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Abstract

The success of electromagnetic analysis and design during the past century
would not have been possible without an accurate and complete theory, optimized
numerical techniques to solve the complex real-life problems and computers to
run the billions of elementary operations required by these techniques. In this
work we focused on the scattering by mixed homogeneous linear and isotropic
three-dimensional materials solved with the Method of Moments in the harmonic
case. The new general methods and expressions that have been derived to
this end led incidentally to a new set of theorems forming a generalization
of the physical optics approximation. They also allowed to introduce a new
numerical formulation able to fully solve metallic sheets. The past two decades
have seen the development of many fast methods, acceleration techniques and
parallelization strategies, with main objective to solve very to extremely large or
complex problems within acceptable time using the available memory. ...
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Preface 
 

In many engineering fields, the advent of computers has forever changed the type 
and size of the real-life problems that can be addressed. Burj Khalifa, still the 
highest skyscraper in the world in 2011, the Bugatti Veyron, world fastest car in 
2011 couldn’t have been built without an extensive design phase made possible 
by powerful computers. In electromagnetics as well, numerous modern 
realizations owe their existence to computer simulation tools : very high 
frequency passive planar circuits, multiband frequency selective surfaces, 
metamaterials, corrugated horn antennas optimized through genetic algorithm, 
just to name a few. 

Since the 18th century, various numerical techniques have been developed by 
many generations of mathematicians and physicists to solve the vast majority of 
problems for which no analytical solution could ever be found. All those 
numerical methods had in common that they require a tremendous amount of 
operations and calculus. Consequently, their practical use remained very limited 
as long as humans had to do all the work. When the computing power and speed 
became available in the second half of the 20th century, the theoretical 
foundations and algorithms were ready, and the millions of repetitive elementary 
operations necessary to find a good approximation to complex problems had 
found the perfect machine to perform them.  

Since 1965 Moore’s law predicts that the computing resources will double every 
two years, conditioned by the technological capacity of the industry to further 
miniaturise transistors. But engineers and scientists are always one step ahead 
with new challenges that exceed the possibilities of their decennia. This situation 
has stimulated the development of many fast methods, acceleration techniques 
and parallelization strategies, with main objective to solve very to extremely 
large or complex problems within acceptable time using the available memory. 

In this never ending quest for more and faster, the accuracy of the final solution 
has received less attention from the electromagnetic community, whereas in 
essence every numerical method yields an approximate result. To contribute to 
fill this gap, we made the choice in this book to focus on the quality (accuracy) 
and less on the price to pay for it (computing time and memory). Aside accuracy, 
another keyword will form the thread of the six upcoming chapters : generality. 
To meet the two objectives of accuracy and generality, high efficiency 
quadratures have been selected for their ease of implementation in a general 
code and analyzed in great detail. 

In electromagnetics, two independent integral equations can be established from 
Maxwell’s equations. In the Method of Moments, the numerical technique 
analyzed in this book, the equation based on the electric field is by far the most 
popular and the most widely used. The other one, based on the magnetic field, is 
barely considered because it would be less accurate, harder to implement and 
unsuitable for a large an important family of objects, the metallic sheets. In 
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electromagnetics, where duality between electric and magnetic magnitudes is a 
well established principle, this unequal treatment between both approaches 
incited us to investigate in details the differences between the electric and 
magnetic formulations. Restoring duality would have been a purist motivation, 
were it the only one. In fact, except in the case of sheets, both integral equations 
are most often used side by side, either to analyze dielectric parts, or to eliminate 
spurious numerical resonances in volumic metallic parts. In this book, one of the 
objectives was also to establish a general formulation able to solve any 
combination of geometries (volumes or sheets) and homogeneous linear and 
isotropic materials (dielectric and perfect conductors). Therefore, both the electric 
and magnetic formulations had to receive equal attention and be optimized to 
deliver a similar accuracy, if possible. 

In chapter One, the electromagnetic theory relevant to the Method of Moments is 
reviewed and new formulations are established in their most general form, then 
cast into a canonical form.  

In chapter Two, the Method of Moments is introduced in a practical way. In 
particular the properties, advantages and limitations of basis functions are 
reviewed with a critical eye and new light is put on the testing functions. 

In chapter Three, the Method of Moments is particularized to the choices made in 
this book and generalized to any combination of geometries and materials. The 
general solving scheme that is being proposed fails in some cases with perfectly 
conducting sheets. 

