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Jacques.Verly@ulg.ac.be, ries@montefiore.ulg.ac.be

ABSTRACT

We first generalize the concept of clutter power spectrum
locus so that it can be applied to arbitrary antenna arrays.
This locus is a curve in the 4D space of the Doppler fre-
quency and the 3 spatial frequencies. This generalization
is valid for both monostatic and bistatic radar configura-
tions. We show that the customary clutter power spectrum
locus representation in the 2D space of the Doppler fre-
quency and the single spatial frequency used when con-
sidering linear arrays is a projection of the 4D curve. This
projection property furthermore provides a very simple in-
terpretation of the evolution of the 2D clutter power spec-
trum locus in function of the crab angle (angle between
the antenna reference direction and the platform velocity
vector).

We then extend the registration-based clutter range-
dependence compensation method developed in [1, 2] to
arbitrary antenna arrays. Finally, we evaluate the perfor-
mance in terms of SINR loss and show that this method
can achieve near-optimum detection performance.

1. INTRODUCTION

In downlooking airborne radars, echoes from slow-moving
targets compete with clutter returns. Detecting these targets
can be done using space-time adaptive processing (STAP).
This involves computing the optimum filter that filters as
best as possible the interferences (and the noise) out of the
received signal. Computing this filter requires an estimate
of the interference + noise covariance matrix (CM) at the
range of interest. This CM is commonly computed by aver-
aging single-realization sample CM at neighboring ranges.
However, this estimation method requires that the contribut-
ing data snapshots be independent and identically distributed
(IID). Range-varying clutter returns, e.g., due to geometry-

induced non-stationarity, affect the accuracy of the estimated
CM.

When a monostatic sidelooking linear array geometry is
considered, the snapshots at different ranges are typically
identically distributed [3, 4]. However, most bistatic and
non sidelooking configurations lead to a geometry-induced
range-dependent clutter-signal CM [1, 5] even with a linear
array.

Non-linear arrays (i.e., with elements that may not all
be along a straight line) and, in particular, conformal ar-
rays offer major practical advantages over linear arrays. In-
deed, conformal arrays adopt the shape of the carrier thus
maintaining its aerodynamic characteristics. This in turn al-
lows to build larger arrays, thus providing a higher spatial
resolution leading to a smaller minimum detectable veloc-
ity. However, non-linear arrays induce a range-dependent
clutter in most monostatic and bistatic configurations. De-
signing STAP algorithms for non-linear arrays is thus chal-
lenging. STAP applied to circular arrays is considered in
[6, 7] while [8, 9, 10] consider conformal arrays.

The remainder of the paper is organized in the follow-
ing manner. In Section 2, the concept of 2D clutter power
spectrum (PS) locus for linear arrays is reviewed and sub-
sequently generalized to 4D for non-linear arrays. The re-
lationship between the clutter PS locus and the clutter PS
is then deduced. Section 3 discusses the range-dependence
of the clutter statistics. In Section 4, the range-dependence
compensation method presented in [1, 2] is reviewed and
generalized to non-linear arrays. Finally, Section 5 presents
the performance of the proposed range-dependence com-
pensation method in terms of SINR loss and compares it
to that of the optimum processor.



2. 4D CLUTTER POWER SPECTRUM

2.1. Power spectrum locus

We first consider a continuous space-time random signal
field x(r, t) with zero mean. This signal is defined in the
4D space of the 3 spatial coordinates r = (x, y, z) and
the time t. Assuming the signal is wide-sense stationary
in space and in time, its covariance function takes the form

ρ(∆r, ∆t) = E{x(r, t)x∗(r −∆r, t − ∆t)}. (1)

The 4D PS of the signal x(r, t) is defined as the Fourier
transform (FT) of its covariance [11, 12]

P (k, ω) =

∫∫∫∫
∞

−∞

ρ(∆r, ∆t)e−j(k·∆r+ω∆t)d∆rd∆t,

(2)
where k = (kx, ky, kz). This PS can be interpreted as rep-
resenting the energy of the plane waves with temporal fre-
quency ω and arriving from direction k [11, 12].

