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Abstract

Bistatic Synthetic Aperture Radars have a physically separated transmitter and receiver

where one or both are moving. Besides the advantages of reduced procurement and

maintenance costs, the receiving system can sense passively while remaining covert

which offers obvious tactical advantages. In this work, spaceborne monostatic SARs

are used as emitters of opportunity with a stationary ground-based receiver.

The imaging mode of SAR systems over land is usually a wide-swath mode such

as ScanSAR or TOPSAR in which the antenna scans the area of interest in range to

image a larger swath at the expense of degraded cross-range resolution compared to

the conventional stripmap mode. In the bistatic geometry considered here, the signals

from the sidelobes of the scanning beams illuminating the adjacent sub-swath are ex-

ploited to produce images with high cross-range resolution from data obtained from a

SAR system operating in wide-swath mode. To achieve this, the SAR inverse problem

is rigorously formulated and solved using a Maximum A Posteriori estimation method

providing enhanced cross-range resolution compared to that obtained by classical burst-

mode SAR processing. This dramatically increases the number of useful images that

can be produced using emitters of opportunity. Signals from any radar satellite in the

receiving band of the receiver can be used, thus further decreasing the revisit time of

the area of interest. As a comparison, a compressive sensing-based method is critically

analysed and proves more sensitive to off-grid targets and only suited to sparse scene.

The novel SAR imaging method is demonstrated using simulated data and real mea-

surements from C-band satellites such as RADARSAT-2 and ESA’s satellites ERS-2,

ENVISAT and Sentinel-1A.

In addition, this thesis analyses the main technological issues in bistatic SAR such

as the azimuth-variant characteristic of bistatic data and the effect of imperfect syn-

chronisation between the non-cooperative transmitter and the receiver.
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Chapter 1

Introduction

1.1 Overview
RAdio Detection And Ranging (RADAR) was used already before World War II in

military applications such as detection and tracking of moving target, and has since

then played an important role in remote sensing applications. In contrast to optical

sensors, a radar imaging system is an active remote sensing system as it provides its

own source of energy to produce an image. Radar does not require sunlight like optical

systems and can thus acquire data either by day or by night. In addition, due to the

specific wavelength of the transmitted signal, cloud cover can be penetrated and radar

imaging is thus also an all-weather instrument [1]. The resolution in the azimuth direc-

tion of both optical and Real Aperture Radar (RAR) systems is limited by the physical

dimension of the antenna aperture. A narrow beamwidth yielding a good azimuth res-

olution requires an impractical large antenna. Synthetic Aperture Radar (SAR) avoids

this requirement by collecting radar returns of a target from different positions. By

processing the return signals, very high resolution in azimuth can be achieved. It was

in the early 1950s that the SAR processing technique to improve the azimuth resolution

of RAR was presented: the concept consists of synthesising a long antenna by virtue of

the relative motion of the platform and the illuminated scene, hence the name synthetic

aperture. The important difference between RAR and SAR is that SAR is a coherent

system that requires the phase of the transmitted pulses to be preserved which really

became practical with the advent of frequency-stable microwave signal sources such as

klystron in the late 1930s.

The first operational SAR appeared in the mid 1950s and the first Earth-viewing



1.1. Overview 29

spaceborne SAR was launched into orbit on the Seasat spacecraft in 1978 [2]. It took

thirteen years before the second spaceborne SAR was put into orbit which was a Euro-

pean Space Agency (ESA) satellite, ERS-1. During all those years, research work on

SAR continued with airborne SARs and Shuttle Imaging Radar (SIR) series. Through

the years, the used optical SAR processors have given way to real-time digital SAR

processors which improved image quality, algorithm efficiency and support different

data collection mode [2].

Phased-array microwave technology was also a key component in the development

of new SAR modes which allows a larger size of the illuminated area such as in the

ScanSAR mode or a better azimuth resolution such as in the spotlight mode. Nowadays

an azimuth resolution of the order of centimetres can be achieved by SAR systems [3].

One of the big challenge in radar imaging is interpreting and extracting informa-

tion from the received signals. This is the area where most of the current effort is taking

place and new areas of application are constantly emerging in both military and civil-

ian areas. Military SAR applications [4] include battlefield reconnaissance or target

recognition and classification. Civilian applications [5] include topographic mapping,

geology, oil spill monitoring, sea ice monitoring, oceanography, agricultural classifica-

tion and assessment, land use monitoring or terrain motion measurement for disaster

prevention.

Bistatic radars are radars in which the transmitter and the receiver are at separate

locations. They have a longer history than SAR systems as the first demonstration of

bistatic radar occurred in the early 1920s [6] when a physical separation between the

antennas was one of the solutions to isolate the sensitive receiver from the high power

continuous wave transmitter. Bistatic radars can operate with cooperative transmitters

which are under control of the user, or non-cooperative transmitters. In the latter case,

the radar is passive as it does not transmit any signals on its own and is called Passive

Bistatic Radar (PBR). Hence, PBRs are basically passive receiver systems [6, Chap-

ter 1]. The transmitting platform may be ground-based such as a Frequency modulation

(FM) radio transmitter [7], a cellphone base station [8], a Digital Video Broadcasting-

Terrestrial (DVB-T) transmitter [9], a television transmitter [10] or space-based such as

the communication satellite Iridium [11], a Global Navigation Satellite System (GNSS)

[12] or a broadcast geostationary satellite [13]. The separation between the transmitter
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and the receiver offers very flexible geometries thanks to which the detection of targets

that may be stealthy for conventional monostatic radars is now possible. Besides, in

a hostile environment, a PBR can remain covert while sensing passively. This flexi-

ble geometry also allows to exploit the forward-scatter region where the Radar Cross

Section (RCS) of any targets near the baseline joining transmitter and receiver may be

substantially increased. This is described by Babinet’s principle [1, Chapter 25].

In addition to enjoying the same benefits as bistatic radar, Bistatic Synthetic Aper-

ture Radar (BSAR), where the transmitter or the receiver or both are moving, allows to

investigate different scattering mechanisms from monostatic SAR and can then com-

plement monostatic images [14, 15]. BSAR has already been conducted in air-air

[16, 17], air-space [18, 19], space-space [20, 21], air-ground [22] or space-ground [23–

26] configurations. An example of permanently operational space-space BSAR system

is the TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X) mission:

TerraSAR-X, a X-band monostatic radar, is augmented by a second similar system in

close orbit for high resolution Digital Elevation Model (DEM) generation [27]. BSAR

can also use transmitters designed for other purpose such as GNSS satellite [28] or

television broadcasting satellite [29]. In this work, monostatic radars have been chosen

as illuminators of opportunity for their high power density at the Earth’s surface, and

the transmission of a purpose designed radar waveform.

The revisit time, i.e. the time interval between SAR images over the same area, is

a paramount parameter in satellite remote sensing. Several techniques have been used

to decrease the time interval between SAR images such as changing the radar modes,

e.g. using a wide-swath mode, a dual-sided imaging which is adopted by RADARSAT-

2, or launching a constellation of several SAR satellites such as the constellation of

Cosmo-SkyMed [30] and of SAR-Lupe. Deploying a ground-based stationary receiver

[23–26, 31], similar to the bistatic system described in this thesis, appears to be the

cost-efficient solution for decreasing the revisit time on the area of interest since signals

from any SAR satellite in the receiving band of the receiver can be used to produce an

image of the area of interest.

Another driving factor in satellite remote sensing is obtaining high cross-range

resolution SAR images which is at the expense of a wide illuminated swath due to

ambiguity constraint [32–34]. During this work, it has been noted through the multiple
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measurement campaigns led at the Royal Military Academy (RMA) in Brussels that

spaceborne SARs usually operate in wide-swath mode which gives priority to a wide-

swath coverage over a high cross-range resolution. The exploitation of those burst-

mode illuminations in a bistatic configuration is then valuable in terms of revisit time.

In this thesis, we studied the possibility to produce high cross-range resolution

images in the case of a wide-swath SAR mode illumination using a ground-based

bistatic receiver. This configuration offers several important advantages.

• It allows to reduce the revisit time on the area of interest.

• This bistatic configuration has a reduced latency. The SAR image obtained from

the bistatic receiver may be indeed distributed more rapidly to the user than would

be the case of the image obtained on-board the monostatic radar.

• It makes the image production system independent of any operators provided the

illuminator of opportunity transmits.

• It has reduced procurement and maintenance costs.

The research community in BSAR imaging mostly limit their analysis to the con-

ventional stripmap mode [16, 17, 23–26]. Examining burst-mode illumination in a

bistatic configuration for high-resolution imaging purposes appears to be the first study

of its kind. Applications of such a system include imaging, interferometry using multi-

ple channels for small-scale area monitoring, like buildings, small urban area or single

hillsides (avalanche or landslide prediction), or DEM generation.

1.2 Original contributions
The main original contributions of this thesis are listed below.

• The synchronisation of the receiver with the non-cooperative transmitter is criti-

cally analysed. The resulting phase errors are assessed and their impact on SAR

imaging evaluated.

• A rigorous SAR focussing formulation based on a Maximum a Posteriori (MAP)

estimation is provided. This formulation is applicable for any sort of radar ge-

ometries (monostatic, bistatic). Then, a justification is provided for the Matched

Filter (MF) based SAR focussing usually performed.
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• A burst-mode resolution enhancement method is derived to perform SAR fo-

cussing in wide-swath modes illumination. The performance of this method are

demonstrated using simulated data and real measurements and are shown to be

better than classical burst-mode SAR processing.

• A comparison is drawn between the burst-mode resolution enhancement method

and a Compressive Sensing (CS)-based method which proves more sensitive to

off-grid targets and only suited to sparse scene.

1.3 Thesis outline
The thesis is split into eight chapters. The chapter following this introduction gives an

overview of the background theory used in this work including basic SAR theory and its

extension to bistatic SAR. Chapter 3 provides the research context relevant to this work

which covers the main technological issues in bistatic SAR such as the synchronisation

with the transmitter, the azimuth-variant SAR focussing or the direct-signal interfer-

ence. In Chapter 4, the synchronisation issue between the non-cooperative transmitter

and the bistatic receiver is critically analysed. Chapter 5 is dedicated to the novel

concept of exploiting the signal transmitted in the elevation sidelobes to increase the

cross-range resolution. In Chapter 6, we introduce the signal model in the framework of

SAR imaging and develop the novel burst-mode resolution enhancement method used

for the generation of the bistatic SAR images. The analysis of the performance and the

limitations of the burst-mode resolution enhancement method in different burst-mode

illumination such as ScanSAR and TOPSAR is provided. A CS-based method for a

comparison of performance is also critically analysed. In Chapter 7, imaging results

are shown to confirm the success of the novel SAR imaging algorithm in the case of a

burst-mode illumination. Finally, Chapter 8 presents conclusions drawn from the en-

tire research project and future directions and possible improvements of the work are

discussed.
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Background theory

2.1 SAR theory

2.1.1 Principle

A Synthetic Aperture Radar (SAR) is an imaging radar mounted on a moving platform

that uses signal processing to improve the cross-range resolution beyond the limita-

tion of the physical antenna aperture. SAR is thus a combination of radar and signal

processing. In the same way as a conventional radar, electromagnetic waves are se-

quentially transmitted, the targets in the footprint of the antenna reflect the energy back

and the echoes are collected by the receiver. As a result of the pulsed transmission and

platform motion, the scene is scanned in two dimensions. Conceptually, data collection

proceeds as follows: in each radar position, the radar ”stops”, transmits a pulse, records

the echoes from the imaging area, and then advances to the next position. This is com-

monly known as the ’stop-and-go’ assumption [35, Chapter 4]. In other words, the

sensor and the scattering object are assumed to be stationary during the time interval

during which the pulse washes over the target.

A coherent combination of the received signals allows the construction of a virtual

aperture that is much longer than the physical antenna length, La. The SAR image

results from processing the raw data and represents a measure of the scene reflectivity.

2.1.2 Geometry

The general geometry of a spaceborne SAR operating in stripmap mode is presented in

Fig. 2.1. The X-axis is referred to as the across-track or ground range direction. The

Y-axis is referred to as the along-track or azimuth direction and is taken parallel to the
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motion of the radar. The XY-plane is locally tangent to the Earth’s surface. The Z-axis

is chosen perpendicular to the XY-plane and is referred to as the height direction. The

transmitter is usually assumed to move along a straight path with a constant velocity,

V , which is approximately true for a short observation time. The distance between the

sensor position and the point target is defined as the slant range, R, with a minimum

value at closest approach defined as R0. The inclination of the antenna with respect to

the nadir is called the off-nadir angle, θel, which is denoted as the elevation angle.

The SAR instrument moves along its trajectory and sends out pulses at a rate de-

fined by the Pulse Repetition Frequency (PRF). As a result of the pulsed transmission

and platform motion, the scene is scanned in two dimensions and the phase and ampli-

tude of the received echoes are recorded in two dimensions. The first one is defined as

the fast-time (or range-time) dimension, denoted by t; it is associated with propagation

delays between signal transmission and echo reception. The second is defined as the

slow-time (or azimuth-time) dimension, denoted by u; this is used to specify the radar’s

position during array synthesis.

Y

X

δr

δaz

Point Target

R(u)

θel

R0

Z

V

u

Nadir

H

Figure 2.1: Geometry of a monostatic SAR.

Figure 2.2 (a) shows the propagation of a pulse of duration Tp. Also shown is the

Elevation Antenna Pattern (EAP) of the transmit antenna. The minimum and maximum

range lie within the mainlobe of the elevation beam and delimit the swath-width. It is



2.1. SAR theory 35

X

Y

θsq

footprint
Tp

farnearNadir X

Z

(b)(a)

Figure 2.2: (a) Cross-section perpendicular to the flight path (XZ plane) and (b) cross-

section parallel to the Earth (XY plane).

interesting to note that pulsed radar systems suffer range ambiguities, that is, echoes

from pulses transmitted at different times arrive at the receiver simultaneously. In that

case, the range information contained in the echo delay cannot be directly related to a

single transmitted pulse and becomes ambiguous. This effect is relevant to spaceborne

SAR due to the large swath. This can be controlled by the selection of the PRF. Hence,

a constraint on the PRF and a shaping of the EAP can avoid these range ambiguities.

Figure 2.2 (b) shows the illuminated area by the antenna diagram in azimuth. The

extent of the drawn footprint corresponds to the 3 dB beamwidth of the antenna dia-

gram. The squint angle θsq is defined as the angle between the slant range direction and

the look direction of the antenna beam.

2.1.3 The Two-Dimensional signal

For subsequent processing of the data, the received signal is organised as a two-

dimensional data array (range and azimuth) as the SAR data collection scenario im-

plies. The received signal from a given transmitted pulse represents one row of the

SAR echo matrix, SR(n,m). Then, as the sensor moves along its trajectory, more

pulses are transmitted, and the associated echoes are written into successive rows. The

vertical dimension is then the azimuth time instant, m, and the horizontal dimension

the range time instant, n as illustrated in Fig 2.3. The shaded region represents the

duration of the transmitted pulse.
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Figure 2.3: Representation of the SAR data in 2D and illustration of the range cell

migration issue.

2.1.4 Range dimension

2.1.4.1 Linear Frequency-Modulated signal

The performance in the range dimension are measured by the ability to distinguish two

objects separated by some minimum distance which depends on the transmitted pulse.

If a square unmodulated pulse is transmitted, the slant-range resolution is obviously

equal to

δr =
cTp
2

(2.1)

with c and Tp respectively the speed of light and the pulse length of the transmitted

signal. Therefore, to obtain a fine resolution, a short pulse must be transmitted. Howe-

ver, the Signal-to-Noise Ratio (SNR) of the received signal must be high to maximise

the probability of target detection. The SNR can be improved by increasing the aver-

age transmitted power by either raising the peak power (risking an arcing event in the

waveguides of the transmitter) or transmitting a longer pulse and then compressing it to

the desired resolution. This is called pulse compression [35, Chapter 3] and is described

in the following section. A Linear Frequency-Modulated (LFM) pulsed waveform is

commonly utilised for transmission both in RAR and SAR. The transmitted signal in

baseband can be written as

sT (t) =

 ejπαt
2 −Tp

2
≤ t ≤ Tp

2

0 otherwise
(2.2)
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Figure 2.4: Real part of a LFM signal (with ERS-2 parameters) and its phase as a

function of the fast-time.

with α being the chirp rate in Hz/s. The instantaneous frequency f(t) is the derivative

of the phase with respect to time and is given by

f(t) =
1

2π

dφ(t)

dt
= αt (2.3)

It varies in a linear manner over time t yielding the bandwidth

B = αTp (2.4)

Figure 2.4 shows a baseband transmitted pulse and its quadratic phase evolution.

2.1.4.2 Pulse compression

Let us consider sT, the transmitted waveform of a radar. The return from a point target

is a time delayed and attenuated version of the transmitted signal, and is sampled at the

receiver with Ts the sampling period. The sampled echo signal is given by

se = [se(0), se(1), ..., se(n), ..., se(N − 1)]T (2.5)

with se(n) = sT (nTs − τecho)ejωτecho , N being the length of the received signal, τecho

the round-trip time to the target and ω the pulsation of the signal. The exponential

factor represents the propagation phase of the echo signal.

The received signal can be modelled by

sR = xse + q (2.6)
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with sR = [sR(0), sR(1), ..., sR(n), ..., sR(N − 1)]T and with x the unknown complex

reflectivity of the target return. q is the interference plus noise signal that consists of

thermal noise in the receiver front end and of interferences such as reflections of other

scatterers.

Assuming the noise is Gaussian, the problem of extracting x optimally out of the

background noise q is solved by applying the well-known optimal filter [36, Chapter 6]

gopt = γRq
−1se (2.7)

to the received signal vector, sR.

Rq = E
[
qq†
]

is the interference plus noise covariance matrix where E [.] denotes

expectation and † means complex conjugate transpose. gopt maximises the likelihood

of x [37, Chapter 1] if the proportionality constant γ is

γ = (se
†Rq

−1se)
−1 (2.8)

This optimal filter can only be computed if the covariance matrix Rq is known and

invertible.

If only white Gaussian noise is present, the covariance matrix can be written as

Rq = σ2
nI (2.9)

with σ2
n the variance of the white noise and I the identity matrix. The optimal filter

(2.7) becomes

gMF =
se

se†se
(2.10)

which is the Matched Filter (MF). The output of the optimal filter is, then, a scalar

given by the following inner product

x̂ = gMF
†sR (2.11)

It is important to note that the estimation of the reflectivity (2.11) using the

matched filter is optimum for one target in the presence of white noise or for several tar-

gets in different resolution cells. In the presence of colored noise, i.e. if interferences or

other targets are present, the covariance matrix must be computed or estimated [37, 38].

The time invariance of the matched filter (2.11) offers the important advantage to

permit an implementation using a convolution that can be implemented using the Fast

Fourier Transform (FFT).
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2.1.4.3 Range resolution

To study the range resolution, one must look at the ambiguity function [39, Chapter 10]

of the matched filter. Here, the matched filter is a LFM pulse whose ambiguity function

at zero-Doppler (in the time direction) is a sinc (sin(x)/x) function as illustrated in

Fig. 2.5. Note that the ambiguity function in the fast-time direction is a sinc function
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Figure 2.5: Ambiguity function of a theoretical RADARSAT-2 pulse.

only if the amplitude of the MF is rectangular which is not the case in reality due to

e.g. propagation effect in the range dimension. The slant range resolution is governed

by the mainlobe width of the section of the ambiguity function at zero-Doppler and is

given [3, Chapter 1] by

δr =
c

2B
. (2.12)

This parameter is only limited by the bandwidth of the transmitted waveform, B. The

ground range resolution is simply the projection of δr on the ground and is written as

δgr =
c

2B sin(θli)
(2.13)

with θli the local incidence angle which is the angle between the radar beam and the

normal to the Earth’s surface at the particular point of interest. For the sake of simplic-

ity, we assume here that the Earth is locally flat, and hence, that the incidence angle is

equal to the off-nadir angle, θel as defined in Fig. 2.1.
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2.1.5 Azimuth dimension

2.1.5.1 SAR processing

Pulse compression in the range dimension is performed on a pulse to pulse basis and is

used in both RAR and SAR. The essence of the SAR technology appears in the azimuth

direction: it will combine the target’s energy spread in range in the azimuth direction

yielding a SAR image.

The most important relationship in SAR processing is the slant range as a function

of slow-time of a point target with respect to the sensor. Indeed, it determines the

SAR inherent effects such as the modulation of the signal in azimuth direction and the

range cell migration [35, Chapter 5]. As the radar beam passes over the point target,

as in Fig. 2.1, the slant range to the target varies with azimuth time, u. Using the

Pythagorean theorem, the instantaneous slant range can be calculated as

R(u) =
√
R2

0 + V 2u2 (2.14)

with R0 being the range of closest approach from the illuminator to the target, the

corresponding time being defined as the azimuth time origin. In this work, the antenna

beam is assumed to look broadside, i.e. the squint angle is zero, and thus, the Doppler

centroid is equal to zero. Presupposing a linear flight path of the transmitter, the range

history (2.14) is hyperbolic when plotted against azimuth time as illustrated in Fig 2.3.

This hyperbola is known as the range migration curve. Figure 2.6 shows that targets

at a given slant range of closest approach, R0, have the same range history hyperbola,

independently of their azimuth position. Note that the shape of the hyperbola changes

as a function of R0: targets at longer ranges are characterised by a hyperbola whose

curvature is smaller.

One can expand (2.14) into a Taylor series around the point u = 0 (the slant range

of closest approach to the target). Keeping the first two terms, (2.14) becomes

R(u) ≈ R0 +
V 2u2

2R0

(2.15)

This approximation can only hold if R0 � V u, i.e. if the exposure time is moderate.

This is more commonly known as the parabolic approximation [35, Chapter 5]. This

slant range variation in slow time causes a phase modulation from pulse to pulse, called
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the phase history which is given by

ϕ(u) =
2π

λ
R(u) ≈ 2π

λ

[
R0 +

V 2u2

2R0

]
(2.16)

where λ is the wavelength1. According to the parabolic approximation, the phase his-

tory has a quadratic form, implying a LFM signal in the azimuth direction with a band-

width called Doppler bandwidth. Hence, as in the range direction, a high resolution

in azimuth can be obtained by matched filtering over slow time yielding also a sinc

function in the azimuth direction. This is called azimuth compression. To estimate the

reflectivity at each pixel, the azimuth MF will coherently sum the range-compressed

data along the azimuth locus which is the range as a function of the azimuth position

of the transmitter of the image pixel. The discrete azimuth MF is given by

gaz(m) = κ(m)e−jϕ(m) (2.17)

with m ∈ [0, 1, ...,M − 1] the number of the transmitted pulse and M the total number

of coherent pulses. It is assumed that the geometry, i.e. the range to the target, is

accurately known.

