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also like to thank Pauline Pettiaux for her indestructible optimism. We worked together on the
ERS scatterometer processor and she might have been the first to see some STAP results. For the
measurements of Chapter 6, I have to thank Mireille and Virginie Kubica, who did their master
thesis on the use of transmitters of opportunity, for their incredible dedication, hard work, and
faith, and Cdt. Jacques Raout from the French Air Force Academy for providing them (and me)
the opportunity to work with him. Key support for setting up the contact with the French Air
Force Academy was provided by Col. Patrice Laurent. I wish also to thank Philippe Ries, Ph.D.
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Chapter 1

Notations

1.1 Symbols
∼ Is distributed according to.
◦ Hadamard product (element-wise).
⊗ Kronecker product [34, Chapter 2].
~1 A unit vector.
~1x A unit vector parallel to the x-axis.
~1RS A unit vector from the receiver to the scatterer.
~1TS A unit vector from the transmitter to the scatterer.
{A}d A vector containing the diagonal elements of the matrix A.
α Complex amplitude of the target signal.
α Vector of complex amplitude of the scatterers along an isorange.
αp Complex amplitude of the target signal received by radar p.
αR Angle between the velocity vector and the x-axis.
a Spatial steering vector.
Ap,k Area of clutter patch k of radar p.
b Temporal steering vector.
B Spatio-temporal beam pattern associated with the signal match power spectrum es-

timator.
BMVE Spatio-temporal beam pattern associated with the MVE power spectrum estimator.
c speed of light.
cp(~x) Amplitude factors for radar p and a scatterer located at ~x.
C The set of all complex numbers.
diag{a} A diagonal matrix with vector a on the diagonal.
D Normalization matrix for the matched filter estimator.
ηb,m Decision threshold in the bistatic case when a Marcum target model is considered.
ηb,s Decision threshold in the bistatic case when a Swerling-I target model is considered.
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ηm,m Decision threshold in the multistatic case when a Marcum target model is consid-
ered.

ηm,s Decision threshold in the multistatic case when a Swerling-I target model is consid-
ered.

E(a) Expectation of the random variable a.
E(a|b) Conditional mean of the random variable a conditioned by the random variable b.
E(a; b) Expectation of the random variable a with PDF parameterized by the deterministic

value b.
φ(~r) Phase shift at the antenna element located at ~r.
φT Azimuth of the receiver w.r.t. the transmitter.
φR Azimuth of the receiver w.r.t. the receiver.
fc Frequency of the carrier.
fDR

Doppler frequency due to the relative movement between the receiver and the scat-
terer.

fDT
Doppler frequency due to the relative movement between the transmitter and the
scatterer.

fp Sampling frequency (PRF).
F Cumulative density function.
F Estimation filter.
γ0 Gamma naught.
H Height of the transmitter above the ground.
H0 Null hypothesis (no target).
H1 Alternative hypothesis (target present).
IM Identity matrix of size M ×M . The subscript denoting the size can be dropped if it

is obvious from the context.
~k Wave vector.
K Number of clutter patches along an isorange.
L(H0) likelihood of hypothesis H0.
l(H0) log-likelihood of hypothesis H0.
λ Carrier wavelength.
λc Carrier wavelength.
Λ(y) likelihood ratio L(H1)

L(H0)
.

λ(y) log-likelihood ratio ln L(H1)
L(H0)

.
Λg(y) generalized likelihood ratio.
λg(y) generalized log-likelihood ratio.
M Number of pulses in a CPI.
µ Non-centrality parameter.
νD Reduced Doppler frequency.
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νpD
Reduced Doppler frequency corresponding to radar p.

~νs Reduced spatial frequency vector (~νs = (νs,x, νs,y, νs,z)).
~νps Reduced spatial frequency vector corresponding to radar p.
n Thermal noise vector.
N Number of antenna receive channels.
Np Number of antenna receive channels for radar p.
Nr Number of range rings.
ψ Ambiguity function.
ψg Generalized ambiguity function.
p(a) PDF of the random variable a.
p(a|b) PDF of the random variable a conditioned by the random variable b.
p(a; b) PDF of the random variable a parametrized by the deterministic parameter b.
p(t) Complex amplitude of the transmitted signal.
p Vector of samples of the complex amplitude of the transmitted signal.
PFA Probability of false alarm.
PD Probability of detection.
P (~k, ω) Power spectrum.
PSM Signal match power spectrum estimator.
PPER Periodogram-based power spectrum estimator.
PMVE Minimum variance power spectrum estimator.
Q Complement cumulative density function.
~ρp,n Reduced location of the n-th antenna receive element of radar p.
r( ~∆r,∆t) Covariance function.
rα Diagonal elements of the covariance matrix of α.
R,Ri+n Interference plus noise covariance matrix.
Rc Clutter covariance matrix.
Rp Interference plus noise covariance matrix corresponding to bistatic radar p.
Rα Covariance matrix of α.
R̃α A priori covariance matrix of α.
R̂p Estimated interference plus noise covariance matrix corresponding to bistatic radar

p.
Rcp Clutter covariance matrix corresponding to bistatic radar p.
R Bistatic range.
RRT Distance between the transmitter and the receiver.
RR Distance between the scatterer and the receiver.
RT Distance between the scatterer and the transmitter.
σ0 Sigma naught.
σ0pk

Sigma naught of clutter patch k for radar p.
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σ2
α Variance of α.
σ2

n Variance of the (thermal) noise.
s Steering vector (including amplitude factor).
sp Steering vector corresponding to radar p (including amplitude factor).
S Subsampling factor.
S Matrix of steering vectors (including amplitude factors).
SNRp Signal to noise ratio corresponding to radar p.
SINRp Signal to interference-plus-noise ratio corresponding to radar p.
SINRlossp Signal to interference-plus-noise ratio loss corresponding to radar p.
θ Elevation of the receiver w.r.t. the transmitter.
θT Elevation of the scatterer w.r.t. the transmitter.
θR Elevation of the scatterer w.r.t. the receiver.
θ Parameter vector.
θp Parameter vector corresponding to radar p.
τ ′(~r) Additional delay between the phase center and the antenna element located at ~r.
τrt Round-trip time from the transmitter to the receiver antenna’s phase center.
Tc Period of the carrier.
TCPI Duration of the CPI.
Tb,m Test statistic in the bistatic case considering a Marcum target model.
Tb,s Test statistic in the bistatic case considering a Swerling-I target model.
Tm,m Test statistic in the multistatic case considering a Marcum target model.
Tm,s Test statistic in the multistatic case considering a Swerling-I target model.
~u Unit vector anti-parallel to ~k.
~vR Velocity vector of the receiver.
vR Magnitude of the velocity vector of the receiver.
~vS Velocity vector of the scatterer.
vS Magnitude of the velocity vector of the scatterer.
~vT Velocity vector of the transmitter.
vT Magnitude of the velocity vector of the transmitter.
v Steering vector.
vp Steering vector corresponding to radar p.
χ2

ν Central chi-squared distribution with ν degrees of freedom.
χ′2

ν (λ) Non-central chi-squared distribution with ν degrees of freedom and non-centrality
parameter λ.

W Spatial filtering matrix.
w Optimum detection filter.
wp Optimum detection filter corresponding to radar p.
ŵp Sub-optimum detection filter corresponding to radar p.
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~x A geometric vector; the position of a scatterer.
x A vector.
x∗ The complex conjugate of vector x (not transposed). The same notation is also

applied to matrices.
x† The transposed conjugate of vector x. The same notation is also applied to matrices.
‖x‖ The l2 norm of vector x.
X A matrix.
|X| The determinant of matrix X.
yp(n,m) Measurement sample corresponding to the m-th pulse and obtained at the n-th an-

tenna element of radar p.
y A spatio-temporal measurement vector.
yp The spatio-temporal measurement vector corresponding to bistatic radar p.
ζ Angle between the velocity vector of the scatterer and the x-axis.

1.2 Abbreviations
AWACS Airborne Warning and Control System.
CDF Cumulative Density Function.
CMF Crude Matched Filter.
CPI Coherent Processing Interval.
CFAR Constant False Alarm Rate.
DDC Digital Down Conversion.
DVB-T Digital Video Broadcast - Terrestrial.
EM Expectation-Maximization.
ECM Electronic Counter Measures.
ECCM Electronic Counter Counter Measures.
FIR Finite Impulse Response.
GLRT Generalized Likelihood Ratio Test.
GMF Generalized Matched Filter.
GSM Global System for Mobile communications.
ICM Internal Clutter Motion.
LNA Low Noise Amplifier.
LRT Likelihood Ratio Test.
MAP Maximum a Posteriori.
MF Matched filter.
MIMO Multiple Inputs, Multiple Outputs.
MLE Maximum Likelihood Estimate.
MSMI Modified Sample Matrix Inversion.
MVE Minimum Variance Estimate (or Estimator).
PDF Probability Density Function.
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PRF Pulse Repetition Frequency.
PRI Pulse Repetition Interval.
RCS Radar Cross Section.
RF Radio Frequency.
Rx Receiver.
SCM Sample Covariance Matrix.
SINR Signal to Interference plus Noise Ratio.
SMI Sample Matrix Inversion.
STAP Space-Time Adaptive Processing.
TMF Tapered matched filter.
Tx Transmitter.
UAV Unmanned Aerial Vehicle.
ULA Uniform Linear Array.
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Chapter 2

Introduction

This work addresses the detection of ground moving targets using multistatic radars. This chapter
puts the studied concepts in perspective and concludes with the general structure of the thesis

2.1 Ground moving target detection
The detection of vehicles moving on the ground is a major challenge in airborne and space
borne radar. Generally speaking, the detection performance of a radar is limited by the signals
that compete with the target return. When the radar receives no return from the ground, e.g.
as it is looking at air targets, detection is limited by the thermal noise, typically white and of
low amplitude. On the other hand, ground target echoes always compete with clutter echoes.
Clutter echoes are caused by objects such as buildings or vegetation that are not interesting in our
context and are typically not moving. Hence, targets contributions can mostly be distinguished
from clutter based on the Doppler frequency shift of the received echoes. This is illustrated in
Figure 2.1 where the — idealized — spectrum of a signal received by a non-moving radar is
depicted. The clutter component is clearly visible at a Doppler frequency of 0Hz and a target
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Figure 2.1: Spectrum of the received signal with a non-moving radar.
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component around 200Hz.
With a fixed radar, the spectral behavior of the clutter is relatively easy to model and the filter

to remove it can, in first approximation, be kept constant and independent of the actual scenario.
However, if the radar system is moving, the clutter spectral signature can be extremely complex.
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Figure 2.2: (a) Side looking airborne radar and (b) spectrum of the received signal.

A scenario involving an airborne radar is illustrated in Figure 2.2 (a), and the spectrum of the
received signal is illustrated in Figure 2.2 (b). Obviously, the signal reflected from location A
exhibits a Doppler frequency shift of 0Hz as point A has no radial relative velocity component.
Since the radar is approaching B, the frequency shift is positive for the signal reflected from
location B whereas it is negative for the signal reflected from location C. In this scenario, it turns
out that the weak moving target signal is hidden by the clutter signal from location B. Hence, the
Doppler frequency dimension alone does not permit a separation of both signals.

Separation of the clutter echoes from target echoes requires the introduction of additional
information. If the receiver is equipped with a receiver array, the signals can also be distinguished
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Figure 2.3: Spatio-temporal representation of the received signal.

by their direction of arrival, i.e., by adding a spatial information. In the previous example, the
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signals from locations A, B and C have indeed different directions of arrival. To illustrate this,
Figure 2.3 depicts an angle-Doppler representation of the signal. The blue curve is the (idealized)
spatio-temporal spectrum of the signal. The black curve is the projection of the blue one and
is the same as the one depicted in Figure 2.2 (b), i.e., a Doppler frequency representation. The
angle-Doppler location of the points A, B and C is indicated on the graph. If the target is moving,
although it has the same Doppler signature as signals coming from location B, it has not the same
direction of arrival. This illustrates how additional spatial information permits the separation of
targets from clutter even with a moving radar.

Further, a filter is required to cancel or attenuate the signal reflected by clutter. The com-
putation of this filter is not straightforward. Moreover, as the scenario is inherently dynamic,
adaptation to the changing environment is required in order to secure the same detection perfor-
mance. The computation of this adaptive filter is a central issue in space-time adaptive processing
(STAP).

2.2 Passive radars
Most current radars are monostatic, i.e., the receiver and the transmitter are collocated, which
simplifies the synchronization of the transmitter and the receiver. However, the emission of the
radiation also discloses the location of the radar.

In bistatic radars, the receiver and the transmitter are separated, and sometimes located very
far from each other. Initially, the motivation was purely technical as a good isolation between
the transmitter and the receiver is required for proper operation which was difficult to achieve
in the past. Current motivations [107] include an increased sensitivity thanks to possible longer
integration time, less sensitivity to target’s stealthiness, and low probability of intercept as the
receiver platform is totally passive.

Particularly challenging implementations of bistatic radars are the passive radars, typically
characterized by the use of transmitters of opportunity. Whereas this type of radar is certainly not
new [58, 179], its first implementations were plagued by the poor characteristics of the available
signals of opportunity. This type of radar is regaining some interest with the advent of signal
sources with digital modulation, that have more favorable characteristics [56, 147].

2.3 Multistatic radars
Multistatic [14, 15, 18, 20, 24, 36, 65] radars are characterized by the presence of several trans-
mitters and/or several receivers, where the receivers cooperate in order to detect and locate tar-
gets. This type of radar is also referred to as Multiple Input Multiple Output (MIMO) radars
[41, 141, 148] in analogy with MIMO communication channels, where the transmitter and the
receiver system corresponds to several transmitting and receiving sites. This type of radar is also
referred to as multilateral radar [76] when no coherence between the receivers is assumed, netted
radar or network of radars [10, 135], and distributed array [3, 4, 143] when the receivers are
assumed coherent among each other. Particular cases of multistatic radars are:
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A group of bistatic radars, where the output of the bistatic radars are processed centrally to
obtain a decision regarding the presence of a target and to estimate its parameters (speed,
radar cross section). In this context, it is assumed that the transmitters do not interfere
with each other, which is typically achieved either by using separate frequency bands or
orthogonal transmitted waveforms [48, 77]. Further, each receiver is assumed to be able to
receive the signals from each transmitter.

A single transmitter with several receivers, typically in the case of a high value unit equipped
with the transmitter, for instance an AWACS, and receivers cooperating to achieve the
detection.

A single receiver with several transmitters, for instance in the case of a single receiver ex-
ploiting several transmitters of opportunity operating in different frequency bands.

These radars can cooperate coherently or not. If the transmitters are coherent, they can operate
as a large thinned array and do beamforming on transmit. However, as the baseline between
the different transmitters is mostly much larger than the wavelength, this beamforming results
in poor sidelobes. Similarly, the receiver can operate coherently and form a large thinned array
to do beamforming on receive. Obviously, coherency of the local oscillator among different
receivers (transmitters) is not a sufficient condition to permit coherent operation, as the scatterer
also needs to be coherent among the different transmitter/receivers, which is only the case in
particular situations. In the case of angle-only multistatic radars, which do not have any range
resolution, target localization is still possible by exploiting the spatial (angular) resolution of
each radar [143, 144].

As far as performance is concerned, a multistatic configuration takes advantage of

• the geometric gain, as, under favorable geometry, the angular diversity can indeed be ex-
ploited to cancel the phenomenon of blind speed [122];

• the angular diversity, as the detection probability can be enhanced by taking advantage of
the decorrelation arising from the different look angles [42];

• the anti-stealth properties, as a stealth target often minimizes the monostatic backscatter
by scattering the energy in some other direction than the direction of arrival.

As far as tactical considerations are concerned, a multistatic configuration benefits from

• stealth operations, as the transmitter can be placed at a safe stand-off distance while the
receiver(s) are totally silent and hence difficult to detect;

• the redundancy, as well on the receiving side as on the transmitting side. The detection is
still possible, however with decreased performance, when one device (receiver, transmit-
ter) fails.
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• the deception, as several transmitters can be used either together or successively in order to
deceive counter measures. A passive (opportunistic) radar using existing radio frequency
(RF) sources is an interesting particular case.

• anti-ECM, in particular anti-jamming (directional jammer or intelligent repeating jammer)
in the surrounding of the target as this kind of counter-measure is not effective without
knowledge of the receiver location.

As far as technologies are concerned, a multistatic configuration

• allows for continuous wave operation. As the transmitter does not need to be silent when
the receiver is operating, the radar can exploit continuous waves and hence increase the
transmitted energy while preserving a low probability of intercept;

• avoid the use of a duplexer, as it is not necessary to switch between a transmit and a receive
mode, which simplifies the construction of the radar;

• increases mobility, as the transmitter and the receiver are distinct devices, they can be
operated in different conditions. The performance of a transmitter (average transmit power,
duration of operation) is typically limited by the available electrical power. The power
requirement in turn limits the mobility of the transmitter. For instance, it is well known
that the available power during the eclipse part of the orbit, i.e., when the spacecraft is
operating on its batteries, is limiting the operation of space-borne radars. During the non-
eclipse part of the orbit, limited heat transfer (cooling) is one of the factors that limits the
performance. On the contrary, a receiver can be very small and consumes little power.

On the other hand, multistatic radars have drawbacks. As far as performance is concerned, the
bistatic scattered energy and hence the bistatic radar cross section is smaller than in the case of a
monostatic radar configuration due to the removal of the specular returns from corner reflectors
and to shadowing effects.

From a tactical point of view,

• the practical positioning of receivers and transmitters is critical to avoid shadowing effects;

• the operation and the maintenance of several units at different locations can become com-
plex.

From a technical point of view,

• the synchronization of the transmitter and the receiver can be problematic except in the
case of a free line of sight or of a direct link between the transmitter and the receiver;

• the temporal synchronization of the receivers in case of coherent operations, can be com-
plex;

• the spatial synchronization (pulse chasing) can be challenging;
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• in case of a centralized processing, the data necessary to perform the detection needs to
be transmitted to the control center, which implies high bandwidth links. A mitigation
of this problem consists in performing a decentralized detection, however with degraded
performance.

2.4 Thesis structure
Chapter 3 details the basic geometric relationships and the signal models.

Chapter 4 presents the target detection theory together with performance measures used
throughout this thesis. Moreover it extends the target detection theory to multistatic detections
in the presence of colored noise in a systematic and homogeneous way. Finally, it assesses the
actual usefulness of multistatism.

Chapter 5 develops a detailed modeling of the power spectrum of the clutter signal. The
classical angle-Doppler presentation is shown to be the projection of the more general four-
dimensional power spectrum.

Chapter 6 analyzes arbitrary waveforms as radar waveforms and focuses on the feasibility of
using transmitters of opportunity as signal source for space-time processing. The synchronization
— or lack thereof — is a crucial issue in the case of transmitters of opportunity. The proposed
approach immediately extends to multistatic systems.

Chapter 7 focuses on the estimation of the clutter covariance matrix in a non-homogeneous
range-dependent environment. The proposed method, based on the maximum a posteriori esti-
mate of the ground reflectivity, uses the radar measurements themselves. Finally, this chapter
considers possible extensions to multistatic systems.

Finally, the concluding Chapter 8 gives some perspectives for further research.

2.5 Original contributions
Our main original contributions are

• A rigorous and uniform analysis of multistatic target detection in the presence of colored
noise is provided. Although similar results appear in the literature, these are typically
limited to white noise or known target echo amplitude.

• The 4D clutter power spectrum locus is introduced. This greatly simplifies the analysis of
the clutter power spectrum behavior as a function of radar configuration parameters. In
particular, this permits us to provide a definitive rule about the configurations leading to
a range-independent clutter covariance matrix. This also provides a means to study the
influence of different antenna configurations, i.e., non-ULA antennas.

• Space-time adaptive processing is extended to arbitrary waveforms. This generalizes the
train of coherent pulses usually considered. In addition, we provide a means to perform
the STAP efficiently, i.e., without requiring the inversion of a gigantic matrix. We note
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that arbitrary waveforms are commonly used in passive radars, but to our knowledge, the
combined use of the spatial and the temporal dimension was never considered.

• A method to estimate the covariance matrix, taking into account its particular structure, is
proposed. Using this method, a justification is provided for the intuitively appealing spatial
averaging usually performed.
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Chapter 3

Signal modeling

3.1 Introduction
This chapter provides a basic introduction to spatio-temporal modeling of the signal with as
goal to obtain the basic relations used in the subsequent chapters. A relatively simple model
is deliberately considered in order not to obscure fundamental issues. A more complex model,
which accounts for polarization and element-dependent antenna radiation pattern is found in
[70].

The considered multistatic radar consists of several non collocated mutually coherent bistatic
radars. It is assumed that each receiver can receive the signal from each transmitter and the
waveforms used by the different transmitters are assumed not to interfere. The latter assumption
is verified for instance when each transmitter operates in a different frequency band or when
the transmitter uses techniques analogous to Code Division Multiple Access communication
[48]. Furthermore, the considered transmitters and receivers are moving platforms, for instance
Unmanned Aerial Vehicles. The receivers carry an antenna array of arbitrary shape with several
channels.

The relations for a bistatic radar are first developed and then extend to several bistatic radars,
i.e., a multistatic radar.

3.2 Geometry

3.2.1 Bistatic transmitter/receiver geometric configuration
The considered bistatic geometric configuration for an arbitrary array is illustrated in Figure 3.1
and defines the positions and velocities of the transmitter and receiver, together with the geomet-
ric configuration of the receiver’s antenna [92, 172, 178]. The transmitter Tx is located at the
origin while the receiver Rx is located at (xR, yR, zR) or, equivalently, at (RRT , θ, φ) in spheri-
cal coordinates. The receiver and the transmitter velocities are assumed to be horizontal. The
velocity vector of the transmitter ~vT is aligned with the x-axis

~vT = vT (1, 0, 0). (3.1)
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Figure 3.1: Bistatic transmitter/receiver geometric configuration.

The velocity vector of the receiver ~vR makes an angle αR w.r.t. the x-axis

~vR = vR(cosαR, sinαR, 0). (3.2)

The reference axis of the receiving array lays in the xy-plane and makes an angle δ with ~vR. The
angle δ is sometimes referred to as the “crab” angle in the case of a uniform linear array (ULA).
The vector ~r describes the location of the considered antenna element with respect to an arbitrary
reference point, for instance the mechanical center of the antenna array.

The ground is assumed flat and located at −H with H > 0.

3.2.2 Bistatic scatterer geometric configuration
Figure 3.2 illustrates the scatterer geometry w.r.t. the transmitter and the receiver. The location
of the scatterer S w.r.t. the transmitter Tx and the receiver Rx is characterized by the angles θT

and φT and the angles θR and φR, respectively. The distances between the scatterer and both the
receiver and the transmitter are denoted by RR and RT respectively. The location of the scatterer
w.r.t. the transmitter is given by

RT
~1TS (3.3)

with ~1TS a unit vector from Tx to S

~1TS = (cos θT cosφT , cos θT sinφT ,− sin θT ). (3.4)

Similarly, the location of the scatterer w.r.t. the receiver is given by

RR
~1RS (3.5)
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Figure 3.2: Bistatic scatterer geometric configuration

with ~1RS a unit vector from Rx to S

~1RS = (cos θR cosφR, cos θR sinφR,− sin θR). (3.6)

The scatterer velocity vector is assumed laying in the xy-plane and makes an angle ζ with the
x-axis

~vS = vS(cos ζ, sin ζ, 0). (3.7)

3.3 Key bistatic parameters

3.3.1 Spatial frequency
This section establishes the expression of the spatial frequency and also deduces the expression
for the electric field at the antenna elements.

The phase shift between the transmitted and the received signal at the antenna element located
at ~r is given by φ(~r) = τrt+τ ′(~r)

Tc
= φ(0) + τ ′(~r)

Tc
where τrt = R/c is the round-trip time from the

transmitter to the receiver antenna’s center. The carrier frequency is denoted by fc and Tc = 1/fc

is the period of the carrier. φ(0) = τrt/Tc is the phase reference corresponding to the center of
the receiving antenna array. τ ′(~r) is the additional delay corresponding to the additional distance
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that the signal has to travel to reach the element located at ~r. This delay is equal to [173]

τ ′(~r) = −~r ·
~1RS

c
. (3.8)

By considering only the factor depending on ~r, the electric field at ~r is proportional to

e−j2π
τ ′(~r)

Tc , which can be rewritten as E(~r) ∝ e−j~k·~r thus defining the spatial wave vector ~k as
[171]

~k = −2π~1RS
fc

c
= −~1RS

2π

λc

. (3.9)

This wave vector depends on the direction of arrival ~1RS of the incident wave and on the wave-
length λc = c

fc
. Thus, a spatial variation of the received signal (phase) appears at different

positions on the receiving antenna due to the small time-delay evolution existing along the an-
tenna.

Defining the normalized spatial frequency vector1 as

~νs = ~1RS/2 (3.10)

yields ~k = −2π~νs
2
λc

and normalizing the antenna element position in terms of half wavelength
yields ~ρ = 2

λc
~r. With these notations, the electric field in ~r can be rewritten as E(~ρ) ∝ ej2π~νs·~ρ.

3.3.2 Doppler frequency
Let us consider a transmitter transmitting a wave illuminating a scatterer S. The electric field
at the receiving antenna due to the echo reflected by a scatterer S is proportional to ej2π(fc+fD)t

where fD is the Doppler frequency due to the transmitter, receiver and scatterer movements. Af-
ter demodulation, the received signal is proportional to ej2πfDt. In bistatic scenarios, the Doppler
frequency fD is the sum of two terms: fD = fDT

+ fDR
, where fDT

is the Doppler frequency
due to the relative radial velocity of the transmitter w.r.t. the scatterer and fDR

is the Doppler
frequency due to the relative radial velocity of the receiver w.r.t. the scatterer. These two terms
have the expressions

fDT
=

1

λc

(~vT − ~vS)~1TS

fDR
= − 1

λc

(~vS − ~vR)~1RS

(3.11)

hence

fDT
=

1

λc

(vT cos θT cosφT − vS cos θT cos(ζ − φT ))

fDR
=

1

λc

(vR cos θR cos(αR − φR)− vS cos θR cos(ζ − φR)).
(3.12)

1The normalized spatial frequency vector will be analyzed in detail in Chapter 5.
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If the scatterer is stationary, vS = 0 and one has

fDT
=

1

λc

vT cos θT cosφT

fDR
=

1

λc

vR cos θR cos(αR − φR).
(3.13)

Assuming that the demodulated received signal is sampled at a frequency fp, and normalizing
the Doppler frequency w.r.t. this frequency yields

νD =
fDT

+ fDR

fp

(3.14)

where νD is the normalized Doppler frequency expressed as a fraction of the sampling frequency.
The m-th sample of the received signal is thus proportional to ej2πmνD .

3.3.3 Range
The bistatic rangeR is the total distance traveled by the signal from the transmitter to the scatterer
to the receiver’s antenna reference point. It is directly linked to the round-trip time τrt = R/c.
The range-rate is the derivative of this distance with respect to the time.

Isorange surfaces are surfaces where the bistatic range is constant, or, equivalently, surfaces
of equal round-trip time. Isoranges are an important concept in radar as the signal corresponding
to one particular range is the resultant of the contribution of all scatterers located on the isorange
surface associated with the range of interest. In particular, ground clutter is the echo signal from
distributed scatterers located on the ground. The ground clutter patches contributing to the signal
at some specific range of interest will be located along an isorange curve which is the intersection
of the isorange surface with the ground surface.

The equation for the isorange curve in the case of a flat ground surface is derived in Ap-
pendix A. In this case, the isoranges are ellipses.

Obviously, scatterers traveling with a velocity tangential to the isorange will exhibit a zero
range-rate [174].

3.4 Space-time data model
For the sake of clarity of the text, let us consider a single transmitter transmitting a coherent pulse
train. Chapter 6 extends the model to arbitrary signals. Let us consider P receive platforms.
Platform p carries Np receive channels (antenna elements) with arbitrary but known locations
~ρp,n, 0 ≤ n < Np. There is thus a total of N =

∑P
p=1Np receive channels. At each receive

channel, the signal is sampled in order to produce M samples in time corresponding to the M
pulses transmitted during coherent processing interval (CPI). The sampling on each platform
is synchronized such that the responses of the target arrive in phase at a reference channel on
each platform, to compensates the decorrelation due to the time delay between the arrivals of the
signals at all platforms [60].
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3.4.1 Bistatic data snapshot
First, let us consider a single receive platform. For a platform p and for each of the M pulses
during one coherent processing interval, one sample is obtained at each of the Np elements of
the antenna array. The bistatic range associated with the measurement is proportional to the time
delay between the emission of the signal at the transmitter and the subsequent reception of the
signal at the receiver.