We now consider the signal components due to the clut-
ter. The clutter is modeled as the superposition of a large
number of independent clutter sources [3, 9] located along
the isorange of interest. Range ambiguities are neglected.
Each clutter patch contributes a signal corresponding to a
distinct direction of arrival k. Hence, the signal from each
clutter patch will correspond to a distinct point in the spatio-
temporal frequency domain (k, ω). This can be thought
of as if the isorange in the 3D spatial domain was imaged
into another curve in the 4D frequency domain (k, ω). For
this reason, we will call this 4-dimensional curve in the fre-
quency domain the 4D clutter power spectrum (PS) locus.
Notice that this curve is independent of the characteristics
of the antenna. Figure 1 illustrates the 4D clutter PS locus.
The representation consists of two graphs1. The first graph
is a projection in the 3D space (kx, ky, ω), while the second
graph is a projection in the 3D space (kx, ky, kz) of the spa-
tial frequencies. Since the norm of k is constant, the latter
representation of the projection of the 4D clutter PS locus
yields a curve on a (3D) sphere.

The correlation function

ρ(∆r, ∆t) = ρ(∆x, ∆y, ∆z, ∆t) (3)

corresponds to all possible vector lags ∆x, ∆y and ∆z in
3D (x, y, z) space. To measure such lags, we need a 3D
antenna. (At this point, we do not worry about sampling
x(r, t): we imagine that we can measure ρ for all possible
3D spatial lags.) Now imagine that we can only measure the

1The coordinate system in the graphs was normalized. The relation
between the normalized spatial frequency vector νs = (νsa, νsc, νsv) and
the wavenumber vector k is νs = k

λ

2π

1

2
, where λ is the wavelength at the

carrier frequency. The relation between the normalized Doppler frequency
νd and the Doppler pulsation ω is νd = ω PRI

2π
, where PRI is the pulse

repetition interval.
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Figure 1: 4D clutter power spectrum locus: wing-to-wing
formation (upper row); in-trail formation (lower row).

vector lags (∆x, 0, 0), i.e., those aligned with the x-axis.
(once again, we don’t worry about sampling.) Then, instead
of being able to “measure” ρ(∆r, ∆t), we can now only
measure ρ(∆x, ∆t). Let us denote the 2D FT of ρ(∆x, ∆t)
by Pl(kx, ω). Of course, Pl(kx, ω) is nothing, but the 2D
PS commonly encountered in STAP for a continuous linear
antenna. It is thus legitimate to ask whether there is a re-
lation between the 2D function Pl(kx, ω) and the 4D func-
tion P (k, ω). The answer lies in a generalization to 4D of
the conventional 2D projection-slice theorem of computer-
ized tomography [13] (with the domains reversed). Indeed,
the generalized theorem tells us that Pl(kx, ω) is simply the
integral of P (k, ω) along the planes parallel to the plane
ky = kz = 0 and going through each (kx, ω), i.e.,

Pl(kx, ω) =
1

4π2

∫∫
P (kx, ky, kz , ω) dkydkz. (4)

Whereas this relation can easily be proven from first prin-
ciples, the power of the theorem lies in the fact that it also
applies to any orientation of the linear antenna in space.

In the case of a linear antenna, we know that a real 2D
clutter PS exhibits a so-called clutter ridge and that in the
limit for an infinitely long antenna and for a continuous
wave, the 2D PS is concentrated on a 2D curve. This curve
which can also be obtained by physical reasoning, is called
angle-Doppler curve, direction-Doppler (DD) curve or (2D)
clutter PS locus [1, 3, 9, 14]. This curve is also called the
clutter ridge by abuse of language. The shape of this 2D
clutter PS locus varies in a complex way with changes in
the geometric configuration [1, 5, 15]. Examples are shown
in Fig. 2. The notion of 2D clutter PS locus immediately
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Figure 2: 2D clutter power spectrum locus for different ge-
ometries and at different ranges.

extends to 4D.
Pl(kx, ω) (a function) being the projection of P (k, ω),

it immediately follows that the 2D clutter PS locus (a curve)
is the projection of the 4D clutter PS locus. In other words,
once we know the 4D clutter PS locus in (k, ω) space, we
can immediately obtain its 2D counterpart in any 2D plane,
e.g., that corresponding to (kx, ω), which is the customary
2D clutter PS locus. Therefore, many of the complex be-
havior can now be understood in terms of the projection of
the 4D clutter PS locus on a 2D plane.

For example, the effect of a non-zero crab angle (angle
between kx and the velocity vector assumed horizontal) on
the 2D clutter PS locus is difficult to interpret, while it sim-
ply results in a rotation of the 4D clutter PS locus around
the kz axis as illustrated in Fig. 3.