The factor κ(m) reflects that the amplitude of the theoretical azimuth MF is not

rectangular but depends on the combined azimuth antenna diagram of the transmit and

1As the bandwidth is small compared to the frequency (this is the case for the satellite systems

considered), the system is considered monochromatic.
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receive antenna, the gain of the receiving chain and the coherent gain of the pulse

compression in fast-time. This factor affects the ambiguity function in terms of reso-

lution and SNR: the width of the mainlobe of the ambiguity function of a windowed

pulse is larger [39, Chapter 10] than that of a rectangular pulse.

Following (2.16), this azimuth MF varies for each range of the image. As the phase

history does not depend on the azimuth of the target, this configuration is translational

invariant in azimuth and can also be implemented via a FFT after correcting the range

migration effect [35].

2.1.5.2 Azimuth resolution

As the azimuth MF is also a LFM signal, the section of the ambiguity function at zero-

Doppler is a sinc function as well, the width of which governs the azimuth resolution,

δaz. It can be shown [35, Chapter 4] that the maximum azimuth resolution depends

on the time during which the scatterer is illuminated by the radar beam, called the

SAR integration time. In practice, this SAR integration time is reduced to the time

during which the phase of the scatterer is well estimated, i.e. the time during which the

scatterer remains coherent.

2.1.5.3 Image formation algorithm

The matched filter based SAR processing to estimate the reflectivity, x̂, of the consi-

dered patch can be divided into two distinct phases. First, matched filtering in range is

performed on each row of the SAR data echo matrix, SR(n,m). Then, the reflectivity

of the patch is estimated by applying the azimuth matched filter which is ’matched’ to

the expected phase history of the considered patch. The result is a two-dimensional

sinc function centred at the point target position in the SAR image, the mainlobe width

of which has the size δr × δaz.

2.1.6 Radar imaging modes

Monostatic SAR systems can operate in several imaging modes, the most important of

which are stripmap mode and wide-swath modes such as ScanSAR and Terrain Obser-

vation by Progressive Scan SAR (TOPSAR) mode as depicted in Fig. 2.7. The signals

presented in this section are real measurements acquired from the stationary ground-

based receiving system developed in this thesis.
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Figure 2.7: Radar imaging modes: (a) Stripmap mode and (b) wide-swath modes such

as ScanSAR and TOPSAR mode.

2.1.6.1 Stripmap mode

The classical mode of operation is the stripmap mode in which the transmitting beam

continuously illuminates the scene with an antenna beam fixed relative to the moving

platform, i.e. at a fixed elevation angle thereby illuminating a strip of terrain as illus-

trated in Fig. 2.7 (a). This imaging mode leads to a high cross-range resolution but

is constrained to a narrow swath due to range ambiguity limitations [40]. The dwell

time for all processed ground patches is related to the beamwidth of the antenna. The

stripmap mode is the more basic radar mode and is implemented on all radar satellites.

However, its limited swath means a low revisit frequency over a specific area which is

the reason why this mode is not operated very often on SAR satellites.

Figure 2.8 depicts the Intermediate Frequency (IF) signal of the Advanced Syn-

thetic Aperture Radar (ASAR) instrument of ENVISAT from ESA, operating in

stripmap mode, recorded as the satellite illuminates the receiver. The amplitude mod-

ulation of the signal corresponds to the Azimuth Antenna Pattern (AAP) of the trans-

mitter as the AAP of the receiver is wider than that of the transmitter. As depicted in

Fig. 2.8, the mainlobe illumination time of the ASAR beam is approximately equal to

0.9 s. Note the asymmetry of the signal resulting likely from a saturation of the Radio

Frequency (RF) amplifiers.
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Figure 2.8: Acquired signal in stripmap mode from the ASAR instrument of ENVISAT.

2.1.6.2 ScanSAR mode

To overcome the ambiguity constraint yielding a limited illuminated swath in the

stripmap mode, [33] proposed the ScanSAR mode [32, 41, 42] which offers synop-

tic observations of large-scale phenomena and a higher revisit frequency. In ScanSAR

mode, the synthetic aperture is divided in NS sub-swaths. As an example, Fig. 2.9 rep-

resents a four sub-swath scanning cycle. Each sub-swath is illuminated by the antenna

beam for a short time interval, called burst duration, TB, which is very small compared

to TF , the antenna-footprint time. Then, the antenna beam is steered in the range direc-

tion to another sub-swath. The scanning cycle continues till the full swath is covered.

TR is the scan repeat time which is the time for the beam to come back to the same

range sub-swath. The ScanSAR mode allows imaging of a swath much wider than

the stripmap mode but at the cost of a degraded cross-range resolution. The ScanSAR

mode is implemented on most of the radar satellites such as ENVISAT, RADARSAT-2

or even Sentinel-1A.

To have a better understanding of the burst-mode illumination of a ScanSAR ope-

rating satellite, the evolution of the Doppler frequency as a function of the slow time

for a four sub-swath ScanSAR mode such as the ScanSAR Wide B (SWB) mode of

RADARSAT-2 is depicted in Fig. 2.10. In Fig. 2.9, three patches, A, B and C, hav-

ing the same slant range of closest approach to the transmitter but located at different

azimuths are represented. In Fig. 2.10, the Doppler histories of the targets are repre-

sented by dashed lines with the same negative slopes, equal to the Doppler rate kr. In
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Figure 2.9: Acquisition geometry in ScanSAR imaging mode in the case of four sub-

swaths.

ScanSAR and in the monostatic geometry, the dwell time, TD, i.e. the azimuth integra-

tion time for a point target, is identical to the burst duration, TB. The mainlobe of the

AAP, represented on the left in Fig. 2.10, is fixed in azimuth.

TB = TD,mono

kr

fdop

Ba

TR

Bf

t

sub-swath 1 2 3 4 1

A

B

CA
A

P

Figure 2.10: ScanSAR mode: Time-frequency diagram of three scatterers in the mono-

static geometry where Bf is the footprint bandwidth and Ba = TBkr is the bandwidth

for each target. The thick red lines represent the focussed phase history.

The signals in Fig. 2.11 result from the ASAR ScanSAR mode transmissions of
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the ENVISAT satellite: (a) and (b) the Wide Swath (WS) mode and (c) and (d) the

Global Monitoring (GM) mode. For acquisitions (a) and (c), the geometry was such

that the receiver only received the pulses coming from the mainlobe of the scanning

beam yielding a non-continuous illumination. The number of looks, NL, of the ASAR

instrument of ENVISAT in WS mode that can be processed to reduce the speckle in-

herent to SAR images [43] can be guessed from Fig. 2.11 (a) and is equal to 3. Note

that the bursts are shorter in the GM mode than in the WS mode which yields a coarser

cross-range resolution as indicated in [44].
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Figure 2.11: Acquired ENVISAT SAR signals: (a) and (b) in WS, (c) and (d) in GM

modes.

It is possible, for a receiver at some specific location, to receive signals coming
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from the elevation sidelobes of the scanning beams illuminating the adjacent sub-swath.

In this case, the illumination becomes continuous: the SNR of the sidelobes emission of

the transmit antenna is sufficient as depicted in Fig. 2.11 (b) and (d). This is explained

in detail in Chapter 5.

Figure 2.12 represents 3 cycles of a ScanSAR illumination of RADARSAT-2 ope-

rating in SWB with a burst duration of 0.05 s. This ScanSAR mode has four elevation

beams instead of five as for ENVISAT. The dashed lines demarcate each group of 4

beams. Note the longer illumination time per sub-swath of RADARSAT-2 compared to

ENVISAT yielding a better cross-range resolution than that of ENVISAT WS mode.
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Figure 2.12: Acquired ScanSAR signal in a multi-beam illumination in SWB mode of

RADARSAT-2.

2.1.6.3 TOPSAR mode

In ScanSAR mode, the targets are illuminated by different portions of the AAP as de-

picted in Fig. 2.10. This results in different amplitude weighting of the phase history

of the different targets. A scalloping effect, a well-known regular azimuth modulation

in the final SAR image follows [45]. To reduce the scalloping effect, a novel scanning

technique [45], TOPSAR (Terrain Observation by Progressive ScanSAR), was intro-

duced. This new wide-swath mode is usually used by the SAR instrument on-board

the spacecraft Sentinel-1A. While in the ScanSAR mode, the antenna is steered only in

the range direction, in TOPSAR the antenna is steered in both range and azimuth. The

azimuth rotation is from back to fore at a constant rotation speed, opposite to the spot-

light mode. Therefore all targets are illuminated by the mainlobe of the AAP reducing
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the scalloping effect. This azimuth scanning, illustrated in Fig. 2.13, results in a virtual

shrinking of the AAP [46] as seen by an on-ground target. Opposite to the ScanSAR

mode, the burst duration, TB, in TOPSAR mode is typically longer and is almost equal

to the footprint time, TF , to ensure a sufficient dwell time on target. Note that the

Transmitter
track
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X

1

sub−swaths

2
3

Y

C

A
B

TF

TB ≤ TF

Figure 2.13: Acquisition geometry in TOPSAR imaging mode in the case of three sub-

swaths as in IW mode of Sentinel-1A.

TOPSAR mode implemented on Sentinel-1A is a one-look wide-swath, i.e. NL = 1

meaning that the rotating elevation beam does not illuminate twice a scatterer.
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fdop

TR t

Figure 2.14: TOPSAR mode: Time-frequency diagram of three patches where the az-

imuth steering introduces a Doppler centroid rate ka. The blue dashed lines represent

the shrunk AAP.
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Figure 2.14 illustrates the time-frequency diagram for three patches represented in

Fig. 2.13 for a three sub-swath TOPSAR mode such as the Interferometric Wide Swath

(IW) mode of Sentinel-1A. In this radar mode, each illuminated target experiences

nearly the same AAP (blue dashed-line in Fig. 2.14) during the burst duration TB. In

both wide-swath modes, the poor cross-range resolution compared to stripmap imaging

is caused by a shortened patch illumination: ScanSAR illuminates patches with a small

portion of its AAP, while in TOPSAR, the shorter patch illumination is due to the

along-track sweeping of the antenna beam.

Figure 2.15 depicts the acquired signal during an overpass of Sentinel-1A operat-

ing in IW mode over the ground-based receiving system in Brussels. The dashed lines

demarcate the time interval spent by the beam on each sub-swath, TB = 0.82 s. The

duration of the mainlobe of the shrunk AAP is equal to 0.24 s which corresponds to the

azimuth integration time used in monostatic SAR. This is to be compared to 0.05 s for

the SWB mode of RADARSAT-2. This multiplication factor of 5 in dwell time results

in a better cross-range resolution of Sentinel-1A compared to RADARSAT-2 as listed

in Table 2.1.

0 0.5 1 1.5 2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t (s)

S
ig

n
a
l 
le

v
e
l 
(V

)

19/09/2014 05:56:01 UTC (IW)

Figure 2.15: Acquired Sentinel-1A signals in TOPSAR.

2.1.7 SAR illuminators of opportunity

During this thesis, we exploited several C-band SAR satellites: ERS-2, ENVISAT,

RADARSAT-1/2 and Sentinel-1A. In July 2011, ESA retired the satellite ERS-2. EN-

VISAT ceased to transmit in April 2012 making the RADARSAT constellation the only

C-band SAR satellites till the launch of Sentinel-1A in April 2014. Table 2.1 gives the
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main characteristics of the exploited SAR transmitters in this thesis with their mono-

static spatial resolution, δr × δaz. Note that RADARSAT-2 was re-programmed to

operate in TOPSAR mode to test this new mode in support of the Sentinel-1 mission

[47].
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2.2 Bistatic SAR

2.2.1 Bistatic geometry

Although many bistatic configurations can be considered, Fig. 2.16 illustrates the

bistatic configuration of the experiments consisting of a space-based radar as transmit-

ter and a stationary ground-based receiver. In that configuration, a stationary receiver

on the roof of a building is used for practical experimental reasons (easy to deploy

and low cost). The same coordinate system (X,Y,Z) as in the monostatic case (Sec-

tion 2.1.2) is considered. The bistatic angle β is the angle between the transmitter and

the receiver with the vertex at the target [51, Chapter 3]. RB is the distance between

the transmitter and the receiver.

X

Point Target

θel

RT,0

Z

u

Nadir

Y

RT
Receiver

Transmitter
V

RR

θR

RB

β

Figure 2.16: Bistatic SAR geometry.

Figures 2.17 show a cross-section perpendicular to the flight path of the SAR in-

strument. In monostatic SAR, targets at the same range are located on a sphere centred

on the position of the SAR satellite. The intersection of this sphere with the Earth’s

surface is a circle. In a bistatic system, the surfaces of equal range are ellipsoids with

the transmitter and receiver at the foci. The isorange contours are the intersection of

these ellipsoids with the Earth’s surface as illustrated in Fig. 2.17 (b). Assuming a lo-

cally flat Earth, ellipses result. Points M and N illustrate the ’left-right’ ambiguity of
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SAR systems. SAR systems are not able to differentiate return signal from point M

and N as the return times from these two points are similar. This ambiguity can be

resolved by the directivity of the transmit-receive antenna in the monostatic case and

by the directivity of the receive antenna in the bistatic case.

geometry
scattering
Forward

Backward
scattering
geometry

.
.TX/RX

TX

RX

(b)(a)

M N M N

groundground

Figure 2.17: Isorange contours: Cross-section perpendicular to the flight path of (a) a

monostatic radar and (b) the transmitter of a bistatic radar.

The knowledge of the geometry is a key element in SAR processing. In non-

cooperative BSAR, the trajectory of the transmitter is not known and overpass times

of the spaceborne transmitter are predicted using the Simplified General Perturbations

version 4 (SGP4) orbit propagation algorithm [52]. The SGP4 model is one of the

mathematical models for prediction of satellite position and velocity vectors. The Two-

Line Keplerian Element (TLE) sets, a set of mean orbital elements, are used as input

to the orbit propagator and are made publicly available on the Internet by the US Joint

Space Operations Center (JSpOC). They are regularly updated in order to reflect small

orbital changes. Taking into account the satellite’s antenna footprint, the positions of

the receiver and the scene to be imaged, the time of overpass of the satellite can be

estimated.

2.2.2 Bistatic imaging

2.2.2.1 Range compression

The only difference with the monostatic range compression is that the direct signal

is used as the reference signal for pulse compression. In practice, the parameters of

the direct signal are estimated using a synchronisation algorithm as described in detail

in Chapter 4. As this reference signal contains the delay and associated phase of the

direct transmitter-to-receiver signal, the range-compressed data are now range-aligned



2.2. Bistatic SAR 54

relative to the direct signal. A range-compressed bistatic image of a RADARSAT-2

acquisition is depicted in Fig. 2.18 as a function of the relative bistatic range, RT +

RR − RB, which is the bistatic range relative to the distance transmitter-receiver. The

vertical axis in Fig. 2.18 represents the pulse index number which can be converted in

slow-time using the PRF. Large correlation peaks corresponding to the direct signal at

zero range can be seen which are modulated by the AAP of the transmitter, the AAP of

the receiver being wider. On the left of those high correlation peaks, the range sidelobes

of the direct signal are visible and on the right, between 0.1 and 0.25 km, echoes from

scatterers. The hyperbolic shape of the range history of possible scatterers is not visible

due to the limited extent of the azimuth recording.
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Figure 2.18: Range-compressed image of a RADARSAT-2 acquisition in dB.

2.2.2.2 Azimuth compression

In BSAR, the range history of a target is the sum of the instantaneous slant range to the

transmitter, RT , and the range to the receiver, RR, and is given by

Rbi(u) = RT (u) +RR

=
√
R2
T,0 + V 2u2 +RR

(2.18)

The extra subscript 0 inRT,0 denotes the slant range of closest approach to the transmit-

ter. Expanding (2.18) about u = 0 corresponding to the slant range of closest approach

to the transmitter and keeping the first two terms, Rbi(u) can be expressed as

Rbi(u) ≈ RT,0 +
V 2u2

2RT,0

+RR. (2.19)
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Using typical values, it can be shown that terms higher than second order are small

enough to neglect considering the space-ground bistatic geometry studied in this thesis.

In the BSAR configuration we consider, the range from a target to the receiver, RR, is

constant and is only a function of the position of the receiver. Hence, the range history

of a target is only due to the motion of the transmitter yielding a quadratic phase history.

RT,0 will determine the curvature of the hyperbola. That means that two targets at the

same bistatic range will present different range history curvature if their slant ranges of

closest approach to the transmitter are different. This results in a translational variant

azimuth matched filter. This is generally the case of BSAR systems [53]. Following

(2.18), the azimuth matched filter must be computed for each image pixel in ground

range which results in an increase of the computation load of BSAR imaging compared

to monostatic SAR imaging.

The azimuth matched filter provides a correct estimation of the reflectivity of a

patch if the phase of the matched filter perfectly matches the phase history of the signal

at each pulse. For this assumption to hold, the target must be located at precisely the

anticipated position and the antenna phase centres of the transmitter and the receiver

must also be known. Inaccurate knowledge of the bistatic geometry manifests itself

as slow time-varying phase errors, which may cause image shift or defocus. This is

evaluated in Chapter 4. Besides, the range-compressed data are available only at fast

times which are integer multiples of the sampling interval. An approximation is done

by taking the nearest neighbour range-compressed sample as azimuth locus.

Figure 2.19 (a) depicts an ERS-2 bistatic SAR image in stripmap mode. The

range sidelobes of the direct-path signal are clearly visible. Figure 2.19 (b) is a closer

view of the position of the receiver around which elliptical isoranges appear due to the

range sidelobes resulting from the range matched filter. The range sidelobes pattern

are modulated by the azimuth synthesised pattern resulting of the aperture synthesis

in azimuth. As can be seen in Fig. 2.19 (a), the patch circled in red is ambiguous in

azimuth. Note that the ambiguity has no consequence as the receive antenna is pointing

in one direction (Eastwards, i.e., to the right on the picture) and the backlobe of the

receive antenna is small.
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Figure 2.19: (a) Bistatic SAR image using ERS-2 signal (29/10/2010 10:36:38 UTC)

which corresponds to a descending orbit acquisition over Brussels, (b) detail around

the position of the receiver (logarithmic scale).

2.2.3 Bistatic resolution

2.2.3.1 Bistatic range resolution

The bistatic range resolution [51, Chapter 4] is dependent upon the geometry of the

system, i.e. satellite-receiver-target relative positions and is defined as the distance

between two concentric bistatic isorange contours, or ellipses. This distance, however,

varies with the relative target position. The bistatic slant range resolution is given by

δr,bi =
c

2B cos(β
2
)

(2.20)

In this work, a quasi-monostatic geometry is studied leading to nearly the same slant-

range resolution as in monostatic SAR imaging as the bistatic angle is close to zero.

The bistatic ground range resolution in a flat reflection area can be approximated by

[25]

δgr,bi =
c

B| sin(θel) + sin(θR)|
(2.21)

where B is the bandwidth of the transmitted signal and θel and θR are the incident

angles with respect to the normal to the ground plane for the transmitter and receiver,

respectively as represented in Fig. 2.16 (positive counter-clockwise from nadir). If both

incidence angles are the same, (2.21) becomes the well known monostatic ground range

resolution (2.13).
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In space-ground BSAR, two different geometries can be considered yielding dif-

ferent bistatic ground range resolutions as depicted in Fig. 2.17. The backward scat-

tering geometry occurs if both the transmitter and the receiver are on one side of the

observed area. This corresponds to a bistatic angle close to zero, i.e. a quasi-monostatic

(small bistatic angle) geometry. In this geometry, a better ground-range resolution than

in monostatic SAR imaging is expected thanks to the incident angle θR close to 90◦ in

(2.21). The forward scattering geometry is here understood as the geometry in which

the observed area is between the transmitter and the receiver. This geometry is not to be

confused with the forward scattering region, which corresponds to a bistatic angle close

to 180◦, in which the scattering coefficient is enhanced due to the Babinet’s principle

[1, Chapter 25]. According to (2.21), the backward scattering geometry yields the best

bistatic slant-range resolution [25]. On the other hand, the scattered signal amplitude

is typically higher in the forward scattering geometry [6, Chapter 9] as θel ≈ −θR, i.e.

in the specular direction.

2.2.3.2 Bistatic azimuth resolution

Opposite to monostatic SAR, the azimuth resolution direction in BSAR is not necessa-

rily orthogonal to the range resolution direction. In BSAR, the azimuth resolution [54]

is defined in the direction which is parallel to the velocity of the transmitter (in the case

of a non-moving receiver). The azimuth resolving capability mainly depends on the

illumination pattern during the integration time, i.e. how long the combined antenna

pattern of the transmitter and the receiver illuminates the patch. In [51, Chapter 7], the

cross-range resolution direction is defined and is perpendicular to the range resolution

direction, i.e. along the bistatic isorange contour. In a quasi-monostatic geometry, the

cross-range direction and the azimuth direction are nearly parallel. If the azimuth and

the range directions are not orthogonal, the measured resolution is a combination of

both azimuth and range resolution what makes the analysis of the azimuth resolution

problematic. For this reason, we consider the cross-range resolution in the remainder of

the thesis to compare the performance of the BSAR imaging with that of the monostatic

SAR imaging.
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2.3 Summary
In this chapter, monostatic and bistatic SAR imaging have been studied in terms of

geometry, resolution and SAR processing. Identification of similarities and differences

between the range histories of the targets have been discussed. As in the monostatic

case, the most straightforward and usual way to produce a BSAR image is by using

the matched filter. Then, the difference between azimuth resolution and cross-range

resolution in BSAR was examined; this latter will be used in the rest of this thesis.

It was also shown that the wide-swath radar imaging modes prove to be rather

complex to exploit compared to the traditional stripmap mode. This is one of the chal-

lenge that this thesis has taken up.



Chapter 3

Research context

In this section, the state of the art of space-ground bistatic SAR imaging using mono-

static radar as illuminator of opportunity is analysed across the three main difficulties

appearing when bistatic configurations are involved:

• Signal synchronisation

• Bistatic SAR focussing

• Direct signal interference

3.1 Signal synchronisation
The first obvious challenge appearing in bistatic configuration is the time and phase

synchronisation required between the transmitter and the receiver.