Thus, M pulses results in NpM space-time measurements at each platform p and at each
range. These NpM samples are called a snapshot. The notation yp(n,m), where 0 ≤ n < Np

and 0 ≤ m < M , denotes the sample obtained at the n-th antenna element of platform p and
corresponding to the m-th pulse. This operation can be repeated at each range, leading to a 3D
datacube as illustrated in Figure 3.3 [173].

Snapshot

0

Pulses

Antenna elements
Np
− 1

M − 1

Range bins

Figure 3.3: Illustration of the space-time datacube and a space-time snapshot.

The samples of the snapshot yp can be lexicographically ordered yielding the vector

yp = [yp(0, 0), yp(1, 0), . . . , yp(Np − 1, 0), yp(0, 1), . . . , yp(Np − 1, 1),

. . . , yp(0,M − 1), . . . , yp(Np − 1,M − 1)]T . (3.15)

3.4.2 Bistatic space-time steering vector
According to Sections 3.3.1 and 3.3.2, the snapshot sample yp(n,m), at antenna element n and
corresponding to pulse m, due to an isolated scatterer can be expressed as

yp(n,m) ∝ ej2π(~ρp,n·~νps+mνpD
) (3.16)
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where ∝ denotes a proportionality relation. This only holds in the case of identical antenna
element radiation patterns at the receiver, a uniform temporal sampling, and constant velocities
of the transmitter, receiver, and scatterer during the coherent processing interval.

The corresponding vector yp is thus proportional to a steering vector v which is itself the
Kronecker product of a temporal steering vector b and a spatial steering vector a [60, 173]

v(~νps , νpD
) = b(νpD

)⊗ a(~νps) (3.17)

where
a = [ej2π~ρp,0·~νps ej2π~ρp,1·~νps · · · ej2π~ρp,Np−1·~νps ]T (3.18)

is the spatial steering vector,

b = [1 ej2πνpD ej2π2νpD · · · ej2π(M−1)νpD ]T (3.19)

is the temporal steering vector and ⊗ denotes the Kronecker product [34, Chapter 2] of its two
vector arguments, ~νps and νpD

are respectively the normalized spatial and Doppler frequencies
associated with the isolated scatterer.

The vector v(~νps , νpD
) is called the spatio-temporal steering vector or simply the steering

vector associated with the isolated scatterer. To shorten the notation and to acknowledge the
dependence of the steering vector on the considered platform, let us use the following equivalent
notations for the steering vector associated with platform p

vp = vp(θp(~x)) = vp(~νps , νpD
) (3.20)

where the parameter vector θp(~x) contains the position and velocity vector of the transmit and
receive platform, the location (~x) and velocity vector of the scatterer, the receive element posi-
tions ~ρp,n, 0 ≤ n < Np and the parameters of the temporal sampling. The notation θp(~x) denote
the vector of parameters for a steering vector corresponding to a scatterer located at ~x. Finally,
note that in a multistatic setup, the vector of parameters θp is typically different for each bistatic
radar, this dependence being indicated by the subscript p.

3.4.3 Multistatic space-time snapshot and steering vector
The multistatic space-time snapshot is obtained by stacking the bistatic snapshot yp obtained
from each platform and is noted [122]

y = [yT
1 ,y

T
2 , . . . ,y

T
P ]T . (3.21)

3.5 Signal model

3.5.1 Target model
In our simplified model, targets are nothing else than point scatterers in the sense that we assume
that the target extent is smaller than the resolution of the radar in range, azimuth angle, and
Doppler.
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3.5.1.1 Target reflectivity

Bistatic targets radar cross section (RCS) models are hardly discussed in the open literature. For
instance the discussions in [174, 175] concentrate on the relationship of the monostatic RCS
value with respect to the bistatic RCS for different bistatic angles and different frequencies. We
are however not directly interested in the value of the RCS for a particular target, but rather in
its temporal distribution, i.e., a modeling of the statistical fluctuation of the RCS. Let us discuss
briefly the existing monostatic fluctuating target RCS models and assume that these extend to the
bistatic case. There exists several models for the target complex random amplitude [120, 158],
denoted α. Two of them are presented hereafter.

The Marcum model considers non fluctuating targets for which the value of α is constant. In
monostatic configurations, this model is exact for a sphere. A variant is used in [22] where
a target is modeled with a constant RCS and a phase φ uniformly distributed between 0
and 2π.

The Swerling-I and -II models assume the probability density function (PDF) of the target
squared magnitude |α|2 is a negative exponential [120]

p(α) =
1

πσ2
α

e
− |α|2

σ2
α (3.22)

which results from the assumption that α is complex circular Gaussian distributed, i.e.,
α = αr + jαi where αr and αi are independent and normally distributed with zero mean
and variance equal to σ2

α

2
. In this case, the magnitude is Rayleigh distributed [132].

These models are applicable when the target can be modeled as a random assembly of
independent scatterers, without any dominant one [120].

The Swerling-I model assumes slow fluctuations, i.e., the target complex amplitude is
considered constant during the coherent processing interval (CPI). On the contrary, the
Swerling-II model assumes random fluctuations during the CPI. These two cases can be
seen as the two extremes, as during the CPI, the Swerling-I assumes full correlation while
the Swerling-II model considers no correlation at all. Intermediate cases with temporal
correlation of the target complex amplitudes are considered in [39].

Although other models exist [120], we will focus on two latter model families for the two follow-
ing reasons: they are practically relevant — at least in the monostatic case — while providing
results that remain analytically tractable.

Another issue in target modeling is the evolution of the RCS as a function of the look an-
gle. The monostatic RCS usually varies a lot and exhibits deep fades as the look angle changes
[158]. These variations are usually modeled by considering statistically independent complex
amplitudes α at different look angles with different variances, which is referred to as angular
diversity. On the contrary, a spatially coherent target is defined as a target with a completely cor-
related reflected complex amplitude at different look angles. The assumption of having coherent
echoes from different look angles, although considered in the literature [76, 83] and possibly
valid for particular targets, for instance targets consisting of a single dominant scatterer, is not
realistic for real targets [14].
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3.5.1.2 Bistatic target model

Under the assumption of a constant target velocity during the CPI, the contribution of one target
to a bistatic snapshot is modeled as

ytp = αpcpvp(~νps , νpD
) (3.23)

where vp is the target’s steering vector for radar p, αp is the complex random amplitude of the
target and cp takes into account the factors of the radar equation and in particular the emission
and reception antenna radiation patterns. ~νps depends on the actual location of the target and is
given by (3.10) while νpD

depends both on the location and on the velocity of the target and is
given by (3.14).

Introducing the non-normalized steering vector

sp = cpvp, (3.24)

which takes into account the radiometric factors cp of the range equation, we have

ytp = αpsp. (3.25)

3.5.1.3 Multistatic target model

The contribution of a point target to a multistatic snapshot results from the combination of the
contribution of the target to several bistatic snapshots [122], i.e.,

yt = [yT
t1
,yT

t2
, . . . ,yT

tP
]T . (3.26)

If a coherent target model is assumed, i.e., if the target is coherent among the different bistatic
radars, one can rewrite (3.26) as

ytcoherent
= α[c1v1(θ1)

T , c2v2(θ2)
T , . . . , cPvP (θP )T ]T . (3.27)

where α = α1 = . . . = αP is a random quantity behaving according to one of the models
described in Section 3.5.1.1.

A more realistic target model implies that the complex target amplitudes αp, as measured
by different bistatic radars, are independent and possibly with different variance E{|α|2} [14].
Under this condition, the contribution of a target to a multistatic snapshot (3.26) must be rewritten
as

ytincoherent
= [α1c1v1(θ1)

T , α2c2v2(θ2)
T , . . . , αP cPvP (θP )T ]T . (3.28)

where the αp are statistically independent with variance σ2
αp

.
Introducing the non-normalized steering vector sp yields

ytincoherent
= [α1s

T
1 , α2s

T
2 , . . . , αP sT

P ]T (3.29)

and
ytcoherent

= αs (3.30)

with s = [sT
1 , s

T
2 , . . . , s

T
P ]T .
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3.5.2 Clutter model
3.5.2.1 Bistatic clutter model

First, let us consider a particular bistatic radar, say radar p. The return at a particular range is the
integral of the signal reflected by the ground located along the corresponding isorange. Thus the
contribution of clutter to the snapshot can be expressed as

ycp =

∫
A

αp(~x)cp(~x)vp(~νps(~x), νpD
(~x))d~x (3.31)

where the integral is performed over the annulus A where there is a significant return. The width
of this annulus depends on the range ambiguity function of the transmitted signal, as discussed
in Chapter 6. The coefficient cp(~x) represents the “amplitude” factors of the radar equation,
including specifically the bistatic range factors together with the transmit and the receive antenna
radiation patterns which depend on the look angle of the considered point ~x and the locations of
the transmitter and the receiver.

This integral can be approached by a Riemann sum [60, 173] for which the annulus is divided
in a large number of independent clutter patches evenly distributed in azimuth along the isorange

ycp =
K∑

k=1

αp,kcp,kvp(~νps,k, νpD,k) (3.32)

where cp,k contains all the geometric coefficients of the radar equation including the clutter patch
area but not the RCS of that clutter patch; ~νps,k and νpD,k are respectively the reduced spatial and
temporal frequencies at the center of clutter patch k and vp(~νps,k, νpD,k) is the steering vector of
the k-th clutter patch. αp,k is the random complex amplitude of the scattered wave coming from
clutter patch k. The number K of clutter patches to consider, briefly discussed in [21], must
be at least larger than the dimension of the steering vectors vp, i.e., K > NpM . Radar echoes
typically exhibit a large dynamics, which may imply the use of a large number of clutter patches
in order to correctly represent the clutter signal [149].

3.5.2.2 Clutter radar cross section

Under realistic conditions, there is a large number of individual scatterers contributing to the re-
turn signal coming from a single clutter patch [132]. Hence, the Swerling-I model given by (3.22)
and discussed in a previous section can be assumed to correctly model the statistical behavior of
the complex coefficient αp,k. Although the validity of this model over grass land is generally
accepted, the assumptions of the scattering due to many individual scatterers is doubtful in urban
environments. Models applicable in an urban context are discussed in [132]. The coefficients
αp,k are regarded as independent from a clutter patch to another, as the scatterers contributing to
different αp,k are different.

The power of the return from clutter patch k alone is given by σ2
pk

= E{|αp,k|2} and is
proportional to its area Ap,k. Dividing this returned power by the area Ap,k yields the normalized
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scattering coefficient σ0pk
= σ2

pk
/Ap,k also called sigma naught which depends on the incidence

angle. In monostatic cases, the constant-γ model

σ0 = γ0 sin θ, (3.33)

where θ is the monostatic incidence angle and γ0 a normalized reflectivity parameter, can model
appropriately certain ground covers, e.g., the tropical rain forest [96]. In the latter case, an
isotropic ground cover is assumed, as the look angle φ does not appear in expression (3.33).
Over sea [68, 69] and over ice [27, 35], other types of models must be considered. Most of
these models are empirical and are only valid in very limited cases, e.g., for particular ranges of
incidence angles, at particular frequencies and polarizations. The monostatic constant-γ model,
was adapted to the bistatic case in [174]

σ0 = γ0 sin[(θT + θR)/2] (3.34)

where θT is the incidence angle at the transmitter and θR the incidence angle at the receiver
as shown on Figure 3.4. Unfortunately, these simple analytical models typically fail to render

Tx
Rx

θT

θR

φ′

Figure 3.4: Bistatic measurement geometry.

the complexity of real world situations, as shown in the bistatic clutter databases presented in
[174, 175]. A general trend is however apparent in [174]: there is a minimum of σ0 at an out-
of-incidence plane angle φ′ = 90o and a maximum at an in-incidence plane angle φ′ = 180o

(specular reflexion). Similarly, in elevation, a maximum corresponding to specular reflexion
(θT = θR) is obtained.

3.5.2.3 Multistatic clutter model

As for the multistatic target model, the clutter contribution to a multistatic snapshot results from
the combination of the bistatic clutter contributions of the different bistatic radars, i.e.,

yc = [yT
c1
,yT

c1
, . . . ,yT

cP
]T (3.35)

where ycp denotes the bistatic clutter contribution of the bistatic radar p.
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The different bistatic radars have generally different spatial locations, i.e., the receivers are
not collocated. Hence, the isoranges of different bistatic radars are generally not overlapping and
the clutter signal component present in the space-time samples of different receive platforms are
independent2 as noted in [24].

3.5.2.4 Multistatic clutter covariance matrix

As the complex clutter reflectivity is assumed zero mean circularly Gaussian distributed, the
clutter snapshot yc is a zero mean multidimensional complex Gaussian random vector, and its
distribution is completely characterized by its covariance matrix.

The multistatic clutter covariance matrix is defined as

Rc = E{ycy
†
c}. (3.36)

From this definition, one immediately deduces that the covariance matrix is Hermitian Rc = R†
c.

The PDF of the snapshot is given by

p(yc) =
1

πNM |Rc|
e−y†

cR
−1
c yc (3.37)

where |Rc| denotes the determinant of the matrix Rc. In the same way, as the clutter snapshot
signal from each bistatic radar is assumed zero mean circularly Gaussian distributed, it follows
that

p(ycp) =
1

πNpM |Rcp |
e−y†

cpR−1
cp ycp (3.38)

where
Rcp = E{ycpy

†
cp
}. (3.39)

is the clutter covariance matrix of the clutter seen by bistatic radar p. The independence of the
ycp’s yields

p(yc) =
P∏

p=1

p(ycp) (3.40)

and hence

p(yc) =
P∏

p=1

1

πNpM |Rcp |
e−y†

cpR−1
cp ycp . (3.41)

Independence of the clutter snapshots from different bistatic radars also imply that the co-
variance matrix Rc has a block-diagonal structure

Rc =


Rc1 0

Rc2
. . .

0 RcP

 (3.42)

2Possible dependence where the isoranges intersect is neglected as the look-angle is in general very different,
which causes decorrelation.
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where the pth block on the diagonal corresponds to the clutter covariance matrix Rcp of the clutter
seen by the pth bistatic radar. Taking the particular structure of the covariance matrix into account
and noting that the determinant of a block diagonal matrix is the product of the determinant of
the matrices on the diagonal

|Rc| =
P∏

p=1

|Rcp |. (3.43)

and that the inverse of a block diagonal matrix is a block diagonal matrix composed of the inverse
of each blocks on its diagonal, the equality between (3.37) and (3.41) follows.

3.5.3 Overall signal model
Besides target and clutter returns, the space-time snapshot also includes some thermal noise yn,
assumed white circularly Gaussian, uncorrelated with the other signal components, and with
covariance matrix σ2

nI where I is the NM ×NM identity matrix.
Hence the overall signal model is given by

y = yt + yi+n (3.44)

where
yi+n = yc + yn (3.45)

will be referred to as the interference-plus-noise signal and has a covariance matrix

Ri+n = Rc + σ2
nI. (3.46)

In the rest of this document and when no confusion is possible, the subscript i + n is dropped
and the interference plus noise covariance matrix is simply denoted by R (and Rp if the bistatic
radar p is considered).

3.6 Summary
Starting from the acquisition geometry, the expressions for the Doppler frequency and the spa-
tial frequency were introduced for a bistatic radar to define the space-time steering vector used
to model a point target. Models able to render the spatial (angular) correlation of the target
returns were presented and serves as the basis for the discussion of the detection theory in the
next chapter. Finally, the clutter model was introduced together with the interference-plus-noise
covariance matrix in the multistatic case.
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Chapter 4

Multistatic target detection

4.1 Introduction
This chapter reviews the detection theory and applies it to multistatic radars in order to study their
detection performance and in particular to investigate the conditions under which a multistatic
configuration is more advantageous than a bistatic one.

The considered multistatic radar consists of several bistatic radars, the performance analysis
of bistatic radars serves as basis for the study of the performance of multistatic radars and is
performed with the Marcum and Swerling-I target models described in the previous chapter.

The detection is shown to be equivalent to thresholding the squared magnitude of the output
of a filter applied to the received signal. The detection performance is shown to be monotonically
increasing with the signal-to-interference-plus-noise ratio (SINR). This result is then used to
assess the performance of different filters.

4.2 Detection theory
Target detection can be seen as a binary composite hypothesis testing, as the PDF in the presence
of a target (hypothesis H1) depends on some unknown parameters. Under hypothesis H0, no
target is present and the received signal can be modeled as

yp = yi+np
(4.1)

where yi+np
is the interference-plus-noise signal as modeled in Section 3.5.2. Let us assume

complete knowledge of the interference-plus-noise covariance matrix Rp, i.e., the clairvoyant
case, in order to develop the detectors and study their performance. The case of the unknown
interference-plus-noise covariance matrix is discussed in Section 4.5. Under hypothesis H1, a
target is present with (assumed) known steering vector sp, and the received signal can be modeled
as

yp = αpsp + yi+np
(4.2)
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where αp is the complex amplitude1 of the target return. Let us also assume complete knowledge
of the target’s steering vector. The latter hypothesis is discussed later in Section 4.5.

Two main criteria are used in binary hypothesis testing [82, 155, 169]: the Bayes criterion and
the Neyman-Pearson criterion. The Bayes criterion requires knowledge of a priori probabilities
for each hypothesis, the definition of a cost associated with each possible decision and minimizes
that cost. The Neyman-Pearson criterion bypasses the difficulty of having to define realistic costs
and a priori probabilities that can arise when dealing with physical situations and is based on the
maximization of the probability of detection for a given probability of false alarm. Both criteria
yield the same decision rule [82, 169].

4.3 Detection criterion

4.3.1 The likelihood ratio test
Let us consider a bistatic radar p. The PDF p(yp;H0) and p(yp;H1) are the probability densi-
ties of the measurements yp under the two considered hypotheses, H0 and H1, respectively. If
Gaussian probability density functions (PDF) are assumed, then [54, 81]

p(yp;H0) =
1

πNpM |Rp|
e−y†

pR
−1
p yp (4.3)

and
p(yp|αp;H1) =

1

πNpM |Rp|
e−(yp−αpsp)†R−1

p (yp−αpsp) (4.4)

where NpM is the number of elements of the vector yp, Rp is the interference-plus-noise covari-
ance matrix

Rp = E{yi+np
y†

i+np
} (4.5)

and |Rp| denotes the determinant of this matrix. The function L(H0) = p(yp;H0) viewed as a
property ofH0 given the measurements yp is the likelihood ofH0. Similarly, L(H1) = p(yp;H1).
If αp is random with known PDF p(αp), the likelihood of H1, L(H1), is obtained by integrating
over the possible values of αp taking into account its PDF

L(H1) =

∫
D

p(yp, αp;H1)dαp =

∫
D

p(yp|αp;H1)p(αp)dαp (4.6)

where D is the integration domain, generally C.
A Neyman-Pearson test is based on thresholding the likelihood ratio

Λ(yp) =
L(H1)

L(H0)
=

∫
D

p(yp|αp;H1)p(αp)dαp

p(yp;H0)
(4.7)

1When a Marcum model is considered, the amplitude is deterministic and unknown and when a Swerling-I target
model is considered, the amplitude is random.
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The same result is obtained by using a Bayesian approach [82, 169]. The corresponding test is
the likelihood ratio test (LRT)

Λ(yp)
H1
≷
H0

η0 (4.8)

where η0 is a threshold, generally data-dependent and governed by the desired probability of
false alarm. The result of the test does not change if each side of (4.8) is transformed by using
a monotonously increasing function. As the likelihood ratio generally involves exponentials, the
logarithm of the likelihood is often used and yields the log-likelihood ratio test

λ(yp)
H1
≷
H0

η′0 (4.9)

where λ(yp) = ln Λ(yp) and η′0 = ln η0.

4.3.2 The generalized likelihood ratio test
In some particular cases, the likelihood L(H1) cannot be computed, since it depends on deter-
ministic but unknown parameters or on stochastic parameters with unknown PDF, or simply, a
closed-form of the integral (4.6) cannot be obtained. In these cases, a possible procedure [169]
consists in maximizing the likelihood over the unknown parameters and using the values of these
maxima in the LRT. This procedure is called the generalized likelihood ratio test, written here
for a deterministic unknown αp

Λg(yp) =
max
αp

p(yp;αp,H1)

p(yp;H0)

H1
≷
H0

η0. (4.10)

Note that this is, by definition, equivalent to replacing the unknown parameters by their maximum
likelihood value. Obviously, the generalized log-likelihood is defined in a similar way as in the
previous sub-section, e.g., λg(yp) = ln Λg(yp).

Although the GLRT is not an optimum test, nevertheless, it usually provides acceptable re-
sults in the considered detection problem [169]. Moreover, other methods can be used such as
the Wald test or the Rao test [82].

4.3.3 Bistatic scenarios
This section derives the sufficient statistic in the case of a single bistatic radar p.

4.3.3.1 Marcum target model

In the case of a Marcum target model, αp is a deterministic unknown parameter and the GLRT is
used. The maximum likelihood estimation of αp is obtained by setting the derivative of the loga-
rithm of (4.4) with respect to αp equal to zero, which yields (the detailed derivation is presented
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in Appendix C.2)

α̂p =
s†pR

−1
p yp

s†pR−1
p sp

. (4.11)

Replacing this value in (4.10) yields the following expression for the generalized log-likelihood
ratio test,

Tb,m(yp) =
|s†pR−1

p yp|2

s†pR−1
p sp

H1
≷
H0

ηb,m (4.12)

where Tb,m groups the terms of the logarithm of the likelihood ratio that depend on yp. The
threshold ηb,m includes the additive constants that do not depend on yp. The subscripts b and m
refer to bistatic radar and Marcum target model respectively. Expression (4.12) corresponds to
the well known result in detection theory [114, 150] and is a modified version of the well known
criterion initially proposed in [22, 142] to have constant false alarm rate (CFAR) properties. The
absolute value appearing in (4.12) expresses the independence of the detection problem on the
phase of α̂p.

4.3.3.2 Swerling-I target model

In the case of a Swerling-I target model, the complex target amplitude is assumed random with
known PDF

p(αp) =
1

πσ2
αp

e
− |αp|2

σ2
αp (4.13)

which implies the knowledge of σ2
αp

, the variance of αp. In this case,

L(H1) = p(yp;H1) =

∫
D

p(yp|αp;H1)p(αp)dαp (4.14)

where D is the whole complex planeC, and this yields (Appendix C.3 provides with the detailed
derivation)

L(H1) = p(yp;H1) =
1

πNpM |Rp|
1

πσ2
αp

π√
1

σ2
αp

+ s†pR−1
p sp

e−y†
pR

−1
p ype

|s†pR−1
p yp|2

1
σ2

αp

+s
†
pR−1

p sp

. (4.15)

Taking into account (4.3), the likelihood ratio (4.7) is given by

Λ(yp) =
1

πσ2
αp

π√
1

σ2
αp

+ s†pR−1
p sp

e

|s†pR−1
p yp|2

1
σ2

αp

+s
†
pR−1

p sp

(4.16)

or, after taking the logarithm of the latter expression,

λ(yp) =
|s†pR−1

p yp|2
1

σ2
αp

+ s†pR−1
p sp

+ κ (4.17)
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where κ is a deterministic constant that does not depend on yp. The corresponding log-likelihood
ratio test is then

Tb,s(yp) =
|s†pR−1

p yp|2
1

σ2
αp

+ s†pR−1
p sp

H1
≷
H0

ηb,s (4.18)

where the subscripts b and s refer to bistatic radar and Swerling-I target model respectively.
Equivalently, rewriting this expression as

Tb,s(yp) =
s†pR−1

p sp

1
σ2

αp
+ s†pR−1

p sp

|s†pR−1
p yp|2

s†pR−1
p sp

H1
≷
H0

ηb,s (4.19)

and including the first term in the constant η′b,s yields

T ′
b,s(yp) =

|s†pR−1
p yp|2

s†pR−1
p sp

H1
≷
H0

η′b,s (4.20)

which is exactly the same expression as in the case of a Marcum target model (4.12). The test
itself will only differ by the threshold.

4.3.3.3 Discussion

Obviously, there is a close relationship between the result (4.12) obtained by considering a de-
terministic unknown αp and (4.18) obtained by considering a random αp with known Gaussian
PDF. In the random case, αp is assumed to have a complex circular Gaussian distribution of vari-
ance σ2

αp
, which can be considered as a priori knowledge about αp. If no a priori knowledge was

assumed, which is equivalent to letting σαp →∞, (4.18) reduces to (4.12).
These detectors rewritten

|w†
pyp|2

H1
≷
H0

ηb (4.21)

are expressed as a function of an optimal (or nearly optimal in the case of a deterministic αp)
weight vector wp given by

wp = kR−1
p sp. (4.22)

where k is a constant. This weight vector corresponds to the generalized matched filter [82], well
known in detection theory [22, 142, 171]. The quantity |w†

pyp| is called the sufficient statistic
[169].

4.3.4 Multistatic scenario
In a multistatic scenario, the model described in the previous chapter, in the presence of a target,
yields the following snapshot expression

y = [y1,y2, . . . ,yP ]T = [α1s1 + yi+n1
, α2s2 + yi+n2

, . . . αP sP + yi+nP
]T (4.23)
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where α1, . . . , αP are the complex amplitudes of the target echo signals received by the respective
bistatic radars 1, . . . , P .

If the clutter contributions to the received signals of each bistatic radar are independent, the
PDF of y if the target is not present, i.e., under hypothesis H0, is given by

p(y;H0) =
P∏

p=1

p(yp;H0) =
P∏

p=1

1

πNpM |Rp|
e−y†

pR
−1
p yp . (4.24)

The actual distribution of y if a target is present depends on the considered target model and is
further detailed in the following sections together with the corresponding test statistic.

4.3.4.1 Marcum target model

If the deterministic unknown target reflectivity αp is different for each bistatic radar, and given
the independence of the interference-plus-noise of the different radars,

p(y;α1, . . . , αP , H1) =
P∏

p=1

p(yp;αp, H1) =
P∏

p=1

1

πNpM |Rp|
e−(yp−αpsp)†R−1

p (yp−αpsp). (4.25)

The generalized likelihood ratio is given by

Λg =
max

α1,...,αP

p(y;α1, . . . , αP , H1)

p(y;H0)
=

P∏
p=1

max
αp

p(yp;αp, H1)

p(yp;H0)
(4.26)

and, from the result of Section 4.3.3.1, the generalized log-likelihood ratio test yields

Tm,m(y) =
P∑

p=1

|s†pR−1
p yp|2

s†pR−1
p sp

H1
≷
H0

ηm,m (4.27)

where the subscripts m and m refer to multistatic radar and Marcum target model respectively.
The test statistic for the multistatic radar in the case of a Marcum target model and with the
assumption of uncorrelated clutter contributions of different bistatic radars is thus simply the
sum of the test statistics for each bistatic radar composing the multistatic radar.

4.3.4.2 Swerling-I target model

In the case of a Swerling-I target model, the different target echo signal complex amplitudes αp

of the different bistatic radars are random and statistically independent and their PDF are given
by

p(αp) =
1

πσ2
αp

e
− |αp|2

σ2
αp (4.28)
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where the σαp’s are assumed to be known. As both αp and the interference-plus-noise contribu-
tion yi+np

are assumed independent for each bistatic radar,

L(H1) = p(y;H1) =
P∏

p=1

p(yp;H1) (4.29)

where p(yp|H1) is given by (4.15). A similar calculation as in Section 4.3.3.2 provides with the
following test

Tm,s(y) =
P∑

p=1

|s†pR−1
p yp|2

1
σ2

αp
+ s†pR−1

p sp

H1
≷
H0

ηm,s (4.30)

which can be rewritten as

Tm,s(y) =
P∑

p=1

SINRp,s

1 + SINRp,s

|s†pR−1
p yp|2

s†pR−1
p sp

H1
≷
H0

ηm,s (4.31)

where SINRp,s = σ2
αp

s†pR
−1
p sp is called the signal to interference-plus-noise ratio and the sub-

script s denotes that it is defined for the case of a Swerling-I target model. A similar expression2

is found in [24] and for continuous time signals in white noise in [32].
As can be seen, the test statistic of the multistatic radar is a weighted sum of the test statistic

of each bistatic radar (4.20). The weight assigned to the contribution of a particular bistatic radar
depends on the SINR corresponding to that particular radar. The contributions of radars with a
low SINR have a smaller weight in the sum.

