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ABSTRACT
Edge detection in SAR images is a difficult problem due

to the presence of speckle. However, the statistical prop-
erties of speckle in uniform regions of a SAR image can
be used for the development of edge detectors. For single-
channel multi-look intensity images, the ratio-detector [1]
is widely accepted to be the optimal edge detector. For
multi-channel data, it is possible to apply the ratio-detector
to each separate channel and fuse the results. Alternatively
multi-variate methods can be used. They treat the different
channels as a whole and there is no need for subsequent
fusion. Furthermore they take the inter-channel correla-
tion into account. We already proposed two edge detec-
tors based on multi-variate statistical hypothesis tests. The
first one is based on a test for the difference of variance
and applied to SLC images, the second uses a test for the
difference of means and is applied to log-intensity images.
The two multi-variate edge detectors give complementary
results. Hence the idea to fuse these results. Fusion of the
results of both detectors for equivalent false alarm thres-
holds gave poor results. In the article we propose a new
method to find the region of optimal fusion for the two edge
detectors. The method is based on the combination of two
statistical methods for investigating the complementarity of
”experts” and a figure-of-merit for edge detection. Results
of applying the proposed method to a high-resolution, po-
larimetric, L-band E-SAR image are shown.
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1 INTRODUCTION
Edge detectors that work well in optical images fail in

SAR images due to the particular properties of the speckle
in SAR images [1]. The speckle has the characteristics of
a multiplicative noise (in intensity images) with a very low
signal-to-noise ratio. This makes pixel-wise methods using
a simple filtering mask, as used in optical images, inappro-
priate. A commonly adopted solution is to take into account
larger neighbourhoods of each pixel to decide whether an
edge passes through that pixel. This is done by scanning
the image with a set of two adjacent rectangular windows
and estimating some statistic in both windows. The differ-
ence between both estimations is an indication that the edge
between the two windows corresponds to an edge in the im-
age. This gives an answer for one possible edge orientation.
The set of rectangles is rotated around the current pixel
to verify the presence of an edge along other orientations.
Mostly 2, 4 or 8 orientations are tested and results com-
bined. The existing methods (e.g. [2, 1, 3]) were mostly

applied on single-band multi-look intensity images and dif-
fer by the comparison criterion that is used (see [4] for an
overview). When dealing with multi-channel SAR images,
e.g. polarimetric images, existing methods can be applied
to each separate channel and the results fused. In [5] we
proposed two new edge detectors for multi-channel SAR
images. Both are based on multi-variate statistical hypoth-
esis tests. The first tests the difference in means in log-
intensity images and the second uses a test for the differ-
ence in variance and is applied on the complex images.
Both are applied on single-look SAR images. Results show
the two detectors to be complementary [6]. Therefore fu-
sion was investigated. The effectiveness of the fusion not
only depends on the fusion algorithm, but also on the range
of outcomes of the individual detector’s responses that are
fused. Fusion of the results of both detectors for equivalent
false alarm thresholds gave poor results. The main topic
of this paper is the development of a new method to de-
termine for which ranges of thresholds the results of both
detectors can be enhanced significantly by fusion. The pro-
posed method is based on the combination of two statisti-
cal methods for investigating the complementarity of ”ex-
perts”. This combination allows to establish the combina-
tion of detector thresholds for which fusion should give the
best results. Once the ranges of thresholds are determined,
standard fusion methods can be applied. The proposed
method is applied to an L-band full-polarimetric (HH,HV
and VV polarisation) E-SAR image1.

2 MULTI-VARIATE EDGE DETECTORS
2.1 EDGE DETECTOR BASED ON A

DIFFERENCE IN MEANS

The contour detector problem is transformed into a
multi-variate hypothesis test, the null-hypothesis being that
the pixels in the two scanning rectangles are samples from
two populations with equal averages. This can then be
tested using a Hotellings test [7] defined as:

(1)

where and are the number of observations in the two
rectangles, is the average vector of the observations
in window k and is the pooled covariance matrix. In
the null-hypothesis of equal population averages the trans-

1The presented work is the result of a collaboration with the Institute of
Radio Frequency Technology and Radarsystems of the German Aerospace
Center (DLR), who also provided the images.



formed statistic:

(2)

where p is the number of variables and F is the Fisher-
Snedecor distribution. The test is applied to the log-
intensity images in which differences in radar reflectivity
of uniform regions are reflected purely as variations of first
order statistical moments. Therefore , i.e. we have
one image per polarisation.