2.2. Sampling

In real radar systems, only samples x(rn, tm) of the signal
field x(r, t) are available. The temporal samples tm cor-
respond to the time at which the pulses are emitted. For a
constant PRI, one has tm = mPRI . The spatial sampling
correspond to the actual location of the array elements. For
a uniform linear array (ULA) aligned with the x-axis, one
has rn = nd1x where d is the distance between two adja-
cent antenna elements and 1x is a unit vector aligned with
the x-axis. The set of N ×M samples of a particular range
gate, measured at the N antenna elements resulting from the
M pulses is called a snapshot and usually put in the form of
a lexicographically-ordered vector x.

The covariance matrix R of the random vector x can be
computed. It should be noted that the covariance matrix will
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Figure 3: 2D and 4D clutter power spectrum locus2. The
graphs in the upper row are drawn for a scenario with a crab-
angle of 0o while the graphs of the lower row are drawn for
the same scenario, but with a crab-angle of 10o.

exhibit the usual Toeplitz-block-Toeplitz structure only if a
ULA and a constant PRI are considered.

The PS of the signal x can be estimated from the co-
variance matrix of x using, e.g., the Fourier transform or
the minimum variance estimator (MVE) [11, 12]. If the
clairvoyant covariance matrix is used, the estimation error
will only be due to the fact that a finite number of samples
was available to perform the PS estimation. An additional
source of estimation error occurs if an estimate of the co-
variance matrix is used instead of the clairvoyant one. To
simplify the discussion, we will consider that the clairvoy-
ant covariance matrix is used in the remainder of this sec-
tion.

In [12] and in the case of the two spectral estimator men-
tioned in the previous paragraph, it is shown that the esti-
mate of the PS of x from x is directly related to the PS of
the continuous space-time signal x(r, t) through a convo-
lution with a kernel. This kernel depends on the location
of the space-time samples and on the particular PS estima-
tion method used. In the case of the MVE, the kernel is
translation-variant. The fact that the PS of x estimated from
x is the convolution of the PS of x with a kernel provides
the formal link between the clutter PS locus described in
the previous section and the estimate of the clutter PS ob-
tained from sampled data. This is illustrated in Fig. 4 where
the convolution kernel corresponding to the MVE and a 12
elements circular antenna is shown together with the corre-

2The 4D clutter PS locus is actually depicted as a projection in the 3D
(νd, νsa, νsc)-space.



(a) (b)

Figure 4: (a) Convolution kernel (in grayscale) linking the
MVE PS based on x and the PS of x. (b) Comparison be-
tween the clutter PS (grayscale) and the clutter PS locus
(blue line) for a 12 elements circular antenna.

sponding clutter PS. As can be seen, the clutter PS is indeed
concentrated along the clutter PS locus. Similarly, Fig. 5
shows the convolution kernel and the clutter PS in the case

(a) (b)

Figure 5: (a) Convolution kernel (in grayscale) linking the
MVE PS based on x and the PS of x. (b) Comparison be-
tween the clutter PS (grayscale) and the clutter PS locus
(blue line) for a 12 elements ULA.

of a ULA. As was to be expected, in the latter case the
clutter PS does not depend on the cross-track and vertical
spatial-frequency components. It only varies with kx and ω.

3. RANGE-DEPENDENCE OF THE CLUTTER
POWER SPECTRUM

For monostatic scenarios and for most bistatic scenarios, the
4D clutter PS locus will depend on the range considered.
Figure 6 illustrates this for a bistatic scenario and Fig. 7
for a monostatic scenario. For monostatic scenarios, the 4D
clutter PS locus resides an a 3D hyperplane. The conse-
quence is that the projection of the clutter PS locus on a
suitably oriented 2D plane yields overlapping straight lines
at any range. This happens when the considered 2D plane
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Figure 6: Evolution of the 4D clutter PS locus for increasing
range in the case of a wing-to-wing bistatic scenario.
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Figure 7: Evolution of the 4D clutter PS locus for increasing
range in the case of a monostatic scenario.

is oriented parallel to the platform velocity vector. This in-
deed means that the linear antenna must be parallel to the
velocity vector.