4.3.5 Discussion
The detection statistic for a multistatic radar (4.27) and (4.30) in the case of a Marcum target
model and a Swerling-I target model respectively is the incoherent sum of the contributions of
each bistatic radar constituting the multistatic radar [24], as the relative phase of the complex
amplitude αp of the different radars is unknown.

4.4 Performance

4.4.1 Introduction
The performance of the test is measured by the probability of detection for a given probability of
false alarm. If the test statistic is noted T and the test is unilateral

T
H1
≷
H0

η, (4.32)

2The SINRp,s is multiplied by a factor 2, owing to a different definition of σ2
αp

(no further reference concerning
the expression is given in that paper).
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the probability of false alarm is given by

PFA = Q(η) =

∫ +∞

η

p(T ;H0)dT (4.33)

where p(T |H0) is the PDF of the test statistic T under condition H0, and Q(η) the complement
of the cumulative density function (CDF) of T under condition H0. As the complement of the
CDF is always a monotonously decreasing function, its inverse Q−1 always exists. This inverse
function can be used to compute the threshold η from the desired probability of false alarm

η = Q−1(PFA). (4.34)

Similarly, the probability of detection is given by

PD =

∫ +∞

η

p(T ;H1)dT (4.35)

where p(T ;H1) is the PDF of T under hypothesis H1.

4.4.2 Bistatic scenarios
Again, let us first consider the detection performance of a single bistatic radar and subsequently
extend the results to multistatic radars. Similar-looking results can be found in the literature: the
Swerling-I continuous-time case is handled in [169]; the discrete case is handled in [82, 154], but
only either for the known-signal in colored noise or the Swerling-I target in white noise. The case
of complex signals combined with colored noise is not addressed for the Marcum and Swerling-I
target models. The derivations in this section are however inspired from [82].

4.4.2.1 Marcum target model

From (4.12), the test statistics is Tb,m, which can be expressed as Tb,m = |zp|2 with

zp =
1

γp

s†pR
−1
p yp (4.36)

where γp =
√

s†pR−1
p sp. The rationale behind this formulation is that the computation of the

distribution of zp and the subsequent deduction of the distribution of Tb,m is easier than a direct
computation of the distribution of Tb,m. Indeed, as zp is a linear combination of complex Gaus-
sian random variables, zp is also a complex Gaussian random variable. Under hypothesis H0, zp

is zero-mean
E{zp;H0} =

1

γp

s†pR
−1
p E{yi+np

} = 0 (4.37)

and its variance is equal to unity

var{zp;H0} = E{zpz
†
p;H0} =

1

γ2
p

s†pR
−1
p E{yi+np

y†
i+np

}R−1
p sp =

1

γ2
p

s†pR
−1
p sp = 1 (4.38)
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as E{yi+np
y†

i+np
} = Rp. Finally,

H0 : zp ∼ CN (0, 1) (4.39)

which implies H0 : Re(zp) ∼ N (0, 1
2
) and H0 : Im(zp) ∼ N (0, 1

2
). Hence, since |zp|2 =

Re(zp)
2 + Im(zp)

2, 2|zp|2 has a chi-squared PDF3 with 2 degrees of freedom

H0 : |zp|2 ∼
χ2

2

2
(4.40)

which is also known as a negative exponential PDF.
Similarly, under hypothesis H1, the expectation of zp is

E{zp;H1} =
1

γp

s†pR
−1
p spαp +

1

γp

s†pR
−1
p E{yi+np

} = γpαp (4.41)

and its variance is again equal to unity

var{zp;H1} = E{|zp − γpαp|2;H1} =
1

γ2
p

s†pR
−1
p E{yi+np

y†
i+np

}R−1
p sp =

1

γ2
p

s†pR
−1
p sp = 1

(4.42)
hence

H1 : zp ∼ CN (γpαp, 1). (4.43)

From the previous equation, it follows that 2|zp|2 has a non-central chi-squared PDF4 with 2
degrees of freedom and non-centrality parameter 2γ2

p |αp|2

H1 : |zp|2 ∼
1

2
χ′2

2 (2γ2
p |αp|2). (4.44)

Finally, as Tb,m = |zp|2,

Tb,m(yp) ∼


1

2
χ2

2 H0

1

2
χ′2

2 (2γ2
p |αp|2) H1.

(4.45)

Figure 4.1 (a) illustrates the distribution of the test statistic Tb,m under both hypotheses.
The probability of false alarm is obtained by computing

PFA = Qχ2
2
(2ηb,m) = e−ηb,m . (4.46)

where Qχ2
ν

is the complement of the CDF of the central chi-squared distribution with ν degrees
of freedom. It is remarkable that the PFA neither depends on the interference-plus-noise covari-
ance matrix Rp nor on the steering vector normalization nor on the target reflectivity αp, which

3The properties of this distribution are reviewed in Appendix B.
4The properties of this distribution are reviewed in Appendix B.
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Figure 4.1: (a) PDF of the test statistic under the two hypotheses and (b) probability of detection
PD as a function of the SINR for different probabilities of false alarm PFA.

justifies the claim that the detector (4.12) has CFAR properties [150]. Moreover, defining the
signal to interference-plus-noise ratio for the Marcum target model SINRp,m as

SINRp,m = γ2
p |αp|2 = s†pR

−1
p sp|αp|2 (4.47)

and, using (4.46) yields

PD = Qχ′2
2 (2SINRp,m)(2ηb,m) = Qχ′2

2 (2SINRp,m)(−2 lnPFA) (4.48)

where Qχ′2
ν (µ) is the complement of the CDF of the non-central chi-squared distribution with ν

degrees of freedom and non-centrality parameter µ. As CDF Fχ′2
2 (2SINRp,m) = 1−Qχ′2

2 (2SINRp,m)

is decreasing with increasing non-centrality parameter 2SINRp,m, the probability of detection
increases with the SINR as is shown in Figure 4.1 (b).

4.4.2.2 Swerling-I target model

From (4.18), let us define

zp =
1

γp

s†pR
−1
p yp (4.49)

where γp =
√

1
σ2

αp
+ s†pR−1

p sp. As zp is a linear combination of complex Gaussian random
variables, zp is also a complex Gaussian random variable. Under hypothesis H0, zp is zero-mean

E{zp;H0} =
1

γ
s†pR

−1
p E{yi+np

} = 0 (4.50)

and it variance is given by

var{zp;H0} = E{zpz
†
p;H0} =

1

γ2
p

s†pR
−1
p E{yi+np

y†
i+np

}R−1
p sp =

1

γ2
p

s†pR
−1
p sp (4.51)
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since E{yi+np
y†

i+np
} = Rp. Hence defining

σ2
0p

=
1

γ2
p

s†pR
−1
p sp =

σ2
αp

s†pR
−1
p sp

σ2
αp

s†pR−1
p sp + 1

(4.52)

yields
H0 : zp ∼ CN (0, σ2

0p
). (4.53)

Similarly, under hypothesis H1, zp is also zero-mean

E{zp;H1} = 0 (4.54)

and its variance is given by

var{zp;H1} = E{zpz
†
p;H1} =

1

γ2
p

(s†pR
−1
p sp + E{|αp|2}|s†pR−1

p sp|2)

=
1

γ2
p

(s†pR
−1
p sp + σ2

αp
|s†pR−1

p sp|2)

= σ2
αp

s†pR
−1
p sp.

(4.55)

Defining
σ2

1p
= σ2

αp
s†pR

−1
p sp (4.56)

yields
H1 : zp ∼ CN (0, σ2

1p
). (4.57)

As zp is a zero-mean complex Normal distributed random variable, Tb,s(yp) = |zp|2 is distributed
according to a central chi-squared distribution with 2 degrees of freedom

Tb,s(yp) ∼


σ2

0p

2
χ2

2 H0

σ2
1p

2
χ2

2 H1.

(4.58)

Detection is possible because σ2
0p
< σ2

1p
. Figure 4.2 (a) illustrates the distribution of the test

statistic Tb,s(yp) under both hypotheses.
Setting the threshold to ηb,s, yields

PFA = e
−

ηb,s

σ2
0p (4.59)

and

PD = e
−

ηb,s

σ2
1p (4.60)

or, eliminating ηb,s between these two equations,

PD = P

σ2
0p

σ2
1p

FA = P
1

1+SINRp,s

FA (4.61)
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Figure 4.2: (a) Plot of the PDF of the test statistic under the two hypotheses and (b) plot of the
probability of detection PD as a function of the SINR for different probabilities of false alarm
PFA.

where the signal to interference-plus-noise ratio for the Swerling-I target model SINRp,s is de-
fined as SINRp,s = σ2

αp
s†pR

−1
p sp. Hence, if the signal-to-noise ratio is zero, one has PD = PFA

and for a very large SINRp,s, one has PD ≈ 1. This is illustrated in Figure 4.2 (b) where the
probability of detection is plotted as a function of the SINR for different probabilities of false
alarm. Obviously, the probability of detection increases with the SINR and, as the SINR is pro-
portional to the number Np of channels on the receiver of the bistatic radar p, the probability of
detection increases with the number of channels.

4.4.2.3 Discussion

Figure 4.3 shows the detection performance achieved with the detectors presented in the previous
section for the considered target models. For relatively high SINR, a target obeying a Swerling-I
model (fluctuating complex amplitude) is more difficult to detect than a target obeying a Marcum
model (deterministic complex amplitude). The fact that fluctuating targets are more difficult to
detect is well known and can be explained by the fact that the amplitude of the returned echo
fluctuates. Therefore, for very weak echoes, it is possible that the detection statistic does not
exceed the detection threshold. However, for smaller SINR, the opposite occurs: a fluctuating
target is easier to detect than a steady target. Indeed, if the target is fluctuating, there is a non-zero
probability that a high enough amplitude of the target echo exceeds the the detection threshold
and that a detection occurs.

4.4.3 Multistatic scenarios
Let us consider multistatic scenarios, i.e., scenarios for which the detection is based on the com-
bination of measurements produced by several bistatic radars.
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Figure 4.3: Comparison of the detection performance for the considered target models (PFA =
10−4).

4.4.3.1 Marcum target model

Let us define
zp =

1

γp

s†pR
−1
p yp (4.62)

where γp =
√

s†pR−1
p sp. Section 4.4.2.1, yields

zp ∼

{
CN (0, 1) H0

CN (γpαp, 1) H1

(4.63)

and from (4.27),

Tm,m(y) =
P∑

p=1

|zp|2 =
P∑

p=1

Re(zp)
2 + Im(zp)

2. (4.64)

Under H0, the test statistic is thus the sum of 2P squares of zero-mean normal random variables
with a variance equal to 1

2
. The corresponding distribution is a chi-squared with 2P degrees of

freedom. Under H1, the test statistic is the sum of 2P squares of normal random variables with
non-zero mean. The corresponding distribution is a non-central chi-squared with 2P degrees of
freedom and non-centrality parameter µ = 2

∑P
p=1 γ

2
p |αp|2 = 2

∑P
p=1 SINRp,m:

Tm,m(y) ∼


1

2
χ2

2P H0

1

2
χ′2

2P (µ) H1.
(4.65)

The threshold ηm,m for a given PFA is obtained by computing

ηm,m =
1

2
Q−1

χ2
2P

(PFA) (4.66)
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and the probability of detection PD is

PD = Qχ′2
2P (µ)(2ηm,m). (4.67)
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Figure 4.4: Influence of the number of (bistatic) radars P on the probability of detection in the
case of Marcum target model (PFA = 10−4)

Figure 4.4 shows the evolution of the probability of detection as a function of the SINR, as-
sumed identical for all radars in order to simplify the graph, for varying numbers of contributing
bistatic radars. For a given SINR, the probability of detection increases with the number of con-
tributing radars. The combination of the contributions of the different bistatic radars is similar to
an incoherent summation.

The SINR of individual bistatic radars generally varies according to the spectral signature
of the clutter and the spatio-temporal location of the target, which will have an impact on the
detection performance. By way of illustration, let us consider a particular multistatic scenario
as represented in Figure 4.5 (a), which depicts one transmitter (Tx) and three receive platforms
(Rx1, Rx2, and Rx3). The arrows indicate the velocity of the target and of the radar platforms.
The ellipses depict the bistatic isoranges on the ground for each bistatic radar pair. The clutter
patches inducing interferences competing with the target return are located along these isoranges.
The transmit and receive platforms are airborne, which explains why they do not appear at the
focal point of the ellipses. The platforms Rx2 and Rx3 are nearly collocated but have different
speeds. The probability of detection for a probability of false alarm equal to 10−4 and for different
target velocities5 is depicted in Figure 4.5 (b). The magnitude |αp| of the target echo signal is
taken identical for all platforms and the setup is such that the maximum SINR (i.e., the SINR
when the hypothesized target has a high Doppler frequency) is about 12.7dB6 for a single radar.

5The reduced target velocity is defined by νDx = vx

fpλ where vx is the velocity along the x-axis and similarly for
νDy

6This value is taken such that the loss in detection performance if the target has zero range rate with respect to
one single radar is visible on the graph. It is clear that if the target echo magnitude is higher, the detection probability
can be close to unity for all velocity vectors with non-zero magnitude.
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Figure 4.5: (a) The considered multistatic scenario and (b) probability of detection as a func-
tion of the reduced target velocity vector (νDx, νDy) in the case of a target corresponding to the
Marcum target model with maximum SINR of 12.66dB (PFA = 10−4).
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Figure 4.6: (a) SINR1,m (b) SINR2,m (c) µ/2 =
∑3

p=1 SINRp,m for the scenario of Figure 4.5.

The probability of detection at zero velocity is of course very small, due to the presence of
the clutter and the corresponding low SINR. Monostatic radars are only sensitive to the radial
velocity component, which means that targets traveling perpendicular to the line of sight of the
radar are indistinguishable from the clutter. There is a similar issue with bistatic radars [174] for
which targets having a velocity tangential to the isorange have zero range-rate and hence do not
exhibit a bistatic Doppler, which explains the loss of detection performance along the “diagonal”
νDx = νDy in Figure 4.5 (b), corresponding to the velocities for which the target appears “static”
to the bistatic radars Tx-Rx2 and Tx-Rx3. Indeed, these velocities are tangential to the isorange
corresponding to the radars Tx-Rx2 and Tx-Rx3. For these velocities, the SINR corresponding
to these two bistatic radars is effectively very small as can be seen on Figure 4.6 (b) (SINR3,m,
visually similar to SINR2,m, is therefore not presented) which explains the decrease of probability
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of detection. The probability of detection is however not equal to zero thanks to the radar Tx-
Rx1 which observes the target with a different geometry, for which the SINR is large. This is
illustrated in Figure 4.6 (c) in which the non-centrality parameter is depicted. Indeed, the notch
in SINR due to the target, appearing as static to certain radars only, essentially vanishes. There
is another direction in which there is a loss in detection performance, corresponding to velocities
tangential to the isorange of bistatic radar Tx-Rx1. For those velocities, the contribution of
bistatic radar Tx-Rx1 is small as can be seen on Figure 4.6 (a).

4.4.3.2 Swerling-I target model

Let us define
zp =

1

γp

s†pR
−1
p yp (4.68)

where γp =
√

1
σ2

αp
+ s†pR−1

p sp. Section 4.4.2.2, yields

zp ∼

{
CN (0, σ2

0p
) H0

CN (0, σ2
1p

) H1

(4.69)

hence from (4.30)

Tm,s(y) =
P∑

p=1

|zp|2 =
P∑

p=1

Re(zp)
2 + Im(zp)

2. (4.70)

The test statistic is thus the sum of the squares of zero-mean normal distributed random variables,
each having different variances.

To compute the probability of detection, the knowledge of the PDF of Tm,s(y) is needed. The
PDF of the sum of squares of normal distributed random variables with different variances is not
known. In order to further pursue the analysis, let us assume that σ2

0p
= σ2

0 , ∀p and σ2
1p

= σ2
1 ,

∀p. This assumption implies that the SINRp,s = σ2
αp

s†pR
−1
p sp is the same for all bistatic radars,

which is equivalent to assuming that 1) the target RCS is the same for all bistatic radars and 2)
the interference-plus-noise power is also the same for each radar. Although this assumption is
very restrictive, the goal is to analyze the effect of the angular diversity and this effect is still
adequately modeled despite this assumption. In these conditions, the test statistic is distributed
according to a scaled central chi-squared distribution with 2P degrees of freedom:

Tm,s(y) ∼


σ2

0

2
χ2

2P H0

σ2
1

2
χ2

2P H1

(4.71)

The threshold ηm,s for a given PFA is obtained by computing

ηm,s =
σ2

0

2
Q−1

χ2
2P

(PFA) (4.72)
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and the probability of detection PD is given by

PD = Qχ2
2P

(
2

σ2
1

ηm,s

)
. (4.73)

Figure 4.7 shows the evolution of the probability of detection as a function of the SINR and of
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Figure 4.7: Influence of the number of (bistatic) radars P on the probability of detection for
Swerling-I targets (PFA = 10−4).

the number of contributing bistatic radars. As can be seen, for a given SINR, the probability
of detection increases with the number of contributing radars. This is a manifestation of the
diversity gain and can be explained as follows: even if the complex amplitude of the target echo
received by one radar is small, there is however some chance to get a detection thanks to a large
enough target echo from another radar. The larger the number of contributing radars, the more
likely the reception by one of the radars of an echo with a large amplitude.

In order to further assess the performance of a multistatic radar in the case of varying SINR
in a less restrictive scenario, let us consider the deflection coefficient [53, 82, 169] defined as

d2 =
|E{T ;H1} − E{T ;H0}|2

1
2
(var{T ;H1}+ var{T ;H0})

(4.74)

where T is the considered test statistic. The deflection coefficient is a measure of the distance
between two distributions. If T is Gaussian under both hypotheses, which is not the case here,
the deflection coefficient entirely characterizes the detection performance [82]. However, the
deflection coefficient still provides an indication of the detection performance [43]. As |zp|2 is
distributed according to

|zp|2 ∼


σ2

0p

2
χ2

2 H0

σ2
1p

2
χ2

2 H1,

(4.75)
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the properties of the central χ2 distribution lead to

E{|zp|2;H0} = σ2
0p

(4.76)

E{|zp|2;H1} = σ2
1p

(4.77)

var{|zp|2;H0} = σ4
0p

(4.78)

var{|zp|2;H1} = σ4
1p
. (4.79)

The independence of |zp|2 for different p yields

E{Tm,s;H0} =
P∑

p=1

σ2
0p

(4.80)

E{Tm,s;H1} =
P∑

p=1

σ2
1p

(4.81)

var{Tm,s;H0} =
P∑

p=1

σ4
0p

(4.82)

var{Tm,s;H1} =
P∑

p=1

σ4
1p

(4.83)

hence

E{Tm,s;H1} − E{Tm,s;H0} =
P∑

p=1

σ2
1p
− σ2

0p
=

P∑
p=1

|σ2
αp

s†pR
−1
p sp|2

σ2
αp

s†pR−1
p sp + 1

(4.84)

var{Tm,s;H1}+ var{Tm,s;H0} =
P∑

p=1

σ4
1p

+ σ4
0p
. (4.85)

As illustration, let us consider the same multistatic scenario as in previous section and depicted
again in Figure 4.8 (a) for convenience. The deflection coefficient obtained for different target
velocities is depicted in Figure 4.8 (b). The target scattering coefficient σαp is assumed identical
for all platforms and the setup is such that the maximum SINR for a single radar is about 10dB.
As can be seen, there is a huge loss in detection performance (small deflection coefficient) at
zero velocity, corresponding to the clutter notch. The loss in detection performance along the
diagonal νDx = νDy is clearly visible and is explained in the same way as in the previous section
(zero target range-rate7 with respect to the bistatic radars Tx-Rx2 and Tx-Rx3) while the loss in
deflection coefficient due to the zero target range-rate with respect to the bistatic radar Tx-Rx3 is
barely visible.

7The bistatic range-rate is considered.
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Figure 4.8: (a) Considered multistatic scenario and (b) deflection coefficient (in dB) as a function
of the reduced target velocity vector.

4.4.3.3 Discussion

From the previous discussion it is clear that an increase of the number of contributing bistatic
radars results in an increase of the probability of detection as illustrated in Figures 4.4 and 4.7.
However, this comparison may be misleading as the cost incurred for this increase in perfor-
mance, i.e., the total number of receive elements, is not taken into account. More interesting is
to know, given a total number of receive elements N , how to combine them to yield the best
detection performance. A higher number of receive elements per radar increases the SINR of
that particular radar and hence increases the detection performance of that radar. However, it is
expected that having more radars also increases the detection performance. Thus, the question
is to which extent an increase of the SINR of the individual radars can actually compensate for
the loss of the angular diversity gain. Figure 4.9 illustrates the expected detection performance
if the total number N of receive elements is kept constant. For this comparison, the SINR is
kept identical for all radars, which corresponds to a case for which the target has a non-zero (and
large) range-rate with respect to all bistatic radars.

In the case of a Marcum target model (Figure 4.9 (a)), there is actually a decrease in detection
performance if the number of available receive elements is distributed across the different radars.
In this case indeed, there is no diversity gain. On the contrary, if all available receive elements
are concentrated in one single radar, a higher coherent integration gain is secured, hence a higher
SINR for that radar.

The situation is however totally different if a Swerling-I target model is considered (Fig-
ure 4.9 (b)). Clearly, for relatively high SINR, it is advantageous to have several radars, as the
angular diversity is favored at the cost of the SINR of individual radars. The contrary is true for
low SINR. Note that conclusion differs from the one of Section 4.4.3.2 in which it was found
always advantageous to increase the number of radars. If the total number of receive elements is
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Figure 4.9: Comparison of the detection performance of different scenarios with a constant total
number of receive elements (a) Marcum target model and (b) Swerling-I target model (PFA =
10−4).

kept constant, at low SINR, the angular diversity gain does not make up for the low SINR.

4.5 Realizable detectors
Generally speaking, the PDF of the test statistic T depends on the interference-plus-noise covari-
ance matrix Rp and the target steering vector sp. The expressions of the test statistic obtained in
Section 4.3 assumed that these parameters are known. In practice, this is not the case.

These parameters are called nuisance parameters [82] as their actual value is not of direct
interest for our detection problem. It would be desirable to have a test which would not require
the knowledge of these nuisance parameters. This kind of test is called uniformly most powerful.
However such a test exists if and only if the likelihood ratio test can be completely defined
without knowledge of the nuisance parameters [169]. This is clearly not the case here. A solution
consists in going back to the generalized likelihood ratio, described in Section 4.3.2.

The next sections discuss these issues.

4.5.1 Unknown interference-plus-noise covariance matrix
The generalized likelihood is equivalent to replacing the clairvoyant covariance matrix Rp by
its maximum likelihood estimate R̂p in the expression of the test statistic. In other words, the
weight vector of (4.22) becomes

ŵp = k̂R̂−1
p sp. (4.86)

The two next sections discuss how the hypothesis tests are transformed by using R̂p instead of Rp

and how to characterize their performance. It is clear that the filter ŵp is random as R̂p is itself
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random. However, in order to characterize the effect of using the filter ŵp instead of the optimal
filter wp, the following sections use a particular realization of ŵp, considered as deterministic.

4.5.1.1 Marcum target model

The generalized likelihood ratio test (4.12) becomes

|s†pR̂−1
p yp|2

s†pR̂−1
p sp

H1
≷
H0

ηb,m (4.87)

also known as the modified sample matrix inversion (MSMI) [114] test statistic. It can be shown
[150] that this test retains its CFAR property. As far as the detection performance is concerned,
the same reasoning as in Section 4.4.2.1 holds, by defining

ẑp =
1

γ̂p

s†pR̂
−1
p yp (4.88)

with γ̂p =
√

s†pR̂−1
p sp =

√
1

k̂
ŵ†

psp. It is easy to show that

E{ẑp;H0} = 0 (4.89)
E{ẑp;H1} = γ̂pαp (4.90)

var{ẑp;H0} = var{ẑp;H1} =
s†pR̂

−1
p RpR̂

−1
p sp

γ̂2
p

=
ŵ†

pRpŵp

k̂ŵ†
psp

= σ2
mp
, (4.91)

which defines σmp , hence |ẑp|2 has the same PDF as |zp|2 up to a scale factor and a different
non-centrality parameter

|ẑp|2 ∼


σ2

mp

2
χ2

2 H0

σ2
mp

2
χ′2

2

(
2
γ̂2

p |αp|2

σ2
mp

)
H1.

(4.92)

As ŵ†
psp = k̂s†pR̂

−1
p sp is a quadratic form hence real, the non-centrality parameter of the χ′2

2

distribution can be rewritten as

2
γ̂2

p |αp|2

σ2
mp

= 2
|ŵ†

psp|2

ŵ†
pRpŵp

|αp|2 = 2 ˆSINRp,m (4.93)

where ˆSINRp,m is the signal to interference-plus-noise ratio at the output of the filter

ŵp = k̂R̂−1
p sp. (4.94)

As discussed in Section 4.4.2.1, the probability of detection increases with the non-centrality
parameters, i.e., with the signal to interference-plus-noise ratio ˆSINRp,m.
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4.5.1.2 Swerling-I target model

The likelihood ratio test (4.18) becomes

|s†pR̂−1
p yp|2

1
σ2

αp
+ s†pR̂−1

p sp

H1
≷
H0

ηb,s. (4.95)

Following the same developments as in Section 4.4.2.2 and defining

ẑp =
1

γ̂p

s†pR̂
−1
p yp (4.96)

where γ̂p =
√

1
σ2

αp
+ s†pR̂−1

p sp, yields easily

|ẑp|2 ∼


σ̂2

0p

2
χ2

2 H0

σ̂2
1p

2
χ2

2 H1

(4.97)

where

σ̂2
0p

=
1

γ̂2
p

s†pR̂
−1
p RpR̂

−1
p sp =

1

k̂2γ̂2
p

ŵ†
pRpŵp (4.98)

σ̂2
1p

= σ̂2
0p

+
1

γ̂2
p

σ2
αp
|s†pR̂−1

p sp|2 = σ̂2
0p

+
1

k̂2γ̂2
p

σ2
αp
|ŵ†

psp|2 (4.99)

(4.100)

and PD is still given by

PD = P

σ̂2
0p

σ̂2
1p

FA = P
1

1+ ˆSINRp,s

FA (4.101)

where

ˆSINRp,s = σ2
αp

|s†pR̂−1
p sp|2

s†pR̂−1
p RpR̂−1

p sp

= σ2
αp

|ŵ†
psp|2

ŵ†
pRpŵp

(4.102)

is the SINR at the output of the filter

ŵp = k̂R̂−1
p sp. (4.103)

Thus the performance of this detector only depends on the SINR achieved at the output of the
filter ŵp.
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4.5.1.3 Performance measure

The fact that the detection performance increases with the signal to interference-plus-noise ratio
ˆSINRp justifies the use of the SINR loss as a measure of the performance of the filter ŵp. The

SINR loss is defined as

SINRlossp =
ˆSINRp

SNRp

=
ˆSINRp

SINRp

SINRp

SNRp

(4.104)

where SNRp is the signal to thermal noise ratio of bistatic radar p and SINRp the SINR achieved
at the output of the optimum filter wp.

For the Marcum target model, SNRp,m = |αp|2
σ2

n
s†s and SINRp,m = |αp|2s†pR−1

p sp. For the

Swerling-I target model, SNRp,s =
σ2

αp

σ2
n
s†s and SINRp,s = σ2

αp
s†pR

−1
p sp. In both cases σ2

n is the
thermal noise variance.

The first factor of SINRlossp represents the loss due the use of an estimated interference-plus-
noise covariance matrix R̂p instead of the clairvoyant interference-plus-noise covariance matrix
Rp and the second factor represents the loss due to the presence of the interference if the optimum
filter wp is used. The SINRlossp is commonly used to characterize the quality of the estimate R̂p

and more generally, the quality of filter ŵp.
However, the use of the SINRlossp to characterize the performance of the filter does not extend

to the general multistatic case due to the lack of known PDF for the test statistic. However,
individually maximizing the detection performance of each bistatic radar, i.e., independently
optimizing the filter for each radar, intuitively seems reasonable.

