Autonomous Dynamic Spectrum Management of the link subject to a power constraint (inner loop), but ca
for Coexistence of Multiple Cognitive Tactical also minimize the power subject to a rate constraint (outer
Radio Networks loop). In the first part of the paper (Section Il), we extend
the waterfilling strategy to multiple receivers by considgr
parallel broadcast channels with only common information
(parallel multicast channels) and assuming perfect cHanne
state information (CSI) at the transmit side. In this cake, t

; X " : : o extended waterfilling strategy maximizes the minimum rate
studied for multiple cognitive tactical radio networks coexisting . : . o
in the same area. A tactical radio network is composed of a subject to f':l power Cor_'s_tramt (inner loop) C_’r minimizes the
transmitter which broadcasts the same information to its mutiple ~ Power subject to a minimum rate constraint (outer loop).
receivers. First, we consider the problem of power minimizéon However, finding a solution to these problems for parallel
subject to a minimum rate constraint and a spectral mask con- multicast channels is not straightforward. Moreover, dtad-
straint for a single tactical radio netwo_rk with multiple re ceivers ization often defines a spectral mask that each transmiter h
over paraIIe_I chqnnels (pa_lrallel mult_lcast chann_els). Tth we isfv. Theref ility f .
extend the iterative waterfilling algorithm to multiple receivers to satisfy. ere Qre’ We propose to use_ an uti '_ty unction
for the coexistence of multiple cognitive tactical radio neworks, based on the weighted sum of the possible achievable rates
meaning that there is no cooperation between the different to the receivers for the inner loop and to find the best set of
networks. The power allocation is performed autonomously & weights that minimizes the power subject to a minimum rate
the transmit side assuming knowledge of the noise varianced ., niraint for all receivers and a spectral mask constraint
channel variations of the network. Simulation results showthat . o
the proposed algorithm is very robust in satisfying these co- In the se.cond part of thg paper (Section I11), cap|tal|2|ng.
straints while minimizing the overall power in various scerarios. 0N the previous results, we introduce an autonomous dynamic
spectrum management algorithm based on iterative waitggfill
Index Terms—Cognitive tactical radio networks, dynamic spec- [12] for multiple cognitive tactical radio networks. In the
trum management, iterative water-filling. iterative waterfilling algorithm, each network considehe t
interference of all other networks as noise and performs a
waterfilling strategy. The power spectrum of the network
o ) _ ) o modifies the interference caused to all other networks. This
The objective of this paper is to provide a distributefl;ocess is performed iteratively until the power spectra of
power allocation of multiple cognitive tactical radio neks  g| networks converge. The main novelty of this paper is the
coexisting in the same area. The transmitter of each tactiggension of the iterative waterfilling algorithm to mulép
radio network broadcasts the same information to its groygeejvers for the coexistence of multiple cognitive taatic
(voice, data...). This objective calls for a synergy bemwegagio networks. The transmitter of each tactical radio oekw
different areas: takes into account the spectrum sensed by all its receivets a
« Cognitive radio [1], [2]: A wireless node or network cariteratively updates its power spectrum until all the coaisits
adapt to the environment by changing its transmissiegte satisfied in each network, i.e. minimum rate and a sgectra

parameters (frequency, power, modulation strategy) mask constraints. Simulation results compare our stratéy
« Broadcast channel with only common information [3]the worst receiver strategy in Section IV.

[4], [5]: A tactical radio network is a network in which
information is conveyed from one transmitter to multiple
receivers. Most of the literature on broadcast channels ] o
covers the transmission of separate information to tfe Minimization of power subject to a minimum rate con-
different receivers or the transmission of both separaf@nt and a spectral mask constraint
and common information to the different receivers over Consider a’'-receiverN, parallel fading Gaussian broadcast
parallel channels [6], [7], [8], [9], [10], [11]. channel as shown in Figure 1:

« Distributed multi-user power control [12], [13], [14]: ,
Autonomous power allocation in the frequency domain Yit = higwi +ne t=1...T,i=1...N, 1)

by iterative waterfilling for interference channels. BXNherexi is the transmitted signah,, represents a complex
considering the interference of the other users as noisgjse with variancer?, and h,;; corresponds to the channel
iterative updates of the power allocation for each usgf, receiver+ and tonei. The primal problem for power
reach an equilibrium. minimization of a T-receiver N, parallel fading Gaussian
The waterfilling strategy has been initially designed for Broadcast channel with only common information subject to a
single transmitter and a single receiver over multiple sulminimum rate constraint for all receive/&™" and a spectral
channels [15]. The waterfilling strategy can maximize the ramask constraint is
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Fig. 1. T-receiver N. parallel fading Gaussian broadcast channel

with ¢, = E[|z;|?] the variance of the transmitted signal
on channeli, ¢7** the mask constraint on sub-chanrigl
andT" the SNR gap which measures the loss with respect to
theoretically optimum performance [16]. The derivatiortiud
modified Lagrangian function leads to a single variabledear
with 7' Lagrange multipliers [17]. Therefore, the optimal
power allocation has an infinite set of solutions and the
problem is intractable fofl' > 1. We propose a solution
to this problem by defining an utility function which takes
into account the possible achievable rates to the individua
receivers. In the following, the weighted sum rate is chdeen
this utility function as it allows to consider the achievabhtes

to the receivers with a certain flexibility owing to the weiigly
parameters. Therefore, an inner loop determines the power
allocation maximizing the weighted sum rate subject to altot
power constraint and a spectral mask constraint for a fixed se
of weights. The minimum rate is then selected amongst the
possible achievable rates to the receivers. Then, an adger |
minimizes the power such that a minimum rate constraint is
achieved. This process is repeated for all set of weights and
the set of weights exhibiting the least power determines the
power allocation for power minimization subject to a minimu
rate constraint. The primal problem for weighted sum rate
maximization subject to a power constrai?’* and a spectral
mask constraint is:

N. T
max > > wiloge(1+
(¢i)i=1..N¢ i=1¢t=1

Nc
subject to) | ¢; = Pt

=1
(bi < (b;mask Vi

|hit|ps )
Fa?t

®3)

T
with > w, = 1. As the objective function is concave, the

powetr_éllocation can be derived by the standard Karush-Kuhn
Tucker (KKT) condition [17]. By taking the derivative of the
modified Lagrangian function with respectdg, we can solve
the KKT system of the optimization problem. The derivative
with respect top; is given by

OL(X, (Bi, ¢i)i=1...N.)

T
OL(A, (?’)i:lmNC) — 0= Z ngwt = AIn2 + 3;In2
¥ t=1 Tz T Pi A 5
| Lt‘ A 5L‘
(5)

From the previous formula, one can see that the power
allocation depends on the number of receivEré et us derive
the power allocation for different number of receivers:

For a single receivefl’ = 1, the power allocation corre-
sponds to Gallager’s water-filling strategy for singletuse
parallel Gaussian channels [15] with additional spectral
mask constraint given by:

OL(\, (¢i)i=1..N.) _ } :
BYS A+ 5 |hal?
(6)

For two receiverd’ = 2, the power allocation is a type of
water-filling strategy given by the solution of a quadratic
equation.

OL(\, (B, di)i=1..N.)

1 B Fofl

Oé@{

=0
0¢; o
= Faéil * I‘a%2 =Ath (7)
|hi1|2 +o¢i |]”L,L-2|2 +o¢i

The quadratic equation to be solved is
A+ 807 + (A + Bi)(ai +bi) = (w1 +ws)) s
(8)
The discriminant is given by
A = (5\ + BQQ(GZ;— b,‘)Q + (w1 + ’LUQ)2
—2(X + Bi)(a; — b)) (wy —wz)
The power allocation is given by the positive root

€)

S DU
¢i = [2<A+m>+
(wntwa) _ (@i=b)wi—wg) | (a=b)? _ astb;]| "
4(A+Bi)? 2(2+5:) 4 2
(10)

In this formula, the power allocation for weighted sum
rate subject to a power constraint and a spectral mask
constraint takes into account the difference between the
water-fill functions and the weights of the different re-
ceivers.

For three receiver§” = 3 and four receiverd’ = 4,

the power allocation is a type of water-filling strategy
given by the solution of a cubic and quartic equation
respectively. Therefore, the power allocation can also be
found analytically (the solution is not given in this paper
due to space limitations). Witli® > 4, the power allo-
cation is given by the solution of a polynomial equation
with degreeT'. In general, the roots can’t be expressed
analytically but can be solved numerically.

dpi

In2

+ i

The algorithm uses the weights to minimize the power subject
to a minimum rate constraint and a spectral mask constraint.