In chapter Four, a novel formulation is established to fully solve perfectly 
conducting sheets after thorough inspection of the singularities of the electric and 
magnetic integral equations in this particular case. 

In chapter Five, the numerical issues inherent to the Method of Moments are 
reviewed, then the errors due to numerical integrations with high efficiency 
polynomial quadratures are analyzed, especially for the singular integrals that 
appear to play a critical part in the overall accuracy.  

To support and illustrate the concepts developed in Part I, a serie of examples 
has been analyzed in great details, forming Part II. 
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1 Electromagnetics 

 

The success of electromagnetic analysis and design during the past century 
would not have been possible without an accurate and complete theory. This 
chapter is devoted to exact expressions, formulations and theorems that will form 
the basis of the Method of Moments, the numerical approximation technique 
introduced and applied in the subsequent chapters to solve the scattering by 
three-dimensional linear isotropic and homogeneous bodies. Basic and advanced 
concepts are reviewed, such as the harmonic Maxwell’s equations, the boundary 
conditions and the Stratton-Chu integral equations. New expressions are also 
established and presented at the very end of the chapter under a canonical form. 
They generalize the existing ones in a full vector form, firstly for arbitrary sheets 
and then for any combination of materials. In the demonstrations, the singular 
behavior of electromagnetic fields on sharp edges and tips has neither been 
eluded nor treated in a semi-empirical way, but accounted for very carefully.  

This quest for the most general expressions has produced three original results. 
Firstly an original demonstration that dielectric sheets are transparent to 
electromagnetic waves. Secondly the discovery of a new set of theorems related to 
the physical optics approximation. Thirdly and finally the derivation of a novel 
formulation based on the normal component of the electric and magnetic field 
integral equations. 

1.1 Maxwell’s equations 

The source of an electromagnetic field is a distribution of electric charge and 
current densities. 

Since we are concerned only with its macroscopic effects we can assume this 
distribution to be continuous rather than discrete and specified as a function of 
time and space by the volumic density of charge ( , , , )x y z tρ  and the vector current 
density ( , , , )J x y z t . A brief and interesting discussion about this continuity 
assumption can be found in [1, p2]. 

If one assumes that an electric current of volumic density ( , , , )J x y z t  is a flow of 
signed charges of volumic density ( , , , )x y z tρ  and that these charges cannot be 
created nor destroyed, the two quantities J  and ρ  are linked by the following 
relationship : 

 J
t

ρ∂
∇ ⋅ = −

∂
 (1) 

This equation is often referred to as the equation of continuity, because of the 
assumption made that charges cannot be created or destroyed. 

With Maxwell, we will postulate that at every ordinary point in space the current 
density J  and charge density ρ  generates an electromagnetic field that can be 
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described by the four vectors E , H , D  and B  subject to the well known 
Maxwell’s equations : 

 
B

E
t

∂
∇ × = −

∂
 (2) 

 
D

H J
t

∂
∇ × − =

∂
 (3) 

By an ordinary point is meant a point in whose neighbourhood the physical 
properties of the medium are continuous. At such a point the field vectors and 
their first derivatives are continuous too. 

We cannot determine these four vectors with the two equations (2) and  (3) only. 
Therefore we assume a relationship between the displacement vector D  and the 
electric field E , and also between the magnetic flux density B  and the magnetic 
field H  : 

 ( )D D E=  (4) 

 ( )B B H=  (5) 

With (6) we also split the total electric current density J  into a forced part 

sourceJ , imposed by a source and maintained independently from the electric field 
E  and the magnetic field H  it creates, and an induced part ( )J E , due to the 
action of E  on the electric charges in the matter. 

 ( )sourceJ J J E= +  (6) 

The relationships (4), (5) and (6) depend on the matter properties only. It is worth 
mentioning here already that there are no (known) magnetic charge and current 
densities. 

Equations (4) to (6) prove to be valid in a very wide range of practical situations. 
Here are the two most common ones : 

In vacuum : 

 
0

0

0

D E

B H

J

ε

µ

=

=

=

 (7) 

The values and the dimensions of the constants ε0 and µ0 depend on the system of 
units adopted. In the MKS system, where the speed of light c = 299 792 458 m/s, 
the following choice has been made : 

 

7
0

12
0 2

0

4 .10

1
8,85418782 .10

Henry meter

Farad meter
c

µ π

ε
µ

−

−

=   

= =   
 (8) 

In a linear, homogeneous, isotropic, conductive and non dispersive material : 
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source

D E

B H

J J E

ε

µ

σ

=

=

= +

 (9) 

where the permettivity ε, the permeability µ and the conductivity σ are 
independent of orientation (isotropy), space (homogeneity), time or frequency 
(dispersivity) and also independent of the field itself (linearity). One can write 
ε = εrε0 and µ = µrµ0 , wherefrom εr and µr are called relative permittivity (or 
dielectric constant) and relative permeability. 

