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Autonomous Dynamic Spectrum Management
for Coexistence of Multiple Cognitive Tactical

Radio Networks

Vincent Le Nir, Bart Scheers

Abstract—In this paper, dynamic spectrum management is
studied for multiple cognitive tactical radio networks coexisting
in the same area. A tactical radio network is composed of a
transmitter which broadcasts the same information to its multiple
receivers. First, we consider the problem of power minimization
subject to a minimum rate constraint and a spectral mask con-
straint for a single tactical radio network with multiple re ceivers
over parallel channels (parallel multicast channels). Then, we
extend the iterative waterfilling algorithm to multiple rec eivers
for the coexistence of multiple cognitive tactical radio networks,
meaning that there is no cooperation between the different
networks. The power allocation is performed autonomously at
the transmit side assuming knowledge of the noise variancesand
channel variations of the network. Simulation results showthat
the proposed algorithm is very robust in satisfying these con-
straints while minimizing the overall power in various scenarios.

Index Terms—Cognitive tactical radio networks, dynamic spec-
trum management, iterative water-filling.

I. I NTRODUCTION

The objective of this paper is to provide a distributed
power allocation of multiple cognitive tactical radio networks
coexisting in the same area. The transmitter of each tactical
radio network broadcasts the same information to its group
(voice, data...). This objective calls for a synergy between
different areas:

• Cognitive radio [1], [2]: A wireless node or network can
adapt to the environment by changing its transmission
parameters (frequency, power, modulation strategy)

• Broadcast channel with only common information [3],
[4], [5]: A tactical radio network is a network in which
information is conveyed from one transmitter to multiple
receivers. Most of the literature on broadcast channels
covers the transmission of separate information to the
different receivers or the transmission of both separate
and common information to the different receivers over
parallel channels [6], [7], [8], [9], [10], [11].

• Distributed multi-user power control [12], [13], [14]:
Autonomous power allocation in the frequency domain
by iterative waterfilling for interference channels. By
considering the interference of the other users as noise,
iterative updates of the power allocation for each user
reach an equilibrium.

The waterfilling strategy has been initially designed for a
single transmitter and a single receiver over multiple sub-
channels [15]. The waterfilling strategy can maximize the rate
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of the link subject to a power constraint (inner loop), but can
also minimize the power subject to a rate constraint (outer
loop). In the first part of the paper (Section II), we extend
the waterfilling strategy to multiple receivers by considering
parallel broadcast channels with only common information
(parallel multicast channels) and assuming perfect channel
state information (CSI) at the transmit side. In this case, the
extended waterfilling strategy maximizes the minimum rate
subject to a power constraint (inner loop) or minimizes the
power subject to a minimum rate constraint (outer loop).
However, finding a solution to these problems for parallel
multicast channels is not straightforward. Moreover, standard-
ization often defines a spectral mask that each transmitter has
to satisfy. Therefore, we propose to use an utility function
based on the weighted sum of the possible achievable rates
to the receivers for the inner loop and to find the best set of
weights that minimizes the power subject to a minimum rate
constraint for all receivers and a spectral mask constraint.

In the second part of the paper (Section III), capitalizing
on the previous results, we introduce an autonomous dynamic
spectrum management algorithm based on iterative waterfilling
[12] for multiple cognitive tactical radio networks. In the
iterative waterfilling algorithm, each network considers the
interference of all other networks as noise and performs a
waterfilling strategy. The power spectrum of the network
modifies the interference caused to all other networks. This
process is performed iteratively until the power spectra of
all networks converge. The main novelty of this paper is the
extension of the iterative waterfilling algorithm to multiple
receivers for the coexistence of multiple cognitive tactical
radio networks. The transmitter of each tactical radio network
takes into account the spectrum sensed by all its receivers and
iteratively updates its power spectrum until all the constraints
are satisfied in each network, i.e. minimum rate and a spectral
mask constraints. Simulation results compare our strategywith
the worst receiver strategy in Section IV.

