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Iterative waterfilling algorithm with
sub-channel selection for the coexistence of
multiple cognitive tactical radio networks

Vincent Le Nir, Bart Scheers

Abstract—In 2002, the work of Yu et al. has shown that
the distributed power control problem in a frequency selective
interference channel can be modeled as a non-cooperative game
and can be solved efficiently by the iterative waterfilling al-
gorithm (IWFA). The convergence of the algorithm has been
initially established for two users and later extended to any
number of users in a digital subscriber line (DSL) scenario.In
a wireless scenario, multiple Nash equilibrium solutions exist
and no theoretical proof of convergence can be obtained. In
this paper, we study the convergence behavior of the IWFA in
parallel Gaussian quasi-static Rayleigh interference channels for
the coexistence of multiple cognitive tactical radio networks. We
investigate the addition of expert rules to the networks, more
specifically the opportunity to select a subset of contiguous sub-
channels. In this case, the networks can allocate power only
over a subset of the available sub-channels, thereby limiting
the maximum number of sub-channels needed for transmission.
Moreover, the networks can only choose a group of contiguous
sub-channels. A first advantage is to lower the complexity ofthe
IWFA by allocating power only over a subset of the available
sub-channels. A second advantage is to lower the complexityof
the physical layer in the case of a multi-carrier waveform with
non-overlapping sub-channels. A third advantage is to givethe
networks more facility to avoid each other for high target rates
and to improve the convergence of the IWFA in wireless channels.
Without loss of generality, the sub-channel selection can also be
applied to various variants of the IWFA.

Index Terms—Iterative waterfilling algorithm, interference
channels, sub-channel selection

I. I NTRODUCTION

The distributed power control problem in a frequency selec-
tive interference channel has been introduced by Yu et al. [1].
This problem can be modeled as a non-cooperative game and
can be solved efficiently by the iterative waterfilling algorithm
(IWFA). The existence and uniqueness of the Nash equilibrium
has been established for two users in a digital subscriber lines
(DSL) scenario which exhibits diagonal dominant channel
conditions. In [2], the distributed power control problem has
been reformulated into an equivalent linear complementary
problem (LCP), proving the linear convergence of the IWFA in
a DSL scenario for arbitrary symmetric interference environ-
ment as well as for diagonally dominant asymmetric channel
conditions with any number of users. However, in a wireless
scenario in which the channel gains of the interferers could
be as high as the channel gains of the direct link, multiple
Nash equilibrium solutions exist and no theoretical proof of
convergence can be obtained. Moreover, the initial assumption
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of quasi-static fading channels might be no longer valid in a
wireless scenario, therefore robust versions of the IWFA have
been introduced in [3], [4] by considering imperfect channel
and noise variances information. Simulation results were made
under diagonal dominant channel conditions to guarantee the
existence and uniqueness of the Nash equilibrium.

In this paper, we study the convergence behavior of the
IWFA in parallel Gaussian quasi-static Rayleigh interference
channels for the coexistence of multiple cognitive tactical radio
networks. For instance, parallel channels represent multiple
orthogonal sub-carriers as used in orthogonal frequency divi-
sion multiplexing (OFDM), or multiple non-overlapping sub-
channels. We assume that the links between the transmitters
and the receivers exhibit quasi-static fading, i.e. in which the
coherence times of the fading channels are larger than the
time necessary to compute the algorithm. Such an assumption
is motivated by the fact that tactical radio networks using
VHF and low UHF bands exhibit long coherence times for
low mobility patterns. It is observed that the IWFA shows a
good convergence behavior for low target rates but sometimes
fails to converge for high target rates. This difficulty is inherent
to IWFA because at each iteration some power is poured in
the best sub-channels regardless of the interference caused to
the other networks, while they have a better benefit avoiding
each other by taking different sub-channels. However, an
optimal multiple access scheme would require some level of
coordination in a centralized approach. This motivates the
addition of expert rules to the networks, more specifically the
opportunity to select a subset of contiguous sub-channels.In
this case, the networks can allocate power only over a subset
of the available sub-channels, thereby limiting the maximum
number of sub-channels needed for transmission. Moreover,
the networks can only choose a group of contiguous sub-
channels. A first advantage is to lower the complexity of the
IWFA by allocating power only over a subset of the available
sub-channels. A second advantage is to lower the complexity
of the physical layer in the case of a multi-carrier waveform
with non-overlapping sub-channels. A third advantage is to
give the networks more facility to avoid each other for high
target rates and to improve the convergence of the IWFA in
wireless channels. Without loss of generality, the sub-channel
selection can also be applied to the robust versions of the
IWFA for parallel Gaussian interference channels [3], [4] and
to the IWFA for parallel Gaussian broadcast channels with
only common information [5], [6], [7].