Time synchronisation refers to the process of recovering the time of transmission

of each pulse needed to compute the range-to-target in the SAR processing. In the one-

stationary configuration considered in this thesis, the precision requirements of range

measurement are not stringent and are analysed in Chapter 4.

As SAR is a coherent imaging system, a phase synchronisation step is essential:

the receiver and the transmitter must stay coherent during the illumination time of the

scene. The receiver requires the knowledge of the transmitted phase to perform SAR

imaging. In monostatic SAR, the same local oscillator is used for both the transmit and

the receive function. In bistatic SAR, the separation between the transmitter and the re-

ceiver leads to the use of independent oscillators for modulation (at the transmitter side)

and demodulation (at the receiver side) of the radar pulses [55]. Any deviation between
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the two oscillators will result in a phase error in the bistatic data which, depending

on magnitude and nature, will differently affect the SAR imaging [56, Chapter 5]. As

will be shown in Chapter 4, a distinction is made between low-frequency phase errors

and high-frequency phase errors. Low-frequency phase errors, e.g. due to a constant

frequency offset between the two oscillators, must not exceed π
2

for the considered inte-

gration time whereas the allowable Root Mean Square (RMS) value of high-frequency

phase errors such as the inherent phase noise in each oscillator is typically 4◦.

Let us analyse the evolution of the phase error due to the inaccuracies in carrier

frequencies of the two distinct local oscillators, one at the transmitter with carrier fre-

quency fT and the other at the receiver with carrier frequency fR. The inherent phase

noise of each local oscillator is here not considered as this phase noise only depends

on the local oscillator itself and not on the synchronisation algorithm. For illustrative

t

2πfT t

2πfRt

Tint

Phase

(m+ 1)PRI

τ

(m− 1)PRI mPRI

2π(fT − fR)τ

2π(fT − fR)Tint

Trx

2π(fT − fR)Trx

Figure 3.1: Evolution of the phase error due to a constant frequency offset between the

local oscillators.

purpose, a constant frequency offset between the two local oscillators is considered and

illustrated as a function of the propagation time, t, in Fig. 3.1. A frequency difference

between the two oscillators results in a linear increase of the phase which is equal to

2π(fT − fR)t. If a phase synchronisation is performed once at the beginning of the ac-

quisition, this phase error will drift toward a maximum value equals to 2π(fT −fR)Tint

with Tint the coherent integration time. This is called indirect phase synchronisation

[51]. For one considered patch, the phase error is proportional to the time interval be-

tween the time at which the synchronisation between the transmitter and the receiver is
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performed (t = 0) and the reception of the pulse (Trx). If a direct phase synchronisa-

tion on a pulse-to-pulse basis is performed, the phase error will be reinitialised at each

receiving pulse. This phase error will be equal to 2π(fT − fR)τ with τ = τecho − τdir
the propagation time difference between the reflected and direct signals. Note that the

phase error is different for each isorange contour. This phase error is much smaller

than in the indirect phase synchronisation. Hence, for the same phase error, a larger

difference between the frequencies of the local oscillators can be accepted in the case

of a direct phase synchronisation. Therefore, direct synchronisation on a pulse-to-pulse

basis is considered in this thesis.

In cooperative bistatic systems, there are different ways to overcome the phase

error due to the drift between the local oscillators. One solution is to use Global Po-

sitioning System (GPS) timing signals to synchronise the transmitter and the receiver

[57] or ultra-high-quality oscillators [58]. Another approach is to record the relative

phase offsets between the oscillators, as it is done in the TanDEM-X mission [20],

which requires a two-way dedicated link.

However, if the receiver uses a non-cooperative source of opportunity, none of

these strategies can be applied directly. In this case, to solve the problem of synchro-

nisation between the transmitter and the receiver, an additional channel, called syn-

chronisation channel, receiving the direct pulses from the transmitter is usually built

[12, 23–25, 59]. Then, the direct signal is used to perform time and phase synchronisa-

tion during the pulse compression step preceding SAR imaging [60–62]. In this thesis,

the antenna oriented towards the scene to image and receiving the reflected pulses can

also be used as synchronisation channel as the SNR of the direct signal is sufficient as

demonstrated in Section 7.3.

3.2 Bistatic SAR focussing

3.2.1 Introduction

Depending on the bistatic configuration and on the radar imaging modes, different SAR

focussing algorithm can be used. Considering the geometry, one may make the distinc-

tion between azimuth-invariant and azimuth-variant configurations [53, 63]. The radar

imaging mode operated by the transmitter also influences the bistatic SAR focussing.

As the main contribution of this work consists in processing ScanSAR data [64], the
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classical ScanSAR focussing is explained in Section 3.2.4

3.2.2 Azimuth-invariant configuration

Azimuth-invariant configurations include configurations in which the transmitter and

the receiver move in parallel tracks (same or different altitudes) with constant identical

velocities and the tandem configuration [65] in which the transmitter and the receiver

follow each other with equal velocities on the same track with some fixed offset. Those

Translational-Invariant (TI) configurations may benefit from the convolution property

of the FFT like monostatic configuration. In [65], the idea is to transform the tandem

bistatic raw data into monostatic SAR raw data by a pre-processing step called the

Rocca smile operator. After this transform, the mature traditional monostatic SAR

algorithms can then be used for bistatic SAR imaging. This concept was demonstrated

for the tandem configuration but has been further extended to the general bistatic case

in [66].

3.2.3 Azimuth-variant configuration

Azimuth-variant configurations include configurations in which the transmitter and the

receiver move with constant but different velocity vectors in magnitude, in direction or

both. The bistatic configuration considered in this work in which one platform remains

stationary and the other travels with constant velocity vector is part of this category.

Those Translational-Variant (TV) configurations for which imaging geometry changes

with time cannot be focussed exactly using one of the efficient Fourier-domain fo-

cussing algorithms. Therefore, focussing using a time-domain algorithm is preferred to

obtain an accurate bistatic image.

Time-domain focussing algorithms [67, Chapter 4] are universally applicable to

any geometrical configurations, bistatic as well as monostatic configurations, and are

relatively simple to implement. However, these algorithms have high computational

loads as they form the image by processing one patch at a time. Therefore, new bistatic

algorithms are derived in order to focus these azimuth-variant bistatic configurations in

a more efficient way.

Another method to derive the bistatic SAR algorithm is to develop an analytical

explicit expression of the point target’s reference spectrum. A representative analytical

explicit expression of this spectrum is the Loffeld Bistatic Formula (LBF) [68] which
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is used to derive a number of bistatic processing algorithms [69]. The accuracy of these

algorithms is limited by the accuracy of the derived analytical spectrum. The one-

stationary bistatic SAR case studied in this thesis is substantially simpler in concept and

operation than the general bistatic case configuration analysed in [68] and the general

translational-variant algorithm developed in [68] will not be followed here.

In the space-ground bistatic SAR configuration, several bistatic SAR processors

have been described in the open literature. Several authors [24, 61, 70–72] expend

effort in modifying the traditional monostatic SAR frequency-domain processors to

process one-stationary bistatic data. By making assumptions in the considered bistatic

geometry, one can exploit the efficiency of those FFT-based processors at the expense

of a loss in image quality for certain imaging configuration.

[28, 31, 73] use the Back-Projection (BP) algorithm [67, 74, 75] which is not as

time efficient as FFT-based algorithms but which does not require any assumptions. In

this work, the BP algorithm has been also adopted to focus the bistatic SAR image due

to its ease of implementation and its accuracy.

3.2.4 Wide-swath mode illumination in BSAR

A classical way to focus ScanSAR data [76] is to process each burst independently. If

the area of interest is illuminated by a number of bursts NL, the focussed burst images

can be added incoherently for the purpose of speckle reduction. This single-burst pro-

cessing results in the well-known poor cross-range resolution of the ScanSAR mode.

One way to improve this cross-range resolution is to process coherently the NL

bursts yielding a single-look image. In this case, azimuthal grating lobes appear in

the SAR image [77] due to the non-continuous azimuthal phase history. Those grating

lobes can be reduced in a post-processing step [78] leading to the same poor cross-

range resolution as the incoherent processing. As a consequence, in ScanSAR mode,

bursts are almost always processed independently.

However, in a bistatic configuration with a receiver constantly pointing to the scene

of interest, the returns originating from the elevation sidelobes of the transmit antenna

may enter the mainlobe of the receiver with a sufficient SNR. In that case, a continu-

ous illumination occurs and the resolution of the conventional stripmap imaging mode

can be recovered. Recovering the resolution of the stripmap imaging mode from data
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obtained from SAR systems operating in wide-swath mode is novel and is explained in

detail in Chapter 5.

3.3 Direct signal interference
SAR imaging in the vicinity of the stationary receiver due to the strong direct-path

signal is a particular challenge in BSAR. To perform SAR imaging in the surrounding

of the receiver, particular attention must be paid to the direct-path signal. The con-

ventional MF used in SAR processing generates range and azimuth sidelobes that can

hide weaker scatterers located in the immediate surrounding of the receiver. Further-

more, the long pulse length of the transmitted signal and the short imaging range in the

bistatic geometry studied in this thesis means that the pulsed SAR transmitter behaves

like a continuous wave system. The attenuation of the direct signal before entering

the acquisition card will thus impact the required dynamic range of the A/D card. The

dynamic range is further discussed in Appendix A.3.

Attenuation of the effect of the direct-path signal can be done in different manners.

A practical solution for this is to isolate the antenna of the surveillance channel, i.e.

the channel oriented to the area of interest, from the transmitter. This can be done by

exploiting its antenna pattern or by choosing a measurement environment where the line

of sight to the transmitter is obstructed by a building [10]) or by physically shielding the

surveillance channel with synthetic material such as Radar Absorbing Material (RAM)

[79].

If the receiver consists in an array antenna, spatial nullsteering, as analysed in

[8, 80], can be used to steer a null in the direction of the transmitter in order to attenuate

or null the direct-path signal itself. This requires a non-obvious calibration step. One

of the drawbacks of spatial nullsteering is a shadowed area that can appear on the SAR

image due to the suppression of the backscattered signals. The considered spatial filter

will steer a null in a cone angle [81] corresponding to the direction of the transmitter and

will affect other directions according to its beampattern. The effect of the beampattern

of the spatial filter will be reflected on the SAR image. This shadowed area can be

bypassed by reorienting the Uniform Linear Array (ULA) such as the cone is not in the

desired direction of imaging. Furthermore, the beampattern of the spatial filter is more

directive for increasing antenna elements in the antenna array. No antenna element
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would then be allocated to point towards the transmitter and the reference signal could

be extracted using spatial beamforming as well.

Reducing the range and azimuth sidelobes can also be performed using apodiza-

tion [82]. This method has the drawback to degrade the resolution.

Finally, another method to suppress the interference in passive SAR imaging con-

sists in using a CLEAN-like algorithm. Fairly preliminary results have been presented

in [83, 84]. The central assumption of this algorithm is that the received signal is made

up of a sum of target echoes, including the strong direct path signal, multipath and

noise. This assumption can lead to a decomposition of the received signal into a ba-

sis of non-orthogonal functions, where each basis function or mode is a time-delayed

version of the reference signal. This decomposition lets to identify the dominant com-

ponents (direct signal and closest strong reflections) and remove their contribution from

the received signal.

In this work, the method used to mitigate the direct signal power received in the

surveillance channel is a simple combination of two above mentioned methods. The

antenna of the surveillance channel is pointed away from the transmitter so that the

direct signal is received in the backlobe, or, due to satellite motion, in the sidelobe of

the antenna. Besides, some anechoic chamber cladding material is also installed at the

back of the antenna to provide further attenuation. The combination of both methods

will sufficiently attenuate the direct signal according to the power budget analysis in

Appendix A.3.

3.4 Interrupted SAR
SAR data is usually recorded continuously along the track of a sensing platform. How-

ever, in some situations, the data may be interrupted leading to gaps in the SAR phase

history. Examples of such situations are data corruption, alternating polarisations, pres-

ence of radio frequency interference, exchange of necessary calibration information in

between platforms, e.g., in the case of TanDEM-X [85], mode/function interleave [86]

or wide-swath mode operation, e.g. in ScanSAR or TOPSAR, among others. While

corruption of the data or the presence of radio frequency interference might be a clear

example of random pattern, the others might more often fall into the periodic interrup-

tion case. These gaps in the phase history translate into degradation of the resulting
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conventionally generated SAR images. These degradations can be more or less accen-

tuated depending on the gap pattern and the amount of missing data. [87] analytically

studied the impact of the gap pattern on the SAR imagery. First, the periodic case in-

troduces ghosts in the azimuth direction. Then, in contrast to the periodic pattern, the

random pattern introduces leakage throughout cross-range. This leads to a contami-

nation of the shadows from interfering pixels. The influence of the gap pattern on a

scene with point targets has also been analysed in [86, 88, 89] which demonstrate that

the more random the gap pattern, the better. As a consequence, novel image formation

algorithms are required to mitigate artifacts.

Several methods exist to reconstruct SAR data acquired in interrupted operation.

To recover the missing data, assumptions have to be made on the data sequence and

thus on the SAR image to reconstruct. Intuitively, these assumptions can be seen as

attempts to add extra information to the reconstruction problem. The missing data can

be recovered by making assumption in the slow-time domain or in the spectral domain.

A traditional way to deal with missing data is to use the MF processing. However,

grating lobes appear in the resulting SAR image [77] and make further exploitation im-

possible. One can use spectral estimation methods [86, 90, 91] to recover the missing

data which must then be followed by a SAR focussing algorithm. In the spectral esti-

mation methods, one can distinguish parametric methods from the non-parametric ones

[92]. In parametric methods, the SAR phase history is considered to be a realisation

of a wide sense stationary process. This process can be described by means of a para-

metric model, whose coefficients can be estimated using one of the several methods

established in the literature. If an Auto-Regressive (AR) model is considered, the Burg

Algorithm [86] can be used to estimate the parameters of the process as in [91]. In this

method, the reconstruction of the azimuthal signal is carried out locally on a gap to gap

basis. The coefficients of the AR-model are estimated using the segment before the

gap and again using the one after the gap. The two sets of reconstructed data are then

combined to give the final coefficient estimation. The missing data is then recovered

feeding the gapped signal into an Infinite Impulse Response (IIR) filter build from the

estimated coefficients. The reconstruction is performed considering one range bin at a

time. In this method, the missing data are considered to be part of an auto-regressive

stationary process which is valid for only small gaps as demonstrated in [86].
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The non-parametric spectral estimation methods are not based on any model. One

of them is the Gapped-Amplitude and Phase Estimation of a Sinusoid (GAPES) method

[93, 94]. The GAPES method consists in a non-parametric adaptive filter-bank ap-

proach using minimum least squares criterion to iteratively estimate the spectrum and

invert the missing samples. The GAPES method is an iterative process in which the

spectral content of the missing data is assumed to be given by the available data. This

method is therefore suitable whenever the correlation between the missing data and the

available data is high enough to satisfy this assumption. This is mostly the case for

point-like scatterer. This method first estimates the spectrum using the Amplitude and

Phase Estimation of a Sinusoid (APES) method [94] on the available data and then the

missing data are inverted by minimising the error they introduce in the previously esti-

mated spectrum. A second non-parametric spectral estimation method is the Papoulis-

Gerchberg (PG) estimation method [95]. The PG method assumes that the signal to

be restored is band-limited. It estimates the spectrum of the complete signal and thus

interpolates the missing data by iteratively removing the high frequency components

present in that spectrum due to the loss of information in time domain. According to

[91], this method requires a large number of iterations to converge which makes this

reconstruction method less attractive.

Since this is a problem of missing data, sparse recovery methods, better known

under the name of Compressive Sensing (CS) [96], can be used to extrapolate the in-

terrupted data. SAR imaging using CS has been already studied in [87, 89, 97–102].

Sparse recovery methods make the assumption that the recovered data is sparse in an

appropriate basis and their performance depends on the gap pattern. Sparse recovery

methods comprise global optimisation algorithms such as Basis Pursuit DeNoising

(BPDN) algorithm [103], Spectral Projected-Gradient L1 (SGPL1) algorithm [104],

and greedy algorithms [105] such as Matching Pursuit (MP) or Orthogonal Matching

Pursuit (OMP).

[97] compares the MF with a CS method on 1-D simulated sparse data and ana-

lyses the reconstruction performance in amplitude and in phase for different SNRs.

[97] neglects a fraction of the acquired data randomly. Besides, the simulated targets

were on the grid which shows a false impression of super-resolution. The author of

[97] compares the performance on rural and urban areas.
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[88] relates the mutual coherence of the measurement operator to reconstruction

quality for different geometrical configurations. [89] uses SGPL1 algorithm and anal-

yses the sparse part with CS and the non-sparse part using a Power Spectral Density

(PSD).

In this thesis, the gap pattern is imposed by the measurement process. ScanSAR

illumination can yield periodic gaps in the phase history when the SNR of the signals

transmitted in the elevation sidelobes is not sufficient whereas a TOPSAR illumina-

tion can yield gaps at places where the azimuth pattern of the transmit antenna exhibits

zeroes or when the SNR of the signals transmitted in the azimuth sidelobes is not suffi-

cient. The theory of CS is developed in detail in Section 6.4 where it is shown to have

good performance with point-like targets.



Chapter 4

Receiver synchronisation

4.1 Introduction
This chapter presents the synchronisation challenge in bistatic SAR focussing when

non-cooperative transmitters are involved. Bistatic systems have to overcome two syn-

chronisation challenges: time and phase synchronisation. Poor synchronisation will

introduce phase errors along the processing aperture that, depending on magnitude

and nature, will differently affect the SAR imaging. The phase errors can be classi-

fied into two classes depending on their variation over the aperture [56, Chapter 5]:

low-frequency errors, which have periods larger than the coherent integration time;

and high-frequency errors, which vary rapidly over the aperture and have periods less

than the coherent integration time. Low-frequency errors encompass constant, linear,

quadratic and higher order phase errors. Linear phase errors typically result in the shift

of the point target response in azimuth direction but has no impact on SAR imaging

focus. Quadratic phase errors cause broadening of the point target response. If it is

space invariant, the effect is uniform defocus over the scene. One considers that, when

the low-frequency phase errors are smaller than π
2

[6, Chapter 10], the effect on the fo-

cussed SAR point target response can be neglected. Low-frequency phase errors along

the aperture can impose constraints concerning the maximal scene size to be imaged

and on the maximal integration time.

High-frequency errors include sinusoidal and random phase errors and cause grat-

ing lobes to appear in the system impulse response. The inherent phase noise of a local

oscillator is part of this category. A typical value for the allowable RMS high-frequency

phase error is 4◦ [51, Chapter 13]. Typically and in particular the local oscillator used
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during the experiments meets this requirement.

As there is no synchronisation link between the non-cooperative transmitter and

the receiver, the time and phase synchronisation between the transmitter and the re-

ceiver is here performed using the direct-path signal which requires a line of sight with

the non-cooperative transmitter.

4.2 Time synchronisation

4.2.1 Definition

Time synchronisation consists in recovering the time at which the received pulses have

been transmitted by the non-cooperative transmitter. Then, the position of the trans-

mitter with respect to the receiver at the time the pulse was transmitted is computed as

described in Section 2.2.1. This is required for range measurement in SAR processing.

4.2.2 Procedure

The reception time of each pulse is obtained by applying a matched filter to the direct-

path signal and detecting the peaks of power at its output. The timestamp of each

peak is used as the corresponding start time for the reflected signal. Then, the time

of transmission of the received pulses is obtained iteratively taking into account the

propagation time and the positions of the satellite given by the orbit propagator. The

precision of the positions of the satellite depends on the accuracy of the orbital elements

and the accuracy of the orbit propagator itself. There are of course uncertainties in the

available ephemerides and trajectory errors result in phase errors along the aperture.

Table 4.1: Simulated bistatic scenario based on a Sentinel-1A IW2 signal parameters.

Parameter Unit Value

Wavelength, λ cm 5.55

Pulse duration, Tp µs 61.9

Chirp rate, α GHz/s 779

Measured bistatic slant-range resolution, δr,bi km 0.01

Coherent integration time, Tint s 1

Satellite speed, V km/s 7

Scene extent km 44× 43

Height of the receiver, hR m 50
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4.2.3 Impact of satellite position measurement error

Let us analyse the impact of a position measurement error of the transmitter on the

SAR focussing. We compare a true and a range shifted orbit. We consider a range

error on the orbit of the spaceborne transmitter of 5 km which is much larger than what

is expected. The simulation parameters are listed in Table 4.1 and are based on the

Sentinel-1A signal characteristics. Figure 4.1 represents the relative bistatic range for

the entire scene to be imaged. The shape of the bistatic isorange contours is elliptical

which is more visible close to the receiver represented in Fig. 4.1. The look direction

of the satellite is represented by an arrow.
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Figure 4.1: Relative bistatic range (km) for patches to be imaged, the receiver and a

patch located at 6 km from the receiver are represented by white dots.

Figure 4.2 (a) represents the bistatic range of a patch located at approximately 6

km from the receiver considering a true orbit and a range-shifted orbit. Due to the

limited extent of the azimuth recording, the parabolic shape of the phase history is not

visible.

Since the direct signal is used to derive the matched filter as described in Sec-

tion 2.2.2, the relative bistatic range RT +RR −RB is of interest. The error in relative

bistatic ranges due to a range shift of the orbit of the transmitter is equal to a few cen-

timetres. The history of that error is illustrated in Fig. 4.2 (b). This positioning error

in range is very small compared to the bistatic slant-range resolution (2.20) in this ge-

ometry and can be considered as negligible depending on the application. This result is
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Figure 4.2: (a) Bistatic range of a patch located at 6 km from the receiver during a

Sentinel-1A acquisition using a true and a range shifted orbit of the transmitter (shift

of 5 km) and (b) the error in relative bistatic ranges due to a range-shift error.

qualitatively consistent with those reported in [60].