II. SINGLE TACTICAL RADIO NETWORK

A. Minimization of power subject to a minimum rate con-
straint and a spectral mask constraint

Consider aT -receiverNc parallel fading Gaussian broadcast
channel as shown in Figure 1:

yit = hitxi + nit t = 1 . . . T, i = 1 . . .Nc (1)

wherexi is the transmitted signal,nit represents a complex
noise with varianceσ2

it and hit corresponds to the channel
on receivert and tone i. The primal problem for power
minimization of a T -receiver Nc parallel fading Gaussian
broadcast channel with only common information subject to a
minimum rate constraint for all receiversRmin and a spectral
mask constraint is

min
(φi)i=1...Nc

Nc∑

i=1

φi

subject to
Nc∑

i=1

log2(1 + |hit|
2φi

Γσ2

it

) ≥ Rmin ∀t

φi ≤ φmask
i ∀i

(2)
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Fig. 1. T -receiverNc parallel fading Gaussian broadcast channel

with φi = E[|xi|
2] the variance of the transmitted signal

on channeli, φmask
i the mask constraint on sub-channeli,

and Γ the SNR gap which measures the loss with respect to
theoretically optimum performance [16]. The derivation ofthe
modified Lagrangian function leads to a single variable search
with T Lagrange multipliers [17]. Therefore, the optimal
power allocation has an infinite set of solutions and the
problem is intractable forT > 1. We propose a solution
to this problem by defining an utility function which takes
into account the possible achievable rates to the individual
receivers. In the following, the weighted sum rate is chosenfor
this utility function as it allows to consider the achievable rates
to the receivers with a certain flexibility owing to the weighting
parameters. Therefore, an inner loop determines the power
allocation maximizing the weighted sum rate subject to a total
power constraint and a spectral mask constraint for a fixed set
of weights. The minimum rate is then selected amongst the
possible achievable rates to the receivers. Then, an outer loop
minimizes the power such that a minimum rate constraint is
achieved. This process is repeated for all set of weights and
the set of weights exhibiting the least power determines the
power allocation for power minimization subject to a minimum
rate constraint. The primal problem for weighted sum rate
maximization subject to a power constraintP tot and a spectral
mask constraint is:

max
(φi)i=1...Nc

Nc∑

i=1

T∑

t=1
wtlog2(1 + |hit|

2φi

Γσ2

it

)

subject to
Nc∑

i=1

φi = P tot

φi ≤ φmask
i ∀i

(3)

with
T∑

t=1
wt = 1. As the objective function is concave, the

power allocation can be derived by the standard Karush-Kuhn-
Tucker (KKT) condition [17]. By taking the derivative of the
modified Lagrangian function with respect toφi, we can solve
the KKT system of the optimization problem. The derivative
with respect toφi is given by

∂L(λ, (βi, φi)i=1...Nc
)

∂φi

=
1

ln2

T∑

t=1

wt

Γσ2

it

|hit|2
+ φi

− (λ+βi) (4)

with λ the Lagrange multiplier associated with the total power
constraint, andβi the Lagrange multipliers corresponding to
the spectral mask constraint. Nulling the derivative gives

∂L(λ, (φi)i=1...Nc
)

∂φi

= 0 ⇒

T∑

t=1

wt

Γσ2

i1

|hit|2
+ φi

= λln2
︸︷︷︸

λ̃

+ βiln2
︸ ︷︷ ︸

β̃i

(5)
From the previous formula, one can see that the power

allocation depends on the number of receiversT . Let us derive
the power allocation for different number of receivers:

• For a single receiverT = 1, the power allocation corre-
sponds to Gallager’s water-filling strategy for single-user
parallel Gaussian channels [15] with additional spectral
mask constraint given by:

∂L(λ, (φi)i=1...Nc
)

∂φi

= 0 ⇒ φi =

[
1

λ̃ + β̃i

−
Γσ2

i1

|hi1|2

]+

(6)
• For two receiversT = 2, the power allocation is a type of

water-filling strategy given by the solution of a quadratic
equation.

∂L(λ, (βi, φi)i=1...Nc
)

∂φi

= 0

⇒ w1

Γσ2
i1

|hi1|2
︸ ︷︷ ︸

ai

+φi

+ w2

Γσ2
i2

|hi2|2
︸ ︷︷ ︸

bi

+φi

= λ̃ + β̃i (7)

The quadratic equation to be solved is

(λ̃ + β̃i)φ
2
i + ((λ̃ + β̃i)(ai + bi) − (w1 + w2))φi

+(λ̃ + β̃i)aibi − (w1bi + w2ai) = 0.
(8)

The discriminant is given by

∆ = (λ̃ + β̃i)
2(ai − bi)

2 + (w1 + w2)
2

−2(λ̃ + β̃i)(ai − bi)(w1 − w2)
. (9)

The power allocation is given by the positive root

φi =
[

1
2(λ̃+β̃i)

+
√

(w1+w2)2

4(λ̃+β̃i)2
− (ai−bi)(w1−w2)

2(λ̃+β̃i)
+ (ai−bi)2

4 − ai+bi

2

]+ .