This paper is organized as follows. First, the system model
is presented in Section II. The IWFA is presented along with
the ability to select a subset of contiguous sub-channels at
each iteration of the inner loop. Extensive simulation results
are provided in Section III for the classic IWFA and the IWFA
with sub-channel selection. Finally, Section IV concludesthe
paper.

II. SYSTEM MODEL

The coexistence of multiple cognitive tactical radio net-
works is shown on Figure 1. Each network is composed
of one transmitter and one receiver. The transmission range
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Fig. 1. Scenario considered for the coexistence between tactical radio
networks

is represented by the gray area around the transmitter. The
different networks can interfere with each other, causing trans-
mission losses if dynamic spectrum management techniques
are not implemented. Our goal is to alleviate this problem by
equipping each terminal with an algorithm which gives the
possibility to optimize its transmission power for each sub-
channel. We assume that the links between the transmitters
and the receivers exhibit quasi-static fading, i.e. in which the
coherence times of the fading channels are larger than the
time necessary to compute the algorithm. Such an assumption
is motivated by the fact that tactical radio networks using VHF
and low UHF bands exhibit long coherence times for low
mobility patterns. The received signalsyj,i can be modeled
as

yj,i = hi,jjxij +
N∑

k 6=j

hi,jkxik + nij i = 1 . . .Nc,

j = 1 . . .N,

(1)

whereNc is the number of sub-channels,N the number of
networks,nij the complex noise with varianceσ2

ij for network
j on sub-channeli, xij the transmitted signal for networkj
on sub-channeli, and hi,jk the complex channel coefficient
from networkk to j on sub-channeli.

A. Classical IWFA

We consider the maximization of the sum rate subject to a
total power constraint per network

max
φ

N∑

j=1

Rj(φj
)

subject to
Nc∑

i=1

φij = P tot
j ∀j

(2)

with

Rj(φj
) = ∆f

Nc∑

i=1

log2(1 +
|hi,jj |

2φij

Γ(σ2
ij +

∑

k 6=j

|hi,jk|2φik)
) (3)

and φ the power allocation among all sub-channels and net-
works, φ

j
the power allocation among all sub-channels for

networkj , φij = E[|xi|
2] the variance of the input signal on

sub-channeli for network j, P tot
j the total power constraint

for network j, ∆f the sub-channel bandwidth, andΓ the
SNR gap which measures the loss with respect to theoretically
optimum performance [8]. Maximization of the sum rate
subject to a total power constraint per network in a centralized
algorithm is an extensive task, since it requires the knowledge
of the sub-channel gains from any transmitter to any receiver
|hi,jk|

2 ∀i, j, k. Although sub-optimal, a distributed algorithm
only requires the knowledge of the sub-channel gains from
a transmitter to its own receiver (|hi,jj |

2, ∀i, j), as well as
noise variances of its receiver estimated by spectrum sensing
(σ̃2

ij = σ2
ij +

∑

k 6=j

|hi,jk|
2φik). The distributed algorithm called

IWFA iteratively updates the power allocation of each network
while considering all other network’s crosstalk as noise [1].
This process is updated regularly between all the different
networks until they reach a Nash equilibrium. Finally, an outer
loop minimizes the power while maintaining a target rate for
all networks. Note that some more robust IWFA can also
be applied in case of imperfect channel and noise variance
information [3], [4]. In this case the SNR gap is increased
to assure reliable communication under operating conditions
all the time. Considering the classical IWFA, the Lagrangian
function can be written as

L(λ, φ) =
Nc∑

i=1

(

∆f
N∑

j=1

log2(1 +
|hi,jj |

2φij

Γσ̃2
ij

) −
N∑

j=1

λjφij

)

+
N∑

j=1

λjP
tot
j

(4)
in which λ are the Lagrange multipliers for all networks.
According to [9], the Karush-Kuhn-Tucker (KKT) conditions
of the optimization problem can be solved by taking the
derivative of the Lagrangian function with respect toφij