Such a material is ideal. Any real material presents some degree of anisotropy, 
inhomogeneity, dispersivity or non linearity. However these assumptions are 
valid for a great number of materials, at least in a limited range for the field 
strength and/or frequency. Table 1 shows the minimum and maximum relative 
permittivity of some dielectrics while Table 2 (p.8) shows the electrical 
conductivity of some good conductors, semi conductors and air, with three 
significant digits. More precise values are provided in Table 12 (p.140), for the 
specific case of air. 

 

Table 1 : Relative dielectric constant ( εr ) of some dielectrics 

Material Min. Max. Material Min. Max.

Air 1 1 Nylon 3.4 22.4

Amber 2.6 2.7 Paper 1.5 3

Asbestos fiber 3.1 4.8 Paraffin 2 3

Bakelite 5 22 Plexiglass 2.6 3.5

Barium Titanate 100 1250 Polycarbonate 2.9 3.2

Beeswax 2.4 2.8 Polyethylene 2.5 2.5

Cambric 4 4 Polyimide 3.4 3.5

Carbon Tetrachloride 2.17 2.17 Polystyrene 2.4 3

Celluloid 4 4 Porcelain 5 6.5

Cellulose Acetate 2.9 4.5 Quartz 5 5

Durite 4.7 5.1 Rubber 2 4

Ebonite 2.7 2.7 Ruby Mica 5.4 5.4

Epoxy Resin 3.4 3.7 Selenium 6 6

Ethyl Alcohol 6.5 25 Shellac 2.9 3.9

Fiber 5 5 Silicone 3.2 4.7

Formica 3.6 6 Slate 7 7

Glass 3.8 14.5 Soil dry 2.4 2.9

Glass Pyrex 4.6 5 Steatite 5.2 6.3

Gutta Percha 2.4 2.6 Styrofoam 1.03 1.03

Isolantite 6.1 6.1 Teflon 2.1 2.1

Kevlar 3.5 4.5 Titanium Dioxide 100 100

Lucite 2.5 2.5 Vaseline 2.16 2.16

Mica 4 9 Vinylite 2.7 7.5

Micarta 3.2 5.5 Water distilled 34 78

Mycalex 7.3 9.3 Waxes, Mineral 2.2 2.3

Neoprene 4 6.7 Wood dry 1.4 2.9  
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Table 2 : Electrical conductivity σ of some materials 

Electrical Conductivity

[S/m]

 Silver  63.0 × 10
6

 Copper  56.9 × 10
6

 Gold  45.2 × 10
6

 Aluminium  35.0 × 10
6

 Carbon  0.06 × 10
6

 Sea Water  4.8

 Germanium  1.45

 Drinking water  0.0005 to 0.05

 Silicon  252 × 10
-6

 Air  0.3 to 0.8 × 10
-12

Material

 

Noting that the divergence of a curl of any vector field A  with twice continuously 
differentiable components in the neighbourhood of the ordinary point r  vanishes 
identically, namely ( )( ) 0A r∇ ⋅ ∇ × = , two other conditions satisfied by the vectors 
D  and B  may be deduced directly from Maxwell's equations : 

 D ρ∇ ⋅ =  (10) 

 0B∇ ⋅ =  (11) 

Equation (10) has as a consequence that D  field lines start and end up on 
charges, as illustrated in Figure 1. 

 

Figure 1 : D  Field lines starting and ending up on charges 

Equation (11) implies that the B  field is solenoidal : the  field lines close on 
themselves, as illustrated in Figure 2. 

 

Figure 2 : Solenoidal field 

1.2 Harmonic waves 

In a non dispersive medium the behavior of a periodic wave of frequency f ( or 
wavelength λ = c/f ) can always be expressed as a sum of sine waves of 
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frequencies n.f (n being an integer) while a non periodic wave can be described by 
its continuous frequency spectrum. The spectral content of those waves being 
obtained with a Fourier transform it is sufficient to investigate the 
characteristics of a sine wave at a single frequency f, called a time harmonic 
wave. One can express the field quantities of a time harmonic wave as the real 
part of a product of a complex spatial form (only function of position) with the 
factor j t

e
ω (1) representing the time variation ( 2 fω π= ). 