4.5.2 Unknown steering vector parameters
To compute the optimum filter wp = kR−1

p sp, the knowledge of the target steering vector

sp = sp(θp(~xt)) = sp(~νps , νpD
) (4.105)

is assumed.
However, the position and velocity of the target is typically unknown hence the spatial fre-

quency vector ~νps , the Doppler frequency νpD
, and also the range rp where to perform the filtering

are unknown parameters of the likelihood ratio. The commonly accepted approach [82] consists
in using the generalized likelihood ratio

Λgp =

max
~νps ,νpD

,rp

p(yp;~νps , νpD
, rp, H1)

p(yp;H0)
(4.106)

which is a suboptimal solution. In practice, the likelihood ratio is maximized over the unknown
parameters. This maximization is usually [82] performed by sampling the parameter space
{~νps , νpD

, rp} or equivalently, by sampling the spatial location of the target ~xt and its velocity
~̇xt.

Of course, the hypothesized steering vector ŝp does not exactly correspond to the actual target
steering vector sp. This so-called signal mismatch [105] causes an additional loss in the signal to
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interference-plus-noise ratio. Expressions for this loss are given in [105, 150]. Channel mismatch
occurring as the receive elements differ from each other in phase or in gain [60] is another cause
of signal mismatch. In the latter case, the steering vectors used to process the data differ from
the physical steering vectors. Other phenomena induce differences between the physical steering
vectors and the modeled ones. Generally, the use of measured steering vectors is required in real
applications [5, 153].

As the estimation of the interference-plus-noise covariance matrix constitutes our major con-
cern, let us assume that no signal mismatch occurs.

4.6 Centralized versus decentralized detection
The previous sections have presented optimum detection methods which require to send the test
statistic computed by each bistatic radar to a central site which performs final combination of the
test statistic and, finally, the detection by thresholding the resulting test statistic. This process,
by its very nature, is a centralized detection scheme.

Other methods have been proposed [32, 53, 160] in which the detection is performed indi-
vidually for each radar and is followed by a more simple combination in the central site. A
decentralized processing offers the advantage of reduced bandwidth requirements between the
individual radars and the central site, as only the coordinates of the detections need to be trans-
mitted, if relatively few detections occurs. [160] shows that the test statistic of the optimum
decentralized detector is a weighted sum of the (binary) detection of each radar. The detection
itself, under some conditions, can be implemented by a simple logical sum, i.e., a binary OR op-
eration [32, 160]. Although the decentralized detection scheme is suboptimal, the performance
loss is limited to about 3dB if the number of contributing radars is reasonable (< 10) and for
high SINR’s (> 16dB) [32].
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Chapter 5

Clutter signal covariance matrix

5.1 Introduction
The computation of the optimum detector detailed in the previous chapter requires the clutter
signal covariance matrix. Although the estimation of this matrix from the radar data is discussed
in Chapter 7, it is appropriate to analyze how this matrix varies for different radar configura-
tion parameters, particularly for different ranges to the target and/or for different antenna array
shapes.

The analysis of the clutter covariance matrix is performed in the spectral domain. The power
spectrum of a continuous space-time random signal is particularized to the power spectrum of
the clutter signal. In order to separate the effects due to the radar configuration (positions and
speeds of the platforms) from those due to the spatial and temporal sampling (antenna element
positions), a system able to measure the signal at any position in time and in space, which is
equivalent to assuming that the system has an infinite resolution and that no aliasing occurs, is
first considered. When the system has an aliasing-free infinite resolution, both in space and in
time, the power spectrum of the clutter proves to be non-zero only along a curve, called the clutter
power spectrum locus, in the 4-dimensional frequency space. The link between this curve in 4
dimensions and the curve obtained by considering a linear array (with infinite spatial resolution)
is then shown. The behavior of this curve as a function of the radar configuration parameters and
the range induces important properties of the covariance matrix such as range-dependence.

The covariance matrix is obtained by sampling the covariance function of the continuous
space-time signal. The relation between the clutter power spectrum locus and estimates of the
power spectrum of the covariance matrix is deduced next to demonstrate the influence of the
antenna array layout (linear, circular, ...).
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5.2 Power spectrum relations

5.2.1 Introduction
This section considers continuous spatio-temporal quantities. An infinite resolution is assumed,
which means that continuous spatial antennas with infinite extent, thus with an infinite spatial
resolution are considered, as well as a continuous wave with an infinitely long observation inter-
val, thus with an infinite Doppler resolution.

5.2.2 Plane wave
A plane wave with a complex amplitude α and an angular frequency ω arriving from direction
(θ, φ), as illustrated in Figure 5.1, creates the space-time signal

φ

θ

z

~u
y

~k

x

Figure 5.1: Direction of arrival of a plane wave.

g′(~r, t) = αej(ωt−~k·~r) (5.1)

where the prime indicates that the signal is at the carrier frequency (rather than at baseband) and
where

~k = −2π

λ

cos θ cosφ
cos θ sinφ

sin θ

 (5.2)

is the wave vector ~k = (kx, ky, kz) [78]. This signal is defined in the 4-dimensional space with
the 3 spatial coordinates ~r = (x, y, z) and the time t. Let us denote ~u the direction of arrival of
the plane wave

~u =

cos θ cosφ
cos θ sinφ

sin θ

 (5.3)

and hence
~k = −2π

λ
~u = −ω

c
~u. (5.4)
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Thus (5.1) can be rewritten as

g′(~r, t) = α ej2π(ft+~u· ~r
λ
). (5.5)

where 2πf = ω is the angular frequency of the signal.

5.2.3 Power spectrum
First, let us consider a continuous space-time random signal g′(~r, t) with zero mean. If the signal
is wide-sense stationary in space and time, its correlation function takes the form

r′( ~∆r,∆t) = E{g′(~r, t)g′∗(~r − ~∆r, t−∆t)}. (5.6)

The 4-dimensional power spectrum of the signal g′(~r, t) is defined as the Fourier transform of its
covariance function [26, 78]

P ′(~k, ω) =

∫∫∫∫ +∞

−∞
r′( ~∆r,∆t)e−j(ω∆t−~k· ~∆r) d ~∆r d∆t. (5.7)

This power spectrum can be interpreted as the energy of the plane waves with angular frequency
ω and arriving from direction ~k [26, 78].

In the case of a modulated signal one has

g′(~r, t) = ejωctg(~r, t) (5.8)

where ωc is the carrier angular frequency, g is the baseband signal, and g′ is the modulated signal
at the carrier frequency. As discussed in Section 3.3.2, ω = ωc + ωD where ωD is the Doppler
angular frequency. The covariance function of g′ becomes

r′( ~∆r,∆t) = ejωc∆tr( ~∆r,∆t) (5.9)

where r( ~∆r,∆t) is the covariance function of g with

r( ~∆r,∆t) = E{g(~r, t)g∗(~r − ~∆r, t−∆t)}. (5.10)

The power spectrum of r′ is in this case

P ′(~k, ω) =

∫∫∫∫ +∞

−∞
ejωc∆t r( ~∆r,∆t)e−j(ω∆t−~k· ~∆r) d ~∆r d∆t (5.11)

=

∫∫∫∫ +∞

−∞
r( ~∆r,∆t)e−j(ωD∆t−~k· ~∆r) d ~∆r d∆t (5.12)

= P (~k, ωD). (5.13)

This equation defines the power spectrum P (~k, ωD) of a baseband signal g(~r, t) and is the result
of a direct application of the shift property of the Fourier transform.
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As an example, let us compute the power spectrum of a plane wave with complex amplitude
α, angular frequency ω0 and with wavevector ~k0. From (5.1) we have

g′(~r, t) = αej(ω0t−~k0·~r), (5.14)

hence, from (5.6),
r′( ~∆r,∆t) = σ2

αe
j(ω0∆t−~k0· ~∆r) (5.15)

where σ2
α = E{|α|2} is the variance of the amplitude. Finally

P ′(~k, ω) =

∫∫∫∫ +∞

−∞
σ2

αe
j(ω0∆t−~k0· ~∆r)e−j(ω∆t−~k· ~∆r) d ~∆r d∆t (5.16)

= (2π)4σ2
αδ(ω − ω0)δ(~k − ~k0). (5.17)

Hence, the power spectrum of a plane wave is non-zero at the frequency ω0 and spatial orientation
~k0 corresponding to the plane wave. This result immediately generalizes to an addition of several
plane waves.

5.2.4 Reduced frequencies
Let us consider a baseband signal

g(~r, t) = αej(ωDt−~k·~r). (5.18)

The angular frequency ωD = 2πfD appearing in this expression can be normalized by defining a
reduced frequency [127, 145] as in (3.14)

νD =
fD

fp

(5.19)

where fp is a sampling frequency, for example the pulse repetition frequency in the case of a
pulse-Doppler radar, and a reduced time can be defined as

τ =
t

Tp

(5.20)

where Tp = 1
fp

is the sampling period.
Similarly, by defining

~νs =
~u

2
= −λc

π
~k (5.21)

where λc is the wavelength at the carrier frequency. Defining the reduced position vector

~ρ =
2

λc

~r (5.22)

allows rewriting (5.18) as
g(~ρ, τ) = αej2π(νDτ+~νs·~ρ). (5.23)
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This equation clearly shows that the vector ~νs = (νs,x, νs,y, νs,z) defines three reduced spatial
frequencies, νs,x, νs,y, and νs,z. In this way, the well-known notion of 2D spatial frequency,
e.g., in image processing [151] is extended to a 3D space. As these spatial frequencies denote a
direction, ‖~νs‖ is always equal to 1

2
. Using these reduced frequencies, the relations between the

power spectrum and the covariance function become

P (~νs, νD) =

∫∫∫∫ +∞

−∞
r( ~∆ρ,∆τ)e−j2π(νD∆τ+~νs· ~∆ρ) d ~∆ρ d∆τ (5.24)

and

r( ~∆ρ,∆τ) =

∫∫∫∫ +∞

−∞
P (~νs, νD)ej2π(νD∆τ+~νs· ~∆ρ) d~νs dνD. (5.25)

5.2.5 Projection principle
The covariance function1

r( ~∆ρ,∆τ) = r(∆ρx,∆ρy,∆ρz,∆τ) (5.26)

corresponds to all possible spatial vector lags ∆ρx, ∆ρy, and ∆ρz in the 3D space (ρx, ρy, ρz). To
make the measurements necessary to compute r at any possible spatial vector lag, a 3D antenna
is necessary.

Let us now consider that only a 1D antenna, without loss of generality aligned along the
x-axis, is available, permitting only the measurements of all lags along the x axis, i.e., the lags
~∆ρ = (∆ρx, 0, 0). In this case, only the 2D covariance function

rx(∆ρx,∆τ) = r(∆ρx, 0, 0,∆τ) (5.27)

can be obtained. The power spectral density of this covariance function is given by its 2D Fourier
transform

Px(νs,x, νD) =

∫∫ +∞

−∞
rx(∆ρx,∆τ)e

−j2π(νD∆τ+νs,x∆ρx)d∆ρx d∆τ. (5.28)

and its inverse is given by

rx(∆ρx,∆τ) =

∫∫ +∞

−∞
Px(νs,x, νD)ej(νD∆τ+νs,x∆ρx)dνs,x dνD. (5.29)

Rewriting (5.25) at ∆ρy = ∆ρz = 0 yields

r(∆ρx, 0, 0,∆τ) =

∫∫ +∞

−∞

[∫∫ +∞

−∞
P (~νs, νD)dνs,y dνs,z

]
ej(νD∆τ+νs,x∆ρx)dνs,x dνD. (5.30)

1The baseband function is considered here.
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Equating (5.29) and (5.30) yields

Px(νs,x, νD) =

∫∫ +∞

−∞
P (νs,x, νs,y, νs,z, νD)dνs,y dνs,z (5.31)

which shows that the 2D power spectrum Px(νs,x, νD) is the integral of P (~νs, νD) along the
planes parallel to the plane νs,y = νs,z = 0 and going through each (νs,x, νD), as stated in
[127, 145]. In other words, Px(νs,x, νD) is the projection of P (νs,x, νs,y, νs,z, νD) on the planes
parallel to the plane νs,y = νs,z = 0.

Although the proof is made here for the particular orientation ~1x, its extension to arbitrary
orientations is trivial. This property is a variant of the projection-slice theorem [151, Section
8.2], which states that [52] “the Fourier transform of a projection is a slice of the 2D Fourier
transform from the region from which the projection was obtained” where Px(νs,x, νD) is the
projection of P (~νs, νD) onto the (νs,x, νD) plane and rx(∆ρx,∆τ) is the slice of r( ~∆ρ,∆τ) at
(∆ρy,∆ρz) = (0, 0).

5.3 Clutter power spectrum locus
Now, let us consider the signal components due to the clutter.

5.3.1 4D Clutter power spectrum locus
The clutter is modeled as the superposition of a large number of independent clutter sources
[60, 173] located along the isorange of interest as discussed in Section 3.5.2. Furthermore, let us
assume that no range ambiguity occurs. Each clutter patch contributes with a signal correspond-
ing to a distinct direction of arrival ~νs. Hence, the signal from each clutter patch corresponds to a
distinct point in the spatio-temporal frequency domain (~νs, νD). This can be thought of as if the
isorange in the 3D spatial domain was imaged into another curve in the 4D frequency domain
(~νs, νd). For this reason, let us call this 4-dimensional curve in the frequency domain the 4D clut-
ter power spectrum locus [127, 145]. Note that this curve is independent of the characteristics of
the antenna. Figures 5.2 and 5.3 illustrate the 4D clutter power spectrum locus. The representa-
tion consists of two graphs. The first graph is a projection in the 3D space (νs,x, νs,y, νD), while
the second graph is a projection in the 3D space (νs,x, νs,y, νs,z) of the spatial frequencies. As the
norm of ~νs is constant and equal to 1

2
, the latter representation of the projection of the 4D clutter

power spectrum locus yields a curve on a (3D) sphere with a radius equal to 1
2
.

5.3.2 2D Clutter power spectrum locus
In the case of a linear antenna, it is well known that the clutter power spectrum exhibits a so-called
clutter ridge and that, in the limit for an infinitely long continuous antenna and for an infinitely
long continuous observation interval, the 2D power spectrum is concentrated along a 2D curve.
This curve which can also be obtained by physical reasoning, is called angle-Doppler curve,
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Figure 5.2: 4D clutter power spectrum locus (blue curve) (wing-to-wing bistatic formation).
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Figure 5.3: 4D clutter power spectrum locus (blue curve) (in trail bistatic formation).

direction-Doppler (DD) curve, or (2D) clutter power spectrum locus [70, 95, 124, 145, 173, 178].
This curve is also called the clutter ridge by language abuse. The shape of this 2D clutter power
spectrum locus varies in a complex way with changes in the geometric configuration [95, 108,
178]. Examples are shown in Figure 5.4.

The function Px(νs,x, νD) being the projection of P (~νs, νD), it immediately follows that the
2D clutter power spectrum locus (a 2D curve) is the projection of the 4D clutter power spectrum
locus (a 4D curve). In other words, once the 4D clutter power spectrum locus in the (~νs, νD)
space is known, its 2D counterpart in any 2D plane can be obtained immediately, e.g., that
corresponding to (νs,x, νD), which is the customary 2D clutter power spectrum locus. Therefore,
many of the complex behaviors can now be understood in terms of the projection of the 4D clutter
power spectrum locus on a 2D plane. For example, the effect of a non-zero crab angle (angle
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Figure 5.4: 2D clutter power spectrum loci at different ranges (a) for a monostatic radar config-
uration and for three bistatic configurations: (b) for aircrafts in trail formation (c) for aircrafts in
wing-to-wing formation and (d) for aircrafts flying on orthogonal trajectories.

between νs,x and the velocity vector assumed horizontal) on the 2D clutter power spectrum locus
is difficult to interpret, although it simply results in a rotation of the 4D clutter power spectrum
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Figure 5.5: Clutter power spectrum loci for a wing-to-wing bistatic configuration for crab angles
of, from left to right, 00, 100, 200 and 300.

locus around an axis parallel to the kz axis as illustrated in Figure 5.5 where the top row depicts
the 2D clutter power spectrum locus and the bottom row depicts one 3D projection of the 4D
clutter power spectrum locus for increasing crab angles.
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5.4 Clutter covariance matrix spectrum

5.4.1 Introduction
In real radar systems, only samples g(~ρn, τm) of the signal field g(~ρ, τ) are available. The tempo-
ral samples τm correspond to the time at which the pulses2 are transmitted. For a constant pulse
repetition interval (PRI) Tp, τm = m. The spatial sampling corresponds to the actual location
of the array elements. For a uniform linear array (ULA) aligned with the x-axis, ~ρn = n 2

λ
d ~1x

where d is the distance between two adjacent antenna elements and ~1x is a unit vector aligned on
the x-axis. The set of N ×M samples of a particular range gate, measured at the N antenna ele-
ments resulting from the M pulses is called a snapshot and is usually lexicographically-ordered
in a vector y with

y(n+Nm) = y(~ρn, τm) (5.32)

where ~ρn denotes the (reduced) position of the nth sensor and τm the (reduced) time of the mth

temporal sample.

5.4.2 Relationship between the covariance matrix and the covariance func-
tion

In all generality, the covariance matrix of a zero-mean data vector y is given by

R = E{yy†} (5.33)

or, equivalently, one element of this matrix is given by

R(n+Nm,n′ +Nm′) = E{y(~ρn, τm)y∗(~ρn′ , τm′)}. (5.34)

The definition (5.10) of the covariance function immediately yields, for a wide-sense stationary
signal y(~ρ, τ)

R(n+Nm,n′ +Nm′) = r(~ρn − ~ρn′ , τm − τm′). (5.35)

In all generality, aside from being hermitian, the covariance matrix does not exhibit a partic-
ular structure. If a constant PRF equal to fp is used, τm − τm′ = m − m′ and the covariance
matrix exhibits a block-Toeplitz structure. If a ULA is used, ~ρn − ~ρn′ = 2

λ
d (n − n′) ~1x where

~1x is a unit vector aligned on the antenna axis. In the latter case, if a constant PRF is used, the
covariance matrix exhibits a Toeplitz-block-Toeplitz structure.

5.4.3 Estimation of the clutter power spectrum
The power spectrum of the signal y can be estimated from the covariance matrix of y by using,
e.g., the discrete time Fourier transform or the minimum variance estimator (MVE) [26, 171].
If the clairvoyant covariance matrix (5.33) is used, the estimation error on the power spectrum

2The notion of “pulses” is generalized in Chapter 6.
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is only due to the fact that a finite number of samples is available to perform the power spec-
trum estimation. Additional estimation errors occur on the power spectrum if an estimate of the
covariance matrix is used instead of the clairvoyant one. To simplify the discussion, and unless
otherwise noted, the clairvoyant covariance matrix is used in the remainder of this chapter.

5.4.3.1 Fourier-transform based spectral estimation

The signal-match estimator [84]

PSM(~νs, νD) =
v†(~νs, νD)Rv(~νs, νD)

v†(~νs, νD)v(~νs, νD)
(5.36)

is motivated by the fact that the steering vector given by

v(~νs, νD) = [ej2π(νDτ0+~νs·~ρ0), ej2π(νDτ0+~νs·~ρ1), . . . , ej2π(νDτ0+~νs·~ρN−1),

ej2π(νDτ1+~νs·~ρ0), . . . , ej2π(νDτM−1+~νs·~ρN−1)]T
(5.37)

is “matched” to the signal — the plane wave — the power of which must be estimated. This
power PSM is related to the periodogram [80, 105]

PPER(~νs, νD) =
1

NM
|v†(~νs, νD)y|2 (5.38)

as PSM = E{PPER}. Note that the periodogram is a random quantity while PSM is deterministic.
Now, let us relate the estimate PSM to the power spectrum of the continuous signal y. (5.36)

yields

PSM(~νs, νD) =
1

NM

N−1∑
n=0

M−1∑
m=0

N−1∑
n′=0

M−1∑
m′=0

e−j2π[νD(τm−τm′ )+~νs·(~ρn−~ρn′ )]R(n+Nm,n′ +Nm′).

(5.39)

Taking into account (5.35), the inverse Fourier transform of the power spectrum (5.25), and using
~∆ρ = ~ρn − ~ρn′ and ∆τ = τm − τm′ , (5.39) can be rewritten as

PSM(~νs, νD) =
1

NM

∫∫∫∫ +∞

−∞
P (~ν ′s, ν

′
D)

N−1∑
n=0

M−1∑
m=0

N−1∑
n′=0

M−1∑
m′=0

ej2π[ν′D(τm−τm′ )+~ν′s·(~ρn−~ρn′ )]e−j2π[νD(τm−τm′ )+~νs·(~ρn−~ρn′ )] d~ν ′s dν
′
D.

(5.40)

The sum of the exponential factors of the integrand can be rewritten by using the spatio-temporal
beampattern [26, 171]

B(~νs, νD, ~ν
′
s, ν

′
D) =

1√
NM

N−1∑
n=0

M−1∑
m=0

ej2π[(νD−ν′D)τm+(~νs−~ν′s)·~ρn] (5.41)

=
1√
NM

v†(~ν ′s, ν
′
D)v(~νs, νD) (5.42)
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that can be interpreted as the response of the receive array to a plane wave with spatio-temporal
frequencies (~νs, νD) as the receive array is steered in a direction defined by the spatio-temporal
frequencies (~ν ′s, ν

′
D). It is important to note that the beampattern only depends on the difference

between these spatio-temporal frequencies, that is

B(~νs, νD, ~ν
′
s, ν

′
D) = B0(~νs − ~ν ′s, νD − ν ′D) = B(~νs − ~ν ′s, νD − ν ′D, 0, 0). (5.43)

Hence (5.40) becomes

PSM(~νs, νD) =

∫∫∫∫ +∞

−∞
P (~ν ′s, ν

′
D)|B(~νs, νD, ~ν

′
s, ν

′
D)|2d~ν ′s dν ′D (5.44)

or yet

PSM(~νs, νD) =

∫∫∫∫ +∞

−∞
P (~ν ′s, ν

′
D)|B0(~νs − ~ν ′s, νD − ν ′D)|2d~ν ′s dν ′D. (5.45)

This last expression shows that the estimate of the power spectrum obtained using the signal-
match operator is equal to the actual power spectrum P (~νs, νD) convolved with |B0|2.

5.4.3.2 Minimum variance spectral estimation

The minimum variance estimator [80, 84] is given by

PMVE(~νs, νD) =
MN

v†(~νs, νD)R−1v(~νs, νD)
(5.46)

and can be rewritten as
PMVE(~νs, νD) = c†(~νs, νD)Rc(~νs, νD) (5.47)

with

c(~νs, νD) =
√
MN

R−1v(~νs, νD)

v†(~νs, νD)R−1v(~νs, νD)
. (5.48)

The filter c is recognized as the optimum filter, minimizing the output power while keeping the
power of a plane wave with spatio-temporal frequencies (~νs, νD) unaffected. The factor MN in
(5.46) and

√
MN in (5.48) are needed for PMVE to reflect the power spectral density [80].

As in the previous section, defining a MVE beampattern yields

BMVE(~νs, νD, ~ν
′
s, ν

′
D) = c(~νs, νD)†v(~ν ′s, ν

′
D) (5.49)

and expressing the relation between PMVE and the power spectrum P as a superposition integral
yields

PMVE(~νs, νD) =

∫∫∫∫ +∞

−∞
P (~ν ′s, ν

′
D)|BMVE(~νs, νD, ~ν

′
s, ν

′
D)|2 d~ν ′s dν ′D. (5.50)

This expression again shows that the estimate of the power spectrum obtained from the covari-
ance matrix using the MVE is related to the power spectrum of the signal through a superposition
integral with a space-time varying kernel.
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5.4.4 Effect of the sampling
The beampatterns B and BMVE for the two estimators analyzed in the previous section are max-
imum for (~νs, νD) = (~ν ′s, ν

′
D). This is illustrated in Figure 5.6 (a), where the evolutions of

|B(~νs, νD, ~ν
′
s, ν

′
D)|2 and |BMVE(~νs, νD, ~ν

′
s, ν

′
D)|2 respectively are given for ~νs = ~ν ′s and ν ′D = 0.

(~ν ′s, ν
′
D) is selected such that P (~ν ′s, ν

′
D) 6= 0 in order to illustrate the high resolution property

of the MVE. Although P (~νs, νD) does not depend on the particular receive array layout and
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Figure 5.6: Normalized (dividing B and BMVE by
√
MN ) beampattern (ν ′D = 0, ~νs = ~ν ′s) (a)

for the two spectral estimators described in the text (M=12) and (b) in the case of a non-uniform
temporal sampling (M=40).

on the considered temporal sampling, the beampattern and hence the estimated power spectra
PMVE(~νs, νD) and PSM(~νs, νD) do.

If a uniform sampling is considered, the beampattern exhibits temporal grating lobes, i.e.,
aliasing, as illustrated by the curve B0 in Figure 5.6 (b). As it is well known [106, 171], these
grating lobes essentially disappear, at the expense of higher sidelobes, if non-uniform sampling,
i.e. pulse staggering, is considered as illustrated in Figure 5.6 (b).

5.4.5 Discussion
The relation between the power spectrum of the continuous signal y(~ρ, τ) and the power spectrum
estimated from the covariance matrix R provides with the formal link between the clutter power
spectrum locus described in the previous section and the estimate of the clutter power spectrum
obtained from sampled data. This is illustrated in Figure 5.7 where the kernel corresponding to
the MVE in the case of a 12 elements circular antenna is shown together with the corresponding
clutter power spectrum. The continuous functions of (~νs, νD) are represented by two cuts along
the planes νs,y = 0 and νs,x = 0 respectively.

Obviously, the clutter power spectrum is concentrated along the clutter power spectrum locus.
Similarly, Figure 5.8 shows the kernel and the clutter power spectrum in the case of a ULA. As
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(a) (b)

Figure 5.7: (a) Kernel (in gray scale) linking the MVE power spectrum based on R and the
power spectrum of y. (b) Comparison between the estimated clutter power spectrum and the
clutter power spectrum locus (blue line) for a 12-element circular antenna.

(a) (b)

Figure 5.8: (a) Kernel (in gray scale) linking the MVE power spectrum based on R and the
power spectrum of y. (b) Comparison between the estimated clutter power spectrum and the
clutter power spectrum locus (blue line) for a 12-element ULA.
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expected, in this case, the clutter power spectrum does not depend on the spatial frequencies
components along the y and z axis. It only varies with νx and νD.

5.5 Range-dependence of the clutter power spectrum
Range-dependence of the clutter covariance matrix is a major issue in STAP as it makes its esti-
mation more complex. Therefore, let us analyze the range-dependence of the clutter covariance
matrix in the spectral domain. The link between the clutter power spectrum locus and the clutter
power spectrum was analyzed in the previous section which permits to study the behavior of the
clutter power spectrum locus (a curve) as a function of the configuration parameters (the range
for instance) and from this study deduce the behavior of the clutter power spectrum. This prob-
lem is simpler than a direct analysis of the clutter power spectrum. A necessary condition of
range independence of the clutter power spectrum is thus that the clutter power spectrum locus
is range independent.

For monostatic scenarios and for most bistatic scenarios, the 4D clutter power spectrum lo-
cus depends on the considered range. Figure 5.9 illustrates this fact for a bistatic scenario and
Figure 5.10 for a monostatic scenario. For monostatic scenarios, the 4D clutter power spectrum
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Figure 5.9: Evolution of the 4D clutter power spectrum locus for increasing ranges in the case of
a wing-to-wing bistatic scenario.

locus is located on a 3D hyperplane. The consequence is that the projection of the clutter power
spectrum locus on a suitably oriented 2D plane yields overlapping straight lines at any range.
This happens if the considered 2D plane is oriented parallel to the platform velocity vector. In-
deed, this means that the linear array must be parallel to the velocity vector if range dependence
must be avoided.