(10)
In this formula, the power allocation for weighted sum
rate subject to a power constraint and a spectral mask
constraint takes into account the difference between the
water-fill functions and the weights of the different re-
ceivers.

• For three receiversT = 3 and four receiversT = 4,
the power allocation is a type of water-filling strategy
given by the solution of a cubic and quartic equation
respectively. Therefore, the power allocation can also be
found analytically (the solution is not given in this paper
due to space limitations). WithT > 4, the power allo-
cation is given by the solution of a polynomial equation
with degreeT . In general, the roots can’t be expressed
analytically but can be solved numerically.

The algorithm uses the weights to minimize the power subject
to a minimum rate constraint and a spectral mask constraint.
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Algorithm 1 Minimization of the power subject to a minimum
rate constraint
1 n=0

2 for all w1,. . . ,wT , with
T
P

t=1

wt = 1

3 n=n+1
4 init P = 10−9

5 init pstep = 2
6 init p = 0
7 init Rt = 0 ∀t
8 while |min(R1, . . . , RT ) − Rmin| > ǫ
9 init λ = 10−9

10 init step = 2
11 init b = 0
12 init φi = 0 ∀i

13 while |
Nc
P

i=1

φi − P | > ǫ

14 Calculateφi ∀i according to (4)’s root

15 if
Nc
P

i=1

φi − P < 0

16 b = b + 1
17 λ = λ/step
18 step = step− 1/2b

19 end if
20 λ = λ ∗ step
21 end while

22 Individual ratesRt =
Nc
P

i=1

log2(1 + |hit|
2φi

Γσ2

it

) ∀t

23 if min(R1, . . . , RT ) − Rmin > 0
24 p = p + 1
25 P = P/pstep
26 pstep = pstep− 1/2p

27 end if
28 P = P ∗ pstep
29 end while
30 Pn = P
31 end for
32 P min = min(Pn)

Algorithm 1 provides the power allocation for power mini-
mization subject to a minimum rate constraintRmin of a T -
receiverNc parallel fading Gaussian broadcast channel with
only common information (βi = 0 ∀i). The inner loop and the
outer loop correspond to lines 13-21 and 8-29 respectively.To
include a spectral mask constraint, we need to replace the line
14 with the modifications given in Algorithm 2.

III. M ULTIPLE COGNITIVE TACTICAL RADIO NETWORKS

In this Section, we consider the scenario in whichN

different cognitive radio networks can’t cooperate with each
other and wish to broadcast a common information to their
network by sharing the sameNc parallel sub-channels. This
scenario is particularly adapted to tactical radio networks
in which N different networks coexist in a given area and
broadcast a common information (voice, data...) to their group.
With current technologies, if the legacy radios of the coalition
nations share the same parallel sub-channels, the interference
would increase and lead to a bad transmission. Cognitive
radio enables the adaptation of the transmission parameters
(transmit power, carrier frequency, modulation strategy)to
these scenarios. Based on the results of Section II, we propose

Algorithm 2 Modifications to Algorithm 1 to take into
account a spectral mask constraint
1 for i = 1 to Nc

2 init β = 10−9

3 init mstep = 2
4 init m = 0
5 for iteration = 1 to 20
6 Calculateφi according to (4)’s root
7 if φi > φmask

i

8 φi = φmask
i

9 end if
10 if φi − φmask

i < 0
11 m = m + 1
12 β = β/mstep
13 mstep = mstep− 1/2m

14 end if
15 β = β ∗ mstep
16 end for
17 end for

a completely autonomous distributed power allocation. Con-
sideringN different networks and assuming that each network
j hasTj receivers, the received data can be modeled as

yj,it = hjj,itxji +
N∑

k 6=j

hjk,itxki + nj,it i = 1 . . .Nc,

j = 1 . . .N,

t = 1 . . . Tj

.