2.2 EDGE DETECTOR BASED ON A
DIFFERENCE OF VARIANCE

The statistical hypothesis test for a difference of vari-
ance used here is the Levene test [7]. The samples from the
two scanning windows are transformed in absolute devia-
tions of sample means, e.g. for HH polarisation:

with k the index of the scanning rectangle and
i the index of the observation within a scanning rectangle.
The question whether two samples display significantly dif-
ferent amounts of variance is then transformed into a ques-
tion of whether the transformed values show a significantly
different mean [7] and the Hotellings test can again be
used. This test is applied to the complex image, we thus
have two component images per polarisation, i.e. the real
and imaginary part of the SLC image and .

2.3 INFLUENCE OF SPATIAL CORRELATION
The derivation of Hotellings- test statistic (e.g. [8])

assumes that the covariance matrix of the mean is equal to
the covariance matrix of a sample divided by the number
of observations in the sample. This is only true when the
observations are uncorrelated. However, in SAR images
neighbouring pixels are correlated. This is partly due to
the SAR system itself, in particular its Point Spread Func-
tion [4], and partly to texture in the terrain. The spatial cor-
relation causes the behaviour of the detectors based on the
Hotellings test to deviate from the theoretical prediction,
i.e. the test-statistic becomes too large and too many false
alarms are found at a given theoretical constant false alarm
(CFAR) threshold. For the part of due to the SAR sys-
tem, a correction factor can be determined for the test statis-
tic [6]. However, even a slight terrain texture, increases the
spatial correlation, resulting again in an increased number
of false alarms. A solution is to sub-sample within the scan-
ning rectangles. For fixed grid sub-sampling the theoretical
CFAR thresholds can be derived from the average spatial
correlation between points on that grid and when the sam-
pling ratio is low enough slight terrain textures have only a
minor influence on the detector.

3 FUSION OF EDGE DETECTORS
In order to determine for which ranges of thresholds the

results of both detectors can be significantly improved by
fusion, statistical methods for comparing experts are used.
Each detector is considered as an expert that for each pixel
gives its opinion on the presence of an edge. The compar-
ison of the two “experts” is based on their results on two
small regions of the SAR image. On the two regions the

ground truth was delimited manually, i.e. the edges were
indicated. This ground truth is used to determine the prob-
ability of detection and false alarms for a given
threshold for each detector. This information is used as in-
put for the statistical methods that are used in the compari-
son. The statistical methods are described below. The two
detectors are considered as two experts yielding a binary
decision (edge, no-edge) at every pixel of the test images.
The decision is based on the choice of a pair of thresholds
( , ). This decision can be validated us-
ing the ground truth and from this validation two contin-
gency tables (see table 1) are determined that form the basis
for the statistical comparison of the two experts. One table

describes the performance in terms of detection, the
other one in terms of false alarms.

Levene Test
No-Edge Edge

Hotellings No-Edge
Test Edge

n

Table 1: Contingency table for the two detectors

If the two detectors fully agree, the elements and
of the table are zero. If this is true for both and
, fusion will not be useful and any of the two experts

can be chosen. If and are non-zero and almost
equal, the two experts are providing complementary infor-
mation and fusion is useful. The symmetry of the table is
thus a first characteristic that gives an idea of the usefulness
of fusion. The second characteristic is the interdependence
of the two experts. The two characteristics can be assessed
by statistical tests. The Mc Nemar and the Kappa test in-
vestigate resp. the symmetry and the interdependence.

3.1 THE MC NEMAR TEST

The Mc Nemar test [9] was designed to test for the sig-
nificance of changes, e.g. before and after a medical treat-
ment. In our case it will test whether the opinions of the
two experts differ significantly. The hypotheses are defined
as:

(3)

with e.g. = Prob(Hotelling Result = NoEdge, Lev-
ene Result=Edge). If the null-hypothesis is verified the ex-
pected value . The test statistic:

(4)

3.2 THE KAPPA TEST

The Kappa test [10] is applied to the elements of con-
cordance between the two experts, i.e. the elements
and of the contingency table. It compares the values
of these elements with the value the elements would have
if the two experts were independent, as predicted by the
marginal probabilities:

(5)



The observed concordance is and

(6)

is its expected value. The Kappa coefficient is defined as:
. It can be shown that if n is large enough (

), the variable

(7)

For a threshold three cases are distinguished: the dis-
cordant ( ), the concordant ( ) and
the non-concordant case ( ).