∂L(λ, φ)

∂φij

=
∆f

ln2

1

Γσ̃2
ij

|hi,jj |2
+ φij

− λj . (5)

Nulling the derivative gives

∂L(λ, φ)

∂φij

= 0 ⇒
1

Γσ̃2
ij

|hi,jj |2
+ φij

= λj

ln2

∆f
︸ ︷︷ ︸

λ̃j

. (6)

The optimal power allocation corresponds to Gallager’s
water-filling strategy for parallel Gaussian channels [10]:

φopt
ij =

[

1

λ̃j

−
Γσ̃2

ij

|hi,jj |2

]+

(7)

B. Classical IWFA with distributed power control

The classical IWFA maximizes the sum rate subject to
a total power constraint per network. In practice we want
to minimize the power subject to a target rate per network.
This can be achieved by distributed power control using the
same power allocation as the classical IWFA [1]. Figure 2
shows the distributed power control for multiple networks.An
inner loop determines iteratively for each network the power
allocation maximizing the rate and satisfying its total power
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constraint. Then, an outer loop minimizes the total powers
of the different networks individually such that a target rate
Rtarget is achieved. Algorithm 1 provides the power allocation
for power minimization subject to a target rate constraint.The
inner loop and the outer loop correspond to lines 2-10 and
1-16 respectively.

Findφopt

1

according to (7)
Findφopt

N

according to (7)

P1 PNPj

Inner loop = Classical IWFA

. . . . . .

. . . . . .

yes
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. . .
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1
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N
) < Rtarget?

P tot
1 ր
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1 ց
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N ր

P tot
N ց

Fig. 2. Distributed power control with IWFA

Algorithm 1 Classical IWFA with distributed power control
1 repeat
2 repeat
3 repeat
4 for j = 1 to N
5 Calculateφopt

ij ∀i according to (7)

6 if
Nc∑

i=1

φopt
ij < P tot

j decreasẽλj

7 if
Nc∑

i=1

φopt
ij > P tot

j increasẽλj

8 end for
9 × times
10 until the desired accuracy is reached
11 for j = 1 to N

12 CalculateRj(φ
opt

j
) = ∆f

Nc∑

i=1

log2(1 +
|hi,jj |

2φopt
ij

Γσ̃2
ij

)

13 if Rj(φ
opt

j
) < Rtarget increaseP tot

j

14 if Rj(φ
opt

j
) > Rtarget decreaseP tot

j

15 end for
16 until the desired accuracy is reached

C. IWFA with sub-channel selection

In this Section, the addition of expert rules to the networks
is investigated, more specifically the opportunity to select a
subset of contiguous sub-channels. In this case, the networks
can allocate power only over a subset of the available sub-
channels, thereby limiting the maximum number of sub-
channels needed for transmission. Moreover, the networks
can only choose a group of contiguous sub-channels. A
first advantage is to lower the complexity of the IWFA by

allocating power only over a subset of the available sub-
channels. A second advantage is to lower the complexity of
the physical layer in the case of a multi-carrier waveform with
non-overlapping sub-channels. A third advantage is to give
the networks more facility to avoid each other for high target
rates and to improve the convergence of the IWFA in wireless
channels.

The sub-channel selection is described as follows. At each
iteration of the inner loop in the IWFA, a network can only
use L contiguous sub-channels, withL ∈ {1, Nc}. In fact,
the networkj chooses the subset of contiguous sub-channels
exhibiting the maximum rate

lopt
j = max

lj
∆f

lj+L−1
∑

i=lj

log2(1 +
|hi,jj |

2P tot
j

LΓσ̃2
ij

) (8)

The optimal subset of sub-channels to be used for network
j is therefore determined by

Aj = {lopt
j , lopt

j + L − 1} (9)

Figure 3 shows the distributed power control for multi-
ple networks. An inner loop determines iteratively for each
network the best subset of contiguous sub-channels and the
power allocation maximizing the rate and satisfying its total
power constraint. Then, an outer loop minimizes the total
powers of the different networks individually such that a target
rate Rtarget is achieved. Algorithm 2 provides the proposed
power allocation for power minimization subject to a target
rate constraint with sub-channel selection. The inner loopand
the outer loop correspond to lines 3-12 and 2-18 respectively.
Note that ifL = Nc, Algorithm 2 reduces to Algorithm 1 and
IWFA with sub-channel selection becomes the classical IWFA
with distributed power control.