(11)
where nj,it represents a complex noise with varianceσ2

j,it

and hjk,it corresponds to the channel from networkk to j

on receivert and tonei. Similarly to Section II in which the
initial problem of power minimization subject to minimum
rate constraint is intractable forT > 1, we propose a way
to solve the initial problem by defining an utility function
(the weighted sum rate) which takes into account all the
achievable rates of the receivers and to select the minimum
rate in each network. The primal problem for the weighted
sum rate maximization subject to a total power constraint and
a spectral mask constraint per network (inner loop) is given
by:

max
(φij)

j=1...N

i=1...Nc

Nc∑

i=1

N∑

j=1

Tj∑

t=1
wjt log2(1 +

|hjj,it|
2φij

Γ(σ2

j,it
+

P

k 6=j

|hjk,it|2φik)
)

subject to
Nc∑

i=1

φij ≤ P tot
j ∀j

φij ≤ φmask
ij ∀i, j

(12)
This problem is highly non-convex and no closed-from

solution can be derived. Even if a centralized cognitive man-
ager was able to collect all the channel state information
(CSI) within and between the different networks, it would
require an exhaustive search over all possibleφij ’s, or a more
efficient genetic algorithm. To solve this problem, we propose
a sub-optimal distributed algorithm based on the iterative
water-filling algorithm initially derived for dynamic spectrum
management in digital subscriber line (DSL) [12]. The iter-
ative water-filling principle is extended to multiple cognitive
tactical radio networks, in which each network considers the
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interference of the other networks as noise and performs water-
filling on its parallel multicast channels. Each update of one
network’s water-filling affects the interference of the other
networks and this process is repeated iteratively between the
networks until the power allocation of all networks converge
and reach a Nash equilibrium. As the power updates between
networks can be performed asynchronously, an iterative water-
filling based algorithm for the coexistence between multiple
cognitive tactical radio networks. Let us derive the modified
Lagrangian function:

L((λj)j=1...N , (βij , φij)
j=1...N
i=1...Nc

) =
Nc∑

i=1

(
N∑

j=1

Tj∑

t=1
wjt log2(1 +

|hjj,it|
2φij

Γ(σ2

j,it
+

P

k 6=j

|hjk,it|2φik)
)

−
N∑

j=1

(λj + βij)φij

)

+
N∑

j=1

λjP
tot
j +

Nc∑

i=1

N∑

j=1

βijφ
mask
ij

(13)
in which theλj ’s andβij ’s are the Lagrange multipliers. We
assume that each transmitter has the knowledge of the noise
variances and the channel variations in its own networkj

{
σ2

j,it +
∑

k 6=j

|hjk,it|
2φik ∀i, ∀t

hjk,it k = j, ∀i, ∀t
(14)

This knowledge can be acquired through a feedback channel
from the receivers to the transmitter of each network assuming
that the acquisition time is much lower than the coherence
time of the channel fading. To this end, each terminal must
be equipped with a spectrum sensing function to estimate the
noise variances and a channel estimation function to estimate
its channel variations. Then, by taking the derivative of the
modified Lagrangian function with respect toφij , we can solve
the KKT system of the optimization problem:

∂L((λj)j=1...N , (βij , φij)
j=1...N
i=1...Nc

)

∂φij

=

1
ln2

Tj∑

t=1

wjt

Γ(
σ2

j,it

|hit|2
+
∑

k 6=j

|hjk,it|2

|hit|2
φik) + φi

− (λj + βij)

(15)
For transmitterj, the power allocation is the solution given

by the roots of (4) with the interference terms estimated at
each receiver within the networkj. For instance, with two
receiversTj = 2, the power allocation within the networkj
is given by (10) with the following modifications:







ai = Γ(σ2
j,i1 +

∑

k 6=j

|hjk,i1|
2φik)

bi = Γ(σ2
j,i2 +

∑

k 6=j

|hjk,i2|
2φik)

(16)

Therefore, a distributed power allocation ofN different
networks can be obtained by updating iteratively the powers
of the different transmitters using the single-transmitter power
allocation for minimizing the power subject to a minimum
rate constraint and a spectral mask constraint. However, in
Algorithm 2, the weight loop encompasses the outer loop to
find which set of weights corresponds to the global minimum
power satisfying a minimum rate constraintRmin. As the
algorithm should be distributed and autonomous, the set of

weights minimizing the power have to be determined for each
network independently. To this end, we have to move the
weight loop inside the outer loop by introducing a rule based
on the rates. An adequate rule is to introduce a deviation
metric (DM) which measures the dispersion of the rates. The
DM must be computed within each networkj for each set
of weightsn over theTj receivers. The rule is given by the
following formula:

DMj(n) =

√

Tj

Tj∑

t=1
[(Rjt(n) − 1

Tj

Tj∑

t=1
Rjt(n))2]

Tj∑

t=1
Rjt(n)

(17)

with Rjt(n) the rate for the networkj, receivert and the set
of weightsn. This rule allows to achieve the global minimum
power although the decision has to be taken inside the outer
loop. It basically means that for a given power the closer
the rates of the different receivers within a network, the less
power will be needed to achieve the minimum rate constraint.
This algorithm is referred to as Algorithm 3 in the simulation
results.