The associated phase error along the aperture can be modelled by a first-order

polynomial in order to estimate the linear and the constant phase error which will not

affect the SAR focussing. The phase error first-order modelling is performed for the

entire scene for an overestimated range shift of the orbit of 5 km. The linear phase

component is equivalent to a shift in Doppler frequency, ∆f , resulting in a shift in the

azimuth direction given by

∆y =
∆fλRT,0

V
(4.1)

as demonstrated in Appendix B.1. Note that the shift in the azimuth direction for one

patch depends on the distance RT,0 and on the linear phase component ∆f . The shift

in the azimuth direction for the entire scene extent is illustrated in Fig. 4.3 (a) while

the maximal residual phase error over a typical 1-second coherent integration time is

illustrated in Fig. 4.3 (b). Note that the position measurement error in azimuth is spa-

tially variant: the patches far from the receiver shift more than the patches close to the

receiver. The shift in azimuth is symmetric relative to the extended transmitter-receiver

baseline but with opposite sign. The azimuthal shift is zero at patches located along the

direction of the extended transmitter-receiver baseline and along a parallel to the trans-

mitter trajectory. Indeed, for those patches, the first-order coefficient of the first-order
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Figure 4.3: (a) Shift along the azimuth direction (km) encountered by each patch of the

imaged scene and (b) the maximal residual phase error (rad) after removing the bias

and the linear trend due to an error of 5 km on the orbit of the spaceborne transmitter.

model is equal to zero due to their symmetric phase error. For the considered scene ex-

tent, the azimuthal shift does not exceed a few meters and the maximal residual phase

error does not exceed π
2
. Imposing a constraint on the maximal shift in azimuth or on

the maximal residual phase error may limit the scene size to be imaged. As an example,

the regions for which the shift in azimuth exceeds 1 m are shaded in Fig. 4.3 (a).

In practice, the orbit of the satellite is predicted with a better precision than 5 km

which results in an even lower positioning error in range and an even lower azimuth

shift of the patches.

For practical scene extent, the phase error along the processing aperture due to

an inaccuracy in the range transmitter-receiver is small enough not to degrade SAR

focussing. The associated azimuth shift is, depending on the application, typically

negligible.

4.3 Phase synchronisation

4.3.1 Definition

In SAR, the receiver and the transmitter must stay coherent during the illumination

time of the scene. In BSAR, the transmitter and the receiver typically use independent

oscillators for modulation (at the transmitter side) and demodulation (at the receiver

side) of the radar pulses. Phase synchronisation consists in cancelling out the phase
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difference between the transmit and the receive oscillators to perform the SAR coherent

processing.

4.3.2 Procedure

When non-cooperative transmitters are involved, the transmitted phase is not known at

the receiver side. However, the phase difference between the transmit and the receive

oscillators can be assumed in first approximation to be the same for the direct signal

pulse and its associated echo signal pulses. Indeed, the same atmospheric effect for both

signals can be assumed due to the fact that the imaging area is close to the receiver. And

so the phase of the direct signal may be subtracted from that of the reflected signal in

order to establish coherency with the transmitter. To do so, each reflected pulse is range

compressed with a reference signal consisting in a replica of the transmitted LFM pulse

that includes the phase of the corresponding direct signal pulse, i.e. the direct signal

acts as a phase reference. In the case, as here, where the reference signal has a known

shape (LFM signal), the reference signal can be re-synthesised using the received direct

signal to estimate its parameters. The re-synthesis of the reference signal would not be

necessary if the SNR of the direct signal was very large [106]. However, in a scenario

in which one single channel is used for both synchronisation and imaging, the presence

of nearby scatterers can degrade the SNR of the reference signal and the re-synthesis

of the reference signal is then necessary.

4.3.3 Reference signal

The mth transmitted chirp1 can be expressed as

sT (t,m) = ej[φT (m)+2πfT t+παt
2] (4.2)

where fT and φT (m) are the centre frequency and unknown phase of the mth chirp

at the transmitter’s local oscillator respectively, and α is the chirp rate. The signal is

received with a time delay which adds an additional phase term to the received signal

and is responsible for the characteristic quadratic phase evolution along the synthetic

aperture. After demodulation, i.e. multiplication at the receiver with the local oscillator

signal, e−j[φR(m)+2πfRt], where fR and φR(m) are respectively the centre frequency and

1For ease of mathematical manipulation, we adopt complex notation to describe real narrowband

signal in subsequent expressions. The physical signal is the real part of this complex notation.
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unknown phase of the receiver’s local oscillator, one obtains the received direct signal

sdir(t,m) = sT (t− τdir(m),m)e−j[φR(m)+2πfRt]

= ej[φT (m)−φR(m)]ej[2πfT (t−τdir(m))−2πfRt+πα(t−τdir(m))2]

= ej[φT (m)−φR(m)]e−j2πfT τdir(m)ej2πδftejπα(t−τdir(m))2

(4.3)

with τdir the propagation delay corresponding to the direct signal and δf = fT − fR
is the difference in frequency between the local oscillators. The argument of the first

exponential in (4.3) represents the unknown phase difference between the two local

oscillators and the argument of the second exponential represents the usual phase his-

tory caused by the changing distance between transmitter and receiver over successive

pulses. According to Appendix B.2, this can be rewritten as

sdir(t,m) = ej[φT (m)−φR(m)−2πfT τdir(m)]ej[−π
δf2

α
+2πτdir(m)δf ]ej[πα(t−τdir(m))+ δf

α
] (4.4)

The received echo signal can be expressed in a similar way as

se(t,m) = sT (t− τecho(m),m)e−j[φR(m)+2πfRt]

= ej[φT (m)−φR(m)−2πfT τecho(m)]ej[−π
δf2

α
+2πτecho(m)δf ]ej[πα(t−τecho(m))+ δf

α
]

(4.5)

with τecho the propagation delay corresponding to the echo signal.

In non-cooperative BSAR, the reference signal can be re-synthesised. To do so,

three parameters must be estimated using the direct signal (4.3) which are the chirp

rate, α, the centre frequency difference, fT − fR, and the unknown phase, δ̂φ(m) =

(φT (m)− φR(m))− 2πfT τdir(m). Using this re-synthesised reference signal to derive

the MF in the pulse compression step will cancel out the phase difference between the

two oscillators and will phase synchronise the receiver with the transmitter. According

to (4.4) and (4.5), the result of the pulse compression of one reflected pulse is a sinc

function with the phase

ϕ(m) = −2πfT (τecho(m)− τdir(m)) + 2πτecho(m)δf − 2πτdir(m)δf

= −2π(τecho(m)− τdir(m))(fT − δf)

= −2π(τecho(m)− τdir(m))fR

(4.6)

at the time of occurrence of the maximum. After the pulse compression, the residual

phase history of a target is thus proportional to the difference in travelled distance

between the direct signal and the echo signal and to fR.
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4.3.4 Estimation of the parameters of the reference signal

4.3.4.1 Frequency and chirp rate estimation

Due to the short duration of the acquisition and the high short-term stability of the local

oscillator at the receiver and at the transmitter, fT − fR is assumed to be constant from

pulse to pulse. Therefore, the centre frequency difference, fT − fR, is estimated once

for each signal acquisition. In ScanSAR mode, the chirp rate α can be different from

one beam to the other such as in the WS mode of ENVISAT but remains constant inside

a beam. Therefore, the chirp rate can be estimated once for each beam for each radar

mode.

The frequency fT − fR and the chirp rate α are estimated in the least square

sense from the measurement data. This procedure is illustrated on real measurement

in Fig. 4.4 (a), showing the characteristic quadratic phase of a LFM chirp after un-

wrapping the phase. Figure 4.4 (b) represents the real part of the measured and the

synthesised LFM pulse.
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Figure 4.4: (a) Unwrapped phase history of one of the received Sentinel-1A chirps and

(b) a comparison between the actual chirp (blue) and the synthesised chirp based on the

estimated parameters.

To evaluate the precision at which the chirp rate and the frequency are estimated,

we computed the variance of the estimated chirp rate and the estimated frequency based

on 1000 pulses which is the typical number of processed pulses for one acquisition.

The impact of a chirp rate error can be evaluated using the Quadratic Phase Error (QPE)
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which causes the broadening of the impulse response width at the output of the matched

filter [35, Chapter 3]. The QPE is defined as

QPE = πδα

(
Tp
2

)2

(4.7)

with δα being the chirp rate error and Tp being the pulse length. It can be shown that a

QPE of π
2

gives an impulse response width broadening of 10% or less [35, Chapter 3].

In that case, the maximal allowed error in α becomes

δαmax =
1

2

(
2

Tp

)2

(4.8)

which is equal to 0.7016 GHz/s in the case of Sentinel-1A (IW2 mode). Assuming a

complex Gaussian noise yielding a typical SNR for the direct-signal pulses of 20 dB,

the probability that the error on the estimated chirp rate is larger than the threshold

δαmax given the variance of the estimated chirp rate using the least square estimator

is equal to 4.10−3. The variance of the estimated frequency fT − fR is estimated in

a similar way. A maximal allowed error in the estimation of the frequency is set to

δfmax = 5 kHz considering a local oscillator with a stability of 1 ppm such as a Tem-

perature Compensated Crystal Oscillator (TCXO). The probability that the error on

the estimated frequency is larger than the threshold δfmax given the variance of the

estimated frequency using the least square estimator is found to be equal to 2.10−10.

Thanks to the high SNR of the direct-signal pulses, the chirp rate and the centre fre-

quency difference are fairly well estimated.

4.3.4.2 Phase-term estimation

The unknown phase δ̂φ(m), which varies from pulse to pulse, must be estimated at each

received direct pulse. The estimation of the unknown phase of the first exponential in

(4.3) is done based on the direct-path chirps which are easily located thanks to their

high SNR. The estimation is performed by matched filtering the direct-path chirps with

a generic chirp with a zero initial phase and with a centre frequency and a chirp rate

extracted as described in Section 4.3.4.1. The phase of the output of the matched filter

is the unknown phase. This process is repeated for each received direct-path chirp.

4.3.5 Impact of a frequency error

In practice, fR in (4.6) is not known exactly and depends on the stability of the local

oscillator of the receiver. Therefore, the phase of the azimuth MF (2.17) will not per-
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fectly match the phase of the signal at each pulse. According to (4.6), the resulting

phase error along the aperture can be expressed as

2πδf(τecho(m)− τdir(m)). (4.9)

with δf the uncertainty of the frequency of the local oscillator of the receiver which

is actually equal to the difference fT − fR. According to (4.5), the effect in the range

direction of δf is a shift of the signal equal to δf
α

which is identical for the direct signal

pulses as well for the reflected signal pulses. Therefore, this shift in the range direction

has no effect in the SAR image.

Let us evaluate the impact of the frequency uncertainty in the azimuth direction.

A worst case uncertainty of the receiver’s local oscillator of δf = 25 kHz is considered

since it is the stability of the local oscillator of the receiver of the experimental system

developed in this thesis. Figure 4.5 shows the evolution of the phase error along the

aperture for δf = 25 kHz considering a typical 1-second coherent integration time.

This phase error can be modelled by a first-order polynomial in order to estimate the

linear and the constant phase error which will not affect the SAR focussing. As in

0 0.2 0.4 0.6 0.8

4.08

4.085

4.09

4.095

4.1

t (s)

P
h

a
s
e
 e

rr
o

r 
(r

a
d

)

Figure 4.5: Phase error along the aperture for δf = 25 kHz modelled by a first-order

polynomial encountered by a patch located at 6 km from the receiver.

Section 4.2.3, the phase error is spatially variant and is thus analysed in a similar way.

The shift in the azimuth direction and the magnitude of the residual phase error after

removal of the bias and the linear trend are represented respectively in Fig. 4.6 (a) and

(b) for δf = 25 kHz. The shift in azimuth, which is proportional to the first-order
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Figure 4.6: (a) Shift along the azimuth direction (km) encountered by each patch of the

imaged scene and (b) the maximal residual phase error (rad) after removing the bias

and the linear trend for δf = 25 kHz.

coefficient of the first-order model, is symmetric relative to the extended transmitter-

receiver baseline and with opposite sign. The azimuthal shift is

• zero for the patch corresponding to the location of the receiving system according

to (4.9)

• zero at patches located along the direction of the extended transmitter-receiver

baseline. Indeed, those patches are characterised by a symmetric phase error

resulting in a first-order coefficient equal to zero.

For practical scene extent, the phase error along the processing aperture due to an un-

certainty of the frequency of the local oscillator of the receiver is smaller than the limit

of π
2

and thus will not degrade SAR focussing. The associated azimuth shift is, de-

pending on the application, typically negligible. Imposing a constraint on the maximal

shift in azimuth and a maximal residual phase error will limit the scene size that can

be imaged. For example, a 10 cm maximum shift in azimuth requires to limit the scene

to 20 km on both sides of the extended transmitter-receiver baseline (shaded in Fig. 4.6

(a)).

It must be noted that, in the bistatic configuration studied in this thesis, the re-

quirement on the difference in the oscillator frequencies of the transmitter and receiver

is less stringent than in [107] since the direct signal is used to derive the MF.
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4.3.6 Validation of the estimated reference signal

The phase synchronisation procedure is validated by verifying that the phase history in

azimuth of a patch is only proportional2 to the path length distances between the direct

signal and the echo signal. The phase error can then be estimated by comparing the

phase history of the patch with a theoretical quadratic phase history.

The measured phase history of a patch in a RADARSAT-2 bistatic SAR image

is depicted in Fig. 4.7 (a). Although not actually visible from Fig. 4.7 (a) due to the

limited extent of the azimuth recording, the phase history is quadratic as expected.

The quadratic evolution of the phase history is illustrated in Fig. 4.8 that depicts the

evolution of the distance between RADARSAT-2 and the receiver during the considered

acquisition. The red curve, corresponding to the recorded acquisition, is indeed seen as

linear due to the short duration of this acquisition (0.5 s).

Figure 4.7 (b) illustrates the distribution of the phase history error between the

measured and the calculated phase history with a small standard deviation of 0.4 rad.

Several factors may explain this standard deviation, such as the influence of nearby

scatterers and obviously the noise.
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Figure 4.7: (a) Measured (solid line) and calculated (dashed line) phase history of a

patch and (b) the histogram of the phase history error.

2The unknown phase δ̂φ(m) is assumed to be the same for the direct signal and the echo signal

assuming the same atmospheric effect for both signals.
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Figure 4.8: Direct-signal travelled distance during a RADARSAT-2 ascending acquisi-

tion. The dashed black lines delimit the feasible coherent integration time.

4.4 Conclusion
In this chapter, the time and phase synchronisation of the receiver with the non-

cooperative transmitter in a space-ground bistatic geometry has been studied by

analysing the possible sources of phase errors that can geometrically distort or even

defocus the BSAR image.

It was demonstrated that the phase errors along the aperture due to a range mea-

surement error or due to an uncertainty of the local oscillator’s frequency of the receiver

are low-frequency phase errors: the linear component is related to a shift in the azimuth

direction which was quantified and the higher order components can yield a defocus of

the SAR image. In space-ground bistatic geometry, the phase errors are typically spa-

tially variant and setting limits to the allowable shift in the azimuth direction or to the

allowable residual phase error will impose constraints on the maximal scene size to be

imaged. Those limits will obviously depend on the application.

We also demonstrated that the requirement on the difference between the oscillator

frequencies of the transmitter and receiver in the space-ground bistatic geometry is less

stringent than in other bistatic SAR systems [107] thanks to the phase estimation of the

direct signal that is used to correct the phase of the reflected signal that is performed at

each pulse.

Finally, the measured phase history of a patch validated our synchronisation ap-

proach using the direct-path signal.



Chapter 5

Bistatic imaging during a wide-swath

mode illumination

5.1 Concept
In monostatic SAR, the elevation antenna pattern is shaped to substantially attenuate

echoes at angles that correspond to ambiguous ranges when the main beam is directed

towards the scene of interest. This two-way attenuation of signals originating from

sidelobe illumination yields a non-continuous illumination of the ground in the case of

a burst-mode illumination. Figures 2.11 (a) and (c) represent signal acquired by a sta-

tionary ground-based receiving system. The one-way attenuation is clearly illustrated

which yields gaps in the measurement during a ScanSAR illumination.

However, in a bistatic configuration with a receiver constantly pointing to the scene

of interest, the returns originating from the elevation sidelobes of the transmit antenna

may enter the mainlobe of the receiver with a sufficient SNR. The reason for this is

twofold: on the one hand the transmit signal is only attenuated by the one-way transmit

antenna gain pattern, and on the other hand, for a receiver close to the observed area,

the patch-receiver distance is much smaller than the patch-transmitter distance of the

monostatic case yielding a smaller free-space loss in the bistatic case. Note that, in con-

trast to monostatic SAR images, BSAR images are not only affected by the shadowing

due to the look angle of the transmitter but also due to the look angle of the receiver.

For a receiver close to the observed area, the obtained bistatic SAR image will be more

affected by shadowing from the receiver than the monostatic image obtained from the

same satellite due to the small grazing look angle of the receiver. This is evaluated for



5.1. Concept 83

different local terrain slopes in [108].

In a wide-swath mode, a ground patch in a specific sub-swath may be first illumi-

nated by the mainlobe of the elevation beam of the transmit antenna corresponding to

this sub-swath, then the antenna switches beam and this ground patch is then illumi-

nated by the elevation sidelobe of the adjacent beam as illustrated in Fig. 5.1. If the

SNR of the reflected signal received at the receiver is sufficient, this may result in a

continuous illumination of the scene under the main beam of the receiver as illustrated

in Fig. 2.11 (b) and (d) in the case of a ScanSAR mode.

sub−swaths

Transmitter
flight track

area
of interest

X

Z Y

1
2

3
4

Rx

AAPTF

TB

TR

θel

Figure 5.1: Acquisition geometry in ScanSAR imaging mode in the case of four sub-

swaths. The receiver and the imaged area are located at the edge of the global swath

(small rectangular area) and are illuminated by the sidelobes of the beam illuminating

sub-swath 3 and afterwards, by the mainlobe of the beam illuminating sub-swath 4.

This continuous illumination of the scene of interest may be used to increase the

integration time and thus improve the cross-range resolution compared to the tradi-

tional single-burst processing of ScanSAR data [77]. Although many bistatic confi-

gurations can be considered, the concept of improving the resolution of low-resolution

mode makes sense when spaceborne emitters of opportunity are considered. Indeed, the

imaging mode of spaceborne SAR instruments is most often a wide-swath mode [109].

Of course cooperative operation could be considered, such that the SAR system would

operate in stripmap mode and thus would make high cross-range resolution possible.
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That would however likely conflict with the needs of other users. The one-stationary

configuration, where a spaceborne transmitter and a stationary receiver located on a hill

or a high building are considered, is, in the author’s opinion, one of the most practical

configurations.

The following questions are now answered to support our motivation to exploit

wide-swath illumination modes.

• Will the SAR image acquired in the space-ground bistatic geometry suffer from

range ambiguities?

• How often is a continuous illumination achieved?

5.2 Range ambiguities
One question that arises is whether range ambiguities can occur in the considered

bistatic geometry. As an example, the PRF of RADARSAT-2 in ScanSAR mode is

of the order of 1300 Hz which corresponds to an ambiguous bistatic slant-range dis-

tance of 230 km. Considering the bistatic configuration of Fig. 5.1, the ambiguous

bistatic slant-range distance corresponds as a first approximation to a slant-range dis-

tance of 115 km from the receiver. In order to receive the reflections from a patch

located at this ambiguous distance, the receiver would need to be at an altitude of 990

m above sea level taking into account the curvature of the Earth. Either the receiver

is at a lower altitude and no range ambiguities occur, or the receiver is at an altitude

larger than 990 m and its elevation antenna pattern must be shaped such as to attenuate

echoes from patches located at ambiguous ranges. Our bistatic receiver is located at an

altitude of 100 m above sea level. Therefore, the SAR image will not be affected by

range ambiguities.

5.3 Prediction of the resolution enhancement

5.3.1 Key parameter

The slow-time amplitude modulation of the measurements due to the elevation scan-

ning of the transmit beam depends on the position of the imaged area in the global

swath. This can be parametrised using the elevation angle denoted θel in Fig. 5.1. The

slow-time amplitude modulation encountered by each patch can be deduced from the
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elevation antenna diagram of the transmitter based on θel. Therefore, this key parame-

ter can predict whether or not the potential wide-swath pass is suitable for cross-range

resolution-enhanced SAR imaging.

5.3.2 Procedure

Based on the geometry of the satellite and the receiver, one can compute θel for each

predicted overpass of the satellite. Then, based on the EAP of the non-cooperative

transmitter, we can predict if there is sufficient SNR in the elevation sidelobes to be

able to increase the integration time and thus increase the cross-range resolution. To

that end, knowledge of the amplitude of the sidelobes of the elevation diagram of the

transmit antenna is of utmost importance. As the satellite operator usually provides

the two-way elevation diagram for 5◦ around the beam centre for each beam [44], we

need to complement these diagrams at other angles with data acquired by the stationary

ground-based receiver. We made the exercise for the ASAR instrument of ENVISAT

as source [110], but the procedure can easily be extended to other transmitters.

The goal is to estimate the amplitude of each beam relative to the adjacent beams

in order to extrapolate the EAP of the transmitter. In this exercise, the EAP of the re-

ceiver is known and constant during the signal acquisition and its AAP is known and

assumed constant during the illumination time. As a non-cooperative transmitter is ex-

ploited, the AAP of the transmitter is unknown and is thus modelled in this work with

a sinc function. A stripmap signal acquisition is used to extract the shape of the AAP

of the transmitter. Once the parameters of the sinc model are known, the estimation

of the beam-to-beam amplitude differences at different θel is performed by estimating

the amplitude of the sinc model in the least square sense from the measurement data.

For illustrative purpose, a ScanSAR mode signal acquisition in which the receiver and

the imaged area are illuminated by all five beams is analysed. The elevation angle of

the centre of the scene to be imaged is equal to 29.33◦. The squared signal amplitude

of the measurement is depicted in Fig. 5.2 (a). First, the different bursts of each beam

are separated as depicted in Fig. 5.2 (b-f). The noise energy has been subtracted. The

differences in energy inside a burst are possibly due to the fluctuation of the transmitted

power [111]. Therefore, the mean energy inside a burst is computed and is represented

by red dots in Fig. 5.2 (b-f). The amplitude of the AAP for each beam is then estimated



5.3. Prediction of the resolution enhancement 86

0 0.5 1 1.5 2
0

0.5

1

1.5

t (s)

S
q

u
a

re
d

 s
ig

n
a

l 
a

m
p

li
tu

d
e

 (
V

2
)

17/11/2011 10:03:17 UTC (SWB)

(a) Total signal

0 0.5 1 1.5 2
0

0.5

1

1.5

t (s)

S
q

u
a

re
d

 s
ig

n
a

l 
a

m
p

li
tu

d
e

 (
V

2
)
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(c) Signal from beam 5
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(f) Signal from beam 1

Figure 5.2: Squared signal amplitude of a RADARSAT-2 signal acquisition separated

in beams.

in the least square sense from the measured mean energy of each burst. The result is il-

lustrated in Fig. 5.3 and the estimated beam-to-beam amplitude differences correspond
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Figure 5.3: Fitted squared sinc model.

to one measurement used to extrapolate the elevation antenna pattern of the transmit

antenna. The same procedure is followed for several acquisitions.