The IWFA with/without sub-channel selection are non-
optimal solutions of the centralized problem. Similarly tothe
convergence of the IWFA in non-diagonally dominant channel
conditions, the convergence of the IWFA with sub-channel
selection cannot be proven theoretically. Therefore, the con-
vergence of the IWFA in wireless channels with/without sub-
channel selection will be studied through simulations using
Monte Carlo trials of multiple channel realizations and lo-
cations of the radio nodes and the networks, as well as an
implementation in OMNeT++/MiXiM.
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Fig. 3. Distributed power control with IWFA and sub-channelselection

Algorithm 2 IWFA with sub-channel selection
1 initialize L ∈ {1, Nc}
2 repeat
3 repeat
4 repeat
5 for j = 1 to N

6 lopt
j = max

lj
∆f

lj+L−1∑

i=lj

log2(1 +
|hi,jj |

2P tot
j

LΓσ̃2
ij

)

7 Calculateφopt
ij , i ∈ Aj according to (7)

8 if
Nc∑

i=1

φopt
ij < P tot

j decreasẽλj

9 if
Nc∑

i=1

φopt
ij > P tot

j increasẽλj

10 end for
11 × times
12 until the desired accuracy is reached
13 for j = 1 to N

14 Calculate Rj(φ
opt

j
) = ∆f

l
opt

j
+L−1
∑

i=l
opt

j

log2(1 +

|hi,jj |
2φopt

ij

Γσ̃2
ij

)

15 if Rj(φ
opt

j
) < Rtarget increaseP tot

j

16 if Rj(φ
opt

j
) > Rtarget decreaseP tot

j

17 end for
18 until the desired accuracy is reached

III. S IMULATION RESULTS

For the simulations, the log-distance path loss model is
used to measure the path loss between the transmitter and
the receivers [11]:

PL(dB) = PL(d0) + 10nlog10(
d

d0

) (10)

with n the path loss exponent,d is the distance between the
transmitter and the receiver, andd0 the close-in reference

distance in kilometers. The reference path loss is calculated
using the free space path loss formula

PL(d0) = −32.44 − 20log10(fc) − 20log10(d0) (11)

where fc is the carrier frequency in MHz. The transmitter
and the receivers are placed randomly in a circle area of1
km2. The carrier frequency is chosen to be in the very high
frequency (VHF) band (fc = 80 MHz). The SNR gap for an
uncoded quadrature amplitude modulation (QAM) to operate
at a symbol error rate10−7 is Γ = 9.8 dB. The sub-channel
bandwidth is∆f = 25 kHz, the path loss exponent isn = 4,
reference distanced0 = 0.02 kilometers and thermal noise
with the following expression

σ2
ij = −204dBW/Hz+ 10log10(∆f) ∀i, j. (12)

In the first set of simulations, we compare Algorithm 1 with
Algorithm 2 for the minimization of the power subject to a
target rate constraint, and withN = 2 tactical radio networks
andNc = 2 sub-channels. Sub-channel attenuations are added
to the log-distance path loss model (10) to take into account
the multipath propagation. The complex channel coefficients
of the sub-channels follow a quasi-static Rayleigh fading
model calculated from random complex numbers whose real
and imaginary components are independently and identically
distributed (i.i.d.) Gaussian. The accuracy for the targetrate
is defined as

|Rj(φ
opt

j
) − Rtarget|

∆f
< 10−10 ∀j. (13)

Whenever a realization doesn’t achieve the desired accuracy,
the result of the realization is deleted and considered as an
error (no convergence achieved).

Figure 4 shows the results of the power minimization subject
to a target rate constraint ranging fromRtarget = 2 kbps
to Rtarget = 256 kbps over104 Monte Carlo trials (left
part of the figure) and the corresponding errors in percent-
age (right part of the figure). The IWFA with sub-channel
selection of a single sub-channel (WF1) leads to about 8.9
dB improvement in average compared to the classical IWFA
(WF2) at Rtarget = 64 kbps. This difficulty is inherent to
IWFA because at each iteration some power is poured in
the best channels regardless of the interference caused to
the other networks, while they have a better benefit avoiding
each other by taking different channels. The classical IWFA
shows a good convergence behavior for low target rates but
sometimes fails to converge for high target rates (3.12% errors
at Rtarget = 256 kbps). On the contrary, the IWFA with
sub-channel selection of a single sub-channel shows a good
convergence behavior for high target rates but sometimes fails
to converge for low target rates (6.41% errors atRtarget = 8
kbps). This difficulty is inherent to the sub-channel selection
because at each iteration a new sub-channel can be chosen
regardless of the choices made by the other networks, while
they have a better benefit keeping the same sub-channel. This
effect can be reduced by freezing the sub-channel selection
before reducing the power in the outer loop.
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Fig. 4. Results withN = 2 networks andNc = 2 sub-channels
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Fig. 5. Results withN = 2 networks andNc = 2 sub-channels