The conditions under which the 2D power spectrum locus is independent of the range, as
derived in [92] in the case of a ULA, are a constant PRF and a horizontal velocity. This derivation
is based on an explicit expression of the equation of the 2D clutter power spectrum locus. By
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Figure 5.10: Evolution of the 4D clutter power spectrum locus for increasing ranges in the case
of a monostatic scenario.

using the 4D clutter power spectrum locus, the same conclusions can be obtained by a simple
argument. First, let us consider the spatial frequencies. In order to obtain a range-independent
clutter power spectrum locus, the curves at different ranges need to overlap in the 3D space of
the spatial frequencies. As the elevation of points along the curves in the 3D space of the spatial
frequencies only depends on the elevation angle at which the scatterers along the isorange are
seen from the receiver, an overlap in the 3D space of the spatial frequencies occurs if and only if
the receiver is on the (flat) ground. In this case, the scatterers are seen at an elevation angle equal
to zero, regardless of the range. Second, let us consider the Doppler frequency. Let us require the
range-independence of the Doppler frequency corresponding to a particular spatial frequency. In
a configuration for which the receiver is located on the ground, the Doppler frequency shift due
to the receiver velocity is constant along radial lines from the receiver. The only configurations
for which the Doppler frequency shift induced by the transmitter velocity is independent of range
are either

• when the transmitter is static (including no vertical velocity component), in which case
this Doppler frequency is zero and hence range-independent, or

• when the transmitter is located on the ground and at the same location as the receiver, in
which case the Doppler frequency only depends on the transmitter azimuth angle (and on
the transmitter velocity) which is range-independent. Note that, in this case, the velocity
of the transmitter may be different from that of the receiver.

In the case of a range-dependence of the 4D clutter power spectrum locus, an estimate of the clut-
ter covariance matrix by using the sample covariance matrix is biased as the averaged snapshots
are not identically distributed. This is illustrated in the case of a 12-elements circular antenna in
Figure 5.11, where the clutter power spectrum estimated from the sample covariance matrix is
presented. As can be seen, the power spectrum significantly deviates from the true clutter power
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Figure 5.11: MVE of the power spectrum estimated from the sample covariance matrix.

spectrum estimate based on the clairvoyant covariance matrix depicted in Figure 5.7. In partic-
ular, the estimated power spectrum is not concentrated along the clutter power spectrum locus.
Ways to overcome this problem are presented in Chapter 7.

5.6 Extension to the multistatic case
If the clutter from different bistatic radars is assumed independent, the clutter covariance matrix
is block-diagonal as discussed in Section 3.5.2.4. This covariance matrix is thus not composed of
samples of a covariance function. Hence, the whole concept of the power spectrum of a covari-
ance matrix is lost. Regardless of this, if the different platforms composing the multistatic radar
exhibit different velocities, a single Doppler frequency cannot be defined. Hence decomposing
the signal in a basis of (sampled) exponential does not yield any meaningful result as noted in
[128]. The fact that, for a bistatic radar, the steering vectors are indeed Kronecker products of
sampled exponentials and, in particular for a ULA and with uniform temporal sampling, the
steering vectors are equal to the basis vectors of the Fourier transform explains the usefulness of
the Fourier transform in analyzing the behavior of the clutter covariance matrix.

Note that the obvious solution consists in decomposing the signal in a basis of steering vec-
tors considering the target velocity vector as the independent quantity, as opposed to the use of
the Doppler frequency as the independent quantity. However, doing so also hides the Doppler-
frequency range-dependence of the clutter covariance matrix making it impossible to analyze
this range-dependence.
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Chapter 6

Transmitters of opportunity as signal
source

6.1 Introduction
This chapter considers the feasibility of using transmitters of opportunity to perform moving
target detection by using STAP.

Usually, the waveform transmitted by radars used to perform moving target detection is a
coherent pulse train. The achievable detection range is linked to the amount of transmitted en-
ergy. Moreover, the range resolution is linked to the pulse length, i.e., the time during which the
energy is transmitted. Hence achieving simultaneously a high energy and a high range resolution
with a coherent pulse train is technically challenging as it requires very large peak powers. Pulse
compression [133, 146] can be used in order to cope with power and resolution issues. In this
case, instead of transmitting a pulse train, a modulated signal is transmitted, in order to spread
the transmitted power over a duration which is much longer than the pulse length. The received
echoes are then processed to “compress” the transmitted signal and to achieve the desired range
resolution. This processing consists in a matched filtering, already described in Chapter 4.

More recently, and due to the availability of fast digital-to-analog converters, some devel-
opments in the field of waveform optimization have been conducted [17, 139]. The idea of
waveform optimization consists in optimizing the transmitted waveform in order to minimize the
effect of the interferences on the detection performance. These methods assume the presence of
a dedicated transmitter and full control of the radar waveform by the operator.

Noise radars [7, 8, 9, 16, 118, 119], for which the transmitted waveform is an truly noise-
like, have been developed. The main advantage of these waveforms is their covertness, electronic
counter-counter measures (ECCM) capabilities and the relative absence of ambiguities [8, 16].
Nevertheless, the sidelobes of the ambiguity function are larger than in the case of a standard
coherent pulse train [146], which however can be solved by using the periodic ambiguity function
[101, 133], provided that the transmitted noise signal is periodic.

As far as transmitters of opportunity are concerned, the transmitted waveform depends on the
transmitter. Some of these transmitters transmit waveforms that have properties close to those of
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noise. This approach however differs from the approach described in the previous paragraphs as
the objective is not as much to design a waveform that maximizes the performance. The intention
is rather to determine the performance that can be achieved by using the considered transmitted
waveform, which is precisely what the following sections analyze.

Transmitters of opportunity are transmitters present in the environment and not dedicated to
radars. Considered transmitters include analog TV [58], FM radio [179], digital terrestrial TV
[152], mobile phone (GSM) base stations [87, 162, 163, 164], WiFi beacons [63], satellites on
low-earth orbit [31, 57, 74], and geostationary digital TV broadcast satellites [29, 140]. Features
of interest for the selection of the transmitter type include spatial and temporal coverage (revisit
time), power, central frequency, and bandwidth of the transmitted signal, as well as shape of
the ambiguity function. The bandwidth determines the achievable range-resolution. The shape
of the ambiguity function is essential for determining the detection performance of the radar.
In particular, signals from digital modulation (GSM, DVB) have much less range and Doppler
ambiguities than other modulations [56], which makes them more suitable for passive radar.

The remainder of this chapter carries out theoretical developments in the most general case
as far as possible. To illustrate these developments, GSM base stations as illuminators of oppor-
tunity are considered. They have an ubiquitous spatial coverage, are permanent in time and have
a thumbtack-like ambiguity function due to the noise-like behavior of the GMSK modulation.
The main drawback of GSM base station signals is the small bandwidth [163] that yields a range
resolution of about 1.8 km. Thus, a GSM-based radar can only be used to perform moving target
detection. The Doppler frequency resolution only depends on the coherent processing interval
(CPI). A CPI of a few tenths of a second is easily achievable and yields a Doppler frequency
resolution of a few Hz.

The following developments first consider the single channel case, review the ambiguity
function and introduce the generalized ambiguity function, motivated as the response of a filter
designed to optimally reject interferences. Finally, the extension of the single channel case to the
multichannel case makes spatio-temporal processing, hence STAP, possible.

6.2 Single-channel, clutter-free case

6.2.1 Introduction
This section considers a radar with a single receive channel and develops the expressions for
the range and Doppler-frequency resolution in the case of phase-modulated waveforms. The
quantities related to a single channel are denoted by the subscript u.

6.2.2 Signal model
Let us consider a transmitter transmitting a signal with a complex envelope p(t), a bandwidth B
and modulated at a carrier angular frequency ωc. A point target is located at range RT from the
transmitter and range RR from the receiver, has a complex reflectivity αc and is moving with a
velocity such that the total range-rate is v. The complex envelope of the signal echoed by the
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target and received by the receiver is

αc p(t− τa(t))e
jωDa t + n(t) (6.1)

where n(t) is the thermal noise and

τa(t) =
RT +RR

c
+
v

c
t (6.2)

is the time-dependent delay between the transmission of the signal and the reception of its echo.
The subscript a denotes that the value τa is the actual value of the quantity, and ωDa = 2πfD

where fD is the total Doppler frequency shift induced by the target range rate.
Let us assume that the transmitted signal is not significantly deformed at the reception due to

the motion of the target during the CPI, which is the case if the point target remains in the same
resolution cell during the whole CPI, i.e., if no range-migration occurs. This condition imposes
a limit on the length of the CPI, the range-rate and the bistatic range. During a CPI of duration
TCPI, the target bistatic range increases with vTCPI and the corresponding delay is increased with
v
c
TCPI. If the bandwidth of the transmitted complex envelope p(t) is denoted by B, the condition

can be written
BTCPI <

c

|v|
. (6.3)

In this case, the temporal dependence of τa in (6.2) can be neglected. Then, the complex envelope
of the received signal becomes

ỹ(t) = αc p(t− τa)e
jωDa t + n(t) (6.4)

where the tilde denotes the fact that the complex envelope of the transmitted signal differs from
the common pulse train.

If the signal ỹ(t) is sampled at frequency fs, the ith sample is given by

ỹ(i) = αc p(i∆t− τa)e
jωDa i∆t + n(i∆t) (6.5)

where ∆t = 1/fs and the sampling frequency fs is larger than the bandwidth of p(t) such that
no aliasing occurs. If M ′ samples are taken, defining the vectors ỹ′

u, p, b′, and n′ respectively as

ỹ′
u(τa, νDa) = [y(0), y(∆t), . . . , y((M ′ − 1)∆t)]T (6.6)

p(τa) = [p(−τa), p(∆t− τa), . . . , p((M
′ − 1)∆t− τa)]

T (6.7)

b′(ν ′Da
) = [1, ej2πν′Da , . . . , ej2πν′Da

(M ′−1)]T (6.8)

n′ = [n(0), n(∆t), . . . , n((M ′ − 1)∆t)]T (6.9)

where ν ′Da
= fD

fs
is the reduced Doppler frequency, yields

ỹ′
u(τa, ν

′
Da

) = αcp(τa) ◦ b′(ν ′Da
) + n′ = ỹ′

tu(τa, ν
′
Da

) + n′ (6.10)

where ỹ′
tu is the noise-free target signal and the operator ◦ denotes the Hadamard product

(element-wise product) of its two arguments.
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b′(ν ′Da
) has the same shape as the temporal steering vector defined in (3.19). There is how-

ever a difference between (3.19) and (6.8) as the former results from a sampling at the pulse
repetition frequency (PRF) fp while the latter results from a sampling at fs, a frequency at least
higher than the bandwidth of p(t) and typically much higher than the pulse repetition frequency.
Indeed, the maximum sensible value for the pulse repetition frequency in (3.19) is equal to twice
the maximum expected Doppler frequency. Quantities related to the sampling frequency fs are
denoted by an apostrophe, to distinguish them from the quantities related to the usual PRF sam-
pling frequency fp.

6.2.3 Ambiguity function
The sufficient statistic T needed to determine whether a target is present at the hypothesized
(denoted by the subscript h) delay τh and Doppler frequency ν ′Dh

is (see Chapter 4)

T (τh, ν
′
Dh

) = |w̃†
u(τh, ν

′
Dh

)ỹ′
u|2 (6.11)

where, in the case of a white Gaussian noise,

w̃′
u(τh, ν

′
Dh

) = k′p(τh) ◦ b′(ν ′Dh
) (6.12)

is the matched filter with k′ a normalization factor.
Let us now examine the response of the filter if τh 6= τa or ν ′Dh

6= ν ′Da
. In this case

T (τh, ν
′
Dh

) = |w̃′†
u ỹ′

tu + w̃′†
u n′|2 (6.13)

= |w̃′†
u ỹ′

tu |
2 + |w̃′†

u n′|2 + 2Re(w̃′†
u ỹ′

tun
′†w̃′

u). (6.14)

The first term of this expression corresponds to the noise-free case and can be rewritten as

|w̃′†
u ỹ′

tu |
2 = k′2|αc|2|(p†(τh) ◦ b′†(ν ′Dh

))(p(τa) ◦ b′(ν ′Da
))|2. (6.15)

As (a ◦ b)†(c ◦ d) = (a ◦ c∗)†(b∗ ◦ d) for vectors a, b, c, and d with the same length, rewriting
the terms not depending on αc in the previous equation yields

k′2|(p†(τh)◦b′†(ν ′Dh
))(p(τa)◦b′(ν ′Da

))|2 = k′2|(p(τh)◦p∗(τa))
†(b′∗(ν ′Dh

)◦b′(ν ′Da
))|2. (6.16)

As the elements of b′ are exponentials of their argument,

b′∗(ν ′Dh
) ◦ b′(ν ′Da

) = b′(ν ′Da
− ν ′Dh

) = b′(∆ν ′D) (6.17)

where ∆ν ′D = ν ′Da
− ν ′Dh

. Moreover, let us define r′, the vector of samples of the autocorrelation
function of p(t) as

r′(τa − τh, τh) = r′(∆τ, τh) = p(τh)
∗ ◦ p(τa) (6.18)

where ∆τ = τa − τh. Finally, (6.16) becomes

ψ(∆τ,∆ν ′D; τh) = k′2|r′†(∆τ, τh)b′(∆ν ′D)|2. (6.19)

78



A translation of the time origin results in the multiplication of b′ by a constant phase term
hence, for M ′ → ∞, (6.19) becomes independent of τh (and of τa) and the only dependence on
τh and τa is through their difference, ∆τ . Let us denote this function by ψ(∆τ,∆ν ′D) and by
analogy with its continuous counterpart [146, 170], let us call it the ambiguity function1.

The ambiguity function is a characteristic of p and denotes how a signal reflected by a target
at time-delay τa and with Doppler frequency ν ′Da

would be correlated with the signal of a hy-
pothetical target at time-delay τh and with Doppler frequency ν ′Dh

. It gives information on the
response of the matched filter w̃′

u if it is not matched to the signal to detect. An ideal ambiguity
function is maximum at the origin, where the filter is actually matched to the signal to detect
and is zero elsewhere. Figure 6.1 (a) and (b) illustrate non ideal ambiguity functions that exhibit
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Figure 6.1: Ambiguity function for a noise-like signal with (a) B = 400kHz, TCPI = 205ms
(M ′ = 218) and (b) B = 100kHz, TCPI = 51ms (M ′ = 216).

a relatively well pronounced peak at the origin but also strong sidelobes. In Figure 6.1 (b), the
sidelobes have been exaggerated for didactic purposes. Although these results are further devel-
oped in the next section, intuitively it is clear that the “width” of the peak affects the resolution
in time-delay, i.e., in range, and in Doppler frequency, i.e., in velocity. If p(t) exhibits some pe-
riodicity, the ambiguity function exhibits the same periodicity along the ∆τ axis, which makes
the target range determination ambiguous, hence the name. A similar issue arises if p(t) con-
tains harmonics which induce a periodicity of the ambiguity function in the Doppler frequency
direction ∆ν ′D.

6.2.4 Range resolution
Considering a cut at ∆ν ′D = 0 in the ambiguity function is equivalent to assuming that the
Doppler frequency of the target is known. The ambiguity function reduces to the squared ampli-

1The naming of ψ is ambiguous [146]. Some authors choose the squared magnitude [115, 170], others choose
not to include the squared magnitude operator in the definition [67], others do both [146]. The definition including
the squared magnitude is taken here.
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tude of the autocorrelation function of p(t) and

ψ(∆τ, 0) = k′2|r′†(∆τ)1|2 = k′2|p†(τa)p(τh)|2. (6.20)

The Wiener-Khintchine theorem [80] states that the power spectral density of a wide sense sta-
tionary process is the Fourier transform of the corresponding (statistical) autocorrelation func-
tion, which provides with the formal link between the range resolution, given by the autocorre-
lation function of p(t), and the “bandwidth” of p(t).

Thus the range resolution achievable by transmitting a signal with complex envelope p(t)
only depends on the autocorrelation function of p(t). This fact constitutes the basis of contin-
uous wave radars [133, 146]. As the spectrum of the waveforms commonly used, e.g., linear
frequency modulation waveforms, is nearly rectangular, the autocorrelation function exhibits
strong sidelobes, known as range sidelobes. This is illustrated in Figure 6.2 for a signal with
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Figure 6.2: Range sidelobes for B = 100kHz.

a bandwidth B of 100kHz. These range sidelobes can be attenuated by shaping the spectrum,
i.e., by modifying the transmitted spectrum. Alternatively, a pragmatic approach [115, 146] con-
sists in considering a mismatched filter, for which the spectrum shaping is implemented on the
receiver, which indeed corresponds to the use of a slightly mismatched filter, hence the name.

6.2.5 Doppler frequency resolution
Considering now a cut in the ambiguity function at ∆τ = 0, i.e., assuming that the time delay is
known, yields

ψ(0,∆ν ′D) = k′2|r′†(0)b′(∆ν ′D)|2 (6.21)

or, if p(t) has a unit magnitude, considering a finite number of samples M ′ = TCPIfs yields

ψ(0,∆νD) = k′2|1†b′(∆ν ′D)|2 (6.22)

= k′2
∣∣∣∣sin(πM ′∆ν ′D)

sin(π∆ν ′D)

∣∣∣∣2 . (6.23)
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This function reaches its maximum for ∆ν ′D = 0,±1, . . ., and is known as the squared Dirichlet
kernel and can be rewritten as

ψ(0,∆fD) = k′2
∣∣∣∣sin(πTCPI∆fD)

sin(π∆fD/fs)

∣∣∣∣2 . (6.24)

with its first zero located at ∆fD = 1/TCPI. Hence, in the particular case of constant amplitude
complex envelopes, the Doppler frequency resolution only depends on TCPI, i.e., the duration
of the observation or the dwell time on the target and not on the sampling frequency fs. The
Doppler cut exhibits so-called Doppler sidelobes, due to the finite observation duration. Doppler
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Figure 6.3: Doppler sidelobes for M ′ = 100.

sidelobes are illustrated in Figure 6.3 where, for didactic reasons, a small value of M ′ is chosen.
If a (white-noise) matched filter is used, these sidelobes affect the discrimination of a target in
the presence of interfering signals (clutter or other targets).

6.2.6 Fast implementation
The computation of T (τh, ν

′
Dh

) following (6.11) would imply the computation of a filter w̃′
u of

length M ′ and the associated scalar product of two vectors of length M ′, this operation being
repeated for each possible τh and ν ′Dh

. As M ′ is typically very large, these computations are
extremely demanding. A possible way to reduce these computational issues is now discussed.

(a◦c)†d = a†(c∗ ◦d) for arbitrary vectors a, c, and d of equal length. Hence the application
of the white-noise matched filter (6.12) to the data

w̃′†
u (τh, ν

′
Dh

)ỹ′
u = k′(p(τh) ◦ b′(ν ′Dh

))†ỹ′
u = k′b′†(ν ′Dh

)(p∗(τh) ◦ ỹ′
u) (6.25)

can be interpreted as the scaled Fourier transform of the demodulated data vector y′
u = p∗ ◦ ỹ′

u

since b′(ν ′Dh
) is the Fourier eigenfunction.

As noted in [161], the maximum Doppler frequency for actual physical targets is typically
much lower than the sampling frequency fs required to match the modulating signal bandwidth.
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Indeed, for example, in the case of a signal with a bandwidth of 200kHz at a carrier frequency
of 1GHz and a target velocity of 200km/h, the maximum Doppler frequency fDmax amounts
to 370Hz while a sampling frequency fs between 0.5 and 1MHz is typically considered. The
ratio S = fs/(2fDmax) can thus be very high. The demodulated signal p∗ ◦ ỹ′

u can thus be
downsampled with a factor S without losing the information about possible targets. In order to
avoid aliasing, the noise present at frequencies larger than fDmax , a low-pass filter is required prior
to subsampling. This filter should have a cut-off frequency equal to fDmax . After filtering, the
spectral analysis is performed using a filter b(νD) of length M = M ′/S where νD = fD/fDmax

is the modified reduced Doppler frequency. One also has νD = Sν ′D. Note that the vector b(νD)
is exactly the temporal steering vector defined in (3.19). The absence of the apostrophe indicates
that the quantities are related to those defined in Chapter 3. The result can thus be written as

kb†(νDh
)W(p∗(τh) ◦ ỹ′

u) ≈ w̃′†
u (τh, ν

′
Dh

)ỹ′
u (6.26)

where W is the M ×M ′ matrix implementing the FIR anti-aliasing filter and the subsampling
by a factor S. k is a normalization constant.

If a moving average filter of length S is considered, the matrix W is of the form

W =
1

S


1T

S 0 · · · 0
1 0T

S · · · 0
... . . . ...
0 · · · 1T

S

 (6.27)

where 1S is a column vector of length S filled with ones. Although, as noted in [87], a mov-
ing average filter does not have ideal characteristics, it allows a very economic implementation
[161]. These non-ideal characteristics impact the detectability of targets when their the Doppler
frequency approaches fDmax .

6.2.7 Discussion
This section only briefly addresses the topic of the ambiguity function and the corresponding
estimation of the target range (time-delay) and velocity (Doppler frequency) in the noise-free
case.

A more detailed analysis of the achievable accuracy in range and velocity in the presence
of a white noise is presented in [170] together with properties, also discussed in [146], of the
continuous ambiguity function.

6.3 Single channel and clutter at the range of interest
As an intermediate step, let us now consider the case for which clutter is present but only at the
range of interest.

82



6.3.1 Clutter signal model
The considered clutter model is described in Section 3.5.2 and can be written as

ỹ′
cu

=
K∑

k=1

αc,kp(τa) ◦ b′(ν ′Da,k) (6.28)

= p(τa) ◦
K∑

k=1

αc,kb
′(ν ′Da,k) (6.29)

= p(τa) ◦ y′
cu

(6.30)

where the complex reflectivity coefficient αc,k = αkck includes the geometric terms ck from the
radar equation. Obviously, besides the larger sampling frequency, the clutter signal is the signal,
denoted by y′

cu
, that would have been obtained, in the hypothetical absence of range ambiguity

effects, with a series of rectangular pulses with a PRF equal to fs, multiplied by the complex
envelope p(τa).

6.3.2 Clutter covariance matrix
Assuming independence of αk, the clutter covariance matrix, defined as

R̃′
cu

= E{ỹ′
cu

ỹ′†
cu
} (6.31)

can be rewritten as

R̃′
cu

=
K∑

k=1

σ2
αk
E{(p(τa) ◦ b′(ν ′Da,k))(p(τa) ◦ b′(ν ′Da,k))

†} (6.32)

where σ2
αk

= E{|αc,k|2}. As for vectors a and c of identical dimensions, (a ◦ c)(a ◦ c)† =
(aa†) ◦ (cc†), which can be shown by explicitly writing the expression for each element of the
vectors, and by assuming a deterministic complex envelope p, the clutter covariance matrix can
be rewritten as

R̃′
cu

= P ◦R′
cu

(6.33)

where
P = p(τa)p

†(τa) (6.34)

has the same form as a covariance matrix taper [59, 60], but is a totally different function.

R′
cu

= E{y′
cu

y′†
cu
} (6.35)

is the covariance matrix of y′
cu

.
The interference-plus-noise covariance matrix is given by

R̃′
u = P ◦R′

cu
+ R′

n (6.36)
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where R′
n is the noise covariance matrix which is diagonal as the noise is assumed uncorre-

lated from sample to sample. Note that, provided that a suitable normalization of p is used, the
diagonal terms of P are equal to unity and the previous equation can be rewritten as

R̃′
u = P ◦ (R′

cu
+ R′

n) = P ◦R′
u (6.37)

where R′
u = R′

cu
+R′

n is the clutter-plus-noise covariance matrix that would have been obtained
if a pulse train with PRF fs had been transmitted, neglecting range ambiguities.

6.3.3 Optimum filter
By using the conclusions of Chapter 4, the filter needed to compute the detection statistic is

w̃′
u = k̃′R̃′−1

u (p(τh) ◦ b′(ν ′Dh
)) (6.38)

where k̃′ is a normalization factor.
Let us now analyze the term R̃′−1

u in (6.38). The covariance matrix R′
u can be diagonalized

and expressed as

R′
u =

M ′∑
i=1

λ′iu
′
iu

′†
i = U′Λ′U′† (6.39)

where λ′i is the i-th eigenvalue and u′
i the associated eigenvector, U′ = [u′

1,u
′
2, . . . ,u

′
M ′ ] and

Λ′ = diag{λ′1, λ′2, . . . , λ′M ′}. If the selected eigenvectors u′
i are orthonormal,

R′−1
u =

M ′∑
i=1

1

λ′i
u′

iu
′†
i = U′Λ′−1U′† (6.40)

where the inverse is guaranteed to exist since R′
n is full rank.

By using (6.37), we get

R̃′
u = P ◦ (U′Λ′U′†) (6.41)

= P ◦

(
M ′∑
i=1

λ′iu
′
iu

′†
i

)
(6.42)

=
M ′∑
i=1

λ′i(p ◦ u′
i)(p ◦ u′

i)
† (6.43)

= Ũ′Λ′Ũ′† (6.44)

where Ũ′ = [p ◦ u′
1,p ◦ u′

2, . . . ,p ◦ u′
M ′ ]. As the amplitude of the elements of p is normalized,

we have p∗ ◦ p = 1 and p ◦ u′
i still forms an orthonormal basis

Ũ′†Ũ′ = P ◦ I = I. (6.45)
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The inverse of R̃′
u is thus given by

R̃′−1
u = Ũ′Λ′−1Ũ′† (6.46)

=
M ′∑
i=1

1

λ′i
(p ◦ u′

i)(p ◦ u′
i)
† (6.47)

= P ◦
M ′∑
i=1

1

λ′i
u′

iu
′†
i (6.48)

= P ◦R′−1
u (6.49)

Hence, from (6.47) and (6.38),

w̃′
u = k̃′

M ′∑
i=1

1

λ′i
(p ◦ u′

i)(p ◦ u′
i)
†(p ◦ b′) (6.50)

or, as p∗ ◦ p = 1, (p ◦ u′
i)
†(p ◦ b′) = u′†

i b′ and

w̃′
u(τh, ν

′
Dh

) = k̃′
M ′∑
i=1

1

λ′i
(p ◦ u′

i)u
′†
i b′ (6.51)

= k̃′p ◦
M ′∑
i=1

1

λ′i
u′

iu
′†
i b′ (6.52)

= p ◦ (k̃′R′−1
u b′) (6.53)

= p(τh) ◦w′
u(ν

′
Dh

) (6.54)

where w′
u(ν

′
Dh

) = k̃′R′−1
u b′(ν ′Dh

) is the optimum filter that would be obtained if no phase mod-
ulation is used.

If a filter w̃′
u actually matched to the target present in the signal is used, i.e., τh = τa and

ν ′Dh
= ν ′Da

, the operation

w̃′†
u (τa, ν

′
Da

)ỹ′
u = (p(τa) ◦w′

u(ν
′
Da

))†ỹ′
u = w′†

u (ν ′Da
)(p∗(τa) ◦ ỹ′

u) (6.55)

can be interpreted as the demodulation of ỹ′
u, i.e., the multiplication of ỹ′

u with p∗ and the
subsequent application of the filter w′

u that would have been obtained if no modulation ever
occurred.

6.3.4 Fast implementation
Section 6.2.6 argued that, as the maximum Doppler frequency of interest is much smaller than
the sampling frequency, the demodulated signal p∗(τa)◦ ỹ′

u could be low-pass filtered and down-
sampled before further processing, which can be written as

b†(νDa)W(p∗(τa) ◦ ỹ′
u). (6.56)
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where the matrix W implements the low-pass filtering and the subsampling operation. As the
filtering operation using filter w′(ν ′Dh

) can be interpreted as a spectral analysis [80, Chapter 11]
with an optimal rejection of the interference-plus-noise, the same reasoning as in Section 6.2.6
can be applied by subsampling the demodulated signal prior to filtering

w†
u(νDh

)W(p∗(τh) ◦ ỹ′
u) ≈ w̃′†

u (τh, ν
′
Dh

)ỹ′
u (6.57)

where wu(νDh
) = kR−1

u b(νDh
) with k a normalization constant, b(νDh

) is the usual temporal
steering vector and Ru is the interference-plus-noise covariance matrix obtained with a pulse-
Doppler radar with a PRF equal to 2fDmax .

6.3.5 Generalized ambiguity function
Let us now generalize the notion of ambiguity function in the case of a filter which is not the white
noise matched filter but the fast implementation of the filter matched to the actual interference
(6.57).