 ( , ) Re ( ) ( ) cos arg ( )j t
EE r t E r e E r t E r u

ω ω   = = +  
⌢

 (12) 

Replacing the instantaneous field vectors by their corresponding complex form, 
performing the time derivatives and dropping everywhere the j te ω  term, one 
obtains from (2) and (3) the time harmonic Maxwell equations in their most 
general form : 

 E j Bω∇ × = −   (13) 

 H j D Jω∇ × = +   (14) 

The continuity equation (1) becomes : 

 J jωρ∇ ⋅ = −  (15) 

In the case of linear, homogeneous and isotropic media, characterised by 
equations (9), the time harmonic equations (13) and (14) become : 

 E j Hωµ∇ × = −  (16) 

 ( )sourceH J j Eωε σ∇ × = + +  (17) 

The source term sourceJ  is responsible for the apparition of the fields E  and 
H while being independent of those fields. 

In the case of a lossy dielectric, ie for which σ > 0, these losses can be accounted 
for by considering the permittivity as a complex value. Considering our j t

e
ω  

choice, the imaginary part of the relative permittivity ε representing the 
conductivity must be negative : 

 ε = ε ’-jε” (18) 

The relation between the imaginary part of ε and σ is then : 

 "σ ωε=  (19) 

When we compare the Maxwell equations a remarkable symmetry appears, but 
not in every respect, because no magnetic current or charge density exist. Adding 

                                            
1 Another representation for time harmonic variation is 

j t
e

ω−
.  

This other choice implies sign changes in the harmonic Maxwell equations and produces fields that are 

complex conjugate of those obtained with the 
j t

e
ω  convention. 

Indeed: ( , ) Re ( ) Re ( )
j t j t

E r t E r e E r e
ω ω∗ −   = =

   
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a fictitious volumic magnetic charge density ,m sourceρ  and a magnetic current 
density sourceM  as well as an additional dual continuity equation (24), symmetric 
equations can be written : 

 sourceE j H Mωµ∇ × + = −  (20) 

 sourceH j E Jωε∇ × − =  (21) 

 . sourceE ρ ε∇ =   (22) 

 ,. m sourceH ρ µ∇ =  (23) 

 . source sourceJ jωρ∇ = −  (24) 

 ,. source m sourceM jωρ∇ = −  (25) 

where ε and µ are real for lossless materials and complex for lossy materials. 

1.3 The Stratton-Chu equations 

Before deriving the vector form of the electric field integral equations (EFIE) and 
magnetic field integral equations (MFIE), we must establish the Stratton-Chu 
equations. Only the essential steps are given in this paragraph. All other details 
and demonstrations can be found for example in [1, Ch.8.14] and in [2, Ch.6.9]. 
We start from Green’s second identity, where S0 is a closed surface enclosing the 
volume V0 :  

 ( ) ( )
0 0

0ˆ. .
V S

Q P P Q dV P Q Q P n dS∇ × ∇ × − ∇ × ∇ × = × ∇ × − × ∇ ×∫ ∫  (26) 

It is a purely mathematical relationship between the vectors of position P  and 
Q  which both need to have continuous first and second derivatives within V0 and 
on S0. 

 

Figure 3 : Geometry for Green's second identity 

In Figure 3 the volume V0 is grey-shaded and the surface S0 is made of three non 
intersecting closed surfaces S∞ , S∈ and S represented by double lines. 

S∞ 

S 

V  

V0 

VS 

, ,s s sJ M ρ  

S∈ 

r  

'r  

V∈ 
0n̂

0n̂  

0n̂  

R 

∈ 
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The unit normal 0n
⌢

 is defined everywhere on S0 and points outside V0. From here 
on, the subscript “0  ” will indicate values related to the volume V0. 