Figure 5 shows the results of the same setup (N = 2 and
Nc = 2) with some additional expert rules to reduce the
previous observed effects. For the classical IWFA, the sub-
channels which are active but not participating significantly in
the data rate are switched off. These sub-channels rather cause
interference to the other networks, therefore the sub-channel
i of networkj is canceled whenever the condition

0 < log2(1 +
|hi,jj |

2φopt
ij

Γσ̃2
ij

) <
Rtarget

∆f
× 10−6 (14)

is met. For the IWFA with sub-channel selection, the choice
of the sub-channel satisfying the target rate is kept duringthe
simulation before reducing the power in the outer loop. As
seen on the figure, there are no more errors for the IWFA
with sub-channel selection at a price of an increased power,
and the classical IWFA is able to reduce slightly the number
of errors with similar power results as Figure 4.

In the second set of simulations, we compare Algorithm 1
with Algorithm 2 with N = 2 tactical radio networks and
Nc = 4 sub-channels. Figure 6 shows the results of the power
minimization subject to a target rate constraint ranging from
Rtarget = 2 kbps to Rtarget = 256 kbps over104 Monte
Carlo trials (left part of the figure) and the corresponding errors
in percentage (right part of the figure). The classical IWFA
(WF4) and the IWFA with sub-channel selection of two (WF2)
and three (WF3) sub-channels show similar performance. The
IWFA with sub-channel selection of a single sub-channel
(WF1) has worse performance than the other IWFA for high
target rates but has similar performance as the other IWFA
for low target rates. The IWFA with sub-channel selection
of a single sub-channel sometimes fails to converge for low
target rates (1.54% at Rtarget = 4 kbps) and shows a good
convergence behavior for high target rates. The classical IWFA
shows a good convergence behavior for low target rates but
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Fig. 6. Results withN = 2 networks andNc = 4 sub-channels
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Fig. 7. Results withN = 2 networks andNc = 4 sub-channels

sometimes fails to converge for high target rates (8.57% at
Rtarget = 256 kbps). The IWFA with sub-channel selection
of two and three sub-channels sometimes fails to converge for
low target rates (0.38% and 0.22% respectively atRtarget = 2
kbps) and for high target rates (1.45% and 7.26% respectively
at Rtarget = 256 kbps).

Figure 7 shows the results of the same setup (N = 2 and
Nc = 4) with the same additional expert rules presented for
Figure 5. We can see that freezing the sub-channel selection
reduces the number of errors to zero when one sub-channel has
to be selected. The IWFA with sub-channel selection of two
or three sub-channels take the advantages and disadvantages
from the two expert rules introduced. Therefore, simulation
results show that sub-channel selection does not affect dras-
tically the performance of IWFA and in some cases can lead
to better performance and a better convergence behavior in
wireless channels. This is especially true for IWFA with sub-
channel selection of a single sub-channel showing no errors
of convergence, which could be seen as an enhanced version
of a simple “detect and avoid” strategy.

In the third set of simulations, we compare Algorithm
1 with Algorithm 2 with N = 2 tactical radio networks
Nc = 2 sub-channels by an implementation in the event-driven
simulator OMNeT++/MiXiM. OMNeT++ is an extensible,
modular, component-based C++ simulation library and frame-
work, primarily for building network simulators [12]. MiXiM
is an OMNeT++ modeling framework created for mobile and
fixed wireless networks (wireless sensor networks, body area
networks, ad-hoc networks, vehicular networks, etc.) [13].
In this simulation, we have extended the OMNeT++/MiXiM
implementation of the classical IWFA [14] to the IWFA with
sub-channel selection.