IV. RESULTS

In the first set of simulations, we compare the algorithm
for a single tactical radio network with the trivial case where
the waterfilling is performed on the receiver with the worst
channel conditions, i.e. the worst receiver strategy. Notethat
the worst receiver strategy can be seen as a special case of the
presented algorithm in whichwt = 0 ∀t except for the worst
receiver. The log-distance path loss model is used to measure
the path loss between the transmitter and the receivers [18],
with bandwidth∆f = 25 kHz, Nc = 4 sub-channels, carrier
frequencyfc = 80 MHz, path loss exponentn = 4, reference
distanced0 = 20 meters and thermal noiseσ2

n = 10−16. For
the simulations, we use a square area of1 km2 in which the
transmitter andT = 2 receivers are placed randomly using
Monte Carlo trials. The SNR gap for an uncoded quadrature
amplitude modulation (QAM) to operate at a symbol error
rate10−7 is Γ = 9.8 dB. The scenario considers a very strong
noise (σ2

n = 10−9) seen on the 4th sub-channel by the first
receiver and on the 1st sub-channel by the second receiver. The
different noises seen by the different receivers can be thought
as sub-channel variations depending on the location, a sub-
channel occupied by a primary or a secondary transmitter, a
jammer etc.

The left part of Figure 2 shows the results of the power
minimization subject to a minimum rate constraint per receiver
ranging fromRmin = 2 kbps toRmin = 512 kbps over103

Monte Carlo trials for the locations of the transmitter and the
receivers. Algorithm 2 provides a substantial gain compared
to the worst receiver strategy. The right part of Figure 2 shows
that the algorithm converges within 30 iterations (the number
of iterations for convergence mainly depend on the starting
point, in this caseP = 10−11). Since it is based on closed-
form expressions, the algorithm has reasonable complexityfor
a low number of receivers as the search for the best set of
weights require an exhaustive search over all possible weights.
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Fig. 2. Results on the power minimization subject to a minimum rate
constraint for a single tactical radio network

In the second set of simulations, we compare the iterative
waterfilling based algorithm developed in Section III forN

networks with the worst receiver strategy extended to multiple
networks. Simulation results are performed withN = 2
networks,Tj = 2 receivers∀j and Nc = 4 sub-channels.
We consider a scenario in which all receivers see a different
noiseσ2

n on their Nc = 4 sub-channels (similar to the first
set of simulations). In the first network, a very strong noise
(σ2

n = 10−9) is seen on the 4th sub-channel by the first
receiver and on the 1st sub-channel by the second receiver.
In the second network, a very strong noise (σ2

n = 10−9) is
seen on the 3th sub-channel by the first receiver and the 2nd

sub-channel by the second receiver. The left part of Figure
3 shows the results of the power minimization subject to
a minimum rate constraint ranging fromRmin = 2 kbps
to Rmin = 512 kbps over103 Monte Carlo trials for the
locations of the transmitter and the receivers. In this case,
Algorithm 3 is the only strategy which provides a viable
solution because the worst receiver strategy tends to utilize
the maximum available power of 1 Watt. Although designed
for the coexistence of multiple tactical radio networks, the
convergence of Algorithm 3 is similar to Algorithm 1 for
both networks (right part of Figure 2). The right part of
Figure 3 shows that the deviation metric (DM) reduces as the
algorithm converges. It can be seen that in practical scenarios
in which the interference temperature varies along the sub-
channel and the receiver locations, Algorithm 3 provides an
efficient distributed strategy to find the power allocation of
multiple networks in which each transmitter has to broadcast
a common information to its receivers.

V. CONCLUSION

In this paper, dynamic spectrum management was studied
for multiple cognitive tactical radio networks coexistingin
the same area. First, we have considered the problem of
power minimization subject to a minimum rate constraint
and a spectral mask constraint for a single tactical radio
network with multiple receivers over parallel channels (parallel
multicast channels). Then, we have extended the iterative wa-
terfilling algorithm to multiple receivers for the coexistence of
multiple cognitive tactical radio networks assuming knowledge
of the noise variances and channel variations of the network.
Simulation results have shown that the proposed algorithm is
very robust in satisfying these constraints while minimizing
the overall power in various scenarios.
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Fig. 3. Results on the averaged power minimization subject to a minimum
rate constraint averaged for the coexistence of two tactical radio networks
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