5.3.3 Result

Figure 5.4 depicts the ESA calibrated amplitude elevation diagrams of the five beams

of ASAR used in ScanSAR mode (solid lines) and the extrapolation (dashed lines)

based on our measurements (dots). Once the EAP have been extrapolated, the beam-to-
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Figure 5.4: Extrapolated antenna elevation diagrams of the 5 beams of the ASAR an-

tenna. The dots on the dashed line denote our measurements and the dots on the solid

line denote the values obtained from sampling antenna patterns provided by ESA.

beam amplitude differences of each predicted overpass of the satellite can be extracted

to predict whether or not the considered wide-swath pass is suitable for cross-range

resolution-enhanced SAR imaging. During a period of six months (June-Dec 2011),

about 25 ENVISAT passes were recorded over Brussels. The pie chart in Fig. 5.5 gives
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the proportion of the different radar modes. It may be concluded that exploiting the

multi-beam illumination passes increases of a factor 7 the number of passes suitable to

produce high cross-range resolution images over the area of interest.

24%

24%
28%

16%

8%

 

 

GM

Favourable GM

Favourable WS

WS

Stripmap

Favourable

passes

Figure 5.5: Six months measurement campaign result: half of the ScanSAR mode

passes results in a continuous illumination.

For acquisitions in Fig. 2.11 (a) and (c), the geometry was such that the receiver

was in the footprint of only one elevation beam of the ScanSAR mode. This case

corresponds to θel = 15◦ in Fig. 5.4 and results in illumination gaps between two

consecutive beam scans. When the imaged area of interest is ideally situated, i.e. at

the centre of the global swath, reception of signals from all elevation beams is possible

but each with a different amplitude according to the elevation antenna diagram of the

considered beam. In this case, a continuous illumination occurs as depicted in Fig. 2.11

(b) and (d).

5.4 Conclusion
In the bistatic configuration studied in this thesis, range ambiguities will not degrade

BSAR images thanks to the limited altitude of the receiver. It is also shown that

thanks to the measurement of the EAP of the transmit antenna, it is possible to pre-

dict whether a future wide-swath pass of the satellite will present sufficient SNR in

the elevation sidelobes to improve the cross-range resolution. As demonstrated for the

ASAR instrument of ENVISAT, producing images with high cross-range resolution

from data obtained from a SAR system operating in wide-swath mode substantially
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increases the number of useful images that can be produced using emitters of opportu-

nity since monostatic SAR systems usually transmit over land in wide-swath imaging

mode. Since emitters of opportunity are considered, signals from any radar satellite in

the receiving band of the receiver can be used, thus further decreasing the revisit time

of the area of interest.



Chapter 6

SAR inverse problem

6.1 Introduction
SAR raw data may be considered as the result of the convolution of the observed scene

reflectivity with the radar system response function. This is called the forward problem

[43] and is described in Section 6.2. The image formation process can be regarded as

an inverse problem which consists in inferring the observed scene reflectivity given the

observed data and the forward model. The inverse problem of SAR imaging is ill-posed

according to the classical definition of well-posedness [112] since a solution exists but

is not unique; also, with the presence of noise, the solution is not stable. Therefore, a

regularisation is necessary to turn the problem into a well-posed one and prevent the

amplification of measurement noise during the reconstruction process. Although many

regularisation methods exist [113], we will compare two methods. The first approach

is the Maximum a Posteriori (MAP) estimate assuming a Gaussian model for the scene

and the noise which is described in Section 6.3. Since the computational complexity of

this method is high in the considered case of wide-swath illumination, we derive a novel

method to focus SAR data in Section 6.3.2. The commonly used Matched Filter (MF)

is also shown to be a particular case of the MAP SAR focussing. A second method

to estimate the reflectivities is a sparse recovery method, better known as Compressive

Sensing (CS) method which is proposed in Section 6.4. CS methods use the prior

knowledge that the scene is sparse. The OMP greedy algorithm is chosen to illustrate

the limitations of CS. Although many bistatic configurations can be considered, the

bistatic space-ground configuration of the experiments can be kept in mind but the

method and the developments that follow are generic.
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6.2 SAR signal model
We consider here the unidimensional case for simplicity and K ground patches along

a bistatic isorange contour. If Range Cell Migration (RCM) is neglected, the measured

range-compressed data corresponding to the considered range bin can be written as

a column vector, yk ∈ CM×1, with M being the number of transmitted pulses. The

received data due to the kth ground patch can be modelled as

yk = Whkxk + n (6.1)

where xk is the complex reflectivity of the kth ground patch and n ∈ CM×1 denotes

the thermal noise. The column vector hk ∈ CM×1 represents a received signal if

a scatterer at patch k has a reflectivity of 1 and includes the AAP weighting of the

transmit and the receive antennas. This AAP weighting depends on the location of

the target in the observed area. In addition to the AAP weighting embedded in hk,

the received signals undergo a slow-time amplitude modulation represented by W =

diag(w) with w ∈ RM×1. This modulation function is determined, for each beam, by

the corresponding elevation antenna gain at the elevation angle at which the scatterer is

located. The model (6.1) assumes an invariant W along the considered bistatic isorange

contour. The validity of this assumption will limit the size of the area that can be imaged

according to its position with respect to the transmitter and the receiver. W depends on

the elevation angle under which the patches are illuminated by the transmitter. Thus, if

the transmitter flies along a straight path, the patches located along a line parallel to the

transmitter flight path will be subject to the same W. In the case of the ASAR antenna

of ENVISAT, and if a difference of 0.25 dB in W, which corresponds to the specified

one-way antenna calibration error [114], is accepted, the bistatic isorange contour may

deviate from the above-mentioned straight line by up to 20 km. Thus, the imaging

area must be such that the bistatic isorange contour deviates by less than 20 km from a

straight line parallel to the flight path.

The total received signal seen by the radar is then the sum of the responses from

all ground patches along one isorange contour and can be modelled as

y = WHx + n = Hwx + n (6.2)

with x = [x0, x1, ..., xk, ..., xK−1]T , H = [h0,h1, ...,hk, ...,hK−1] and K the number

of ground patches along the considered bistatic isorange contour.
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The slow-time modulation W depends on the radar mode in which the transmitter

is operating. For the stripmap mode, W is obviously constant. However, wide-swath

mode illuminations (TOPSAR, ScanSAR) of the scene of interest are responsible for

an amplitude modulation of the SAR phase history.

The SAR inverse problem consists in the reconstruction of the target reflectivity

function x from the measurements y, i.e. finding the operator F such that

x̂ = F(y) (6.3)

with x̂ the estimated scene reflectivity.

6.3 Maximum a posteriori image formation

6.3.1 Optimum SAR focussing

The unknown reflectivity vector x can be estimated by maximising its a posteriori

Probability Density Function (PDF) or

x̂ = arg max
x

p(x|y). (6.4)

which can be reformulated with the Bayes identity

x̂ = arg max
x

p(y|x)p(x)

p(y)
. (6.5)

The a priori probability, p(y), does not depend on x and thus, does not influence the

position of the maximum. In this work, a priori knowledge about x is introduced

making (6.4) the MAP estimate of x.

Let us assume that the reflectivity x is complex Gaussian distributed which is the

statistical model of fully developed speckle [43]. This means that the a priori PDF

of the scene reflectivity x is completely specified in terms of its covariance matrix

Rx = E[xx†], i.e.

p(x) ∝ e−x
†Rx

−1x (6.6)

As n = y −Hwx from (6.2) and assuming a Gaussian noise, the likelihood function

can be written

p(y|x) = p(n) ∝ e−(y−Hwx)†Rn
−1(y−Hwx). (6.7)

Then, the a posteriori PDF of x becomes

p(x|y) ∝ e−(y−Hwx)†Rn
−1(y−Hwx)e−x

†Rx
−1x (6.8)
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the maximum of which is reached [115] for

x̂ = H†ry (6.9)

with

H†r = RxH
†
w(HwRxH

†
w + Rn)−1 (6.10)

where Rn = E[nn†] is the covariance matrix of the noise n. The solution (6.9) provides

the best estimate in a MAP sense to the scene reflectivity x given the measurements y

assuming a Gaussian prior PDF and Gaussian noise. The optimal SAR focussing thus

consists of the multiplication of the reconstruction matrix H†r with the measurements y.

The matrix H†r is the well-known Wiener filter [36, 113]. Note that the MAP estimator

(6.10) is identical to the Minimum Mean Square Error (MMSE) estimator [36, 116] in

the Gaussian signal model.

The computation of (6.10) is feasible in the classical single-burst processing [76],

in which a few dozen pulses are processed. In a continuous illumination, more than

one thousand pulses must be processed. Therefore, in a continuous illumination case,

(6.10) is computationally demanding and possibly unfeasible. Another implementation

is now discussed making additional assumptions.

6.3.2 Burst-mode resolution enhancement method

If x and n are samples of Gaussian stationary processes and the elements of the vectors

x and n are assumed uncorrelated, then the covariance matrices become Rx = σ2
xI and

Rn = σ2
nI with σ2

x and σ2
n respectively the variance of the scene reflectivity and of the

noise and I the identity matrix. The optimum focussing (6.10) simplifies thus as

H†r = H†w(HwH
†
w + ϑI)−1

= H†[W†(WHH†W† + ϑI)−1]
(6.11)

where ϑ = σ2
n

σ2
x

is the inverse of the SNR.

If the conditions to have HH† diagonal are met, the matrix operation in brackets in

(6.11) is simply a multiplication between diagonal matrices which leads to

H†r = H†Cw (6.12)

where the matrix Cw is a diagonal matrix with the diagonal elements equal to

cw,i(ϑ) =
wi

w2
iK + ϑ

(6.13)
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with wi the ith element of w. This matrix acts as a compensation of the slow-time

modulation embodied by w, or in another words, restore the performance degraded

by the multiplication by W in (6.2). This equation holds if the Gram matrix HH† is

diagonal which is achieved if the ground patches are resolved.

Finally, the optimum SAR focussing (6.9) simplifies in

x̂ = H†Cwy (6.14)

This result implies that the burst-mode resolution enhancement method consists in

• compensating in the measurement domain, the slow-time modulation of the mea-

surements induced by the beam scanning in elevation

yc = Cwy (6.15)

• focussing using the conventional Matched Filter (MF)

x̂ = H†yc. (6.16)

Note that in the case of a uniform illumination, i.e. W = I, and if the SNR is very

large, (6.12) boils down to the conventional MF,

H†r ∝ H† (6.17)

In this work, the Back-Projection (BP) algorithm [67, 74, 75] to implement the MF

(6.16) after the cross-range compensation step (6.15) is used.

6.3.3 Achievable performance

6.3.3.1 ScanSAR illumination

To illustrate the expected performance of the method in the case of a ScanSAR illumi-

nation, the measurement resulting from a stripmap acquisition have been modulated by

the slow-time modulation of a ScanSAR acquisition. A point scatterer in the presence

of noise with a SNR of −10 dB before any coherent processing is simulated and two

extreme situations are envisaged. First, a single-beam ScanSAR illumination, as would

be obtained for a scatterer at the very edge of the wide swath is considered. This ge-

ometry would result in a pulse-train window modulation w as illustrated in Fig. 6.1 (a).
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Figure 6.1: On the left, the normalised slow-time amplitude modulation w of (a) a

single-beam and (c) a multi-beam ScanSAR illumination, and on the right, cuts of the

IRF along the scatterer’s isorange for (b) a single-beam and (d) a multi-beam ScanSAR

illumination.

Figure 6.1 (b) represents the intensity of the azimuthal Impulse Response Function

(IRF) obtained if one single burst is focussed (dashed line) [77] and if all bursts are co-

herently processed (solid line) using a conventional MF. The latter drastically improves

the poor resolution of the single-burst processing but grating lobes along the azimuth

direction appear.

When the scatterer is ideally situated, i.e. at the centre of the global swath, re-

ception of signals from all five elevation beams is possible but each with a different

amplitude according to the elevation antenna diagram of the considered beam as illus-
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trated in Fig. 6.1 (c) (solid line). In this case, the area of interest is illuminated by

the elevation sidelobes of the transmit antenna leading to a reduction of the amplitude

of the azimuth grating lobes in the IRF as illustrated in Fig. 6.1 (d) (solid line). The

Peak-to-Side Lobe Ratio (PSLR) improved from 0.5 dB for a single-beam illumination

to 4 dB for a multi-beam illumination. That demonstrates that exploiting the signals

originating from the elevation sidelobes of the transmit antenna is a step in the right

direction to approach the stripmap performance.

By applying the burst-mode resolution enhancement method (6.14), the residual

grating lobes due to the ScanSAR data are attenuated by about 8 dB which puts it at the

same level as the other sidelobes as illustrated in Fig. 6.1 (d) (dashed line). That will be

the case if the SNR of the backscattered signals coming from the patches illuminated

by the elevation sidelobes of the transmit antenna is sufficient. The applied cross-range

compensation function cw is depicted in Fig. 6.1 (c) (dashed line). It is obvious that

the product cw,iwi for i = 0 . . .M − 1 must converge to 1 to approach the PSLR of the

stripmap mode. As is evident from (6.13), this will happen for very small ϑ, i.e. very

large SNR.

It is important to stress that the grating lobes pattern in the azimuthal IRF depends

on the number of sub-swaths, NS , and on the number of looks, NL, of the ScanSAR

mode. ScanSAR modes designed with NL > 1 as is the case for the wide-swath modes

of ENVISAT or RADARSAT-2 [117] can give rise to grating lobes in the azimuthal IRF

if more than one burst are coherently focussed. The distance between the mainlobe

of the IRF and the first grating lobe is inversely proportional to NSBa with Ba the

azimuthal burst bandwidth [78].

6.3.3.2 TOPSAR illumination

The TOPSAR mode implemented on Sentinel-1A [109] is a one-look wide-swath

mode. In this wide-swath mode, the azimuthal IRF is not corrupted by grating lobes

but has a higher sidelobe level [118] when focussed without using the burst-mode res-

olution enhancement method.

To give a quantitative insight of the performance of the method in a TOPSAR

illumination, a scenario with a point scatterer in presence of noise is simulated. A SNR

of 20 dB after focussing is chosen. The simulated slow-time modulation is based on
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the measured Sentinel-1A signal envelope of Fig. 6.2.
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Figure 6.2: Acquired Sentinel-1A signal in TOPSAR.

Two extreme cases have been considered. First, a single-beam illumination with

a typical burst duration TB of 0.8 s (IW mode), as would be obtained for a re-

ceiver/scatterer at the very edge of the global swath, would result in a sinc-shaped

azimuth modulation like the portion of the envelope of the signal between 1.08 s and

1.9 s in Fig. 6.2. Figure 6.3 (a) shows cuts of the IRF along the bistatic isorange con-

tour computed using the MF (dashed line) and the burst-mode resolution enhancement

method (solid line). The slow-time modulation results in a high level of sidelobe in the

case of the MF. However, the burst-mode resolution enhancement method considerably

decreases the level of azimuth sidelobes in the IRF.

Secondly, if the receiver/scatterer are located in the centre of the global swath, a

multi-beam illumination occurs with a slow-time modulation equals to the entire slow-

time envelope of Fig. 6.2. The corresponding cuts of the IRF along the bistatic isorange

contour are illustrated in Fig. 6.3 (b) and as expected [3], an improved cross-range reso-

lution results in the case of a multi-beam illumination. If the cross-range compensation

function (6.15) is applied, the cross-range resolution is kept while the sidelobe levels

considerably decrease as illustrated in Fig. 6.3 (b) (solid line).

6.3.4 Evaluation of the noise amplification

One drawback of the burst-mode resolution enhancement method is the increase of the

noise content in the SAR image. In this section, the impact of the noise amplification
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Figure 6.3: IRF cuts along the scatterer’s isorange using the conventional MF (dashed

line) and the burst-mode resolution enhancement method (solid line) (SNR = 20 dB

after focussing).

of the novel burst-mode resolution enhancement method is evaluated using simulated

data.

6.3.4.1 Noise amplification factor

To evaluate the noise amplification for different bistatic geometries, we use the ex-

trapolated EAP of ENVISAT (Fig. 5.4) and simulate the respective slow-time ampli-

tude modulation that the measured data would encounter. This is performed for satel-

lite passes over 15◦ ≤ θel ≤ 40◦. Figure 6.4 (a) shows the computed PSLRs of the

IRF for each geometry obtained with the conventional MF (dashed line) and with the

conventional MF preceded by the cross-range compensation (6.14) (solid line). For

27◦ ≤ θel ≤ 32◦, the PSLR of the MF output with the cross-range compensation step

(6.14) is by far better than without. For those geometries with small ϑ, cw,i tends to the

inverse of wi, compensating appropriately the slow-time modulation, i.e. leading to a

reduction of the grating lobes, but, at the same time, will amplify the noise included in

the measured data. Outside that angular range, one or several beams are barely present

leading to a poor signal amplitude over part of the aperture (large ϑ). In those cases,

cw,i will neither amplify the signal nor the noise: the poor SNR will not degrade but

the grating lobes will remain. The noise amplification induced by the method can be
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quantified using

Fw = 10 log10

(
1

M

M−1∑
i=0

|cw,i|2
)
. (6.18)

This parameter, depicted in Fig. 6.4 (b), represents the factor by which the noise vari-

ance is amplified relative to the constant W case. The reduction of the grating lobes is

accompanied by a noise amplification by up to 15 dB.
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Figure 6.4: (a) Calculated PSLR for different antenna elevation angles without (dashed

line) and with the cross-range compensation function (solid line) and (b) calculated

relative noise energy (w.r.t. stripmap mode) amplification Fw due to the compensation

step.

6.3.4.2 Mean Square Error

Another way to measure the noise amplification induced by the method is by comput-

ing the Mean Square Error (MSE) between the true one-dimensional IRF profile (along

the azimuth direction) and its reconstructed version. This is illustrated considering a

multi-beam TOPSAR illumination with a slow-time modulation equals to the entire

slow-time envelope of Fig. 6.2. The MSE is computed for increasing SNRs and con-

sidering a Monte Carlo method (100 realisations). Figure 6.5 depicts the mean MSE

with error bars representing one standard deviation on either side of the mean. For the

conventional MF focussing (dashed line), the mean MSE is approximately constant for

large SNRs while it decreases for increasing SNRs if the cross-range compensation is

applied. The mean MSE of the IRF of Fig. 6.3 (b) (SNR= 20 dB) is equal to 0.088 for
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the conventional MF and to 0.037 for the burst-mode resolution enhancement method.

One can see that the burst-mode resolution enhancement method based on MMSE es-

timator outperforms the conventional MF as expected.
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Figure 6.5: Mean value of the MSE as a function of the SNR (after focussing) using

the MF (dashed line) and the burst-mode resolution enhancement method (solid line).

6.3.4.3 Coherence

Taking interferometry as a possible application, the noise amplification induced by the

burst-mode resolution enhancement method can lead to a partial decorrelation of the

two images which introduces noise in the interferogram and corrupts the estimation

of the interferometric phase. This raises the question of how far the phase noise level

can increase before a significant loss of coherence. To answer the question, single-pass

interferometry using two different channels of the ground-based receiver is considered.

This choice allows us to concentrate on the study of the phase noise generated by the

method as the phase noise due to temporal change of the scene vanishes while the

small spatial baseline minimises baseline decorrelation. Note that the actual baseline

of the receiving system is half a wavelength. Such short baseline is required for short

stand-off range in order to have an acceptable sensitivity to topography (across-track

interferometry) or to movement (along-track interferometry).

The coherence parameter refers to the amplitude of the complex correlation co-

efficient between two SAR images. Given the SAR images z1 and z2, the complex
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correlation coefficient is defined as [119]

∆ =
E[z1z

∗
2 ]√

E[|z1|2]
√
E[|z2|2]

(6.19)

where ∗ refers to the complex conjugation. In practice, ∆ can be estimated from (6.20)

by substituting the ensemble averages with spatial sample averages (i.e. by assuming

process ergodicity in a small estimation area of L pixels). Thus, the sample coherence

δ is

δ =
ΣL
i=1z1iz

∗
2i√

ΣL
i=1|z1i|2

√
ΣL
i=1|z2i|2

(6.20)

with L the number of pixels used to estimate the coherence. A high coherence level

(close to 1) indicates a very good phase correlation between the two images.

To illustrate what is expected from the measurements, a point scatterer with a

SNR of −10 dB (before coherent processing) is simulated. A favourable geometry is

considered which means that the amplitude of the signals transmitted in the elevation

sidelobes is sufficient. The right hand images of Fig. 6.6 depict the sample coherence

image between the SAR images obtained from two channels with a horizontal baseline

of half a wavelength, one of whom is represented on the left side. Figure 6.6 (a) shows

the simulated Single-Look Complex (SLC) SAR image centred on the point scatterer

obtained with the conventional MF. The expected grating lobes in azimuth along the

isorange can be observed. A high coherence between two channels (Fig. 6.6 (b)) results

as the interferometric baseline between the channels is quite small.

If the burst-mode resolution enhancement method is applied with the correctly-

estimated value of ϑ, there is a trade-off between the amplification of the noise and the

reduction of the grating lobes. The latter are reduced but still present in Fig. 6.6 (c).

Here, the coherence depicted in Fig. 6.6 (d) remains high while the noise amplification

due to the burst-mode resolution enhancement method is small. For an overestimated

SNR (too small ϑ), the cross-range compensation function cw becomes the inverse of

w: the amplitude modulation in azimuth is compensated at the expense of an increase

of the noise content in the SAR image (Fig. 6.6 (e)). This amplification of the noise

leads to a coherence loss between the two SAR images as depicted on the coherence

image in Fig. 6.6 (f).
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Figure 6.6: On the right side, sample coherence image between the simulated SAR

images obtained from two horizontally-spaced channels, one of whom is represented

on the left side. The first rows obtained with the conventional MF (a, b), the second

row with the optimum cross-range compensation function (c, d) and the third row with

a sub-optimal cross-range compensation function (inverse filter) (e, f).
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6.4 Sparsity-driven image formation

6.4.1 SAR focussing using sparse recovery methods

The aforementioned SAR model (6.2) can be regarded as a linear combination of basis

functions embedded in the matrix Hw. We shall refer to Hw as a dictionary and its

columns as atoms [120]. Each column of the matrix Hw represents the phase history

for a given point in the discretised scene.