The response of the filter matched to a target at (τh, ν
′
Dh

) if the target is actually at (τa, ν
′
Da

)
is

kb†(νDh
)R−1W(p∗(τh) ◦ ỹ′

tu(τa, νDa)) = kαcb
†(νDh

)R−1
u W(p∗(τh) ◦ p(τa) ◦ b′(ν ′Da

))
(6.58)

= kαcb
†(νDh

)R−1
u W(b′(ν ′Da

) ◦ r′(∆τ, τh)). (6.59)

Let us define the generalized2 ambiguity function ψg(∆τ, νDh
, ν ′Da

; τh) as

ψg(∆τ, νDh
, ν ′Da

; τh) = |kb†(νDh
)R−1

u W(b′(ν ′Da
) ◦ r′(∆τ, τh))|2 (6.60)

This function is illustrated in Figure 6.4. The considered interference would result from the
clutter if neither the transmitter nor the receiver are moving. The effect of the Doppler-adapted
filter is to suppress the interference. The properties of this generalized ambiguity function are
difficult to assess in all generality due to the presence of the filtering and subsampling matrix W.

Let us now consider a particularly simple matrix W

W = IM ⊗ [1, 0, . . . , 0] (6.61)

where the row vector [1, 0, . . . , 0] has a length S. This matrix corresponds to a subsampling in
absence of anti-aliasing filtering. With this matrix, one has Wb′(ν ′Da

) = b(ν ′Da
S) and a cut at

∆τ = 0, for which r′(0, τh) = 1, yields

ψg(0, νDh
, ν ′Da

; τh) = |kb†(νDh
)R−1

u b(ν ′Da
S)|2 (6.62)

which is an adapted pattern in Doppler frequency which reaches a maximum equal to 1 for
νDh

= ν ′Da
S. This is illustrated in Figure 6.5 (b) where an interference is considered at νD = 0

2The adjective “generalized” is used in analogy with the usage of the same adjective to qualify the matched filter
when colored noise is considered [82].
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Figure 6.4: Generalized ambiguity function for νDa = 0.4, τa = 0, M = 214, B = 100kHz and
by considering an interference at νD = 0 (at all ranges).
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Figure 6.5: Doppler sidelobes for νDa = 0.038, for M = 100 (a) without interference (Ru = I)
and (b) in the case of an interference at νd = 0.

and for νDa = 0.038. For didactic reasons,M is taken with an unusual small value. Figure 6.5 (a)
presents the pattern that would be obtained by considering Ru = I, i.e., a white interference. As
can be seen, by comparing Figure 6.5 (a) and (b), the pattern in Figure 6.5 (b) is distorted in
order to increase the attenuation of the interference.

In order to analyze the behavior of the ambiguity function in the delay direction, let us now
assume that the covariance matrix Ru of the interference is of low-rank. The covariance matrix
Ru can be decomposed as

Ru =
K∑

i=1

λiuiu
†
i +

M∑
i=K+1

σ2
nuiu

†
i (6.63)
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where the K first eigenvectors correspond to the interfering signal subspace and the M −K last
eigenvalues are equal and correspond to the noise variance σ2

n, which implies that

R−1
u =

K∑
i=1

1

λi

uiu
†
i +

M∑
i=K+1

1

σ2
n

uiu
†
i . (6.64)

For the purpose of the analysis, let us assume that b(νDh
) is “far” from the signal subspace, i.e.,

b†(νDh
)ui ≈ 0 for i = 1, . . . , K. In this case, the expression b†(νDh

)R−1 reduces to

b†(νDh
)R−1

u ≈ 1

σ2
n

b†(νDh
). (6.65)

Hence for νDh
= ν ′Da

S,

ψg(τ, νDh
, νDh

/S; τh) ≈
∣∣∣∣ kσ2

n

b†(νDh
)W(b′(νDh

/S) ◦ r′(∆τ, τh))

∣∣∣∣2 (6.66)

=

∣∣∣∣ kσ2
n

1†Wr′(∆τ, τh)

∣∣∣∣2 . (6.67)

In this case, the generalized ambiguity function, as the usual ambiguity function, reduces to the
square magnitude of the autocorrelation function of p(t).

The essential properties of the ambiguity function, derived in Section 6.2, are thus preserved
by the generalized ambiguity function.

6.4 Single-channel case with clutter at any range

6.4.1 Clutter signal model
Similarly as in Section 6.3.1, let us consider the clutter model

ỹ′
cu

=
Nr∑
r=1

K∑
k=1

αc,k,rp(τr) ◦ b′(ν ′D,k,r) (6.68)

=
Nr∑
r=1

p(τr) ◦
K∑

k=1

αc,k,rb
′(ν ′D,k,r) (6.69)

=
Nr∑
r=1

p(τr) ◦ y′
cu,r (6.70)

where Nr clutter rings are considered, αc,k,r is the complex reflectivity of the clutter patch k
at range ring r, including the geometric terms of the radar equation, τr is the time delay corre-
sponding to range ring r, ν ′D,k,r is the reduced Doppler frequency of clutter patch k at range ring
r and y′

cu,r is the hypothetical clutter signal that would have been received from range ring r if a
pulse-Doppler radar with PRF fs would have been used.
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6.4.2 Effect of clutter at other range rings
Due to the changing p(τr) at each range, it is not possible to obtain a closed-form expression for
the inverse of the interference (clutter)-plus-noise covariance matrix in this case. Given the huge
length of the vector ỹc, even computing the interference (clutter)-plus-noise covariance matrix is
not feasible.

Let us consider the filter (6.53)

w̃′
u(τh, ν

′
Dh

) = k′p(τh) ◦ (R′−1
u b′(ν ′Dh

)) (6.71)

which is optimum if only clutter at the range of interest τh is present, and let us assess its perfor-
mance in the current situation.

The way in which the filter responds to clutter at other ranges than τh, is given by the gener-
alized ambiguity function ψg (6.60).

As ψg is typically very small for ∆τ 6= 0, the contribution of the clutter at the other ranges is
greatly attenuated.

6.5 Multi-channel cases
This section extends the previous discussion to multichannel cases.

6.5.1 Signal model
Let us consider a receiver equipped with N receive channels. Let us assume that the bandwidth
B of the transmitted waveform and the maximum distance dmax between two receiving elements
are small enough such that no bandwidth-induced angle-dependent decorrelation occurs [60].
More specifically, these assumptions require dmax � c/B. Under this condition, the angle of
arrival of a plane wave results in an element-dependent phase shift as discussed in Section 3.3.1.

The measurements made at each element can be ordered in a vector-valued function of length
N and written

y̌(t) = a(~νs)ỹ(t) (6.72)

where a(~νs) is the spatial steering vector defined in Section 3.4.2, ~νs is the spatial frequency
defining the angle of arrival of the plane wave and y(t) is the complex envelope of the received
signal (6.4). The signal at each receive element is sampled with sampling frequency fs as de-
scribed by (6.5). If (6.10) and (6.72) are combined and the received samples are lexically ordered,
the received signal is modeled by

ỹ′(τa, ~νs, ν
′
Da

) = αc (p(τa) ◦ b′(ν ′Da
))⊗ a(~νs) + n (6.73)

where n is a white Gaussian noise vector of length NM ′. After defining the vector pN as

pN = p⊗ 1N , (6.74)
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equation (6.73) can be rewritten as

ỹ′(τa, ~νs, ν
′
Da

) = αc pN ◦ (b′(ν ′Da
)⊗ a(~νs)) + n′′ (6.75)

= αc pN ◦ v′(~νs, ν
′
Da

) + n′′ (6.76)

where the spatio-temporal steering vector v′ is defined as

v′(~νs, ν
′
Da

) = b′(ν ′Da
)⊗ a(~νs) (6.77)

by analogy with (3.17). As noted in Section 6.2.2, this vector differs from (3.17) as the temporal
sampling frequency is typically much higher than the sampling frequency considered in (3.17).
This difference is denoted by the apostrophe.

6.5.2 Optimum filtering
The developments carried out in Section 6.3 naturally extend to the multichannel case. In partic-
ular, the interpretation of the optimum filter as a demodulation operation followed by a “usual”
spectral analysis is still valid.

The signal model (6.30) readily extends

ỹ′
c = pN(τa) ◦ y′

c (6.78)

where

y′
c =

K∑
k=1

αc,kv
′(~νs,k, ν

′
Da,k) (6.79)

is the clutter signal that would have been obtained if a pulse-Doppler train with PRF fs had been
transmitted and if range ambiguities are neglected. Therefore, the clutter-plus-noise covariance
matrix (6.37) becomes

R̃′ = PN ◦R′ (6.80)

where R′ can be thought of as the spatio-temporal clutter-plus-noise covariance matrix that
would have been obtained if a pulse train with PRF fs was transmitted, again neglecting range
ambiguities. By using a reasoning similar as in Section 6.3.2, it follows that

R̃′−1 = PN ◦R′−1 (6.81)

if p has a constant modulus. Hence, the optimum filter is given by

w̃′ = pN ◦w′ (6.82)

where
w′ = k′R′−1v′ (6.83)

can be interpreted as the spatio-temporal optimum filter that would be obtained if the transmitted
signal is a coherent pulse train with PRF fs and k′ a normalization factor. Hence,

w̃′†ỹ′ = (pN ◦w′)†ỹ′ = w′†(p∗
N ◦ ỹ′) (6.84)

and optimum filtering can still be seen as a demodulation step followed by the usual optimum
space-time filtering.
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6.5.3 Fast implementation
As in Section 6.3.4, which found that the demodulated signal p∗ ◦ y′

1 could be low-pass filtered
and subsampled, as the maximum Doppler frequency of interest is much smaller than the sam-
pling frequency fs, the signal from each receive channel can be low-pass filtered and subsampled,
before performing the spatio-temporal filtering

w̃′†ỹ′ ≈ w†(~νs, νDh
)WN(p∗

N ◦ ỹ′) (6.85)

where WN is a NM × NM ′ matrix implementing the temporal averaging and sampling, inde-
pendently for each channel. The subscript N denotes an extension of the temporal averaging and
sampling matrix W used in the single channel case

WN = W ⊗ IN . (6.86)

w is the spatio-temporal optimum filter which would be obtained if a pulsed waveform had been
considered with PRF fs/S where S is the subsampling factor.

6.5.4 Illustration
In order to illustrate the developments of the previous section, let us now present an example
on simulated data. The considered scenario is depicted in Figure 6.6 (a) and involves a static
GSM base station and a receiver located on the ground, moving at a speed of 10m/s. The receiv-
ing array is a λ/2-spaced 8-element forward-looking uniform linear array (ULA). As a ULA is
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Figure 6.6: (a) Considered scenario with the isorange considered drawn as a solid line (b) Clutter
power spectrum locus in function of the range.

considered, only one spatial frequency can be measured. This spatial frequency is denoted νs.
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The transmit and the receive antennas have an omnidirectional radiation pattern to exacerbate
the influence of the clutter. However, in practice, the radiation pattern of GSM base-stations is
far from being omnidirectional. Bistatic scenarios generally involve a geometry-induced range-
dependence of the clutter statistic. However, in the particular case of a static transmitter and
when the receiver is located on the ground, the clutter statistic does not exhibit any geometry-
induced range-dependence as discussed in Chapter 5. Figure 6.6 (b) depicts the clutter power
spectrum locus for different ranges.

Figure 6.7 (a) depicts the power spectrum of the subsampled demodulated signal WN(pN ◦
ỹ′) at the range of interest. The clutter power spectrum locus is plotted as a thin line. The
contribution of the clutter along the clutter power spectrum locus is clearly visible.
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Figure 6.7: (a) Power spectrum of the demodulated signal and clutter power spectrum locus, (b)
Power spectrum of the clutter covariance matrix.

A modeled interference-plus-noise covariance matrix is considered for the computation of
the optimum filter w. The power spectrum of the considered covariance matrix is illustrated in
Figure 6.7 (b). Again, the power spectrum of the covariance matrix is located along the clutter
power spectrum locus.

The test statistic T (νs, νD) resulting from the application of the optimum filter to the demod-
ulated signal pN ◦ ỹ′ is illustrated in Figure 6.8. The thin solid line corresponds to the clutter
power spectrum locus. As can be seen, the clutter contribution is filtered out, leaving the target
standing out at (νs, νD) = (0.4, 0.3).

6.6 Feasibility of STAP with signals of opportunity

6.6.1 Introduction
The previous sections have developed the theory behind space-time processing by using signals
of opportunity. Let us now present results from actual measurements.
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6.6.2 Signal acquisition and pre-processing
A block diagram of a passive GSM-based radar (receiver) is depicted in Figure 6.9. A two-
channel receiver is used, the two antennas being arranged to form an array. The array is oriented
such that the broadside direction is pointing to the targets. After amplification by the low noise

LO ejωIFt
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ADC

LPFBPF LPF
ch1

ADC

LPFBPF LPF
ch2

LNA

LNA

Figure 6.9: Block diagram of the receiver.

amplifier (LNA) and filtering by the band pass filter (BPF) to keep only the GSM downlink band,
the signal is down-converted to intermediate frequency and sampled. Once sampled, the received
signal is further down-converted by using digital down-conversion (DDC). Performing the lat-
ter down-conversion step digitally eliminates imbalances between the in-phase and quadrature
channels.

To correct possible asymmetries between the two channels, a calibration step is required. The
calibration is also used to measure the phase center of the antennas in order to extract correct
direction information from the measurements.

As the bandwidth of the receiver is much larger than that of one GSM channel, the signals
from several GSM base stations can be received at once. A typical spectrum of the baseband
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acquired signal is given in Figure 6.10, where different GSM downlink channels are clearly
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Figure 6.10: Spectrum of the received signal

visible. The two most powerful channels, located around 0Hz and −600kHz, correspond to two
different base stations.

The received signal contains the direct signal coming from the GSM base-station transmitter
and the echoes of the GSM base-station signal backscattered by the vegetation, buildings, and
targets. To be able to perform the coherent processing, it is fundamental to know the reference
signal p broadcast by the GSM base-station. Reference [87] describes a method to blindly extract
the reference signal from an array of sensors using adaptive beamforming. Indeed, to avoid
artifacts, it is essential that the reference signal does not contain any echo from any target. If the
reference signal contained echoes from targets, the concerned targets would be attenuated by the
echo cancellation processing [87].

6.6.3 End-to-end results on measured data
The results presented here correspond to real measurements described in more details in
[87, 126]. The geometric configuration of the transmitter, receiver, and target is illustrated in
Figure 6.11. The receiving antenna array is static and has 2 elements separated by about 0.8λ.
The scenario involves a cooperative vehicle (a small van) approaching the receiver and yield-
ing a Doppler frequency of about −50Hz. With this Doppler frequency and the achieved fre-
quency resolution, the vehicle signature is hidden in the sidelobes of the (untapered) matched
filter w̃ = p2 ◦v. A tapered matched filter (TMF) which a Hamming-window tapering yields the
classical angle-Doppler diagram of Figure 6.12 (a) where the clutter signal is responsible for the
large response around νD = 0. By using the proposed STAP approach, the contributions of the
clutter (including both the static part and the small internal clutter motion (ICM) components)
can be removed, leaving the target echo standing out as can be seen at (νs, νD) = (0.35,−0.07)
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Figure 6.11: Geometric configuration for the real measurement.
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Figure 6.12: (a) White-noise matched filter. (b) Generalized matched filter.

(these values correspond to one of the ambiguous solutions) in Figure 6.12 (b); the other signa-
tures are due either to reflexions or to other (uncooperative) targets. The generalized matched
filter (GMF) is obtained from (6.85) using a modeled covariance matrix involving ICM.

Figure 6.13 (a) presents a cut along νs = 0.35 in the angle-Doppler diagrams presented in
Figure 6.12. Clearly, the generalized matched filter essentially removes the components due
to the clutter, located around zero-Doppler. The amplitude of the signature of the vehicle at
νD = −0.07 is smaller for the tapered matched filter than for the generalized matched filter,
which is due to the tapering losses. Figure 6.13 (b) shows a similar cut, in the case of a non-
tapered white-noise matched filter (MF). Clearly, the Doppler sidelobes cause “leakage” from
the clutter in the target Doppler cell, making detection impossible.

Note that the clutter angle-Doppler diagram does not exhibit the classical space-time coupling
as the transmitter and the receiver are both fixed. Hence space-time processing, in this particular
scenario, is not really required and a temporal processing would be sufficient. Nevertheless, this
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Figure 6.13: (a) Hamming window. (b) Rectangular window.

case can be seen as a degenerate case of joint space-time processing.

6.7 Other approaches
Generalized matched filtering approaches do not take into account ambiguities other than at the
origin ∆τ = 0. Ambiguities at other ranges, i.e., for ∆τ 6= 0, may cause the clutter signal to
“leak” and hide possible targets.

If the clutter signature is at zero Doppler, i.e., if the transmitter and the receiver are fixed, the
classical approach consists in performing some form of echo cancellation [87, 88, 89]. These
approaches subtract from the received signal a sum of delayed and possibly phase-shifted ver-
sions of the reference signal p. These approaches fail if the clutter exhibits an angle-Doppler
dependence since no provision is made to account for a Doppler shift.

The CLEAN algorithm, initially used in radio astronomy, exploits the fact that the targets
of interest can be considered as point targets. This algorithm basically consists in iteratively
subtracting the scaled (and possibly phase-shifted) point target response of the system at the
location of the brightest residual. This method can be applied to radar target detection [30,
44], where the point target response is the ambiguity function of the transmitted waveform, and
permits the detection of closely-located targets with large reflectivity differences. The CLEAN
algorithm can also be applied to remove clutter [98, 99, 100] if the clutter exhibits an angle-
Doppler dependence.

Reference [87] propose an extension of the CLEAN algorithm to handle target detection us-
ing signals of opportunity. The algorithm can be interpreted as the decomposition of the received
signal in a basis of non-orthogonal functions. Each of these basis functions consists in a time-
delayed, angle-Doppler shifted version of the reference signal. The decomposition, which is not
unique, is performed by a pursuit-like algorithm [104], where only a fraction of the amplitude of
the mode is subtracted at each iteration. This can be seen as an extension of the echo-cancellation
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methods applied to non-zero Doppler shifts.
Clearly, as the contributions due to each point source are successively subtracted from the

received signal, the “leakage” due to ambiguities of the waveform disappears. Eventually, all
point-targets (extended targets can be modeled as a group of point targets) are removed from
the signal, in which case only noise remains. The difficulty lies in sorting the point targets into
actual targets and clutter, which, for instance, can be done by assuming that point targets “close”
to the theoretical clutter power spectrum locus belong to the clutter while the other point targets
are actual targets.

6.8 Extension to multistatic configurations
The use of transmitters of opportunity naturally extends to multistatic configurations. Obviously,
several operating transmitters are needed and their signals must be separable from each other.
As shown in Figure 6.10, this is clearly the case for GSM base stations: the signals from the
different transmitters are separated in frequency and each transmitter forms with the receiver a
bistatic radar. Note that the different transmitters of some digital television (DVB-T) networks
that take advantage of the resilience of the modulation used to operate all the transmitters at the
same frequency, can be difficult to separate from each other. This is for instance the case of one
of the DVB-T networks in Belgium.

The ambiguity function can be defined for each bistatic radar. In the case of a combination
of bistatic radars, it may prove useful to rescale the axes of the ambiguity function in order to
have the ambiguity function displayed in actual quantities, i.e., velocity and position, as done in
[20, 135, 167]. This approach gives a clear view of the positioning accuracy that can be achieved.
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Chapter 7

Clutter map estimation

7.1 Introduction
This chapter first reviews the issue of the estimation of the interference-plus-noise covariance
matrix together with the solutions presented in the literature. It next presents a maximum likeli-
hood estimation method based on the available information about the covariance matrix structure
and formulates the method as the estimation of the clutter map also called scattering function. It
develops the method in the case of the estimation of the interference-plus-noise covariance ma-
trix of a bistatic radar and discusses the extension to the estimation of the interference-plus-noise
covariance matrix of a multistatic radar, i.e., whether information can be gained from the overlap
of the clutter maps of the different bistatic radars.

7.2 Interference-plus-noise covariance matrix estimation
Let us first consider a bistatic radar part of a multistatic radar. In order to make the notation
clear, the subscript p denoting the bistatic radar of interest is dropped. Section 7.9 discusses the
feasibility of the extension to multistatic radars.

As discussed in Chapter 4, the optimal detection filter is given by

ŵ = kR̂−1s (7.1)

where R̂ is the maximum likelihood estimate (MLE) of the interference-plus-noise covariance
matrix.

The estimation of the interference-plus-noise covariance matrix is a central issue in STAP
[60, 85], which indeed makes the processing algorithm adaptive. Given K samples of jointly
Gaussian, independent, and identically distributed target-free interference-plus-noise data vec-
tors yi+nk

, k = 1, . . . , K and if no other a priori information is available, it is well known
[22, 54, 60, 171] that the MLE of the interference-plus-noise covariance matrix is the sample
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covariance matrix (SCM) of the available data vectors

R̂ =
1

K

K∑
k=1

yi+nk
y†

i+nk
. (7.2)

K should be larger than 2NM , with N the number of antenna elements and M the number of
pulses, to obtain a mean performance within 3dB of the optimum performance [142]. One of the
key issues in STAP is that a large number of independent and identically distributed interference-
plus-noise data vectors are not available.

Independent interference-plus-noise data vectors are usually obtained by considering data
vectors at ranges gates around the range gate of interest. The direct application of this approach
leads to the use of the sample covariance matrix as an estimate of the covariance matrix. The use
of the sample covariance matrix in STAP is known as the sample matrix inversion (SMI) [142]
and the modified sample matrix inversion (MSMI) [114].

Typically, a very large number of independent samples are required to achieve acceptable
performance. The geographical range over which the samples are taken can thus be extremely
large. As the interference-plus-noise data vectors consist in clutter contribution plus noise, they
largely depend on the ground cover at the ranges corresponding to the recorded data vectors.
Obviously, it is not reasonable to expect that the ground cover be homogeneous over large areas
with a few anecdotic exceptions. Mixed land-sea interfaces are an example of situations where
large differences in ground scattering coefficients are expected. Similarly, targets or clutter dis-
cretes such as a large building also violate the homogeneity assumption. In order to cope with
inhomogeneities, a possible solution consists in excluding the inhomogeneous data vectors from
the set used to estimate the covariance matrix [113, 114].

Moreover, the structure of the covariance matrix strongly depends on the particular scenario
of interest. For monostatic non side-looking and most bistatic observation geometries, the prob-
ability density function (PDF) of the clutter data vector is range dependent due to the range
dependence of the clutter power spectrum locus as shown in Chapter 5. The evolution of the
clutter power spectrum locus as a function of the range is illustrated in Figure 7.1 (a). A possible
solution to cope with this range-dependence consists in applying some sort of range-dependence
compensation, by which the interference-plus-noise data vectors are transformed to superpose
the clutter power spectrum locus at the range of the data with the clutter power spectrum locus at
the range of interest. [19, 137] propose a method which achieves a partial superposition by shift-
ing the measurements in Doppler frequency. The superposition of the clutter power spectrum
loci is illustrated in Figure 7.1 (b) where perfect superposition is only achieved at one particular
point of the spectrum. [71, 73, 111] extend this method in order to align the maxima of the clut-
ter power spectrum. The resulting superposition is illustrated in Figure 7.1 (c), where the clutter
power spectrum locus at the different ranges are only partially superposed. [92, 93, 94, 95] pro-
pose a method to perform a full power spectrum locus alignment at all ranges with a perfect
alignment.

The range-dependence of the clutter statistics can also be taken into account by considering a
range-varying filter [86, 109, 110, 176, 177], which only keeps the two first terms of its expansion
in a Taylor series, hence doubling the size of the problem. However, these methods, with the
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Figure 7.1: Power spectrum locus (a) no superposition, (b) superposition achievable using
Doppler frequency shifts only, (c) superposition achievable using Doppler frequency shift and
spatial frequency shift.

exception of the full power spectrum locus alignment method, typically fail if the clutter exhibits
pronounced range-dependence characteristics, which is common in bistatic radars.

Another possible solution to cope with the small number of available independent and iden-
tically distributed interference-plus-noise data vectors consists in reducing the dimension of the
problem [61, 84, 85] by applying data-independent transformations to project space-time data to
a lower-dimensional subspace. The transformed interference-plus-noise covariance matrix, of a
smaller size, can then be estimated using a smaller number of transformed data vectors. Simi-
larly, the reduced-rank methods [62, 64] consist in keeping only the eigenvectors corresponding
to the dominant eigenvalues of the estimated interference-plus-noise covariance matrix. Indeed,
these large eigenvalues are relatively accurately estimated by using a low number of interference-
plus-noise data vectors. The other eigenvalues are synthesized. Signal-dependent rank reduction
methods are also proposed in [50, 51, 72, 129]. A taxonomy of the different STAP methods can
be found in [55].

Finally, there is a family of methods that exploits the fact that the covariance matrix actually
has a particular structure. Indeed, it is well known that the clutter covariance matrix exhibits a
Toeplitz-block-Toeplitz structure if the receiver is equipped with a uniform linear array (ULA)
and if a constant PRF is used. This property is exploited in [13, 46, 102, 103, 130, 168] to ease the
estimation of the covariance matrix. The covariance matrix still exhibits a particular structure,
even in the non-ULA case, which can be used [23, 25] to further constrain the estimation and
hence reduce the sample support. More subtle structures such as the modeling of decorrelation
effects as covariance matrix tapers can also be exploited [59, 61].
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7.3 Problem statement

7.3.1 Modeling and notations
Chapter 3 gives the model of the interference-plus-noise signal

y =
K∑

i=1

αisi + n (7.3)

where the i + n subscript is dropped in order to make the notations clearer, K is the number of
clutter patches approximating the integral, αi is the complex reflectivity of clutter patch i and is
assumed to be a zero mean circular complex Gaussian random variable with unknown variance
rαi

. Furthermore, the complex reflectivity αi is assumed uncorrelated from clutter patch to clutter
patch. si is the steering vector, of length NM , corresponding to the clutter patch i and includes a
scale factor that takes into account the geometric factors of the radar equation (range attenuation,
element radiation pattern, . . . ). n denotes the thermal noise, assumed circular complex Gaussian
with covariance matrix Rn. Usually, Rn = σ2

nI. Rn is assumed known as it can easily be
obtained by direct measurement, for instance during the interval between pulse emission and
the reception of the corresponding ground echoes as described in [96]. Equation (7.3) can be
rewritten in matrix form as

y = Sα + n (7.4)

where α = [α1, α2, . . . , αK ]T and S = [s1, s2, . . . , sK ].
By using this model, the interference-plus-noise covariance matrix R = E{yy†} is

R = SRαS
† + Rn (7.5)

where Rα = diag{rα} with rα = {rα1 , rα2 , . . . , rαK
}T and rαi

= E{αiα
∗
i }.

7.3.2 On the use of the a priori information
The range-dependence compensation methods reviewed in Section 7.2 consist in applying a
transform to the data vector in order to compensate for the difference in clutter power spectrum
locus between the range of the data vector and the range of interest. Note that some methods
[19, 71, 73] provide with an explicit transformation while other methods [92] provide with a
procedural method. Once the range dependence in the data vectors is compensated for, these
vectors are assumed to have the same statistical distribution (i.e., the same covariance matrix)
as the clutter at the range of interest and equation (7.2) is then used to obtain an estimate of the
covariance matrix. These compensation methods are implicitly justified by the assumption that
the maximum likelihood property of the sample covariance matrix (7.2) still holds even if the
transformed vectors are used instead of yi+nk

.
Actually, a priori knowledge about the form of the evolution of the clutter power spectrum

locus as a function of the range is explicitly used in these methods. However, there is no evidence
that this a priori knowledge is optimally used. Let us also mention that the sample covariance
matrix is the MLE of the covariance matrix if no a priori information is available [22, 54, 60,
171].
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7.3.3 Spatial homogeneity
Another assumption with respect to the spatial homogeneity of the ground clutter is implicitly
made when applying most methods described in Section 7.2. These methods consist in trans-
forming the data vector yr at range ring r to y′

r such that the clutter power spectra overlap and in
an averaging the external product of the transformed data vector. Indeed, at each range ring r

yr =
K∑

i=1

αi,rsi,r + n (7.6)

where αi,r is the complex amplitude of the signal scattered by clutter patch i at range ring r
and si,r is the steering vector corresponding to clutter patch i at range ring r. After the ideal
transformation,

y′
r =

K∑
i=1

αi,rsi + n (7.7)

where si is the steering vector at the range of interest for clutter patch i. Note that the trans-
formation of yr into y′

r, assumed perfect, has for effect that the si’s in the expression above are
identical for all r. The estimated interference-plus-noise covariance matrix is thus

R̂ =
1

Nr

Nr∑
r=1

y′
ry

′†
r (7.8)

where Nr is the number of range rings considered. Hence

E{R̂} =
1

Nr

Nr∑
r=1

K∑
i=1

E{αi,rα
∗
i,r}sis

†
i + Rn (7.9)

=
1

Nr

Nr∑
r=1

K∑
i=1

rαi,r
sis

†
i + Rn (7.10)

=
K∑

i=1

řαi
sis

†
i + Rn (7.11)

where rαi,r
= E{αi,rα

∗
i,r} is the scattering coefficient of clutter patch i at range r and

řαi
=

1

Nr

Nr∑
r=1

rαi,r
(7.12)

is the estimated scattering coefficient of clutter patch i at the range of interest. This result can
be seen as averaging the scattering coefficients along flow lines linking “matching” points along
the clutter power spectrum loci as illustrated in Figure 7.2 (a) for a particular bistatic scenario.
As there is a direct correspondence between the spectral domain and the spatial domain, this
result is equivalent to averaging the scattering coefficients along spatial flow lines on the ground,
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Figure 7.2: The radial lines are the “Flow lines” along which the scattering coefficients are
averaged (a) in the spectral domain and (b) in the spatial domain for a particular bistatic scenario.
The closed curves are respectively the isorange and the image of the isorange. The red curve in
denotes the isorange (and its image) at the range of interest.

as illustrated in Figure 7.2 (b). It implicitly corresponds to assuming that the scattering coeffi-
cient is constant along these flow lines. Although this approach is less restrictive than assuming
a complete homogeneity of the ground cover, it is nevertheless quite unrealistic. Obviously,
this assumption is also made in the cases for which a straightforward application of the sample
covariance matrix is used even if the clutter power spectrum locus is not range-dependent.