In (26) we substitute P  by the total electric field 0E  and Q  by an arbitrary unit 
vector â  multiplied by the free-space Green's function : 

 0
0

exp( )
( , ')

4

jk R
G r r

Rπ

−
=  (27) 

with 'R r r= −  and 0 0 0k ω ε µ= , where ε0 and µ0 are the scalar permittivity and 
permeability of the homogeneous, linear and isotropic body V0 ( typically : free 
space ). The sources , ,s s sJ M ρ  of the fields are confined in a volume VS of finite 
extent, which is a part of V0. The volume V is a scattering body having 
electromagnetic properties different from those of V0, while V∈ is an 
infinitesimally small sphere of radius ∈ centered on r  and having the same 
electromagnetic properties as V0. After some calculations taking into account 
Maxwell’s equations [1, Ch.8.14] and [2, Ch.6.9], (26) becomes : 

 

( ){ }
0

0

0 0 0 0
0

0 0 0 0 0 0 0 0 0 0

' ' '

ˆ ˆ ˆ' . ' '

s
s s

V

S

j G J M G G dV

j G n H n E G n E G dS

ρ
ωµ

ε

ωµ

  
− − × ∇ + ∇ 
  

   = − × + × × ∇ + ∇   

∫

∫
 (28) 

Mind that sign differences occur among the various bibliographic sources, 
depending on the choices made for the time dependence ( j t

e
ω  throughout this 

book ) and for the orientation of normals, inwards or outwards. 

The volume and surface integrals as well as the derivatives are computed with 
regard to the coordinate 'r  : this is made clear in the notation by the use of dS’, 
dV’ and '∇ . Note again that sign differences occur in the literature when 

0 0'G G∇ = −∇  is used instead of 0'G∇ . The position r , appearing only in G0, 
corresponds to an observation point located outside V0, and also not on S0. The 
free-space Green’s function G0 and its gradient 0'G∇  would become infinite if 'r  
could coincide with r . This would violate the continuity requirements on Q  
necessary to establish (26). Therefore this singular point has been excluded from 
V0. To include it inside V0, we shrink the radius of the sphere V∈ to zero. At the 
limit ∈ = 0, the surface integral on S∈ becomes singular. It is shown in [1, p252] 
that : 

 
( )

0 0 0 0

0 0

0 0 0 0 0 0

ˆ
lim ' ( )

ˆ ˆ' . 'S

j G n H
dS E r

n E G n E G

ωµ

∈
∈→

  − ×  
= 

 + × × ∇ + ∇   
∫  (29) 

where 0( )E r  is nothing else than the total electric field at the observation point 
r . If we now let S∞ recede to infinity, while all the sources of the fields are 
confined in a volume Vs of finite extent, then Sommerfeld’s radiation condition at 
infinity ensures that the integral over S∞ reduces to zero. With V∈ reduced to zero 
and S∞ extending to infinity, (28) becomes : 
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( ){ }
0

0 0 0 0
0

0 0 0 0 0 0 0 0 0 0 0

' ' '

ˆ ˆ ˆ( ) ' . ' '

s
s s

V

S

j G J M G G dV

E r j G n H n E G n E G dS

ρ
ωµ

ε

ωµ

  
− − × ∇ + ∇ 
  

   = + − × + × × ∇ + ∇   

∫

∫
 (30) 

From (30) we recognize that the volume integral over the source terms sJ , sM  
and sρ  is the incident field incE  at r created by these sources. Indeed if the 
volume V enclosed by S were removed, then the total field 0( )E r  should be equal 
to ( )inc

E r . Equation (30) finally becomes : 

 
( )

0 0 0 0

0

0 0 0 0 0 0

ˆ
( ) ( ) '

ˆ ˆ' . '

inc

S

j G n H
E r E r dS

n E G n E G

ωµ  + ×  
= +  

 − × × ∇ − ∇   
∫  (31) 

With (31), the integral over S appears as the field scattered by the surface S 
when hit by the incident field incE . 

If we now choose for P  the total magnetic field 0H  instead of 0E , then we obtain 
similarly to (31) for the same observation point r  : 

 
( )

0 0 0 0

0

0 0 0 0 0 0

ˆ
( ) ( ) '

ˆ ˆ' . '

inc

S

j G n E
H r H r dS

n H G n H G

ωε  − ×  
= +  

 − × × ∇ − ∇   
∫  (32) 

Equations (31) and (32) are the Stratton-Chu equations. 