In sparse recovery methods or Compressive Sensing (CS) [121], the ill-posed in-

verse problem is regularised assuming that the unknown signal x is S-sparse (i.e. has at

most S non-zero entries). The objective of sparse recovery is to find the sparsest vector

x, represented as:

min
x
‖x‖0 subject to y = Hwx (6.21)

where ‖·‖0 denotes the l0-norm and represents the number of non-zero elements. Unfor-

tunately, the l0-norm is a non-convex function making (6.21) computationally difficult

to solve due to the required combinatorial exploration of all subsets of Hw.

It is possible to recover exactly the sparse signal x via a sparse recovery method

when the matrix Hw has the Restricted Isometry Property (RIP) of order S. The RIP

requires [122] that

(1− δk) ‖x‖2
2 ≤ ‖Hwx‖2

2 ≤ (1 + δk) ‖x‖2
2 (6.22)

where ‖·‖2 is the Frobenius norm or the l2-norm, x is any vector having S non-zero

coefficients, and δk ∈ (0, 1). The smaller the value δk is, the better the sparse signal

can be reconstructed.

If the RIP holds, replacing the l0-norm by the l1-norm has been shown [123–125]

to lead to the same solution with overwhelming probability. The relaxed version of the

problem then takes the form

min
x
‖x‖1 subject to y = Hwx (6.23)

which is essentially a linear program and thus can be resolved by any algorithm from

the Linear Programming (LP) literature [126]. This problem is known in the literature

as basis pursuit [125].

l1-norm minimisation is not the only way to approximate sparse solutions. Heuris-

tic greedy algorithms [127] have been developed to approximate (6.23), which are also
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significantly faster than using LP. In this work, we focus on Orthogonal Matching Pur-

suit (OMP) which selects one atom at a time, iteratively.

6.4.2 Applicability of sparse recovery methods in BSAR

This section analyses the two fundamental premises underlying sparse recovery meth-

ods which are the sparsity of the signal to be recovered and the incoherence of the

dictionary.

6.4.2.1 Sparsity

CS assumes that the signal to be recovered, i.e. the SAR image x, is sparse in a specific

dictionary which is Hw in this work. Radar scenes with highly reflective objects can be

considered as sparse in the dictionary Hw. The man-made structures have bright reflec-

tivity and this dictionary is then adequate for urban areas. The sparsity of monostatic

radar data has been already justified in the literature [128]. In bistatic radar, one can

also find point scatterers but probably at other positions than in the monostatic case due

to differences in scattering mechanisms between bistatic and monostatic SAR [14, 15].

6.4.2.2 Incoherent dictionary

In addition to the sparsity, another essential condition of CS is the incoherence of the

dictionary. The incoherence of a dictionary can be verified using the RIP or by com-

puting the mutual coherence. RIP requires that all possible combinations of S non-zero

entries of vector x have to satisfy (6.22), which is a NP-complete problem and thus

difficult to verify. However, it can be shown [129] that the mutual coherence is also

a good parameter to measure the incoherence of a dictionary. Dictionaries which are

maximally incoherent will satisfy this restricted isometry property. The mutual coher-

ence of the sensing matrix Hw is the largest absolute and normalised inner product

between its atoms

µ(Hw) = max
i 6=j

|hw
†
ihwj|

‖hwi‖2

∥∥hwj

∥∥
2

(6.24)

where hwi is the ith column of the matrix Hw. In other words, the mutual coherence

is the largest off-diagonal entry of the column normalised matrix product Hw
†Hw.

Large mutual coherence indicates a presence of two very similar columns that may

confuse the reconstruction algorithm. The incoherence of Hw strongly depends on

the modulation pattern W. In the extreme case where there are gaps in the phase
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history, i.e. W has diagonal elements equal to zero, it has been demonstrated that the

more random the gap pattern [123], the more incoherent the matrix Hw. The mutual

coherence can take value between 0 and 1. In the case where µ(Hw) = 1, it is obvious

that there is no unique sparsest solution to (6.2).

While in most applications of CS, measurements are dropped in a way to satis-

fy the incoherence property, all our available measurements are used. In the case of

ScanSAR illumination, the gap pattern can be periodic as illustrated in the upper part of

Fig. 6.7 (b). The mutual coherence of the corresponding dictionary is illustrated in the

lower part of Fig. 6.7 (b). As shown, off-diagonal elements are present but are smaller

than 1, it is then verified that Hw satisfies RIP. Note that the finer the grid of the scene,

the stronger is the correlation between atoms which then reduces the performance of

CS algorithms.

6.4.3 Greedy approach

6.4.3.1 Orthogonal Matching Pursuit

One of the simplest greedy algorithms is Matching Pursuit (MP), which Mallat and

Zhang introduced to the signal processing community [120]. MP decomposes the un-

known signal to be recovered into the contributions of several atoms selected from a

dictionary. The first iteration consists of the projection of the measurement data on the

dictionary which is equivalent to compute the matched filter output. Then MP detects

the predominant value of the matched-filter output and rejects its contribution with its

associated sidelobes. This most correlated atom is added to the set of selected atoms.

The residual signal is then projected on the dictionary and the MP continues to update

the set of selected atoms with the most correlated projection until a stop criteria is met.

Note that the vector selected at each step by MP is not necessarily orthogonal

to the previously selected vector. The subtraction of the projection reintroduces new

components, which slow down the convergence of the algorithm and introduce false

targets. This can be avoided by projecting the residual signal on an orthogonal family as

in the Orthogonal Matching Pursuit (OMP) method. OMP, which was first proposed in

the signal processing literature in [130], adds a least-squares minimisation at each step

to obtain the best approximation of the signal over the atoms which have already been

chosen. Therefore, the residuals after each step in the OMP algorithm are orthogonal
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Figure 6.7: Illustration of the mutual coherence of the dictionary Hw in the case of

(a) uniform illumination such as stripmap and (b) non-uniform illumination such as

ScanSAR.

to all the selected columns of Hw, so no column is selected twice. This revision of

MP significantly improves the rate of convergence. Several implementations of OMP

exist [131]. Our OMP implementation is based on [130] where the projections are not

computed at each iteration but the previous coefficients of the projection are iteratively

updated with a simple updating formula. In the noiseless case and if the signal is S-

sparse, OMP would find the exact solution in S iterations and the residual would be 0

after S iterations.

Concerning the computational cost, the matched filter (6.17) is cheaper than the

OMP since the first iteration of the OMP algorithm is simply a normalised matched

filter and OMP needs several iterations to find a sparse estimate of the scene reflectivity.
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6.4.3.2 Stop criteria

One of the key parameter of an iterative procedure such as OMP is the stopping rule.

The stop criterion selection depends on the a priori knowledge of the scene. One would

stop after a maximum number of iterations is reached, e.g. S iterations if the scene is

S-sparse. Another would continue until the energy in the residual signal falls below a

threshold value related to the noise content in the SAR image. If no a priori knowledge

of the scene is available, the required number of iterations or the residual signal energy

can give information about the scene. Indeed, the required number of iterations can be

seen as an estimate of the sparsity level of the scene and the residual energy as the noise

content in the SAR image [132].

6.4.4 Limitations of compressive sensing

6.4.4.1 Resolution limitation

In the CS literature applied to SAR imaging [97, 99, 133, 134], sparse recovery methods

may give the false impression of super-resolution since the SAR image is represented

by the coefficients of the projection and not by the reconstructed signal. Figure 6.8

depicts the IRF along one isorange contour with one single scatterer. The sinc-shape

of the conventional SAR method such as the MF can be recognised whereas the OMP

method reconstructs the scene with only one coefficient. One could deduce that the

OMP method is a super-resolution algorithm which can better resolve two closely-

spaced targets than the MF and a finer grid would accentuate this false impression. In
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Figure 6.8: Azimuthal IRF of one single target.
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fact, the resolution of sparse recovery methods is the same as the one of the conven-

tional MF. Indeed, the projection of the measurement y on the dictionary, which is a

step inherent to every CS algorithm, is equivalent to the application of the MF.

Let us illustrate the identical resolution limitation of both the OMP and the MF by

an example. Two targets at different close distances along the same bistatic isorange

contour are simulated and the azimuthal IRF is illustrated in Fig. 6.9. The left-hand

target is fixed and the right-hand target changes position. The noiseless case and a

uniform illumination (W = I) are considered. We consider a sampling grid made of
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(c) 0.75 cell distance

Figure 6.9: IRF of two closely-spaced targets.

four samples per resolution cell as depicted in Fig. 6.10. The first iteration of the OMP

algorithm, which is the projection of the measurement on the atoms of the dictionary,

boils down to the normalised matched filter output, represented in blue in Fig. 6.9. The

sidelobes of one target contributes to the value at the maximum of the other target,

destructively or constructively, biasing the detection using the MF since the MF is

optimal for targets in different resolution cells or for one target in the presence of white

noise (6.17). When the distance is equal to or larger than one resolution cell, both

the MF and OMP detect the correct number of targets as illustrated in Fig. 6.9 (a)

and 6.9 (b). If the targets get closer than one resolution cell distance, the MF will detect

only one target whereas OMP gets confused and detects four targets instead of two as

depicted in Fig. 6.9 (c). Even if the simulated signal is the exact sum of two atoms of

the dictionary, OMP cannot resolve two targets separated by less than one resolution

cell. The reason is that the first predominant detected coefficient of the projection is

biased by the presence of the second target leading to a residual signal which does not

correspond to the second atom to detect.
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6.4.4.2 Basis mismatch

The model (6.23) assumes that the targets on the scene are located on a discrete range

and cross-range grid. A target not perfectly located on the sample grid is a phenomenon

that occurs all the time since the sampling frequency is finite in range and in azimuth.

It is thus important to investigate the performance of the proposed method when targets

are at arbitrary location. Those targets are defined as off-grid targets and the problem as

basis mismatch. Let us illustrate the off-grid effect on the same scenario as in previous

1 resolution cell
= 4 sampling grids

doff = 0.125

1.5

0.75

Figure 6.10: Illustration of the distances in the considered scenario.

section. Two targets with a decreasing distance are simulated with the right-hand target

not on the grid with an off-grid distance equals to doff = 0.125 as depicted in Fig. 6.10.

Figure 6.11 shows the estimated reflectivity by the MF and OMP. The conclusions for

the MF are similar to those of previous section whereas OMP introduces false targets

even if the distance between the two simulated targets is larger than the resolution cell

as illustrated in Fig. 6.11 (b).
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Figure 6.11: IRF of two closely-spaced targets with the right-hand target not on the

grid.

When conventional SAR algorithms are used such as the MF, off-grid targets do

not degrade the SAR image. However, CS methods are typically not robust to off-grid
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targets and a significant degradation of the reconstruction performance can be observed

if the locations of the scatterers deviate from the imaging grid [133, 135]. Some addi-

tional non-zero coefficients appear for OMP which creates a non-sparse solution since

the data cannot be represented with the dictionary columns corresponding to targets

located on the grid. For additional iterations, more contributions can be expected, but

on a level below that of those already included in the image. The phase of the simulated

point scatterer will also deviate from the actual value.

To solve this problem, one would increase the density of the grid and thus in-

crease the number of basis functions but it consequently increases the mutual coherence

which must be small for good reconstruction. Furthermore, this also increases the com-

putational complexity. Several solutions have already been proposed in the literature

[133, 136–138].

6.5 Summary
In this chapter, a theoretical study of the burst-mode resolution enhancement method

developed in this thesis and OMP has been done by simulating point-targets. As a

conclusion, the performance of the method depends on the scene to be imaged and the

exactitude of the prior knowledge injected in the method.

The performance of OMP essentially depends on the considered basis. This basis

must respect the RIP condition to yield a perfect reconstruction of the scene. With the

basis considered in this work, Hw, the reconstruction performance will depend on the

slow-time modulation W of the signal but also on the density of the sampling grid. A

high density will increase the mutual coherence (6.24) which will degrade the recon-

struction performance and a low density will give rise to off-grid targets. Secondly, the

scene to be imaged must be sparse in the selected basis. With the basis considered in

this work, Hw, point-scatterers are sparse while distributed scatterers such as fields are

not sparse. Therefore, the considered basis in this work will lead to a perfect recon-

struction of point scatterers if RIP holds.

Concerning the burst-mode resolution enhancement method, if the scene reflec-

tivity follows a Gaussian distribution and if HH† is diagonal, the scene reconstruction

will be optimum.

In the case of the GM mode of ENVISAT or when the SNR in the elevation side-
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lobes is small, interruptions in the SAR phase history data collection occur. The burst-

mode resolution enhancement method will give rise to grating lobes in the SAR image

since the burst-mode resolution enhancement method minimises the MSE of the ground

reflectivity and was not designed to maximise the PSLR. In that case, the OMP method

could yield a SAR image with the same cross-range resolution as the burst-mode reso-

lution enhancement method but without grating lobes if the considered dictionary fulfils

the RIP condition (6.22) and if the scene to be imaged is sparse in the selected dictio-

nary. Those conditions essentially depend on the slow-time modulation pattern and the

chosen sampling grid.

Table 6.1 draws a parallel between the proposed method and the CS approach.

Proposed method CS

Prior knowledge Gaussian model sparsity

Condition HH† diagonal µ� 1

Drawback noise amplification not robust to off-grid scatterers

Table 6.1: Comparison of the burst-mode resolution enhancement method with the CS

approach.



Chapter 7

Results

7.1 Introduction
In this chapter, we will demonstrate the crucial improvement in bistatic SAR imaging

thanks to the burst-mode resolution enhancement method on a set of trial data. We

will illustrate the trade-off the burst-mode resolution enhancement method strives to

achieve between the grating lobes level and the noise amplification. In Section 7.2,

signals acquired from several illuminators of opportunity operating in the frequency

band of the receiver are shown.

The receiver described in detail in Appendix A.1 consists of four channels. Dur-

ing this work, the configuration of the receiver has changed by connecting different

antennas or by using a reduced number of channels out of the four available. The

antennas can be oriented either towards the scene or towards the illuminator of op-

portunity. Typically, in BSAR imaging, a channel called synchronisation channel is

allocated for synchronisation purposes and oriented towards the transmitter to receive

the direct pulses. In Section 7.3, we evaluate the error we make by using as reference

the direct signal received in the backlobe of the channel oriented towards the scene to

image, called the surveillance channel.

The innovative aspect of this thesis is that it is possible to produce images with

high cross-range resolution from data obtained from a SAR system operating in wide-

swath mode. The performance of the method are illustrated on signals obtained from

burst-mode operating SAR systems such as RADARSAT-2 and Sentinel-1A in Sec-

tion 7.4.

In contrast with monostatic SAR, not taking into account the topography of the
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scene can lead to defocus in the bistatic SAR image [73]. This is evaluated in Sec-

tion 7.5.

Finally, a bistatic SAR image of the bistatic active tranponder described in Ap-

pendix D is analysed and illustrates the bistatic SAR imaging algorithm developed in

this thesis. The achieved cross-range resolution is better than the monostatic cross-

range resolution of the SLC image in IW mode obtained by the SAR transmitter at the

same time.

7.2 Received signals
The first signals acquired with the receiving system were the signals from the AMI

instrument of ERS-2 and from the ASAR instrument of ENVISAT. Figures 7.1 (a) and

(c) illustrate one IF direct signal pulse. Note the asymmetry of the signals resulting

likely from a saturation of the RF amplifiers. The spectrograms in Fig. 7.1 (b) and (d)

depict an up-chirp, the parameters of which correspond to those in Table 2.1.

Figure 7.2 (a) represents the four-beam IF signal acquired during an overpass of

RADARSAT-2 operating in SWB mode. Figure 7.2 (b) represents the range com-

pressed data of the surveillance channel signal. Note the presence of both the direct

and the reflected signals since the antenna is directed towards the scene to image, re-

ceiving the direct signal through its backlobe. The typical slow-time modulation of the

ScanSAR mode is clearly visible at null relative bistatic range, i.e. the position of the

receiver. The parameters of the transmitted waveform of the four beams in SWB mode

are given in Table 7.1. One IF direct-signal pulse and its spectrogram are represented

Table 7.1: Parameters of SWB mode of RADARSAT-2.

Parameter W1 W2 S5 S6

Centre frequency, fT , GHz 5.405

Bandwidth, B, MHz 11.56

Pulse duration, Tp, µs 42

Chirp rate, α, GHz/s −279.3

PRF, Hz 1285 1328 1285 1343

in Fig. 7.2 (c) and (d). Note that RADARSAT-2 transmits down-chirp pulses, i.e. the
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Figure 7.1: One IF direct signal pulse acquired (a) during a stripmap illumination of

ERS-2 (29/10/2010 12:36:38 UTC) and (c) during a ScanSAR illumination of EN-

VISAT (16/03/2012 10:03:00 UTC) with a sampling frequency equal to 50 MHz.

chirp rate α is negative as stated in Table 7.1. The SNR of the direct signal is equal to

22 dB.

Figure 7.3 (a) represents the two-beam IF direct signal acquired during an over-

pass of Sentinel-1A operating in IW mode over the ground-based receiving system.

During this acquisition, the receiver and the scene to be imaged are first illuminated

by the elevation beam illuminating sub-swath 2, from 0 to 0.66 s (IW2) in Fig. 7.3

(a) followed by the elevation sidelobe of the elevation beam illuminating sub-swath 3,

from 0.66 to 1 s (IW3) in Fig. 7.3 (a). A small gap of 0.01 s occurs between the two

illuminations due to the steer time of the transmit antenna. Note that the parameters
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(d) Spectrogram of one pulse

Figure 7.2: (a) Signal acquired during an overpass of RADARSAT-2 operating in SWB

mode, (b) the corresponding range compressed data (logarithmic scale), (c) one IF

direct signal pulse with sampling frequency equal to 50 MHz and (d) its spectrogram.

of the transmitted signal are different in each sub-swath of the IW mode and are given

in Table 7.2. Figure 7.3 (b) depicts the magnitude of the range-compressed data of the

surveillance channel. One IF direct signal pulse and its spectrogram are respectively

depicted in Fig. 7.3 (c) and (d). The SNR of the direct signal is equal to 26 dB. The

measured chirp rate α, i.e. the slope of the spectrogram, the chirp duration Tp and the

bandwidth B correspond to the specifications listed in Table 7.2.
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(d) Spectrogram of one IW2 pulse

Figure 7.3: (a) Direct signal acquired during an overpass of Sentinel-1A operating in

IW mode (IW2 and IW3), (b) the range-compressed data of the surveillance channel

(logarithmic scale), (c) one IF direct signal pulse (IW2) with sampling frequency equal

to 100 MHz and (d) its spectrogram.

Table 7.2: Parameters of IW mode of Sentinel-1A.

Parameter IW1 IW2 IW3

Centre frequency, fT , GHz 5.405

Bandwidth, B, MHz 56.5 48.3 42.8

Pulse duration, Tp, µs 52.4 61.9 53.4

Chirp rate, α, GHz/s 1078 779 801

PRF, Hz 1717 1451 1685
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7.3 Receiver phase synchronisation
In this thesis, phase synchronisation is performed using the direct signal as the reference

signal to derive the matched filter as described in Section 4.3. The question is whether

the direct signal received in the backlobe of the surveillance channel pointing towards

the scene can be used to perform the synchronisation. To answer this question, we

will compare the reference phase recovered from the synchronisation channel pointing

towards the transmitter and that recovered from the surveillance channel.

The analysed experiment was performed with the receiver sited on the roof of

one of the buildings of the Military Hospital in Brussels, on 15th February 2016, the

corresponding signal is represented in Fig. 7.4. The imaging scenario is described in
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Figure 7.4: Acquired direct signal during a TOPSAR illumination (IW2) of Sentinel-

1A (synchronisation channel).

detail in Appendix C.3. For this study, two channels of the receiver are used: one

channel oriented towards the transmitter and one channel towards the scene to image.

Figure 7.5 depicts one pulse and its echoes after range compression received by the

synchronisation channel and by the surveillance channel. The SNR of the direct signal

in the synchronisation channel is 17 dB higher than that in the surveillance channel.

The phase history of the direct signal is obtained as described in Section 4.3. The

reference phase is extracted from the synchronisation channel on the one hand, and

on the other hand, from the surveillance channel. For this analysis, the whole signal
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Figure 7.5: Pulse compression of one pulse acquired during a IW2 illumination of

Sentinel-1A (logarithmic scale).

depicted in Fig. 7.4 is considered.

Figure 7.6 represents the distribution of the phase history error between the re-

ference phase extracted from the synchronisation channel and the reference phase ex-

tracted from the surveillance channel. The standard deviation is 0.1122 rad. As the

error is low, one concludes that the reference phase can be extracted from the surveil-

lance channel. This has already been reported in [139].
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Figure 7.6: Histogram of the phase error on the reference signal.
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7.4 Achieved performance in wide-swath illumination

7.4.1 ScanSAR illumination

The analysed signal was acquired in Scenario C.2 with the receiver sited on the roof of

one of the buildings of the Royal Military Academy in Brussels, on 30th April 2013.

The satellite pass was ascending and the stationary receiver was in the centre of the

swath of the Canadian satellite RADARSAT-2 operating in the ScanSAR Wide mode

(SWB). The acquired signal is represented in Fig. 7.2 (a). The BSAR images are ob-

tained using one channel directed towards the scene to image. The performance of

the burst-mode resolution enhancement method can be better illustrated by analysing a

patch in the SAR image with a high reflectivity represented by a blue dot in Fig. 7.7. A

flat-earth model is used to image the area of interest. Figure 7.7 (a) shows the intensity

of the SLC SAR image centred on the aforementioned patch obtained by the classical

MF processing of a single burst, i.e. considering the signal from 0.16 s to 0.21 s in

Fig. 7.2 (a). This yields a poor resolution of 100 m in the along-track direction which

corresponds to the monostatic cross-range resolution of SWB mode reported in Ta-

ble 2.1. The reflections of the analysed patch are visible at 805 m relative bistatic range

from the receiver in Fig. 7.2 (b). If the NL bursts of this same beam are coherently

focussed, the along-track resolution is drastically improved to 20 m as illustrated in

Fig. 7.7 (b). The expected grating lobes in azimuth along the isorange can be observed.