Figure 8 shows the scenario used for the simulation. The
first network is mobile and follows a pre-defined trajectory
with a constant velocityv (about 90 km/h). In this network,
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node 1 broadcasts a common information to node 0 at 64
kbps. The second network remains at the same location
during the simulation. In this network, node 3 broadcasts a
common information to node 2 at 64 kbps. The most critical
configuration is obviously reached when the two networks
are close to each other, and the interference is maximal. The
time interval between two inner loops is set to 0.1s in each
network, while the time interval between two outer loops is
set to 0.5s with power updates of10log10(0.9) ∼ 0.46 dB.
The complex channel coefficients of the sub-channels follow
a quasi-static Rayleigh fading model calculated from random
complex numbers whose real and imaginary components are
independently and identically distributed (i.i.d.) Gaussian. We
assume that the complex channel coefficients of the direct
channels (node 1→ node 0 and node 3→ node 2) do
not change during the simulation as the relative doppler
is zero (coherence timetc = ∞). However, the complex
channel coefficients of the interference channels (node 1→
node 2 and node 3→ node 2) have a relative doppler shift
fd = vfc/c = 6.67 Hz, c being the speed of light. The
coherence times of the complex channel coefficients of the
interference channels are given bytc = k/fd, k begin a
constant value between 0.25 and 0.5. Assuming a quasi-
static Rayleigh fading model for the the complex channel
coefficients of the interference channelsTherefore, they are
updated according to their coherence time everytc = 0.05s.

Figure 9 shows the evolution of the data rate, the total
power and the occupation of the sub-channels versus time of
both networks for the classical IWFA. At the beginning of the
simulation, the total power of both networks is maximal, i.e.
10 W. In this case, the difference between the sub-channel
gains is negligeable compared to the power being waterfilled,
leading to 50% occupation between the sub-channels. As the
power is decreasing and as the networks are getting close to
each others, the first network tends to take the first sub-channel
and the second network tends to take the second sub-channel.

Fig. 8. Scenario used for the simulation

Fig. 9. Data rate, total power and sub-channel occupation for the classical
IWFA with N = 2 radio networks,Nc = 2 sub-channels

However, this transition is a rather slow process and can cause
an increase of the total power and a difficulty to stabilize
the data rate for both networks. As the interference is strong
enough to make both networks choose different sub-channels,
the total power and the data rate converge towards stable values
althoug the sub-channel occupation shows some convergence
issues. These convergence issues are due to the doppler effect
on the sub-channel gains of the interference channels and the
existence of multiple Nash equilibria. Indeed, these channels
are not quasi-static fading channels since their coherencetimes
are lower than the time interval between two inner loops.
When the first network moves away from the second, we also
see an increase of the total power and a difficulty to stabilize
the data rate for both networks.

Figure 10 shows the evolution of the data rate, the total
power and the occupation of the sub-channels versus time of
both networks for the IWFA with sub-channel selection of
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Fig. 10. Data rate, total power and sub-channel occupation for the IWFA
with sub-channel selection of one sub-channel withN = 2 radio networks
andNc = 2 sub-channels

a single sub-channel. It is observed that the data rate and
the total power are very stable for both networks. The first
network takes the first sub-channel while the second network
takes the second sub-channel. In this case, the system is
converging rapidly towards one Nash equilibrium and there
is no more convergence issues due to the doppler effect on
the sub-channel gains of the interference channels.

In the fourth set of simulations, we compare Algorithm 1
with Algorithm 2 with N = 2 tactical radio networks and
Nc = 4 sub-channels using the same scenario. Figure 11
shows the evolution of the data rate, the total power and the
occupation of the sub-channels versus time of both networks
for the classical IWFA. The data rate and the total power shows
better convergence withNc = 4 sub-channels compared to
Nc = 2 sub-channels on Figure 9. Moreover, the averaged
power necessary to achieve the required data rate is lower

Fig. 11. Data rate, total power and sub-channel occupation for the classical
IWFA with N = 2 tactical radio networks andNc = 4 sub-channels

with Nc = 4 thanNc = 2 sub-channels owing to the degrees
of freedom introduced by the sub-channels. However, the
management of the sub-channel powers is more complex as
seen on the figures showing the sub-channel occupation versus
time. Moreover, some convergence issues appear due to the
doppler effect on the sub-channel gains of the interference
channels and the existence of multiple Nash equilibria.

