sea or ice). No information is provided on the (un)certainty of the classifica-

tion and the classification accuracy trade off is difficult to master. In the following section, we define

an ice probability based on the criteria defined in the previous section. This ice probability can then

be thresholded to perform a classification. Furthermore, the criteria presented above can be combined

together, as individual experts, to provide a combined ice probability.

3.2. A neural-network based classification

Our goal is thus to compute the ice probability given the measurements, P(H1|mc,i,ni), where H1 is

the hypothesis “the measurement i corresponds to ice”, mc,i is the numerical value of the criterion c

for measurement i and ni is the across-track node number at which measurement i was made.

It is well known8 that this probability can be learned by a Multi-Layer Perceptron (MLP). The

learning process consists in feeding the MLP with the measurements made (mc,i,ni) and imposing as

desired output 1 if H1 is true for measurement i and 0 else. In order to avoid biasing the MLP output

due to a differing a priori probability we must ensure P(H1) = P(H1) over the training set. This imply

that the number of measurements corresponding to ice in the training sets must be equal to the number

of measurements corresponding to sea.

We considered an MLP with two inputs, one for the value of the criterion mc,i and the other for the

node number ni. It has one single hidden layer counting 5 neurons. The number of hidden layers and

the number of neurones in these layers govern the complexity of the non-linear function that the MLP

will be able to approximate. We are actually seeking to approximate reasonably “simple” functions,

hence the single hidden layer and the small number of neurons in that hidden layer.



The results of the learning of the probability by the MLP for the different criteria are shown in

figure 5. For clarity, the 3D-surface was thresholded. As can be seen from this figure, the uncertain

areas for the sigma anisotropy and for the distance to wind model criteria are quite large. In itself

a large uncertain area is not bad, as long as no measurement samples fall inside that area. As can

be seen by comparing figure 5 with the figures from Section 2, there are actually a lot of samples

that fall inside that uncertain area for the Isotropy and for the Distance to the wind model criteria.

Consequently, these methods exhibit a high rate of “No Decision” answers.
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Figure 5. Thresholded probability P(H1|mc,i,ni) for each of the criteria described in Section 2, where blue

corresponds to P < 20% (open sea with 80% probability), red to P > 80% (ice with 80% probability) and green

to values in between (mixed or unknown).

3.3. Performance comparison

The output of the MLP provides the probability that a given input corresponds to ice (H1). By thresh-

olding the output probability, a decision can be taken regarding the class to which the provided input

belong. For a given threshold, it is possible to compute the True Ice rate (measurements classified

as ice and actually corresponding to ice), False Sea rate (measurements classified as ice, but actually

corresponding to sea) and unclassified ice (measurement not classified although it was actually ice).

Figure 6 (left) shows the ROC for ice, where the independent variable is the threshold used in taking

the decision. As can be seen, the “Distance to ice model” criterion is the most discriminant, closely

followed by the “Derivative of sigma”. The two other criteria would imply a much lower True Ice

rate if a low False sea rate was to be achieved. Figure 6 (right) shows the unclassified ice rate in

function of the across track node-number (which corresponds approximatively to an incidence angle).

As can be seen, the “Distance to wind model” criterion fails to discriminate between ice and sea at
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Figure 6. Comparison between the different criteria: ROC curve for the 4 criteria (left) and “No Decision” rate

for a False Ice rate of 3% (right).

mid swath. This is due to the fact that at those incidence angles, σo corresponding to ice are also very

close to the wind model. Also, the σo “Isotropy” criterion does not prove to be very decisive at any

incidence angle. This confirms the deductions made in Section 2.

3.4. Fusion

When several sources of information are available, they can be combined to reduce imprecision and

uncertainty and increase completeness.9 A good review of some of the existing combination methods

is to be found in.9 It only makes sense to combine the “best” sources of information, hence we will

combine the “Distance to ice model” and the “Derivative of sigma” criteria. . We will compare two

combination methods: the mean operator and the symmetrical associative sums. The mean operator

simply outputs the mean of its inputs, i.e. s(x,y) = (x + y)/2, where x,y ∈ [0,1] are the two inputs

probabilities to be combined and s(x,y) is the resulting output. It is obvious that this operator always

makes a compromise between its inputs. The symmetrical associative sum that we considered is

given by s(x,y) = xy
1−x−y+2xy (same definition for x, y and s as above). This operator has a behavior

that depends on the input data. It will tend to a compromise if the inputs do not agree. On the other

hand, if the inputs do agree, it will reinforce the agreement. Figure 7 (left) compares the performance

of the two selected criteria (“Distance to ice model” and “Derivative of sigma”) with those obtained

after combination of these two criteria using each of the two selected fusion operators. The ROC
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Figure 7. Comparison of the performance of the fusion: ROC curve (left) and “No Decision” rate for a False

Ice rate of 3% (right).

curves of the combinations are slightly above that of the best single criterion, which means that the

True Ice rate will be higher for the same False Sea rate. Figure 7 (right) compare the “No Decision”

rate of the same decision methods in function of the across-track node number. The combination has

the effect of reducing the “No Decision” rate but for large node numbers. This is particularly true for

the Symmetrical associative sum operator. The lower performance at large node numbers is due to

the fact that the performance of the “Derivative of sigma” criterion has a lower decisiveness for large

node numbers. Table 1 shows the performance figures for the two individual criteria and the proposed

combination methods.

Deriv. of σ Dist. to ice model Mean Sym. As. Sum

True Ice rate 92.23% 94.73% 95.21% 95.23%

Unknown Ice rate 4.81% 2.28% 1.82% 1.78%

Table 1. Performance comparison at a False Sea rate of 3%.

4. CONCLUSIONS

In this paper, we presented a Neural-Network based method to compare the various ice detection

criteria found in the literature. We also showed that by combining the two best criteria, a yet better



performance was achieved. This performance was obtained in a scenario where single observations

are considered, i.e., excluding any kind of time-averaging.
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