Note that a second patch with a high reflectivity represented by a red dot is hidden in

the grating lobes.

The white square in the upper right corner of Fig. 7.7 represents a region assumed

free of scatterers. It is used to estimate the background noise level with respect to the

single-beam MF case of Fig. 7.7 (b). The corresponding values are given in Table 7.3.

If the burst-mode resolution enhancement method is applied with the true value ϑtrue,

there is a trade-off between the amplification of the noise and the reduction of the

grating lobes. The latter are reduced but still present in Fig. 7.7 (d). The second afore-

mentioned patch is now visible. For ϑ < ϑtrue, the cross-range compensation function

cw becomes closer to the inverse of w: a better compensation of the slow-time ampli-

tude modulation is obtained at the expense of an increase of the noise content in the

SAR image (Fig. 7.7 (c)). This illustrates that the compensation function cw must be
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(d) Resolution enhancement method
ϑ = ϑtrue

Figure 7.7: Zoom on a patch in the georeferenced bistatic SLC SAR image (logarithmic

scale).

Table 7.3: Noise level estimation relative to the single-beam MF case.

SAR focussing Relative noise variance

method dB

Burst-mode resolution enhancement method 16

for ϑ = ϑtrue (Fig. 7.7 (d))

Burst-mode resolution enhancement method 33.5

for ϑ < ϑtrue (Fig. 7.7 (c))

calculated with the correct SNR, ϑtrue. This final result illustrates that the burst-mode

resolution enhancement method provides high cross-range resolution SAR images rela-

tive to the classical single-burst ScanSAR imaging: the SAR image has reduced grating
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lobes but an acceptable noise amplification.

Taking interferometry as a possible application, the noise amplification induced by

the burst-mode resolution enhancement method can also be evaluated using the sam-

ple coherence (6.20) as it was performed on simulated data in Section 6.3.4.3. To

concentrate on the study of the phase noise generated by the burst-mode resolution en-

hancement method, two channels during a single pass acquisition are considered as the

phase noise due to temporal change of the scene vanishes. In addition, the baseline

between both considered channels is small to avoid spatial decorrelation caused by a

different look angle between the SAR images, which is also known as baseline decorre-

lation. The sample coherence between the images obtained from two adjacent channels

using the different SAR processing are illustrated in Fig. 7.8. The loss in coherence

in Fig. 7.8 (b) emphasises the decorrelation due to the amplification of the noise. This

final result illustrates that the cross-range resolution enhancement method preserves

phase coherence for sufficient SNRs, despite noise amplification.

The coefficients of the OMP method are depicted in Fig. 7.9 (a). For the sake

of comparison, the SAR image resulting from the burst-mode resolution enhancement

method is again represented in Fig. 7.9 (b). The OMP method is implemented isorange

by isorange. The bistatic OMP SAR image highly depends on the sampling grid used.

In Fig. 7.9 (a), both considered point scatterers are on the sampling grid.

7.4.2 TOPSAR illumination

In this section, TOPSAR data are used to demonstrate the achievable performance in

terms of cross-range resolution of the burst-mode resolution enhancement method. Ac-

cording to Table 2.1, one can see that the TOPSAR imaging mode implemented on

Sentinel-1A [140] is characterised by an imbalance between the monostatic range and

the monostatic cross-range resolution which means that improving this coarse cross-

range resolution thanks to a bistatic configuration is valuable. In TOPSAR acquisition,

the sampling frequency of the receiver has been increased compared to ScanSAR acqui-

sition since the transmitted bandwidth is larger. Due to hardware limitation, the acqui-

sition duration of TOPSAR recording is limited to 1 second which limits the improve-

ment of cross-range resolution by the burst-mode resolution enhancement method. A

larger sampling time would result in even better cross-range resolution.
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Figure 7.8: Sample coherence image between the SAR images obtained from two

horizontally-spaced channels.

Longitude

L
a
ti
tu
d
e

 

 

4.398 4.399 4.4 4.401

50.8455

50.846

50.8465

50.847

50.8475

−40

−35

−30

−25

−20

−15

−10

−5

0

(a) OMP

Longitude

L
a
ti
tu
d
e

 

 

4.398 4.399 4.4 4.401
50.8455

50.846

50.8465

50.847

50.8475

−40

−35

−30

−25

−20

−15

−10

−5

0

(b) Resolution enhancement method

Figure 7.9: Zoom on a patch in the georeferenced bistatic SLC SAR image (logarithmic

scale).
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The analysed signal was acquired with the receiver sited on the roof of one of the

buildings of the Military Hospital in Brussels, on 17th January 2016. The satellite pass

was ascending and the stationary receiver was in the centre of the swath of Sentinel-

1A operating in TOPSAR mode (IW). The imaging scenario is described in detail in

Appendix C.3. The BSAR images are obtained using one channel directed towards the

scene to image.

Figure 7.10 shows the intensity of the bistatic SAR SLC image for an area around

the receiver using the burst-mode resolution enhancement method integrating all pulses

depicted in Fig. 7.3 (a). The added benefit of the Back-Projection processing described
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Figure 7.10: Bistatic SAR image using Sentinel-1A signal for the acquisition of

17/01/2016 at 17:14:02 UTC (logarithmic scale).

in Section 2.2.2 is that the image is directly obtained in ground range and no sepa-

rate geocoding step needs to be performed. A flat-earth model around the receiver is

assumed. The direct signal is focussed at the location of the receiver. The bistatic

image shows ambiguities which appear at the intersection of the bistatic isorange con-

tours with the bistatic constant azimuth lines represented respectively in solid blue and

in dashed black in Fig. 7.11. The bistatic isorange contours are ellipses as they are

the intersections of ellipsoids and a plane and the bistatic constant azimuth lines are

straight lines parallel to the look direction of the satellite. The bistatic isorange con-
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tours have a spacing of 100 m in relative bistatic range while the spacing between the

constant azimuth lines is 200 m in Fig. 7.11. Patches at these intersections would gen-

erate identical phase histories. Since the returns from ambiguous scatterers are strongly

attenuated by the AAP of the receive antenna and by some RAM material, it is assumed

that no ambiguities will appear in the SAR image. The range sidelobes of the IRF of the

patch corresponding to the receiver’s location follow the constant azimuth line passing

through the receiver and are barely visible in Fig. 7.10. This proves that the backlobe

of the receive antenna and the RAM material attenuate the direct signal.
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Figure 7.11: Bistatic isorange contours (solid blue) and bistatic constant azimuth lines

(dashed black) for the acquisition of 17th of January 2016. The receiver position is

marked with a red star.

To illustrate the performance in terms of cross-range resolution achieved by the

burst-mode resolution enhancement method, a SAR image has been computed with the

traditional integration time of classical monostatic processing [76], i.e. 3 dB mainlobe

width of the transmit antenna, and is illustrated in Fig. 7.12 (a): the pulses between

the dashed black lines in Fig. 7.3 (a) are considered to build the SAR image. The

measured cross-range resolution is equal to 22 m and corresponds to the theoretical

monostatic value given in Table 2.1. This poor cross-range resolution can be enhanced

by integrating the pulses transmitted in the azimuth sidelobes of beam IW2, i.e. from 0

to 0.66 s in Fig. 7.3 (a) using the MF. The resulting bistatic SAR image is represented

in Fig. 7.12 (b). The cross-range resolution can be further enhanced if the elevation

antenna diagram sidelobes of beam IW3 are also exploited, corresponding to the pulses
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from 0.66 s to 1 s in Fig. 7.3 (a). The SAR focussed image represented in Fig. 7.12

(c) shows a high energy in the sidelobes which can be noticed around patches with a

large reflectivity. This is due to the slow-time modulation of the signal corresponding

to the entire envelope of Fig. 7.3 (a). Without the burst-mode resolution enhancement

method, each patch has high sidelobes which could cause ghosts in the image. In

Fig. 7.12 (d), the sidelobes are reduced after application of the burst-mode resolution

enhancement method and the patches can be easily distinguished. The achieved cross-

range resolution is now comparable to that of the stripmap mode of the considered

satellite (Table 2.1). In other words, the cross-range resolution is five times better than

that of the monostatic SAR image produced by the transmitter at the same time. A
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Figure 7.12: Zoom near the receiver in the georeferenced bistatic SLC SAR image

(logarithmic scale) (17/01/2016 at 17:14:02 UTC).

summary of the measured cross-range resolutions is given in Table 7.4.
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Table 7.4: Performance of the different processing in the cross-range direction.

Parameter Monostatic IW2 IW2 and IW3

Processing gain (dB) 23.24 29.79 31.79

Cross-range resolution (m) 22 9 4.5

7.5 Effect of the topography
In this thesis, a flat-earth model is assumed to produce the BSAR images. In contrast

to monostatic SAR, this assumption may affect the SAR focussing [73]. Indeed, ac-

cording to (2.18), two patches on the same isorange and on the same constant azimuth

line but at different altitudes will have different phase histories as their slant range of

closest approach to the transmitter and their distance to the receiver will be different.

By considering a flat-earth model instead of the actual DEM of the scene, a phase error

results that we can quantify considering for instance the Scenario C.3.

From (2.18), the phase history error between two patches on the same isorange, at

the same azimuth but at different altitudes can be written as

ϕ1(u)− ϕ2(u) =
2π

λ

V 2u2

2

RT,0,2 −RT,0,1

RT,0,1RT,0,2

(7.1)

with RT,0,1 and RT,0,2 the slant range of closest approach to the transmitter of re-

spectively patch 1 and 2. u is the slow-time interval during which the signal is acquired.

We evaluate (7.1) with u = 1 s which corresponds to the maximal duration of the ac-

quisition of the experimental system at a sampling frequency of 50 MHz. The patch is

first considered at the same altitude as the receiver denoted as position 1. Then, its alti-

tude is varied on the same isorange and on the same azimuth line till a maximal phase

error of π
2

is achieved. Figure 7.13 represents the critical altitude difference at which

the phase error can cause a defocus in the SAR image as a function of the distance from

the receiving system. Close to the receiver, the maximal phase error is never exceeded

and the critical altitude is infinite. The larger the distance to the receiver, the smaller

the critical altitude, meaning that the altitude difference of distant patches is more lim-

ited than that of closer patches. As an example, the altitude of a patch at a distance of

1260 m to the receiver must not exceeds a difference of 730 m with the altitude of the

processed image, otherwise its IRF will be defocussed. Note that, in Belgium where

the signals have been acquired, the maximal altitude difference between two points is
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much smaller than the critical altitudes in Fig. 7.13. A DEM is, in that case, not needed

to focus bistatic SAR images but may be required in order to correctly georeference the

patches.
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Figure 7.13: Evolution of the critical altitude difference (km) w.r.t the receiver.

7.6 Bistatic scattering
Figure 7.14 shows the bistatic SAR image obtained with the burst-mode resolution

enhancement method and the corresponding optical image from Google Earth. The

analysed signal depicted in Fig. 7.4 was acquired in Scenario C.3 with the receiver

sited on the roof of one of the buildings of the Military Hospital in Brussels pointing

East. The different motorways at a distance of 3 km are visible on the BSAR image

despite the relatively low altitude of the receiver. Strong reflections on the buildings

along the canal allow to distinguish the canal banks in the BSAR image. Finally, the

metallic bridge ”Buda” depicted in Fig. 7.15 also leads to strong reflections.

This promising result is obtained assuming a flat-earth model and using the direct

signal received in the backlobe of the surveillance channel.

7.7 Transponder bistatic image
Also deployed during this trial was the developed active bistatic transponder described

in Appendix D located at 270 m from the receiver as illustrated in Fig. C.5. Fig-

ures 7.16 depict the BSAR image centred on the patch corresponding to the location

of the transponder using the MF and the burst-mode resolution enhancement method.
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Map data: Google, Image Landsat

Figure 7.14: Bistatic SAR image (logarithmic scale) and the corresponding optical

image (Google Earth) of the East area of the Military Hospital site on 15th February

2016.



7.7. Transponder bistatic image 129

Figure 7.15: ”Buda” bridge on the Canal in Brussels.

This BSAR image has been obtained using the direct signal received in the backlobe of

the surveillance channel. Cuts of the IRF along the bistatic isorange contour using the
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(b) Resolution enhancement method

Figure 7.16: Zoom on the patch at the location of the transponder in the georeferenced

bistatic SLC SAR image (logarithmic scale) (15/02/2016 at 17:22:02 UTC).

MF (dashed line) and the burst-mode resolution enhancement method (solid line) are
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illustrated in Fig. 7.17. The slow-time modulation of the amplitude of the transmitted

signal results in a high level of sidelobe in the case of the MF. However, the burst-mode

resolution enhancement method considerably decreases the level of azimuth sidelobes

in the IRF. The peaks around the peak corresponding to the transponder are likely due

to the presence of scatterers near the position of the transponder.

The resulting cross-range resolution obtained with the burst-mode resolution en-

hancement method is equal to 6.15 m which is better than the monostatic cross-range

resolution of a SLC image in IW mode obtained by the SAR transmitter at the same

time. The obtained bistatic cross-range resolution is also in the same order of magni-

tude as that of the monostatic stripmap mode as stated in Table 2.1.
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Figure 7.17: Cuts of the IRF along the transponder’s isorange obtained using the MF

(dashed line) and the burst-mode resolution enhancement method (solid line).

7.8 Conclusion
In this chapter, we have demonstrated that the proposed burst-mode resolution enhance-

ment method provides a better cross-range resolution compared to the classical pro-

cessing of a single burst and can even recover the stripmap cross-range resolution in

ScanSAR and TOPSAR modes. This can be achieved in the case of a continuous il-

lumination of the scene to be imaged. OMP imaging also gives good results since the

considered dictionary fulfils the RIP condition (6.22) and the scene to be imaged is

sparse in the selected dictionary. Note that those conditions essentially depend on the

slow-time modulation pattern and the chosen sampling grid.
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In addition, the flat-earth assumption has been verified for the Scenario C.3 and

does not lead to defocus in the BSAR image. The phase synchronisation using the at-

tenuated direct signal received in the backlobe of the surveillance channel also provided

good results.



Chapter 8

Conclusions and future work

8.1 Summary of findings
The main aim of this thesis has been the analysis of high cross-range bistatic SAR

imaging using data obtained from non-cooperative space-based SAR systems opera-

ting in wide-swath mode. For such systems, the cross-range resolution is typically

obtained by processing of a single-burst data yielding a degraded cross-range resolution

compared to the conventional stripmap mode. The novelty of this work arises from the

exploitation of the sidelobe emissions of the elevation beams illuminating the adjacent

sub-swath. We demonstrated that, if the SNR of the backscattered signals is sufficient,

i.e. when the illumination is continuous, the performance of the stripmap mode can

even be restored. We have also demonstrated that, based on the EAP of the transmitter,

we are able to predict when the burst-mode resolution enhancement method achieves

its targeted performance.

A CS-approach has also been proposed in the case of a non-continuous illumi-

nation in which the burst-mode resolution enhancement method’s resulting image is

impaired by high sidelobes of the IRF.

The generation of focussed BSAR images have highlighted the synchronisation

challenge between the non-cooperative transmitter and the receiver. The synchroni-

sation is here achieved using the direct-path signal to derive the matched filter. The

requirement on the difference between the frequencies of the local oscillators in this

geometry has been analysed and requires a less accurate precision compared to general

bistatic configuration [107]. However, the precision of the available ephemerides, the

precision of the orbit propagator and the stability of the local oscillator of the receiver
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and of the transmitter may impose constraints on the maximal scene size to be imaged

depending on the final application.

Applications to real data obtained in two different scenarios have demonstrated

the effectiveness of the proposed method. In addition, an active bistatic transponder

has been developed during this thesis to support the experimental validation of the

bistatic SAR processing.

The burst-mode resolution enhancement method has a significant operational in-

terest in the opportunistic space-ground geometry as it allows to image more frequently

a specific area with a high cross-range resolution. Indeed, the imaging mode of space-

borne SAR instruments is most often a wide-swath mode. As an example, ESA’s satel-

lite Sentinel-1A uses the IW mode as the pre-defined mode over land [141]. Making

it possible to exploit those modes to produce images with high cross-range resolution

dramatically increases the number of useful images that can be produced using emitters

of opportunity. This benefit becomes even more important as several constellations of

satellites can be exploited.

8.2 Future work

8.2.1 SNR of the BSAR image

The resulting bistatic SAR images produced some useful results, but there is plenty of

scope for improvement. Although the results obtained with the receiving system are

acceptable, it would be useful to improve the hardware in terms of SNR to obtain SAR

images with a higher SNR, thus showing dimmer scatterers.

8.2.2 Georeferencing the BSAR image

In this work, a simplistic flat-earth model has been used to produce the BSAR images.

The flat-earth assumption is only applicable to specific scenarios. As stated in [73],

using a DEM of the scene to be imaged would improve the SAR focussing performance

at the expense of an increased computational burden. The possible defocus of the

SAR image due to the flat-earth assumption has been evaluated in Section 7.5 and we

demonstrated that in the scenarios considered in this thesis, the phase error made by

considering a flat-earth model will not lead to a defocus of the SAR image. A DEM is

however needed to georeference the SAR image.
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8.2.3 Calibration of the BSAR image

The developed active bistatic transponder allowed to validate the BSAR imaging in

terms of geometry and performance of the method. Its characterisation in terms of

RCS would be necessary for radiometric image calibration.

8.2.4 Direct-path interference

In this thesis, a wisely chosen pointing direction and the addition of RAM material

provided attenuation of the direct path. In [83, 84], we also analysed the CLEAN

algorithm. The CLEAN algorithm is applied separately for each range profile.

Using a CS method to perform SAR imaging is another way to mitigate the high

sidelobes of the IRF of the direct signal since the CS method will image the point target

corresponding to the direct signal with one strong coefficient without any sidelobes.

The multichannel configuration could be exploited to perform spatial beamform-

ing to steer a null in the direction of the transmitter in order to attenuate or null the

direct-path signal. This method requires a calibration of the array antenna. As dis-

cussed in [80], the anechoic chamber calibration procedure has the drawbacks of being

time consuming and is not adapted for a changing electromagnetic environment. Cal-

ibration data can be estimated in the field directly from the impinging signals them-

selves, without the aid of any special calibration source. In addition, in SAR bistatic

imaging, characterisation (calibration) at two angles of elevation are required: one cor-

responding to the elevation of the interference (illuminator of opportunity) and one

corresponding to the elevation of the imaged area. The steering vectors at the latter

elevation angle will be the most difficult to estimate due to the absence of dedicated

calibration sources on the ground. This issue could be solved by using the available

(point) scatterers in the SAR synthesised image as calibration sources.

8.2.5 Burst-mode interferometry

Interferometric SAR (InSAR) in burst-mode operation has been extensively studied in

the monostatic case [78, 142]. Several experiments have demonstrated the feasibility

such as DEM generation [31, 108, 143] or Moving Target Indicator (MTI) [144, 145].

However, bistatic InSAR using a transmitter operating in burst mode has not been

demonstrated in open literature.

In monostatic SAR, repeat-pass interferogram formation from burst-mode data re-
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quires the synchronisation of the burst patterns. This step is called azimuth scanning

pattern synchronisation [78] meaning that the Doppler spectra of the two interferomet-

ric datasets must overlap: only the range lines that have counterparts in the other dataset

are kept for further processing [146]. In the bistatic configuration studied in this thesis,

this step is obviously not needed in the case of a continuous illumination of the scene.

The work so far gave encouraging ’proof of concept’ results to perform bistatic

burst-mode interferometry. In [147], the impact of the increase of the noise content

in SAR images by the burst-mode resolution enhancement method has been studied

leading to the conclusion that the phase error induced by the burst-mode resolution

enhancement method has only a minor effect on the accuracy of height estimation at

typical SNRs. Indeed, for the optimum implementation of the method, the decorrelation

caused by the noise amplification is very limited as demonstrated in Section 7.4.

The developed receiver spent 5 years in the field making measurements of the

considered area. Therefore, there is the possibility to perform multi-temporal analysis

of the scene in a repeat-pass configuration. The incoherent averaging of the intensity

images can reduce the speckle in the SAR image. If a deformation of the scene between

two observations occurs, Differential Interferometric SAR (DInSAR) can be envisaged

to monitor time-varying surface phenomena.

The multichannel configuration could also be exploited in a single-pass configu-

ration. By horizontally aligning the antenna elements, the detection of moving targets

can be envisaged using along-track interferometry. By vertically aligning the antenna

elements, a DEM of the scene of interest could be obtained using across-track inter-

ferometry. The artificial point scatterer of known elevation generated by the bistatic

transponder could play a key role in this regard.



Appendix A

Bistatic system description

A.1 Reception system
The passive receiver consists of four channels. During this work, the configuration of

the receiver has evolved in terms of amplification gain, antennas and their orientation.

Table A.2 lists the main characteristics of the used receive antennas. A detailed block

diagram of the four-channel radar receiver is illustrated in Fig. A.1. The receiving

system is a typical superheterodyne receiver with three main stages: RF reception and

amplification, down-conversion to IF and sampling. As the C-band is occupied by other

transmitters such as Wireless Fidelity (WiFi) or weather radar systems, a band-pass

filter (BPF) is placed directly after the antenna. After amplification by a cascade of Low

Noise Amplifiers (LNA), the signals are down-converted to an intermediate frequency

and then low-pass filtered (LPF) to satisfy Nyquist-Shannon’s sampling theorem. The

local oscillator (LO) used in the down-conversion is programmable in order to be able

to fit the signal of the different satellites in the bandwidth of the A/D card. They are

then sampled at 100 MSamples/s using a 16-bit A/D card (AlazarTech ATS660) and

finally digitally down-converted to baseband. The total measured gain of one chain is

70 dB. The acquisition system is depicted in Fig. A.3.

The details of all components are given in Table A.1.
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Figure A.1: Schematic block diagram of the receiver.