Algorithm 1 Minimization of the power subject to a minimumAlgorithm 2 Modifications to Algorithm 1 to take into

rate constraint

1n=0

account a spectral mask constraint
1fori=1to N,

T .. _
2 for all wy,... wr, with 3> w, = 1 2 initg=10""
_ =1 3 init mstep = 2

3 n=n+1 L 4 init m =0
4 Init P =10 5 for iteration = 1 to 20
o Init pstep =2 6 Calculateg; according to (4)'s root
6 init p= 0 7 if ¢ > ¢mask
7 init R =0Vt ) 8 ’:ﬁ — i mask
8  while|min(R1,...,Rr) — R™"| > ¢ 9 endif
9 init A\ = 1079 10 if (b _ mask <0
10 init step = 2 11 Zm _ Zm +1
11 initb=0 12 B = B/mstep
12 Init ¢; ?\,0 Vi 13 mstep = mstep — 1/2™
13 while | 3" ¢ — P| > ¢ 14 end if

= _ 15 B = B« mstep
14 Calculategp; Vi according to (4)'s root 16  end for

Ne¢
15 itS ¢i—P <0 17 end for

=1
16 b=b+1
17 A = \/step
18 step = step — 1/2° o )
19 end if a completely autonomous distributed power allocation.-Con
20 A= A x step sideringN different networks and assuming that each network
21 end while N . j hasT} receivers, the received data can be modeled as
22 Individual ratesk; = Z;l logz(1 + ‘h#‘f*) vt N
23 if min(R1,...,Rr) — R™" > Yjit = Njjiexii + > PjkitTrs +nj @ =1... N,
24 p=p+1 k] _
25 P = P/pstep j=1...N,
26 pstep = pstep — 1/2P t=1...T;
27 end if (12)
gg dP i'lp * pstep where n; ;; represents a complex noise with varianeg;,
%0 }eDn :Wp'e and hj;. ; corresponds to the channel from netwdrko j
31 end for on receivert and tonei. Similarly to Section Il in which the

32 P™" = min(P,)

initial problem of power minimization subject to minimum
rate constraint is intractable féf > 1, we propose a way
to solve the initial problem by defining an utility function
(the weighted sum rate) which takes into account all the

Algorithm 1 provides the power allocation for power mini-achievable rates of the receivers and to select the minimum
mization subject to a minimum rate constraf®" of aT- rate in each network. The primal problem for the weighted
receiver V. parallel fading Gaussian broadcast channel wittum rate maximization subject to a total power constraidt an
only common information/; = 0 ¥i). The inner loop and the a spectral mask constraint per network (inner loop) is given
outer loop correspond to lines 13-21 and 8-29 respectiVely. by:
include a spectral mask constraint, we need to replacerike li
14 with the modifications given in Algorithm 2.

=
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(6i3)I21 N,
N,
subject toy ) ¢;; < Pi° Vj
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In this Section, we consider the scenario in whigh  ¢,;; < ¢§?a5k Vi, j
different cognitive radio networks can’t cooperate witltlea (12)
other and wish to broadcast a common information to their This problem is highly non-convex and no closed-from
network by sharing the sam¥&, parallel sub-channels. Thissolution can be derived. Even if a centralized cognitive man
scenario is particularly adapted to tactical radio networlager was able to collect all the channel state information
in which N different networks coexist in a given area andCSl) within and between the different networks, it would
broadcast a common information (voice, data...) to theugr require an exhaustive search over all possifjlés, or a more
With current technologies, if the legacy radios of the daali efficient genetic algorithm. To solve this problem, we prepo
nations share the same parallel sub-channels, the irdader a sub-optimal distributed algorithm based on the iterative
would increase and lead to a bad transmission. Cognitiwater-filling algorithm initially derived for dynamic spgam
radio enables the adaptation of the transmission parasetmanagement in digital subscriber line (DSL) [12]. The iter-
(transmit power, carrier frequency, modulation stratefy) ative water-filling principle is extended to multiple cotiné
these scenarios. Based on the results of Section Il, we peoptactical radio networks, in which each network considers th
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interference of the other networks as noise and performsrwatweights minimizing the power have to be determined for each
filling on its parallel multicast channels. Each update oé ometwork independently. To this end, we have to move the
network’'s water-filling affects the interference of the @th weight loop inside the outer loop by introducing a rule based
networks and this process is repeated iteratively betwieen bn the rates. An adequate rule is to introduce a deviation
networks until the power allocation of all networks conwergmetric (DM) which measures the dispersion of the rates. The
and reach a Nash equilibrium. As the power updates betwdakl must be computed within each netwogkfor each set
networks can be performed asynchronously, an iterativerwatof weightsn over theT; receivers. The rule is given by the
filling based algorithm for the coexistence between muétipfollowing formula:
cognitive tactical radio networks. Let us derive the modifie