The conditions under which the 2D PS locus is indepen-
dent of the range are derived in [16] in the case of an ULA,
a uniform PRI, and a horizontal velocity. This derivation is
based on an explicit expression of the equations of the 2D
clutter PS locus. From the 4D clutter PS locus, we can ar-
rive at the same conclusions by a simple argument. First, we
consider the spatial frequencies. For the clutter PS locus to
be independent of range, the curves at different ranges need
to overlap in the 3D space of the spatial frequencies. Since
the elevation of points along the curves in the 3D space of
the spatial frequencies only depends on the elevation angle
at which the scatterers along the isoranges are seen from
the receiver, overlap in the 3D space of the spatial frequen-
cies occurs if and only if the receiver is on the (flat) ground.
In this case, the scatterers are seen at an elevation angle of
zero regardless of range. Second, we consider the Doppler
frequency. We require that the Doppler frequency corre-
sponding to a particular spatial frequency be independent of
range. In a configuration where the receiver is located on the
ground, the Doppler frequency shift due to the receiver ve-
locity will be constant along radial lines from the receiver.
The only configurations for which the Doppler frequency
shift induced by the transmitter velocity is independent of
range is either



• when the transmitter is static (including no vertical
velocity component), in which case this Doppler fre-
quency is zero and hence independent of range, or

• when the transmitter is located on the ground and at
the same location as the receiver, in which case the
Doppler frequency only depends on the transmitter
azimuth angle (and on the transmitter velocity) which
is independent of range. Notice that in this case, the
velocity of the transmitter may be different from that
of the receiver.

In the case where the 4D clutter PS locus depends on
range, an estimate of the clutter CM using the sample CM
will be biased since the averaged snapshots will not be iden-
tically distributed. This is illustrated in the case of a 12-
elements circular antenna in Fig. 8, where the clutter PS es-
timated from the sample CM is presented. As can be seen,

Figure 8: MVE clutter PS estimated from the sample CM.

the PS significantly deviates from the true clutter PS esti-
mate based on the clairvoyant CM depicted in Fig. 4.

4. RANGE-DEPENDENCE COMPENSATION

The registration-based range-dependence compensation
method (RBC) described in [1, 2] and developed for a ULA
will now be generalized to arbitrary antenna arrays. The
original method relies on the registration of the 2D clutter
PS locus at the different ranges and consists of three steps:

1. An analysis step, where the 2D PS of the snapshot at
each range is independently computed along the 2D
clutter PS locus at the corresponding range.

2. A registration step, where the 2D PS at different
ranges are averaged along so-called flow lines.

3. A synthesis step where the covariance matrix at the
range of interest is synthesized from the 2D PS along
the 2D clutter PS locus at the range of interest.

Given the discussion of the 4D clutter PS locus in Sections 2
and 3, the generalization consists (a) in performing the anal-
ysis along the 4D clutter PS locus at each range and (b) in
performing the synthesis along the 4D clutter PS locus at the
range of interest. This generalization allows one to apply
this method to any antenna array and any scenario, includ-
ing that of the monostatic ULA. Figure 9 shows the clutter
PS estimated using this method in a bistatic scenario with a
12 element circular array.

Figure 9: MVE clutter PS from the CM estimated using the
proposed method.

5. RESULTS

The quality of the estimated interference+noise covariance
matrices can be measured by the SINR loss [3]. Figure 10
shows the SINR loss obtained using the proposed method
(RBC). For comparison, the performance of the optimum
processor (OP) and that of the sample matrix inversion
(SMI) are also shown. The training set for the RBC and
SMI methods contained 129 snapshots. The performance of
the proposed methods is very close to that of the OP. Due
to the range-dependence of the clutter PS, the SMI causes
overnulling (signal cancellation).

6. CONCLUSIONS

The concept of correlations and PS in STAP were general-
ized from 2D (linear antenna) to 4D (non-linear antenna).
We show that the 2D PS is the projection of the 4D PS. This
is a direct consequence of the projection-slice theorem well
known in computerized tomography. The same projection
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Figure 10: Comparison of the SINR loss of the registration-
based compensation (RBC) method with that obtained using
the optimum processor (OP) and the sample matrix inver-
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property holds between the 2D clutter PS locus and the 4D
clutter PS locus. This property provided insight into the be-
havior of the 2D clutter PS locus. In particular the effect of
crab angle can be modeled as a rotation in the 4D spectral
domain.

The registration-based range-dependence compensation
method of [1, 2] was generalized to non-linear arrays using
the 4D clutter PS locus. Finally, the performance of the pro-
posed range-dependence compensation method was evalu-
ated in terms of SINR loss and found to be very close to that
of the optimum processor.
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