3.3 COMBINING THE TWO STATISTICAL TESTS
The two tests can be applied for a set of combinations

of thresholds for the Levene and Hotellings test. For each
pair of thresholds the contingency tables are determined, in
test images, for false alarms and detections and the tests are
applied. Different classes are defined as a function of the re-
sults of the two tests. Combining the two tests gives 6 possi-
ble values, but the symmetric concordant case is subdivided
in two sub-classes. For the symmetric concordant case re-
sults can be improved by fusion if and be-
cause this means that the two detector have a similar num-
ber of false classifications but the miss-classified elements
are not the same. Therefore the symmetric concordant case
is split in two sub-cases, one where the discordant elements
are zero (class 2) and one where they are significantly dif-
ferent from zero (class 1). The latter is the ideal case for
fusion because both experts globally agree but locally can
give a different advice. The other classes are:

cl McNemar Kappa Consequence
Test Test for Fusion
Symmetr. Concordant

1 Fusion useful
2 Fusion not useful
3 Non-Conc. Fusion not useful
4 Discordant NA
5 Non-Symm. Concordant Fusion maybe useful
6 Non-Conc. Choose best expert
7 Discordant NA

In class 3 fusion is not useful. The discordant case
(classes 4 and 7) was not observed in the test images. In
class 5 results could be improved by a fusion strategy in
two successive steps. The first (fastest or cheapest) expert
is used for the first classification and, depending on the con-
fidence in the results, the second expert is used in the sec-
ond stage. In class 6 the threshold for one detector is very
low and the other is high. The experts thus disagree and
depending on whether the false alarms or the probability of
detection is important the expert with the highest or lowest
threshold value should be chosen. Fig. 1 and 2 resp. show
the results for and . In each region the number of
the corresponding class is shown.
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Figure 1: Classification of 2D threshold space for
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Figure 2: Classification of 2D threshold space for

Class 1 is the most interesting for fusion: the two de-
tectors have globally a similar performance and yet their
opinions differ in individual pixels of the test image. The
area is linear and the area for overlaps with the one for

. The dashed line in fig. 1 is the line of equal for
the two detectors for sampling on a fixed grid and taking
the maximum of the result of the 8 orientations of the scan-
ning rectangles. The optimal area for fusion only partly
coincides with this line, it deviates at high thresholds. Fus-
ing the results of the two detectors by combining responses
of each detector corresponding to the same is thus not
optimal as confirmed by the results we obtained.

3.4 A FOM FOR EDGE DETECTION
Any detection algorithm makes a compromise between
and . A ROC curve can be used to see the evolution

of the compromise when the threshold of the algorithm is
varied. An alternative is to define a figure of merit (FOM)
for detection. Based on the FOM for target detection intro-
duced in [11] we define a FOM for edge detection as:

(8)

with , . and allow to vary the
importance attached to false alarms or detected points. For
a given and , the maximum of the FOM as a function
of the detector threshold indicates the optimal threshold for
the detector. The location of the maximum shifts when



and are varied. For two detectors, the FOM can be cal-
culated for each and their product and sum resp. give the
result for fusion with an “AND” and an “OR” operator. The
maximum of the 2-D FOM gives the optimal combination
of the two thresholds for the corresponding operator. Calcu-
lating the FOM for different values of and and different
ground-truthed test images showed that:

the maximum of the FOMs coincides with a point of
the “optimal fusion line” for any choice of and

when varying and , the maximum of the 2D FOM
moves along the optimal fusion line

the position of the maximum is the same for the AND
and OR operators

for fixed and the position of the maximum of the
2D FOM is different for different test images

These observations confirm that the linear regions in fig. 1
and fig. 2 indeed correspond to an optimal range of thres-
hold combinations for fusion.

4 RESULTS AND DISCUSSION
The two edge detectors were applied using win-

dows and sub-sampling on a fixed grid such that
between neighbouring grid points. The maximum of the re-
sults for 8 orientations of the scanning windows was taken.
Figs. 3 and 4 show the results of the two multi-variate de-
tectors.

Figure 3: Results of Levene test-based detector

Figure 4: Results of the Hotellings test-based detector

To apply the fusion methods, the results of the two de-
tectors are first rescaled in a “working region”. The work-
ing region is a part of the linear region of optimal fusion in
the 2D space of detector thresholds. On the rescaled image
different information fusion operators [12] were applied.
The non-associative sum operator [12] gave the best results

(fig. 5). Results after fusion are globally better than before
fusion but some linear features detected by one detector are
lost after fusion. A possible improvement can be to detect
linear features in each detector’s response and restore them
after the proposed fusion in a subsequent object-level fu-
sion step.

Figure 5: Fused results using a non-associative sum
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