7.3.4 Structured covariance matrix estimation
Estimation of the clutter covariance matrix assuming a known clutter power spectrum locus can
be recast as a structured covariance matrix estimation problem, also called parametric spectral
estimation [171]. Hereunder, this chapter presents a maximum likelihood clutter covariance ma-
trix estimation method which explicitly takes into account the known covariance matrix struc-
ture. This method implies the resolution of a non-linear equation, generally solved by using the
expectation-maximization algorithm [37, 134]. A less computationally demanding alternative is
proposed, and, as a comparison, other related methods discussed in the literature are munitioned.

Expressing the estimation problem as a structured covariance matrix estimation problem has
two advantages

• The true maximum likelihood estimate of the clutter covariance matrix can be estimated,
by taking into account the known structure, which guarantees an optimal use of that knowl-
edge.

• The spatial averaging, intuitively necessary, is naturally introduced as a regularization of
the solution. Moreover, as a physical meaning can be given to the computed values, i.e.,
the scattering coefficients, a physically meaningful spatial averaging can be made, both in
range (as is classically done) and in azimuth.
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7.3.5 Possible approaches
By assuming a perfect knowledge of S, the unknown parameters in the parametric expression of
the interference-plus-noise covariance matrix (7.5) are the scattering coefficients rα which need
to be estimated.

A first approach [75, 112] consists in estimating α from the data and in using several of
these estimates to estimate rα. As several independent realizations are rarely available, a spatial
averaging can be performed, which is detailed further in Section 7.4.

Another approach, more common in other fields like image reconstruction in astronomy [91]
or in radar imaging [90, 117, 156, 157], consists in directly estimating the clutter scattering
coefficients rα from the available data y. The MLE of rα is by definition obtained by maximizing
the likelihood of Rα. This approach is also called spectral estimation and fully exploits the
structure of the covariance matrix of y. It is detailed in Section 7.5.

Once these coefficients are obtained, an estimate of the covariance matrix R is obtained by
using (7.5). This estimated covariance matrix can further be used in-stead of the true covariance
matrix. If the estimated covariance matrix is the MLE with respect to the available data y, the
corresponding test statistic is then called the generalized likelihood ratio.

7.4 Estimation of the complex amplitude of the reflection co-
efficient α

Since only one measurement y is available to perform the estimation, α is explicitly considered
as a deterministic unknown which has to be estimated and this estimate is noted α̂. Several
methods to perform an estimation of the complex amplitude α of the signal reflected by each
clutter patch are described below. The relationships between the estimation methods examined
in this section are analyzed in Section 7.6 which gives a way to obtain an estimate of rα from α̂.
Section 7.7.4 discusses the relative performance of these methods.

7.4.1 Least squares estimation
A least squares solution, proposed in [75, 112], consists in finding the α̂ which satisfies

min
α
‖y − Sα‖2 (7.13)

where ‖a‖ denotes the l2 norm of vector a. If the noise is Gaussian, which is the case here, this
approach provides with the MLE [81] and yields the well-known solution [11, 81]

α̂ = (S†S)−1S†y. (7.14)

A least squares solution is only feasible if the problem to solve is overdetermined. However,
if the number K of clutter patches of interest is larger than the length of the data vector y, the
problem becomes underdetermined. It means that there is an upper limit on the number of clutter
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patches that can be considered in the clutter signal model and hence, significant model errors can
occur due to a too low number K of clutter patches.

Even if the problem is overdetermined, a solution only exists if S†S is full rank. In other
words, the number of clutter patches K considered in the model (7.3) must be such that S†S
is full rank. This approach thus requires an ad-hoc method to estimate the number K of terms
to consider, which typically implies a very low number of clutter patches. Hence, the physical
meaning of (7.3) is jeopardized and significant model error can occur due to the low value of
K. A trivial example of a low rank S†S occurs if the antenna radiation diagram is such that
some clutter patches do not actually contribute to y. Obviously, in this case, the corresponding
complex amplitude of the reflection coefficients αi cannot be estimated from the data y. There
is yet a more subtle issue: as the spatial resolution of the radar determines the spatial resolution
that can be achieved in estimating α, particular spatial patterns such as rapidly varying values
of αi along the isorange are attenuated by S and hardly contribute to y, to such an extent that
these spatial patterns cannot be extracted from the noise. These issues are typical for inverse
problems [166] and the general method to handle them consists in performing a regularization.
Section 7.4.3 discusses a possible solution.

7.4.2 Fast implementation
Implementing (7.14) is computer-intensive and, as noted in [112], a suboptimal approximation
to (7.14) is given by1

α̂ = D−1S†y (7.15)

where D = tr(S†S)/(NM) is a normalization factor. This expression is of course less computer-
intensive as no matrix inversion is required. This approximation bears similitude to the method
proposed in [94] which considers a ULA and implements S as several discrete Fourier trans-
forms.

The value of the normalization factor is crucial in obtaining bias-free results. Although the
particular value proposed above makes sense, another possible normalization factor, which fol-
lows from the developments made in the next sections, is discussed in Section 7.6.

Section 7.6 shows that (7.15) can be seen as a rough approximation of one step of the maxi-
mum likelihood estimation of rα. This estimate is also used in other fields, especially in synthetic
aperture radar (SAR) to perform both the azimuth and the range compression [33, Chapter 4] and
[45]. Let us call this estimator the crude matched filter (CMF).

7.4.3 Maximum a posteriori estimation of α

The estimation methods described in the previous sections do not take into account any a pri-
ori information about α. Maximum a posteriori (MAP) estimation considers α as a random
variable, and as shown shortly hereafter, the MAP estimation permits the introduction of a pri-
ori knowledge about α in the form of the PDF p(α). This a priori knowledge is precisely the

1The apodization window present in the original paper [112] is dropped in order to ease further discussion
although the presence of the window is clearly necessary to avoid spectral leakage.
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difference between the MAP estimation and a maximum likelihood (or least squares) approach
[81, 169].

In this approach [121], α̂ is chosen to maximize the posterior PDF or

α̂ = arg max
α

p(α|y). (7.16)

by using the Bayes identity

p(α|y) =
p(y|α)p(α)

p(y)
. (7.17)

which explicitly takes the a priori information p(α) about α into account.
As the a priori probability p(y) does not depend on α, it does not affect the maximum and

does not need to be computed. From (7.4), one has n = y − Sα. As the noise n is assumed to
be Gaussian,

p(n) =
1

πNM |Rn|
e−n†R−1

n n. (7.18)

Hence, (7.4) and (7.18) yield

p(y|α) =
1

πNM |Rn|
e−(y−Sα)†R−1

n (y−Sα). (7.19)

The prior probability p(α) expresses the a priori knowledge about α. As α is the complex
amplitude of the signal scattered by the clutter, let us assume that α is independent and complex
Gaussian distributed [132], and hence

p(α) =
1

πK |R̃α|
e−α†R̃−1

α α (7.20)

where R̃α, expressing the a priori knowledge about α, is taken diagonal.
Finally, combining (7.17), (7.19) and (7.20) yields

p(α|y) ∝ 1

πNM |Rn|πK |R̃α|
e−(y−Sα)†R−1

n (y−Sα)−α†R̃−1
α α. (7.21)

As the matrices Rn and R̃α are positive definite, the maximum is reached for

α̂ = (S†R−1
n S + R̃−1

α )−1S†R−1
n y. (7.22)

Note that if no a priori information is available, i.e., R̃−1
α = 0, and if the noise variance is

identical for all sensors and pulses, this estimate is the same as (7.14).
Formally, if Rn and R̃α are proportional to the identity matrix, the MAP estimate can be

seen as a regularized form of the least squares solution (7.14) where α with small magnitudes
are favored [6]. The term R̃−1

α thus acts as a regularization term by constraining the magnitude
of αi if S†R−1

n S is rank deficient.
More generally speaking, the regularization term favors solutions α̂i with small magnitudes.

In this sense, the solution with the smallest magnitude is selected whenever several solutions are
possible.
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7.5 Estimation of the scattering coefficient rα

This section establishes the equation of the maximum likelihood estimate of rα (or equivalently
of Rα), called the trace equation, and discusses practical methods to solve it.

7.5.1 Invariance principle of the likelihood
Here, the intention consists in estimating R from the data y by taking into account the structure
of R given in (7.5). Clearly, R depends on Rα and is therefore denoted by R(Rα).

Let us make the estimation by computing the maximum likelihood estimate of R. It however
proves to be easier to compute the maximum likelihood R̂α of Rα. Intuitively, R̂α would then
be used in (7.5) and it is expected to be yield maximum likelihood estimate of R. This is indeed
known as the invariance principle of the likelihood [81, 136] which states:

“The maximum likelihood estimate of R = R(Rα) is given by

R̂ = R(R̂α) (7.23)

where R̂α is the maximum likelihood estimate of Rα.”

The above formulation requires that there exists an injective mapping between Rα and R. If this
is not verified, then R̂ maximizes the modified likelihood function defined as

L′(R) = max
{Rα:R=R(Rα)}

L(Rα). (7.24)

Here, (7.5) is not invertible and there might thus exist different values of Rα giving the same
R. As explained in the next section, the likelihood of Rα depends on Rα through R. Hence,
the different values of Rα giving rise to the same R have the same likelihood and the modified
likelihood function (7.24) is then equal to the usual likelihood function.

7.5.2 Maximum likelihood estimation – Trace equation
The equation that the maximum likelihood estimate must satisfy is now developed. It will be
solved in the two next sections.

The estimate of Rα, which is the most compatible with the measurements y, is obtained by
maximizing the probability p(Rα|y) hence implicitly considering Rα as a random variable. The
Bayes identity gives

p(Rα|y) =
p(y|Rα)p(Rα)

p(y)
, (7.25)

where p(Rα) is some a priori probability of Rα, and p(y) is the a priori probability of the
measurement y, independent of Rα. If a flat a priori probability for Rα is used, the optimum
estimate of Rα can be found by maximizing L(Rα) = p(y|Rα) which is classically called the
likelihood of Rα.
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If y is Gaussian with covariance matrix R given by (7.5),

L(Rα) = p(y|Rα) =
1

πNM |R|
e−y†R−1y, (7.26)

where |R| denotes the determinant of the matrix R. As (see [25]) y†R−1y = tr(y†R−1y) =
tr(R−1yy†), the logarithm of the likelihood l(Rα) is given by

l(Rα) = ln p(y|Rα) = − ln |R| − tr(R−1yy†) + κ. (7.27)

where κ is a constant, independent of Rα.
A necessary condition so that l(Rα) is maximum is

∂l(Rα)

∂rαi

= 0 (7.28)

for all i. Following [25, 156], if B is a regular square matrix and b a scalar, then

∂ ln |B|
∂b

= tr

(
B−1∂B

∂b

)
(7.29)

hence,
∂ ln |R|
∂rαi

= tr

(
R−1 ∂R

∂rαi

)
= tr(R−1sis

†
i ) = tr(s†iR

−1si). (7.30)

Expressing it for all i, with {B}d denoting the column vector consisting of the diagonal elements
of B, yields

∂ ln |R|
∂rα

= {S†R−1S}d. (7.31)

Using the property (see [25])
∂B−1

∂b
= −B−1∂B

∂b
B−1 (7.32)

yields

∂ tr(R−1yy†)

∂rαi

= tr

(
∂R−1

∂rαi

yy†
)

= tr(−R−1sis
†
iR

−1yy†) = − tr(s†iR
−1yy†R−1si) (7.33)

or by expressing it for all i

∂ tr(R−1yy†)

∂rα

= −{S†R−1yy†R−1S}d. (7.34)

The derivative of (7.27) finally becomes
∂l(Rα)

∂rα

= {S†R−1(yy† −R)R−1S}d. (7.35)

Equation (7.28) can thus be rewritten for all i in vector form as

{S†R−1(yy† −R)R−1S}d = 0, (7.36)

which is a particular case of the trace equation [159]. This equation must be solved for Rα. It is
nonlinear in Rα and no closed-form solution is known. Although the classical way to obtain the
maximum likelihood estimate is the Expectation-Maximization algorithm [37] presented in the
next section, a more efficient iterative method is presented in Section 7.5.4.
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7.5.3 Expectation-Maximization
The Expectation-Maximization (EM) algorithm [37] can be used to find the value of Rα that
maximizes (7.27) [47, 91]. In the EM algorithm, the coefficients α are called the complete data
while y are the incomplete data and (7.4) provides a mapping between them.

The EM algorithm is an iterative algorithm consisting in a succession of expectation (E) and
maximization (M) steps. In the E-step, the expectation of the log-likelihood of the complete
data lcd(Rα|α) conditioned upon an estimate R

(k)
α of Rα, and upon the incomplete data y is

computed,
Ξ(Rα|R(k)

α ) = E{lcd(Rα|α)|R(k)
α ,y}. (7.37)

In the M-step, the value of Rα that maximizes Ξ(Rα|R(k)
α ) is computed

R(k+1)
α = argmax

Rα

Ξ(Rα|R(k)
α ). (7.38)

These two steps are repeated until convergence.
As α is complex Gaussian distributed with covariance matrix Rα, according to (7.20), a

development analogous to (7.27) yields

lcd(Rα|α) = − ln |Rα| − tr(R−1
α αα†) + κ′ (7.39)

where κ′ is a known constant independent of Rα and (7.37) can be evaluated as

Ξ(Rα|R(k)
α ) = − ln |Rα| − tr(R−1

α E{αα†|R(k)
α ,y}) + κ′. (7.40)

As the term E{αα†|R(k)
α ,y} does not depend on Rα, taking the derivative of Ξ(Rα|R(k)

α ) with
respect to rα, and using (7.29) and (7.32), yield

∂Ξ(Rα|R(k)
α )

∂rα

= −{R−1
α }d + {R−1

α R−1
α E{αα†|R(k)

α ,y}}d. (7.41)

Setting this derivative equal to zero to find the maximum of Ξ(Rα|R(k)
α ) yields

r(k+1)
α = {E{αα†|R(k)

α ,y}}d, (7.42)

which is a set of K equations. Equation i of this set is

r(k+1)
αi

= E{|αi|2|R(k)
α ,y}. (7.43)

The term E{αα†|R(k)
α ,y} appearing in (7.42) can be expressed as a function of the condi-

tional mean ᾱ = E{α|R(k)
α ,y} and the conditional covariance of α

E{αα†|R(k)
α ,y} = diag[{ᾱᾱ†}d + {cov{α|R(k)

α ,y}}d] (7.44)
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where the conditional mean and the conditional covariance are well-known results from estima-
tion theory [11, 47, 81], respectively given by

ᾱ = E{α|R(k)
α ,y} (7.45)

= R(k)
α S†R−1y (7.46)

with R = R(Rα)|
R

(k)
α

, and by

cov{α|R(k)
α ,y} = R(k)

α −R(k)
α S†R−1SR(k)

α . (7.47)

Hence, (7.42) can be rewritten as

r(k+1)
α = {R(k)

α S†R−1yy†R−1SR(k)
α }d + {R(k)

α }d − {R(k)
α S†R−1SR(k)

α }d (7.48)

where the first term is recognized as the MAP estimate of α and the two last terms are the
covariance of α.

Using the expression of ∂l(Rα)
∂rα

obtained in the previous section, finally yields one iteration of
the EM algorithm given by

r(k+1)
α = r(k)

α + r(k)
α ◦ ∂l(Rα)

∂rα

∣∣∣∣
R

(k)
α

◦ r(k)
α . (7.49)

where ◦ denotes the Hadamard element-wise product. This latter expression shows that, in this
application, the EM algorithm can be interpreted as a weighted gradient descent method to find
the value of Rα that maximizes the log-likelihood l(Rα).

7.5.4 Iterative solution
An iterative resolution of (7.36) is proposed in [156] and is now adapted to this application. As
illustrated in Section 7.7.3, this method converges faster than the EM method.

Noting
F = RαS

†R−1, (7.50)

and by decomposing R according to (7.5), (7.35) can be rewritten as

rα ◦
∂l(Rα)

∂rα

◦ rα = {Fyy†F†}d − {FSRαS
†F†}d − {FRnF

†}d (7.51)

= {Fyy†F†}d −TRα − {FRnF
†}d. (7.52)

The first term of this last expression equals {ᾱᾱ†}d and T is defined [123] similarly2 as in [156],

T = diag{{FSRαS
†F†}d}R−1

α . (7.53)

2This definition of T slightly differs from the definition given in [156], where T = diag{{FSS†F†}d} which
makes the introduction of T more natural. However, the latter expression results from a mistake in [156].
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In order to give an interpretation to T, let us consider the case for which Rα is proportional to
the identity matrix, Rα = εI. In this case, T reduces to

T = diag{{FSS†F†}d} (7.54)

which shows that T can be seen as a normalization factor. In particular, T is, for large clutter to
noise ratio, invariant to a scale factor on Rα.

Setting (7.52) equal to zero yields

rα = T−1({Fyy†F†}d − {FRnF
†}d). (7.55)

Consequently, the following iterative solution is proposed [156]

r(k+1)
α = r(k)

α + τ
[
T−1({Fyy†F†}d − {FRnF

†}d)− rα

]∣∣
r
(k)
α
. (7.56)

By taking (7.52) into account, this last equation can be rewritten as

r(k+1)
α = r(k)

α + τ

[
T−1

(
rα ◦

∂l(Rα)

∂rα

◦ rα

)]∣∣∣∣
r
(k)
α

. (7.57)

which shows that the iterative scheme proposed in [156] is equivalent to a modified gradient
descent where the gradient is multiplied by a matrix. Moreover, taking τ = 1 in (7.57) results in

r(k+1)
α =

[
T−1({Fyy†F†}d − {FRnF

†}d)
]
|
r
(k)
α
. (7.58)

The fixed points of this equation satisfy (7.55), which might be interpreted as an iterative solution
to (7.55). Note that while convergence is achieved in practice, the convergence of (7.58) is not
claimed.

7.5.5 Regularization
In the considered application, SRαS

† is not full rank, which implies that there is no unique
solution for Rα. This kind of problem is “ill conditioned” and regularization is necessary to
obtain a solution [166]. Regularization is obtained by introducing a priori knowledge about the
solution Rα. This can be done, e.g., by imposing directly an a priori probability density of Rα

in the likelihood to minimize [91, 156, 157] or by restricting the space in which the solution is
to be found, e.g., by decomposing the covariance matrix Rα in a basis in order to impose its
structure [25, 117, 116]. The latter decomposition is particularly suited for cases where a priori
knowledge about the ground cover is known; the covariance matrix can then be decomposed in a
set of matrices that takes into account this knowledge. It is also worth mentioning that a review
of various regularization methods applied to the EM algorithm can be found in [90, 91].

A particular regularization is one that consists in adding a spatial smoothing step after the
computation of the M-step of the EM algorithm. [91, 156] shows that, in some particular cases,
there is an equivalence between the imposition of some prior probability density p(Rα) and the
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addition of a spatial smoothing step. This motivates the introduction of a spatial smoothing step
in (7.58):

r(k+1)
α = W

[
T−1({Fyy†F†}d − {FRnF

†}d)
]
|
R

(k)
a

(7.59)

and in (7.49):

r(k+1)
α = W

(
r(k)

α + r(k)
α ◦ ∂l(Rα)

∂rα

∣∣∣∣
R

(k)
α

◦ r(k)
α

)
, (7.60)

where the square matrix W is a circulant smoothing matrix. The matrix W is circulant because
the scattering coefficients rαi

are located along a closed isorange on the ground. The effect of
W is to perform a weighted averaging of rαi

with the neighboring scattering coefficients.
Note that although the spatial averaging is formally motivated by the need to include a priori

knowledge about Rα, it is also reasonable from a physical point of view. Indeed, the spatial
resolution of the radar limits the observable spatial variations of rαi

and it is thus reasonable to
remove the fast variation of rα by spatial averaging. A similar situation arises for instance in
synthetic aperture radar (SAR) where the scattering coefficients need also to be estimated. The
resulting variance is called “speckle” and the usual way of reducing it consists in performing
“multilooking” or spatial averaging [132]. The classical spatially-adaptive multilooking methods
developed in that field can be applied here. For instance, in order to preserve the structure
possibly present in the clutter reflectivity map and due to the ground cover inhomogeneity, more
sophisticated spatial filtering methods such as [97] could be used.

7.5.6 Discussion
7.5.6.1 Application to scattering coefficient maps estimation

Equations (7.3) and (7.5) can be written for each range-gate. Note that for bistatic scenarios, S
typically depends on the range. If the measurements y at different ranges are uncorrelated, i.e., if
the range sidelobes are negligible, the estimation of the unregularized Rα is decoupled in range,
which simplifies the computations.

However, the physics clearly imposes a spatial constraint on the scattering coefficients rαi
in

the sense that a smooth evolution of the scattering coefficients should be favored, both in azimuth
(cross-range) and in range. Hence, the smoothing step discussed in the previous section needs to
be extended to smooth the estimate of r(k)

αi also across different ranges.

7.5.6.2 Fast implementation

Equation (7.59), although providing a solution to the problem, results in an extremely computer-
intensive algorithm. It turns out that one single iteration of (7.59) already yields a very acceptable
estimate of rα, as shown in Section 7.7.3. This is partly due to the correcting factor T that hardly
depends on Rα. Therefore, let us consider a single iteration of (7.59) as estimator.

Moreover, if the clutter-to-noise ratio is high enough, the contribution of the second term in
(7.59) may be neglected. At one range, an estimate of Rα is thus obtained by computing

r̂α = W
(
T−1{ᾱᾱ†}d

)∣∣
R

(0)
α
, (7.61)
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where ᾱ is the MAP estimate of α conditioned upon R
(0)
α , i.e., where R̃α = R

(0)
α .

7.5.6.3 Final algorithm

The proposed algorithm thus consists in two steps. The first step estimates ᾱ at each range and
computes r̄α = T−1{ᾱᾱ†}d at each range independently. The second step performs a local
spatial averaging of the estimated scattering coefficients.

7.6 Relationship between the estimation algorithms
The relationship between the different estimation algorithms presented in the previous sections
is now discussed.

7.6.1 Summary of the different algorithms
In the previous sections, four estimation methods were presented:

The Expectation-Maximization estimator of the MLE of Rα (EM), used as a reference is
however the most computer-intensive as it is iterative.

A single iteration of the MLE of Rα (MLE) which is another way of computing the MLE of
Rα.

The MAP estimate of α (MAP) described by (7.22)

r̂α = W{α̂α̂†}d (7.62)

where W is a spatial averaging window and

α̂ = (S†R−1
n S + R̃−1

α )−1S†R−1
n y. (7.63)

The Crude Matched Filter (CMF), described by

r̂α = W{α̂α̂†}d (7.64)

where W is a spatial averaging window and (7.15)

α̂ = D−1S†y. (7.65)

where D is a diagonal normalization matrix.

It is worth noting that the spatial averaging is extended to the two last methods in order to provide
a fair comparison. The motivation of this extension is that rα = {E{αα†}}d and that the expec-
tation operator can be approached by performing a spatial averaging, assuming independence of
the α and local homogeneity. This procedure is commonly used in SAR [132], where single look
complex coefficients are spatially averaged to get an estimate of the scattering coefficients r̂α.
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7.6.2 A single iteration of the MLE of Rα

As shown after the discussion of the performances, the iterative method is such that a single
iteration yields acceptable results.

7.6.3 The MAP estimate of α

While the obtained estimate α̂ is correct, the deduced estimate r̂α lacks the covariance term of
α. More specifically, the estimator r̂α = W{α̂α̂†}d is biased, even if the true value of the
covariance matrix of α is used in the a priori knowledge, which leads to an under-estimation of
the scattering coefficients, as shown in the next section.

7.6.4 The Crude Matched Filter
The crude matched filter is best motivated as an approximation of the MAP estimator [112].
Another interpretation [94] consists in considering that the coefficients rα could be obtained
by performing a spectral analysis of y. This is true as long as the vectors sk are orthogonal
(orthonormality would also solve the problem of determining the normalization factor). Orthog-
onality is only achieved for particular choices of the Doppler and spatial frequencies for each
si. And, additionally, these frequencies are required to be located on the clutter power spectrum
locus. Generally, it is not possible to fulfill these two requirements simultaneously. This lack
of orthogonality introduces cross-product terms and additionally degrades the estimate of the
scattering coefficients. Further, the cross-product terms induce an azimuth-dependent bias.

The CMF (7.15)
α̂ = D−1S†y (7.66)

requires a normalization D. Considering

D = tr(SS†)/NM (7.67)

takes into account the fact that the vectors si are not necessarily normalized as they include the
geometric factors of the radar range equation. Another normalization is proposed in [156]

D =

√
tr(S†SS†S)

tr(F†SS†F)
. (7.68)

This normalization factor is also sensible and indeed actually better reduces the bias, particularly
if the si’s do not have equal amplitudes. However, its computation requires the computation of
the MAP filter F, and thus as much computations as the computation of the MAP estimate itself,
hence voiding the whole point of the CMF. From a practical standpoint it is thus not feasible.
Note that neither [112] nor [94] discuss in detail the normalization factor they consider and this
normalization factor is certainly not the expression given by (7.68).
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7.7 Performance comparison

7.7.1 Influence of the accuracy of the scattering coefficient estimation
This section assesses the influence of a misestimation of the clutter power on the detection per-
formance. Figure 7.3 illustrates the loss in SINR due to a power misestimation of the clutter for
a nominal clutter to noise ratio of 20dB in the case of a monostatic scenario with a ULA. The
figure presents a cut in the SINR loss at νs = 0. The loss is 0 if there is no misestimation. Below
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Figure 7.3: Influence of a misestimation of the clutter power on the SINR loss.

approximately ±5dB of power mismatch between the true clutter power and the assumed clut-
ter power, there is practically no SINR loss. As the SINR loss is always negative, over-nulling
always occurs.

7.7.2 Scenario of interest
The scenario of interest is a bistatic setup where the transmitter is located at the origin and the
receiver is located at (0, 100). The transmitter platform is flying east while the receiver is flying
north. Two cases are considered and illustrated in Figure 7.4. In the first case, omnidirectional
antennas are considered while in the second case, a directive Tx antenna is considered in order to
assess the performance of the method if only a part of the scattering coefficients can be estimated.

The clutter to noise ratio is 20dB. A homogeneous ground cover with scattering coefficients
taken equal to 0dB is first considered in order to assess the performance of the method under
the assumption of a homogeneous clutter. Next, a checkerboard ground cover, with scattering
coefficients switching between +5dB and -5dB, is considered in order to assess the performance
of the method if the homogeneity assumption is not verified.

A separable square Hanning window of length 5 is used for the spatial averaging.
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Figure 7.4: Scenario of interest (a) with omnidirectional antennas and (b) with a directive Tx
antenna.

7.7.3 Comparison of the convergence behavior of the iterative algorithms
First, the convergence of the two iterative algorithms to compute the maximum likelihood esti-
mate of rα and presented in Section 7.5 is analyzed. A homogeneous ground cover is considered.