. T T
Lagrangian function: \/T]- SO [(Rje(n) — T% Rji(n))?]
L((A\y)j=1..5: (Bij» i) 121 N.) = DM;(n) = = T = (17)
Ne (N T 26 Rit(n
z; <J¥1 t; wylog(1 + F(U?”"’Kl:%t"’bﬁit\2¢m)) t;l )
N N N. N with R;;(n) the rate for the network, receivert and the set
- >\ + ﬂij)d)ij) + 3 NP3 Bioest of weightsn. This rule allows to achieve the global minimum
j=1 J=1 i=1j=1 (13) power although the decision has to be taken inside the outer

_ ) o loop. It basically means that for a given power the closer
in which the\;'s and ;s are the Lagrange multipliers. Weyhe ates of the different receivers within a network, thesle
assume that each transmitter has the knowledge of the nqigger will be needed to achieve the minimum rate constraint.
variances and the channel variations in its own network  Thjg aigorithm is referred to as Algorithm 3 in the simulatio
{ 03+ 2 kit *din Vi, Vit results.
k#j (14)
R it k = j,Vi,Vt IV. RESULTS

This knowledge can be acquired through a feedback channeln the first set of simulations, we compare the algorithm
from the receivers to the transmitter of each network assgmifor a single tactical radio network with the trivial case e
that the acquisition time is much lower than the coherentiee waterfilling is performed on the receiver with the worst
time of the channel fading. To this end, each terminal mushannel conditions, i.e. the worst receiver strategy. Nl
be equipped with a spectrum sensing function to estimate tifve worst receiver strategy can be seen as a special case of th
noise variances and a channel estimation function to egimpresented algorithm in whicty, = 0 V¢ except for the worst
its channel variations. Then, by taking the derivative & threceiver. The log-distance path loss model is used to measur
modified Lagrangian function with respectdg;, we can solve the path loss between the transmitter and the receivers [18]
the KKT system of the optimization problem: with bandwidthA f = 25 kHz, N. = 4 sub-channels, carrier

L) (s HoL ) il v e Bl T
¢ </ _ 0 = meters and thermal noise? = 1016, For

., Dpij the simulations, we use a square ared &m? in which the
1 5 Wi — (A + Biy) transmitter andl’ = 2 receivers are placed randomly using
2 = I( it | 3 el gy 4o 7o Monte Carlo trials. The SNR gap for an uncoded quadrature
[hiel? k£j [hael® 2 ' amplitude modulation (QAM) to operate at a symbol error

~ (19) rate10-7isT = 9.8 dB. The scenario considers a very strong
For transmitterj, the power allocation is the solution givenygjse ¢2 = 107 seen on the 4 sub-channel by the first

by the roots of (4) with the interference terms estimated fdceiver and on the*Lsub-channel by the second receiver. The
each receiver within the network For instance, with two gifferent noises seen by the different receivers can beghiou
receiversT; = 2, the power allocation within the network s sub-channel variations depending on the location, a sub-

is given by (10) with the following modifications: channel occupied by a primary or a secondary transmitter, a
a; =T(02,, + ki1 |2din) jammer etc.
(75 k%" sl (16) The left part of Figure 2 shows the results of the power
bi =T(0F 0+ X |Pjial*dir) minimization subject to a minimum rate constraint per reeei
k#j

ranging fromR™" = 2 kbps to R™™" = 512 kbps over10?

Therefore, a distributed power allocation of different Monte Carlo trials for the locations of the transmitter ahd t
networks can be obtained by updating iteratively the powemsceivers. Algorithm 2 provides a substantial gain comgare
of the different transmitters using the single-transmittewer to the worst receiver strategy. The right part of Figure 2rgho
allocation for minimizing the power subject to a minimunthat the algorithm converges within 30 iterations (the nemb
rate constraint and a spectral mask constraint. However,dhiterations for convergence mainly depend on the starting
Algorithm 2, the weight loop encompasses the outer loop pmint, in this caseP = 10~!1). Since it is based on closed-
find which set of weights corresponds to the global minimuform expressions, the algorithm has reasonable complodty
power satisfying a minimum rate constrai®™". As the a low number of receivers as the search for the best set of
algorithm should be distributed and autonomous, the setwéights require an exhaustive search over all possiblehtgig
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