The convergence issues can be reduced using a more robust
IWFA such as [3], [4]. However, these algorithms either trade
performance with robustness or assume a specific distribution
of the error process. In [15], [16], the authors proposed to
heuristically address the impact of such time-varying uncer-
tainty by introducing a memory parameter at each iteration
α ∈ (0, 1] in the calculation of the transmission power levels
φopt

j
(t+1) = (1−α)φopt

j
(t)+αφopt

j
∀j. However, the choice

of the memory parameterα is crucial for the convergence
and there is no method to find the optimal value. Recently,
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Fig. 12. Data rate, total power and sub-channel occupation for the averaged
IWFA with N = 2 tactical radio networks andNc = 4 sub-channels

[17] proposed the averaged IWFA for improved robustness
and convergence, showing that if the memory parameter is

chosen as a time sequenceαt =
1

1 + t
, the transmission

power levels are averagedφopt

j
(T + 1) = 1

T+1

T∑

t=0

φopt

j
(t + 1)

∀j. As shown on Figure 12, the averaged IWFA has better
convergence properties than the classical IWFA. As the outer
loop is executed every 0.5s and the inner loop ever 0.1s, we
chooseT = 4 to avoid averaging across multiple total power
constraints. Indeed, the averaged IWFA is better suited for
maximizing the data rates subject to a total power constraint
(inner loop of the IWFA) than minimizing the powers subject
to data rate constraints (outer loop of the IWFA). Therefore,
each memory parameter sequence should be restarted att = 0
whenever the total power constraint is modified. To average
across multiple total power constraints, we propose to feeda

Fig. 13. Data rate, total power and sub-channel occupation for the circular
averaged IWFA withN = 2 tactical radio networks andNc = 4 sub-channels

circular buffer of lengthT + 1 with the transmission power

levelsφopt

j
(T +i+1) = 1

T+1

T+i∑

t=i

φopt

j
(t+1) ∀i, j. We call this

algorithm the circular averaged IWFA. As shown on Figure
13, the circular averaged IWFA withT = 4 has also better
convergence properties than the classical IWFA and similar
convergence properties as the averaged IWFA.

Figure 14 shows the evolution of the data rate, the total
power and the occupation of the sub-channels versus time
of both networks for the IWFA with sub-channel selection
of a single sub-channel. The first network takes the first
sub-channel while the second network takes the second sub-
channel. The system is also converging rapidly towards one
Nash equilibrium and there is no more convergence issues due
to the doppler effect on the sub-channel gains of the interfer-
ence channels and the existence of multiple Nash equilibria.
One can observe an increased power for both networks of
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Fig. 14. Data rate, total power and sub-channel occupation for the IWFA
with sub-channel selection of one sub-channel withN = 2 tactical radio
networks andNc = 4 sub-channels

about 1 dB in average compared to Figure 12 and 13 because
of the exploitation of a single sub-channel instead of four
sub-channels. Therefore, in order to reduce the power when
a higher number of sub-channelsNc is available, one might
consider to exploit several sub-channels for the IWFA with
sub-channel selection.

IV. CONCLUSION

In this paper, we have studied the convergence behavior
of the IWFA in parallel Gaussian quasi-static Rayleigh in-
terference channels for the coexistence of multiple cognitive
tactical radio networks. We have investigated the additionof
expert rules to the networks, more specifically the opportunity
to select a subset of contiguous sub-channels during the IWFA.
A first advantage is to lower the complexity of the IWFA
by allocating power only over a subset of the available sub-

channels. A second advantage is to lower the complexity of
the physical layer in the case of a multi-carrier waveform
with non-overlapping sub-channels. A third advantage is to
give the networks more facility to avoid each other for high
target rates and to improve the convergence of the IWFA
in wireless channels. In a wireless scenario, multiple Nash
equilibrium solutions of the IWFA exist and no theoretical
proof of convergence can be obtained. Therefore, the con-
vergence of the IWFA with/without expert rules have been
studied through extensive simulation results using Monte Carlo
trials of multiple channel realizations and locations of the
radio nodes and the networks, as well as an implementation in
OMNeT++/MiXiM. Simulation results show that sub-channel
selection does not affect drastically the performance of IWFA
and in some cases can lead to better performance and a better
convergence behavior in wireless channels. This is especially
true for IWFA with sub-channel selection of a single sub-
channel showing no errors of convergence, which could be
seen as an enhanced version of a simple “detect and avoid”
strategy.
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