The initial value of the covariance matrix R
(0)
α is taken equal to rI where r has an offset of

+10dB with respect to the true average value. An overestimation of the initial value of the co-
variance matrix means that little a priori information about rα is introduced. Figure 7.5 presents
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Figure 7.5: Evolution of (a) the mean value, (b) the spatial variance of r
(k)
α and (c) the RMS error

w.r.t. the true value as a function of the iteration number.

different metrics measuring the convergence. Figure 7.5 (a) presents the mean value of the es-
timated scattering coefficient, i.e., the value which would be obtained with a large spatial filter
and which is used to assess the bias of the estimate, since the true value is spatially constant.
Figure 7.5 (b) represents the variance (around the mean) which can be used to assess the spa-
tial homogeneity of the estimate. Figure 7.5 (c) gives the usual RMS value. As the RMS value
combines the bias and the variance around the mean, it is less informative in the case of a homo-
geneous ground cover.
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As shown in Figure 7.5, the MLE solution already yields a very acceptable estimate after the
first iteration. This estimate hardly evolves further, which justifies the use of a single iteration of
the MLE algorithm to estimate rα.

On the contrary, the EM algorithm requires a certain number of iterations before reaching
an acceptable estimate. The overestimation of the initial value of the covariance matrix R

(0)
α

results in an overestimation of the covariance of α (the two last terms of (7.48)) inducing an
overestimation of r

(k+1)
α . The higher the initial value of Rα, the higher this overestimation. In

that case, the algorithm requires more steps before reaching convergence.

7.7.4 Comparison of the scattering coefficient estimation
This section compares the performances of the different estimation methods for different scenar-
ios. The geometric setup is the same as in the previous section.

7.7.4.1 Homogeneous ground cover

First, let us considered a homogeneous terrain, with scattering coefficients of 0dB. The resulting
scattering coefficient maps are illustrated in Figure 7.6. The scattering coefficients obtained using

(a) (b)

(c) (d)

Figure 7.6: Estimated clutter map (homogeneous ground truth) (a) EM algorithm, (b) MLE, (c)
CMF and (d) MAP estimator.
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the MLE and the EM algorithm are relatively uniform. Both provide a very similar scattering
coefficient map. The estimate obtained using the CMF exhibits spatial artifacts, which indicates
that a constant correction factor does not completely compensate the bias. This result is also
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Figure 7.7: Histogram of the obtained scattering coefficients (homogeneous ground truth = 0dB).

visible in Figure 7.7 showing the histogram of the scattering coefficients obtained using the
different methods. The histogram of the CMF is biased and also wider than the histogram of
the MLE and the EM respectively. Finally, the MAP underestimates the scattering coefficients,
as shown in Figure 7.6 and 7.7. Indeed, the covariance of α is neglected in this method, which
induces an underestimation of rα.

7.7.4.2 Directional Tx antenna

This scenario, differing from the previous one, considers a sinc-shaped transmit antenna radia-
tion diagram (without backlobe). The estimated scattering coefficients are shown in Figure 7.8.
The scattering coefficients in the backlobe of the Tx antenna have no influence on the measured
data and, thus, cannot be estimated. The values for those coefficients thus result from the regu-
larization. A similar effect occurs for the coefficients located in the zeros of the antenna diagram,
which is clearly visible in Figure 7.8 (a) where the values of the coefficients are partly imposed
by the initial value of the covariance matrix. In the case of the MLE, the value of these coeffi-
cients is forced to zero by the use of the MAP estimate. The effect of the antenna diagram is also
visible in Figure 7.8 (d) where the regularization forces to small values the coefficients which do
not contribute to the received signal.

Furthermore, clearly, the CMF fails to provide a useful estimate. The CMF is directly affected
by the antenna diagram through the factor ci representing the geometric effects. By following a
similar reasoning as in the previous sections, a similar expression to the CMF has been used [94]
to obtain an estimate of E{|αici|2}.
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(a) (b)

(c) (d)

Figure 7.8: Estimated clutter map (directional Tx antenna diagram) (a) EM algorithm, (b) MLE,
(c) CMF and (d) MAP estimator.

7.7.4.3 Non homogeneous ground cover

This new scenario considers non-uniform scattering coefficients with a difference of 10dB be-
tween the high and low scattering coefficients. This value is typically observed between (monos-
tatic) ground backscattering and monostatic backscattering by the sea-surface in C-band [138], a
demanding scenario in STAP. As illustrated in Figure 7.9, despite the non-uniformity, the pattern
is still easily recognizable. Moreover, the histogram of Figure 7.10 is clearly bimodal with peaks
around -5dB and +5dB, i.e., the exact values in the case of the EM and the MLE estimators. The
MAP estimator underestimates the scattering coefficients. Although the pattern is still present in
the CMF estimate, the corresponding histogram does not exhibit the bimodality, which denotes
a large estimation error.

7.8 End to end performance
The end to end performance are assessed by comparing the SINR loss of the filters

ŵ = kR̂−1s (7.69)
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(a) (b)

(c) (d)

Figure 7.9: Estimated clutter map (checkerboard ground truth, i.e., non homogeneous) (a) EM
algorithm, (b) MLE, (c) CMF and (d) MAP estimator.

−20 −10 0 10 20 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

rα (dB (normalized))

# 
of

 c
oe

ffi
ci

en
ts

 

 

MLE

CMF

EM

MAP

Figure 7.10: Histogram of the scattering coefficient (checkerboard patterned scattering coeffi-
cients with ±5dB).

where R̂ is the estimated covariance matrix obtained by replacing Rα by the estimated scattering
coefficients R̂α in (7.5). The optimum filter, w = kR−1s where R is the clairvoyant covariance
matrix is used as reference. The scenario of interest is described in Section 7.7.2 and considers a
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homogeneous ground cover as well as a directional Tx antenna diagram. Figure 7.11 (a) shows
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Figure 7.11: SINR loss (a) due to the optimum filter and (b) comparison of SINR for the filter ŵ
computed using the different estimates of Rα (cut at νs = 0.15).

the SINR loss of the optimum filter. As expected, the SINR loss is concentrated around the
clutter power spectrum locus. The “modulation” of the SINR loss is due to the Tx antenna
pattern, and in particular, as the backlobe signal is totally absent, it does not cause any loss.
Figure 7.11 (b) shows a cut in the SINR loss for the filter ŵ computed using different estimates
of Rα. The cut is taken at νs = 0.15. The MLE and MAP methods prove to perform nearly as
well as the optimum filter. Figure 7.12 presents the SINR losses with respect to the optimum
filter, i.e., the additional SINR loss due to the use of an estimated clutter covariance matrix in
place of the clairvoyant covariance matrix (see the first factor of (4.104)). The SINR loss, if
the MLE method is used, is smaller than 0.5dB as this method actually provides an accurate
estimate of the scattering coefficients. The underestimation of the scattering coefficients by the
MAP method causes a larger SINR loss which however remains below 3dB. On the other hand,
the CMF method, which overestimates the scattering coefficients causes a very large SINR loss,
up to 15dB around the direction of the main beam of the Tx antenna, which clearly illustrates
the need for an accurate estimation of the scattering coefficients. Finally, the SINR loss of the
(diagonally loaded) sample matrix inversion is illustrated in Figure 7.12 (d) as a comparison.

7.9 Feasibility of joint estimation of the clutter map from sev-
eral radars

If the scattering coefficients α are isotropic, i.e. identical regardless of the look angle and the
incidence angle, the formulation (7.3) can be extended to take into account observations of the
same clutter patch from several radars, possibly at different ranges.

However, the isotropic assumption is far from being verified in practice. For instance, [12]
reports up to 10dB azimuthal variations with sensors with a very coarse spatial resolution. A
possible solution consists in taking into account the incidence angle effects by using for instance
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Figure 7.12: SINR losses with respect to the optimal filter if the scattering coefficients are esti-
mated using (a) the MLE method, (b) the MAP method, (c) the crude matched filter method and
(d) the loaded sample covariance matrix.

the model of Section 3.5.2.2 and by estimating the parameter γ0 instead of the scattering coeffi-
cient σ0. More generally speaking, one possibility to obtain isotropic quantities consists in using
the underlying geophysical quantities. Over land, this could be the soil type, cover and moisture
[131]. Over oceans, this could be the salinity, the wind speed and the wind direction [68, 69].
And over ice, this could be the ice type and the ice age [27, 35].

There are actual systems which use a sort of multistatic measurement3 to derive some of these
parameters. For instance the wind speed and the wind direction over oceans are operationally
derived from measurements in three different directions [40, 69, 125]. Similarly, the ice infor-
mation is routinely extracted from measurements in three different directions [28, 49]. However,
given the complexity of these inversion algorithms [35, 69], the estimation of the geophysical
parameters does not seem realistic in the context of the estimation of the scattering coefficients
for moving target detection. Moreover, these models are typically highly non linear and the de-
velopments in this chapter assumed a linear model. The accuracy of the models used to perform
the inversion is typically much lower than 0.1dB. As a pragmatic approach, approximated mod-
els might be considered since an accuracy of 1dB is probably reasonable in a context of moving
target detection.

3Actually, several monostatic measurements with different look angles.
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Chapter 8

Conclusions and perspectives

8.1 Summary and Conclusions
The present thesis has analyzed the issues in performing space-time adaptive processing with
multistatic radars.

8.1.1 Signal modeling
The considered multistatic radar is composed of bistatic radars. The clutter is assumed Gaus-
sian and hence entirely characterized by its covariance matrix. The clutter contributing to two
different bistatic radars is inherently independent. Hence, the clutter covariance matrix of the
multistatic radar can actually be decomposed in a combination of the clutter covariance matrices
of each bistatic radar. A joint estimation of the different clutter covariance matrices is in principle
feasible. Such a joint estimation would imply an estimation of the geophysical parameters based
on existing models. These models are however either only approximative or very complex and
require a demanding inversion process. Accordingly, taking into account the real-time objective
of STAP, a multistatic clutter map estimation is unrealistic.

8.1.2 Multistatic target detection
This chapter presented the detection theory from a Neyman-Pearson point of view. It derived
the test statistic for the Marcum and for the Swerling-I target models for bistatic radars. In both
cases, the sufficient statistic is

|w†
pyp|2 (8.1)

with wp = kR−1
p sp which is the signal-dependent part of the test statistic. Extending this to

multistatic radars shows that the test statistic in the case of the Swerling-I target model is the
incoherent combination of the test statistic of each individual radar.

The performance of the detectors, evaluated first in a bistatic case, is extended further to the
multistatic case. In a simplified multistatic case with Swerling-I target model, detection perfor-
mance proved to increase if the test statistic of individual radars are combined. This effect is
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explained as the result of the diversity gain, as each individual radar observes a different real-
ization of the random complex amplitude of the target echo, by increasing the chance for some
of the radars to achieve a higher signal to noise ratio which ultimately benefits detection. For
the more general case, the deflection coefficient is used as a measure of the “distance” between
the distributions of the test statistic under both hypotheses, which allows to show that a multi-
static radar is actually able to detect targets moving in any direction, which is not possible with
individual monostatic or bistatic radars.

Next, the analysis of the impact of a GLRT detector, which uses the maximum likelihood
estimate of the covariance matrix, makes possible the provision of a rigorous basis for the SINR
loss metric commonly used to assess the loss in detection performance.

Finally, other, non optimum approaches to multistatic target detection are briefly discussed.

8.1.3 Clutter signal covariance matrix
This chapter made an analysis of the clutter covariance matrix in the spectral domain. In the case
of uniform linear arrays (ULA), it is well known that the clutter covariance matrix power spec-
trum exhibits a so-called clutter ridge, i.e., the clutter energy is concentrated along a particular
curve in the 2D spatio-temporal frequency domain. This curve, representing the so-called (2D)
clutter power spectrum locus, is obtained by considering the limiting case of an infinite resolu-
tion (both in space and in time) continuous antenna. This curve is also known for having a very
complex behavior as a function of the considered particular bistatic configuration. The concept
of clutter power spectrum locus has been generalized to 4 dimensions, which corresponds to the
general case of arbitrary antenna geometries. The effect of the bistatic configuration on the 4D
clutter power spectrum locus are easier to interpret than in 2D. Moreover, it was shown that the
2D clutter power spectrum locus is actually a projection of the 4D curve, which explains the
complex behavior of the 2D curve.

Further, this chapter examined the influence of the sampling, i.e., the spatial sampling due to
the discrete nature of the receive elements and the temporal sampling due to the pulses transmit-
ted by the transmitter (Chapter 6 generalize the temporal sampling). There is a direct relationship
between the power spectrum estimated from the covariance matrix of a — discrete — signal and
the power spectrum of the underlying continuous signal. This result has been used to establish
the formal link between the clutter power spectrum locus and the power spectrum of the clutter
covariance matrix.

The analysis of the range-dependence issue of the clutter statistics was made by analyzing
the range-dependence of the clutter covariance matrix in the spectral domain. And this analysis,
due to the direct link between the power spectrum of the covariance matrix and the clutter power
spectrum locus, was made by examining the behavior of the clutter power spectrum locus as a
function of the range. As a result, by a simple reasoning, it was possible to deduce the conditions
under which there is no range dependence. In all generality, a range-independent power spectrum
requires a static transmitter and a (possibly moving) receiver on the ground. This configuration
has a useful application described in Chapter 6.
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8.1.4 Transmitters of opportunity as signal source
This chapter has developed an optimum detector for signals of opportunity, which, in the absence
of clutter signals, leads to the well-known ambiguity function, which is a characteristic of the
waveform. The notion of ambiguity function has been generalized to the case where clutter is
present at the range of interest. In which case, if the transmitted signal has a unit amplitude, the
optimum filter is obtained by first demodulating the received signal and subsequently applying
the usual generalized matched filter. A method proposed to speed-up the implementation consists
in filtering and down-sampling the demodulated signal prior to performing the spectral analysis.
This method has been extended to the multichannel case. As illustration, end-to-end results are
shown and the feasibility of detection is demonstrated in the case of actual measurements with a
GSM base-station as source of opportunity.

Target detection with signals of opportunity is limited due to the sidelobes of the considered
ambiguity function. A CLEAN-like method to cope with this problem has been briefly discussed.

Finally, this chapter addresses issues arising from the extension to multistatic configurations.

8.1.5 Clutter map estimation
This chapter examines how to obtain a maximum likelihood estimate of the clutter plus noise
covariance matrix needed to compute the filter that yields the detection statistic.

The main issues are the unavailability of enough identically distributed measurements in
order that the sample covariance matrix provides an accurate estimation of the interference-
plus-noise covariance matrix. Next, this chapter reviews the methods proposed in the literature
to cope with the inhomogeneity of the scattering coefficients and the range dependence of the
clutter power spectrum locus. Some of these methods can be interpreted as an estimation of the
scattering coefficients. The most promising methods assume that the geometric configuration
(i.e., position and velocity of the transmit and receive platforms) is known. In this case, the
covariance matrix has a particular known structure and the problem can be recast as a structured
covariance matrix estimation. A method is proposed to exploit this knowledge in a maximum
likelihood framework in order to estimate the scattering coefficients.

Existing methods are shown to be approximations of the exact solution. A sensible and
feasible approximation is proposed and provided accurate scattering coefficients estimates. End-
to-end results are also given in the form of SINR losses. These results show again that the
proposed approximation indeed provides excellent performance.

Finally, this chapter discusses the possibility to extend the method if multistatic measure-
ments are available, and concludes that it is difficult to justify such extensions on theoretical
bases.

8.2 Perspectives
The target detection theory developed in Chapter 4 assumes a Gaussian clutter model. Other
models such as the spherical invariant random processes [165] also known as elliptical contour
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processes [60] should be considered to model the real-world clutter.
The covariance matrix estimation method presented in Chapter 7 assumes a known covari-

ance model, which implies the perfect knowledge of the steering vectors. This might not always
be the case. A first possible approach consists in using measured steering vectors. Alternatively,
an on-line estimation of the parameters, possibly as an extension to [75], can also be attempted.
The regularization implemented as a spatial averaging can be generalized. Indeed, whenever
the clutter is homogeneous, spatially invariant spatial averaging is reasonable. However, in non-
homogeneous clutter, spatially variant averaging taking into account the local contrast, such as
is commonly done in SAR image processing [97] could be used. This can be seen as a gen-
eralization of the non-homogeneity detector where the non-homogeneous clutter range-ring is
discarded while a spatially variant spatial filter would make it possible to discard only the non-
homogeneous clutter patch.

The feasibility of STAP with transmitters of opportunity is demonstrated in the case of a
bistatic radar, which could be extended to multiple transmitters of opportunity. This approach is
perfectly feasible by using GSM base stations as, often, more than one GSM station is visible
at any location. Alternatively, moving sources and a fixed receiver could be considered. Indeed,
usual pulsed radar (Envisat, ERS, ...) could be used as transmitters of opportunity, however with
a low revisit time and a poor ambiguity function. Signals from GPS and Galileo spacecrafts,
having a noise-like characteristic, could also be envisaged. The low power of these signals is
however a major challenge.

The measurements used in Chapter 6 were made with a static receiver. In order to fully
demonstrate the feasibility of STAP with transmitters of opportunity, a moving receiver should
also be considered. Given the discussion in Chapter 5, as long as the receiver is located on the
ground, no range dependence of the covariance matrix is expected, which eases its estimation.

Coupling effects are neglected in this work. This assumption is probably overoptimistic and
should be taken into account. A possible approach [1, 2] consists in modeling the coupling
with the method of moments and in inverting the equation to obtain the incident field, in order
compensating for this coupling.
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Appendix A

Derivation of the isorange equation for
bistatic configurations

In this section, the mathematical expression for the isorange intersection with the flat ground is
derived.

The surfaces of equal round-trip delay are ellipsoids having Tx and Rx as focal points. These
ellipsoids are centered in (xR/2, yR/2, zR/2) and have as semi-major axis a = R/2 and as semi-
minor axis

b =

√(
R

2

)2

−
(
RRT

2

)2

where R is the range under consideration.
Considering a coordinate system centered in the center of the ellipsoid and having an axis r′

aligned with ~RT , an y′ axis perpendicular to the z′ axis and parallel to the xy-plane and a z′ axis
perpendicular to the r′y′-plane, the ellipsoid thus has the following equation(

z′

b

)2

+

(
r′

a

)2

+

(
y′

b

)2

= 1.

The transformation of this coordinate system to a coordinate system centered in the center of
the ellipsoid and having an axis r aligned with the projection of ~RT in the xy-plane, a y′ axis
perpendicular to the r-axis and lying in the xy-plane and a z axis perpendicular to the ry′ plane
are {

z′ = z cos θ − r sin θ
r′ = z sin θ + r cos θ

(A.1)

This yields the following equations for the ellipsoid

z2a
2 cos2 θ + b2 sin2 θ

a2b2
+ r2a

2 sin2 θ + b2 cos2 θ

a2b2
+
y′2

b2
+ rz

(b2 − a2) sin θ cos θ

a2b2
= 1 (A.2)

and the intersection with the plane z = −H − zR/2 is

(H+zR/2)2a
2 cos2 θ + b2 sin2 θ

a2b2
+r2a

2 sin2 θ + b2 cos2 θ

a2b2
+
y′2

b2
+r(H+zR/2)

(a2 − b2) sin θ cos θ

a2b2
= 1

(A.3)
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or adding and subtracting a term

(H + zR/2)
(a2 − b2)2 sin2 θ cos2 θ

a2b2(a2 sin θ + b2 cos θ)

to obtain a perfect square expression yields

(r + r0)
2

A2
1F

+
y′2

b2F
= 1 (A.4)

where

r0 =
(H + zR/2)(a2 − b2) cos θ sin θ

a2 sin2 θ + b2 cos2 θ
, (A.5)

F = 1− (H + zR/2)2((a2 cos2 θ + b2 sin2 θ)(a2 sin2 θ + b2 sin2 θ)− (a2 − b2) cos2 θ sin2 θ)

a2b2(a2 sin2 θ + b2 cos2 θ)
(A.6)

and

A2
1 =

a2b2

a2 sin2 θ + b2 cos2 θ
(A.7)

the expression of this ellipse in the Cartesian coordinates xy is readily obtained using the trans-
formation {

x = r cosφ− y′ sinφ
y = r sinφ+ y′ cosφ

(A.8)

If the ground is assumed flat, (A.4) thus provides the expression of the isorange on the ground.

128



Appendix B

Useful distributions

B.1 Central chi-squared distribution
A central chi-squared distribution with ν degrees of freedom, denoted χ2

ν , is defined as x =∑ν
i=1 x

2
i where xi ∼ N (0, 1) and the xi are independent of each other [82, Chapter 2]. Its PDF

is [82, Chapter 2]

p(x) =


1

2
ν
2 Γ(ν

2
)
x

ν
2
−1e−

x
2 x > 0

0 x < 0

. (B.1)

Its mean and variance are

E{x} = ν (B.2)
var{x} = 2ν. (B.3)

The complement cumulative density function Qχ2
ν
(η) for even ν is given by

Qχ2
ν
(η) = 1− Fχ2

ν
(η) =

∫ ∞

η

p(x)dx = e−
x
2

ν
2
−1∑

k=0

1

k!
(
x

2
)k ν ≥ 2 (B.4)

where Fχ2
ν
(η) is the cumulative density function.

An interesting, particular case arises when ν = 2. In this case, the distribution is known as a
negative exponential distribution with PDF

p(x) =


1

2
e−

x
2 x > 0

0 x < 0
(B.5)

B.2 Non-central chi-squared distribution
A non-central chi-squared distribution with ν degrees of freedom and non-centrality parameter
λ, denoted χ′2

ν (λ), is defined as x =
∑ν

i=1 x
2
i where xi ∼ N (µi, 1) and the xi are independent
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from each other [79, Chapter 28] and [82, Chapter 2]. The non centrality parameter λ is defined
as λ =

∑ν
i=1 µ

2
i . Its PDF is defined by [82, Eq. (2.12)]

p(x) =


1

2

(x
λ

) ν−2
4
e−

x+λ
2 I ν

2
−1(
√
λx) x > 0

0 x < 0
. (B.6)

where Ir(u) is the modified Bessel function of the first kind and order r. Its mean and variance
are

E{x} = ν + λ (B.7)
var{x} = 2ν + 4λ. (B.8)

The non-central chi-squared cumulative density function (CDF) is given by [79, Chapter 28,
eq. (5)]

Fχ′2
ν (λ)(x) =

∞∑
j=0

λj

2jj!
e−

λ
2Fχ2

ν+2j
(x). (B.9)
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Appendix C

Notable relations

C.1 Derivative of Re(αa) and |α|2

As noted in [66, 81], the complex derivative of a real-valued function of a complex variable can
be quite tricky and unintuitive, and is its useful to provide here particular results used in the text.
Without repeating the discussion in [81], let us simply mention that the reason for this trickiness
is the fact that a real-valued function of complex variables is not an analytic function.

Consider a real function L(α) of some complex parameter α = αR + jαI . The definition of
[66] is used here

∂L

∂α
=

∂L

∂αR

+ j
∂L

∂αI

(C.1)

and gives results that are often intuitive with respect to the corresponding real case. Note however
that another definition is given in [81].

Let
L = Re(αa) (C.2)

where α and a are complex numbers and let us compute ∂L
∂α

. We thus have

L = Re(αa) = αRaR − αIaI (C.3)

and hence
∂L

∂α
=

∂L

∂αR

+ j
∂L

∂αI

= aR − jaI = a∗. (C.4)

Similarly, for
L = |α|2 (C.5)

one has
L = α2

R + α2
I (C.6)

and hence
∂L

∂α
= 2α (C.7)

which is consistent with what would have been obtained for real a α.
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C.2 Derivation of the maximum likelihood of a deterministic
unknown α

In this section, the detailed derivation of the maximum likelihood estimation of α given the
measurements

y = αs + xi+n (C.8)

is provided. Let us recall that xi+n is assumed Gaussian with covariance matrix R =
E{xi+nx

†
i+n}.

The likelihood of H1 assuming α deterministic but unknown is

L(H1) = p(y;α,H1) (C.9)

where p(y;α,H1) is given by (4.4)

p(y;α,H1) =
1

πN‖R‖
e−(y−αs)†R−1(y−αs). (C.10)

The likelihood L(H1) and the log-likelihood l(H1) = lnL(H1) have the same maximum. The
log-likelihood can thus be used, yielding

l(H1) = ln
1

πN‖R‖
− (y − αs)†R−1(y − αs)

= ln
1

πN‖R‖
− y†R−1y + 2Re(αy†R−1s)− |α|2s†R−1s.

(C.11)

A necessary condition for α to be the maximum of this function is that its derivative be equal to
zero

∂l(H1)

∂α
= 2(y†R−1s)† − 2αs†R−1s = 0 (C.12)

where the results of section C.1 was used. Hence the maximum likelihood estimate of α is given
by

α̂ =
s†R−1y

s†R−1s
. (C.13)

One verifies easily that the second derivative is always negative and hence that α̂ is indeed the
maximum.

C.3 Computation of the likelihood L(H1) when α is random
The likelihood of H1 assuming α random with known PDF (4.13)

p(α) =
1

πσ2
α

e
− |α|2

σ2
α . (C.14)
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is
L(H1) = p(y;H1) =

∫
D

p(y|α;H1)p(α)dα (C.15)

where the domain of the integral D is C and p(y|α;H1) is given by (4.4)

p(y|α;H1) =
1

πN‖R‖
e−(y−αs)†R−1(y−αs). (C.16)

Hence

L(H1) =

∫
D

p(y|α;H1)p(α)dα (C.17)

=
1

πN‖R‖
1

πσ2
α

∫
D

e
−y†R−1y+αy†R−1s+α∗s†R−1y+|α|2( 1

σ2
α

+s†R−1s)
dα (C.18)

completing the square yields

L(H1) =
1

πN‖R‖
1

πσ2
α

e−y†R−1ye

|s†R−1y|2
1

σ2
α

+s†R−1s

∫
D

e
−

˛̨̨̨
˛̨αq

1

σ2
α

+s†R−1s− s†R−1yr
1

σ2
α

+s†R−1s

˛̨̨̨
˛̨
2

dα (C.19)

and since [38] ∫
D

e−|β|2dβ = π (C.20)

the integral in (C.19) yields

∫
D

e
−

˛̨̨̨
˛̨αq

1

σ2
α

+s†R−1s− s†R−1yr
1

σ2
α

+s†R−1s

˛̨̨̨
˛̨
2

dα =
π√

1
σ2

α
+ s†R−1s

(C.21)

and finally

L(H1) =
1

πN‖R‖
1

πσ2
α

π√
1

σ2
α

+ s†R−1s
e−y†R−1ye

|s†R−1y|2
1

σ2
α

+s†R−1s

. (C.22)
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Appendix D

Alternative expression of the MAP estimate
of α

D.1 Matrix inversion lemma
The matrix inversion lemma states

(A + BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1 (D.1)

where the matrices A, B, C and D have appropriate dimensions and the required inverses are
assumed to exist.

D.2 Alternative expression of the MAP estimate of α

There are two possible expressions for the MAP estimate of α. Showing that these expressions
are equivalent is a classical exercise in estimation theory. However, it is useful to have these
two expression since they can be used to gain insight in some of the estimators developed in
Section 7.5.

The MAP estimate of α is given by (7.22)

α̂ = (S†R−1
n S + R̂−1

α )−1S†R−1
n y (D.2)

where R̂α is the matrix providing the prior knowledge about α.
We successively have

α̂ = (S†R−1
n S + R̂−1

α )−1S†R−1
n y (D.3)

= R̂α(R̂−1
α + S†R−1

n S− S†R−1
n S)(S†R−1

n S + R̂−1
α )−1S†R−1

n y (D.4)

= R̂α[I− S†R−1
n S(S†R−1

n S + R̂−1
α )−1]S†R−1

n y (D.5)

= R̂αS
†[R−1

n −R−1
n S(S†R−1

n S + R̂−1
α )−1S†R−1

n ]y (D.6)

= R̂αS
†(SRαS

† + Rn)−1y (D.7)

134



where the matrix inversion lemma was used to go from (D.6) to (D.7), and (D.7) is equivalent to
(7.46). In both cases, the current available a priori estimate of the covariance matrix is used. In
the case of the MAP estimator (D.7), the a priori covariance matrix is used and this covariance
matrix denotes the a priori knowledge while, in (7.46), the estimate obtained at the previous
iteration is used.
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