Component Model Manufacturer Bandwidth (MHz) Gain (dB)

Band-pass filter TIC-5450B-110-01 Tech-Inter 5339 to 5470 -0.1

LNA 1,2 ZX60-542LN+ Minicircuit 4400 to 5400 24

LNA 3,4 ZX60-6013E Minicircuit 20 to 6000 12

Mixer ZMX-7GR Minicircuit 3700 to 7000 -6

IF amplifier ZHL-6A Minicircuit 0.0025 to 500 24

Low-pass filter SLP-50 Minicircuit DC to 48 -1

Table A.1: Components used in one receiving channel.
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Figure A.2 depicts the last version of the receiving system with one channel poin-

ting to the satellite (channel 4) and three other channels pointing to the scene (channel 1

to 3). The antennas 3 and 4 are Commercial off-the-shelf (COTS) antennas (WiMo PA-

5000-12) and antennas 1 and 2 are manufactured patch antennas which are described

in Appendix A.2.

4

3

2

1

towards the

scene

towards the transmitter

Figure A.2: Photograph of the latest version of the multichannel receiver.

A.2 Patch antenna element design
One of the configurations of the receiving system (Fig. A.4 (a)) consists of a microstrip-

line feed patch antenna array (ULA) of four linear polarised elements separated by λ
2
.

This half-wavelength distance between the centres of the patch antennas was initially

chosen to perform beamforming to mitigate the strong direct-path signal. Patch an-

tennas (Fig. A.4 (b)) are attractive because of their ease of fabrication, small size and

wide mainlobe. The manufactured patch antenna has a resonance frequency of approx-

imately 5.4 GHz. Its large frequency bandwidth of 150 MHz is adequate to receive all

illuminators of opportunity given in Table 2.1. Simulations using EMSS FEKO were

performed in order to obtain the patch dimensions satisfying these requirements. As

the impedance at the edge of the patch is much higher than 50Ω, quarter-wavelength

transformers are used between patches and feeding transmission lines to match their

impedances, avoiding power losses and reflections.
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Figure A.3: Photograph of the transportable acquisition system.

(a) (b)

Figure A.4: Receiver system with patch antenna array and RF amplifiers.
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Figure A.5: Measured (solid line) and theoretical (dashed line) (a) azimuth pattern and

(b) elevation pattern of one patch antenna.

Figure A.5 illustrates the theoretical and the measured azimuth and elevation ra-

diation patterns of a stand-alone patch antenna. The measurements were made in an

anechoic chamber. The theoretical patterns, simulated under the assumption of infinite

substrate, show wide mainlobes and no secondary lobes in both directions. Etching

errors and finite-substrate effects can explain the radiation pattern perturbations [148].

The fact that one antenna element is placed in proximity to other elements will modify

the antenna pattern and is not evaluated in this work.

It was decided to design each patch antenna on a different substrate to have the

potential to increase the inter-element spacing. Furthermore, separated patch antennas

offer the potential to orient the antennas in different directions. For instance, one an-

tenna can point towards the illuminator of opportunity to retrieve the reference signal.

A.3 Performance prediction

A.3.1 Introduction

The starting point for prediction of PBR performance is the bistatic radar equation [1,

Chapter 25]. For a single pulse, the received power at the antenna port is related to the

transmitted power, PT , by

PR =
PTGT

4πR2
T

σB
1

4πR2
R

Aeff
F 2
TF

2
R

LTLR
(A.1)

where GT is the transmit antenna gain, Aeff is the effective area of the receive an-

tenna, σB is the target bistatic radar cross section, RR is the target-to-receiver range,
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RT is the transmitter-to-target range. FT and FR are the pattern propagation factor

for transmitter-to-target path and for target-to-receiver path, respectively. LT and LR

denotes the transmit system and the receive system losses (> 1) respectively.

The thermal noise power, NR, is given by

NR = kBT0BnF (A.2)

where kB = 1.38 10−23 Ws/K is Boltzmann’s constant, T0 = 290 K is the effective

noise temperature, F is the noise factor of the receiver and Bn is the noise bandwidth

of the receiver in Hertz. For a superheterodyne receiver, the noise bandwidth is approx-

imately equal to the bandwidth of the intermediate frequency (IF) stages [1] and the

overall noise figure of a receiver is primarily established by the noise figure of its first

amplifying stage (LNA).

Consequently, the SNR at the receive antenna port before SAR processing, for a

point target of radar cross section σB is given by

SNRraw
point =

PR
NR

(A.3)

and after SAR processing, by

SNRsar
point = SNRraw

pointGprocessing (A.4)

with Gprocessing the processing gain thanks to range and azimuth compression of SAR

imaging.

In SAR imaging, a discussion on distributed targets is more appropriate. For dis-

tributed targets, the radar cross section can be expressed as

σB = σ0Acell (A.5)

with σ0 the dimensionless scattering coefficient, or the clutter cross section per unit

area of the illuminated surface and Acell the raw data resolution cell, or clutter cell.

Therefore, the SNR of distributed targets before SAR processing is given by

SNRdist =
PTGTAeff
(4π)2R2

TR
2
R

σ0Acell
F 2
TF

2
R

LTLRkBT0BnF
(A.6)

Note that Acell depends on the distance from the receiver. After SAR processing, the

SNR improvement is counterbalanced by a shrinking of the resolution cell which is

inversely proportional to Gprocessing. The SNR of distributed targets is thus unchanged

after SAR synthesis.
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A.3.2 Power calculations

To predict the performance of the receiving system, the strimap mode of the ENVISAT

satellite (Image Mode 6) is considered. A summary of the fixed parameters used in the

following calculations may be found in Table A.3. Before considering the signal levels

of the direct-path and reflected signals (which are received on the same channel), it is

useful to calculate a likely value for the thermal noise in the receiver. The thermal noise

power is

NR = kBT0BnF = 2.72 10−13 W ≡ −95.65 dBm (A.7)

where the values are taken from Table A.3. The power density on the Earth’s surface at

the slant range distance RT of 1010 km is

Pd =
PTGT

4πR2
T

= 2.35 10−6 W

m2
(A.8)

For a microstrip patch antenna, as the one described in Appendix A.2, the effective

aperture can be taken in a first approximation 50% of the physical area of the patch,

Aphys. The direct-signal received power is thus

Pdirect = Pd Aeff
F 2
T

LT
= 3.64 10−10 W ≡ −64.39 dBm (A.9)

The surface of the resolution cell is computed with the parameters of the receive

antenna as the area under the mainlobe of the receive antenna is smaller than that of the

transmit antenna. The surface of the resolution cell, at a distance RR of 500 m from

the receiver which is at a height of 30m above the ground and with a beamwidth θB of

30◦, is calculated as

Acell = RR θB
cTp

2 sin(θR)
= 1.0364 106 m2 (A.10)

with θR the angle between the reflected signal towards the receiver and the normal to

the earth’s surface and with Tp the duration of the transmitted pulse. This resolution

cell is relatively large due to the large beamwidth of the current receive patch antenna.

Assuming σ0 equals to −10 dBm2/m2, the reflected received power is given by

Preflected = Pd σ0 Acell
1

4πR2
R

Aeff
F 2
TF

2
R

LTLR
= 1.2 10−11 W ≡ −79.2 dBm (A.11)

This reflected signal level is larger than the noise floor but lower than the direct-signal

level which is 15 dB larger. The front-back ratio of the receive antenna is 15 dB and

will partly reduce the strong direct-path signal.
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This analysis is performed considering distributed targets at 500 m from the re-

ceiver. A typical measured reflected-to-direct signal ratio is −50 dB as measured by

one surveillance channel. Note that this value depends on the geometry but also on the

scene to be imaged. This would require a minimum dynamic range of the acquisition

card of 10 bits1.

Parameter Value

PT 1365W

GT 43.45 dBi

RT 1010 km

Aphys 3.09 cm2

σ0 −10 dBm2/m2

θB 30◦

θR 86.6◦

Tp 26.3436 µs

Bn 22MHz (LPF)

F 1.9 dB (LNA)

+ 3 dB (double-balanced mixer)

Gprocessing 64 dB

FT 0 dB

FR 0 dB

LT 0.2 dB

LR 0 dB

Table A.3: Fixed-value parameters used in the power calculations.

A.3.3 Maximum detection range

The maximum detection range gives an idea to which range from the receiver a SAR

image can be obtained and is given by

RR,max =

√
PTGTAeffσ0AcellF 2

TF
2
R

SNRdist,min(4π)2R2
TLTLRkBT0BnF

= 2353m (A.12)

1This small dynamic range is partly due to the fact that the direct signal is received in the backlobe

of the receive antenna.
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A minimum value for the SNR after SAR processing of 10 dB is assumed. This is

calculated assuming FT and FR to be equal to 1, i.e. the target is illuminated by the

peak of the antenna beam in each case. The transmitting system losses, LT , may arise

from atmospheric attenuation of the signal and the value of 0.2 dB is assumed. The

receiving system losses, LR, are taken to be negligible. This distance can be increased

by using a receive antenna with a higher gain such as the WiMo PA-5000-12.
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Notable relations

B.1 Derivation of the shift in the azimuth direction
In BSAR, the instantaneous Doppler frequency is given by

fdop(u) = 1
2π

dφ(u)
du

= 1
2π

d
du

(2π
λ
Rbi(u))

= 1
λ
dRbi(u)
du

= 1
λ
d
du

(RT (u) +RR)

(B.1)

with u the (along track) azimuth time, Rbi(u) the bistatic range history, RT the range

to the transmitter, RR the range to the receiver and φ the phase history.

In the space-ground bistatic geometry considered in this thesis, the parabolic ap-

proximation (2.19) holds and one can expand RT (u) into a Taylor series expansion

about the time of closest approach u0. The bistatic range history of a patch located at

the azimuth time u0 can be written as

Rbi(u) ≈ RT,0 +
V 2(u− u0)2

2RT,0

+RR (B.2)

where RT,0 = RT (u0). Therefore, the instantaneous Doppler frequency for a patch is

fdop(u) ≈ V 2

λRT,0
(u− u0)

≈ V 2

λRT,0
u−∆fdop

(B.3)

with

∆fdop =
V 2

λRT,0

u0 (B.4)

The second term, ∆fdop, is constant and can be interpreted as the shift in Doppler

encountered by a patch at u0 relative to a patch at u = 0. A shift in Doppler frequency
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is thus equivalent to a linear phase term and causes a shift in the azimuth-slant range

plane along the azimuth direction but makes no change to the waveform. The temporal

shift along the azimuth direction is given by

u0 =
∆fdopλRT,0

V 2
(B.5)

and corresponds to a spatial shift in azimuth equal to

∆y = u0V

=
∆fdopλRT,0

V

(B.6)

B.2 Alternative expression of a non-baseband LFM sig-

nal
The output of the matched filtering of a baseband LFM signal gives one complex num-

ber, the phase of which is equal to the phase of this LFM signal. In this section, we

want to relate a non-zero centre frequency of a LFM signal with the phase of the output

of the matched filtering of the considered LFM signal.

A non-baseband LFM signal with a centre frequency equal to δf can be written

ej[πα(t−τx)2+2πδft+φ1] (B.7)

with τx the propagation delay and φ1 the initial phase. According to the auto-ambiguity

function of a LFM signal depicted in Fig. 2.5, a frequency shift of a LFM signal corre-

sponds to a shift in time.

To emphasise the effect of a non-zero centre frequency, (B.7) can be rewritten

under the following form

ej[πα(t−τ−τx)2+φx] (B.8)

which, equating the phase terms of (B.7) and (B.8), yields

ej[πα(t−τx)2+2πδft+φ1] = ej[πα(t−τ−τx)2+φx]

φ1 + 2πδft = φx + πατ 2 + 2πατxτ − 2πατt
(B.9)

=⇒

 φx = φ1 − πατ 2 − 2πατxτ

δf = −ατ
(B.10)

Therefore,

ej[πα(t−τx)2+2πδft+φ1] = ej[πα(t+ δf
α
−τx)2+φ1−π δf

2

α
+2πτxδf ]. (B.11)
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From (B.11), it can be concluded that a shift in frequency δf corresponds to a shift

−ατ in time as illustrated in the auto-ambiguity function of a LFM signal depicted in

Fig. 2.5 but also a phase term appears equal to −πατ 2− 2πατxτ which is important in

the synchronisation algorithm described in Section 4.3.3.
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Scenario

C.1 Bistatic geometry
The locations of the experiment include two rooftops in Brussels: one in the Royal

Military Academy and one in the Military Hospital. In both bistatic geometries, the

transmitter and the receiver are pointing in the same direction (East), i.e. the bistatic

angle is close to zero (quasi-monostatic geometry). Therefore, the bistatic slant-range

resolution (2.20) is close to the monostatic slant-range resolution. This corresponds to

the ascending pass of the satellite. Figure C.1 depicts the geometry of both scenarios.

Satellite

trajectory

North

Receiver

Figure C.1: Bistatic geometry of the experiments.

C.2 Royal Military Academy scenario
In this scenario, the receiving system is sited on the roof of one of the buildings of the

Royal Military Academy in Brussels. Table C.1 lists the parameters of this scenario.

The photograph of the receiver’s location is depicted in Fig. C.2 and Fig. C.3

illustrates the urban imaged scene.
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Table C.1: Parameters of the Royal Military Academy scenario.

Parameters Value

Antenna pointed to transmitter PA-5000-12 / 18710.12

Antenna pointed to the scene Manufactured patch antenna

Polarisation VV

Receiver position N 50◦ 50′ 38.16′′

E 4◦ 23′ 34.2′′

Receiver altitude above sea level 101 m

Scene altitude above sea level 87 m

C.3 Military Hospital scenario
In this scenario, the receiving system is sited on the roof of one of the buildings of the

Military Hospital in Brussels which is higher relative to the imaged area than that of

the Royal Military Academy. Table C.2 lists the parameters of this scenario.

Table C.2: Parameters of the Military Hospital scenario.

Parameters Value

Antenna pointed to transmitter PA-5000-12 / 18710.12

Antenna pointed to the scene PA-5000-12 / 18710.12

Polarisation VV

Receiver position N 50◦ 54′ 22.74′′

E 4◦ 23′ 25.5′′

Receiver altitude above sea level 81 m

Scene altitude above sea level 49 m

Transponder position N 50◦ 54′ 20.94′′

E 4◦ 23′ 38.22′′

The photograph of the receiver’s location is depicted in Fig. C.4 and Fig. C.5

illustrates the imaged scene. The position of the ”Buda” bridge and the position of the

transponder are also indicated.
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towards the scene

transmitter

towards the Receiver

Figure C.2: Photograph of the receiver at the Royal Military Academy located on a

mast having a height of 4 m.
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Figure C.3: Photograph of the imaged area at the Royal Military Academy taken from

the receiver position.
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Figure C.4: Photograph of the receiver at the Military Hospital.

Buda bridge

Transponder

270 m

1270 m

Receiver

Figure C.5: Photograph of the imaged area at the Military Hospital.
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Description of the bistatic transponder

Also deployed during these trials was an active bistatic transponder located at 270 m

from the receiver. This transponder consists of two WiFi antennas separated by an

amplification stage consisting of three ZX60-542LN+ followed by one ZX60-6013E

which provide 77 dB gain. A block diagram of the transponder is illustrated in Fig. D.3.

As depicted in Fig. D.1, one parabolic antenna (TL-ANT5830B) is directed towards the

receiver and another antenna (PA-5000-12) towards the transmitter. The parameters of

the antennas are listed in Table A.2.
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Amplification 

Antenna
towards the transmitter

stage

towards the receiver
Antenna

Figure D.1: Photograph of the developed active bistatic transponder.
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Receiver

trajectory

Satellite

Figure D.2: Photograph of the receiver system taken from the transponder position.

ZX60−542LN+ZX60−6013E 60 cm dish reflector
TL−ANT5830BPA−5000−12

10 cm patch antenna

Figure D.3: Schematic block diagram of the transponder.
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[97] M. Tello Alonso, P. López-Dekker, and J. J. Mallorquı́, “A Novel Strategy for

Radar Imaging Based on Compressive Sensing,” IEEE Trans. on Geoscience and

Remote Sensing, vol. 48, no. 12, pp. 4285–4295, 2010.

[98] S. Kelly, C. Du, G. Rilling, and M. Davies, “Advanced Image Formation and

Processing of Partial SAR Data,” IET Signal Processing, vol. 6, no. 5, pp. 511–

520, 2012.

[99] R. Baraniuk and P. Steeghs, “Compressive radar imaging,” in IEEE Radar Con-

ference, pp. 128–133, Apr. 2007.

[100] M. Herman and T. Strohmer, “High-resolution radar via compressed sensing,”

IEEE Transactions on Signal Processing, vol. 57, no. 6, pp. 2275–2284, 2009.

[101] W. S. Li Jun, Xing Mengdao, “Application of compressed sensing in sparse

aperture imaging of radar,” in 2nd Asian-Pacific Conference on SAR, pp. 651–

655, 2009.

[102] W. W. Wang, G. S. Liao, and S. Q. Zhu, “A ScanSAR imaging method using

compressive sensing,” in IET International Radar Conference, 2012.

[103] D. Blacknell and H. Griffiths, Radar Automatic Target Recognition (ATR) and

Non-Cooperative Target Recognition (NCTR). IET Digital Library, 2013.

[104] E. Van den Berg and M. Friedlander, “SPGL1: A solver for large-scale sparse

reconstruction,” 2007.

[105] S. Mallat, A Wavelet Tour of Signal Processing. San Diego, CA, USA: Academic

Press, 1998.

[106] G. Cui, J. Liu, H. Li, and B. Himed, “Signal detection with noisy reference for

passive sensing,” Signal processing, vol. 108, pp. 389–399, 2015.



BIBLIOGRAPHY 168

[107] G. Krieger, M. R. Cassola, M. Younis, and R. Metzig, “Impact of oscillator

noise in bistatic and multistatic SAR,” in Proceedings of the IEEE International

Geoscience and Remote Sensing Symposium, (Seoul, Korea), pp. 1043–1046,

2005.

[108] S. Duque, P. Lopez-Dekker, and J. J. Mallorqui, “Single-pass bistatic SAR inter-

ferometry using fixed-receiver configurations: theory and experimental valida-

tion,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, pp. 2740–

2749, June 2010.

[109] “ESA’s radar observatory mission for GMES operational services,” ESA Special

Publication, no. 1322/1, 2012.

[110] V. Kubica and X. Neyt, “ScanSAR resolution enhancement in bistatic operation,”

in IET International Radar Conference, (Glasgow, UK), Oct. 2012.

[111] X. Neyt, P. Pettiaux, M. De Smet, and M. Acheroy, “Scatterometer Algorithm

Review: Test Plan,” tech. rep., Royal Military Academy, 2003.

[112] P. Petrov Yuri and V. S. Sizikov, Well-posed, Ill-posed, and Intermediate Prob-

lems with Applications. De Gruyter, 2005.

[113] A. K. Katsaggelos, Digital Image Restoration. Springer Series in Information

Sciences, 1991.

[114] M. Zink, “Update on antenna elevation pattern estimation from rain forest data,”

in Proceedings of the ENVISAT Validation Workshop (ESA SP-531), (Italy), Dec.

2002.

[115] H. Van Trees, Detection, Estimation and Modulation theory — Part I. Wiley,

1968.

[116] S. P. Luttrell, “Prior knowledge and object reconstruction using the Best Linear

Estimate technique,” Optica Acta, vol. 32, no. 6, pp. 703–716, 1985.

[117] R. Raney, A. Luscombe, E. Langham, and S. Ahmed, “RADARSAT,” Proceed-

ings of the IEEE, vol. 79, pp. 839–849, June 1991.



BIBLIOGRAPHY 169

[118] V. Kubica, X. Neyt, and H. D. Griffiths, “Improved cross-range resolution in

TOPSAR imaging using Sentinel-1A in bistatic operation,” in IEEE Interna-

tional Radar Conference, (Arlington, VA), May 2015.

[119] R. Touzi, A. Lopes, J. Bruniquel, and P. Vachon, “Coherence estimation for

SAR imagery,” IEEE Trans. on Geoscience and Remote Sensing, vol. 37, no. 1,

pp. 135–149, 1999.

[120] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionar-

ies,” IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–3415,

1993.

[121] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE

Signal Processing Magazine, vol. 25, pp. 21–30, Mar. 2008.

[122] E. J. Candes and T. Tao, “Near-optimal signal recovery from random projec-

tions: Universal encoding strategies?,” IEEE Transactions on Information The-

ory, vol. 52, no. 12, pp. 5406–5425, 2006.

[123] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact sig-

nal reconstruction from highly incomplete frequency information,” IEEE Trans-

actions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006.

[124] E. J. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete

and inaccurate measurements,” Communications on Pure and Applied Mathe-

matics, vol. 59, no. 8, pp. 1207–1223, 2006.

[125] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis

pursuit,” Siam Journal on Scientific Computing, vol. 20, no. 1, 1998.

[126] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Transactions

on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[127] J. A. Tropp, “Greed is good: Algorithmic results for sparse approximation,”

IEEE Transactions on Information Theory, vol. 50, no. 10, pp. 2231–2242, 2004.



BIBLIOGRAPHY 170

[128] U. Benz, K. Strodl, and A. Moreira, “A comparison of several algorithms for

SAR raw data compression,,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 33, no. 5, pp. 1266–1276, 1995.

[129] E. J. Candès and J. Romberg, “Sparsity and incoherence in compressive sam-

pling,” Inverse Problems, vol. 23, no. 3, pp. 969–985, 2007.

[130] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pursuit:

recursive function approximation with applications to wavelet decomposition,”

in Asilomar Conference on Signals, Systems & Computers, vol. 1, pp. 40–44,

1993.

[131] B. L. Sturm and M. G. Christensen, “Comparison of orthogonal matching pursuit

implementations,” in Proceedings of 20th European Signal Processing Confer-

ence, (Bucharest, Romania), Aug. 2012.

[132] R. Davies, L. Mihaylova, N. Pavlidis, and I. Eckley, “The effect of recovery

algorithms on compressive sensing background subtraction,” in Workshop on

Sensor Data Fusion: Trends, Solutions, Applications (SDF), 2013.

[133] H. Yan, J. Xu, and X. Zhang, “Compressed sensing radar imaging of off-grid

sparse targets,” in IEEE International Radar Conference, pp. 690–693, 2015.

[134] S. Dutta and A. De, “Sparse ultra wideband radar imaging in a locally adapting

matching pursuit (LAMP) framework,” in IEEE International Radar Confer-

ence, (Arlington, VA), 2015.

[135] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Compressed sensing off the

grid,” IEEE Transactions on Information Theory, vol. 59, pp. 7465–7490, Nov.

2013.

[136] Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank, “Sensitivity to ba-

sis mismatch in compressed sensing,” IEEE Transactions on Signal Processing,

vol. 59, pp. 2182–2195, May 2011.
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