1.4 Fields on the surface S of a sheet 

Following Maue [3], Poggio and Miller [4, pp.159-170] have shown how (31) and 
(32) must be modified when the observation point lies on the surface S of a non 
zero volume V. As will be shown in §1.7 this step is essential to incorporate the 
boundary conditions and solve the integro-differential equations. We don’t 
reproduce here the details of the aforementioned derivation; instead we have 
generalized it to the limit case of infinitely thin plates - being zero volume 
bodies - that we call sheets in this book. We present in §1.4.1 a complete and 
original demonstration that takes into account the field singularities that may 
occur at sharp edges and corners. The electric (EFIE) and magnetic (MFIE) field 
integral expressions obtained in every possible case are then summarized in §1.5, 
with equation (57). 

1.4.1 Fully embedded sheet 

Let us consider first a very general sheet, as the one depicted in Figure 4 (p.13), 
fully embedded in only one volume V0 (of infinite extent). The case of a sheet in 
contact with several volumes is treated in §1.4.2. The sheet is made of several 
adjacent surfaces, S1 to S4, each delimited by a closed curve. 
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Figure 4 : Sheet with branches and holes 

Every surface may contain holes, that are themselves delimited by a closed curve. 
At any location r  on every surface Si, except on the closed curves delimiting 
them, there are exactly two opposite faces Sia and Sib. Both faces can be identified 
by the orientation of the unit vector normal to them. Let us now consider all 
closed curves delimiting the surfaces as rigid seals around them, and that both 
faces Sia and Sib of all these surfaces i can be stretched away from each other, 
everywhere except at the rigid seals. This produces new closed surfaces 
Fi=Fia+Fib, enclosing non zero volumes Vi , as shown in Figure 5. The sum of both 
faces Si=Sia+Sib can now be viewed as the limit of Fi=Fia+Fib when the stretching 
tension is released. Note that the seals, corresponding to every sharp edge and 
corner, are identical for the original sheet and for the volume V=∑(Vi). We 
introduce the notation Fa=∑(Fia), Fb=∑(Fib), F=∑(Fi) and similar expressions for 
Sa , Sb , S. 

 

Figure 5 : Non zero volume stretched sheet 

We consider next an observation point r  located inside V, actually on the face 
S1a inside V1 , but not on any of the seals around S1. As r  is located inside V1 , 
thus outside V0 , the free-space Green’s function and its gradient are regular 
everywhere inside V0 . Consequently there is no need to isolate r  inside a small 
sphere V∈ and to calculate the limit of a singular integral over S∈ , as we did to 
obtain (29). The left hand term of (31) and (32) vanishes : inside V the scattered 
field exactly compensates the incident field to produce a null total field. This 
property is also called the Ewald-Oseen extinction theorem [2, Ch.6.9]. We can 
thus write : 

 
( )

0 0 0 0

0 0 0 0 0 0

ˆ
0 ( ) '

ˆ ˆ' . '

inc

F

j G n H
E r dS

n E G n E G

ωµ  + ×  
= +  

 − × × ∇ − ∇   
∫  (33)  

r  

F2a F2b 

F3b 

F3a 

V1 

V4 

V0 

r  

S1b 

S2a 

S3b 

S4b 

S4a 

V0 
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( )

0 0 0 0

0 0 0 0 0 0

ˆ
0 ( ) '

ˆ ˆ' . '

inc

F

j G n E
H r dS

n H G n H G

ωε  − ×  
= +  

 − × × ∇ − ∇   
∫  (34) 

From here on we will omit the subscript ‘0’, but we will remember that the fields 
and the electromagnetic properties under the surface integral are those on F, on 
the V0 side. Also the unit normal 0n

⌢
 is pointing out of V0 ( thus inside V ). In 

Figure 6 we represent only the volume V1 containing the observation point r . If 
we shrink the volume V to a null volume, such that surfaces Fa and Fb eventually 
merge with Sa and Sb, then fa ar r r→ = , fb br r r→ =  and the surface integral 
over F1a+F1b will become singular twice. The unit normal to F1a (F1b) at far  ( fbr ) 
will be called ˆ fan  ( ˆ fbn ) ; it points outside V0 and towards a br r r= =  at all times. 
Note at this stage that we avoid denominations such as upper and lower, or 
positive and negative to differentiate the faces of the sheet. Indeed, a sheet can 
be curved, branched or even twisted, like the Moebius ring (see Figure 43, p.81). 

 

Figure 6 : Volume V1 containing r  

To determine and extract the two singularities of this doubly singular integral, 
we circumscribe far  with an infinitesimally small circle with surface Ffa, which 
we exclude from F1a. The surface Ffa must be so small and flat that the unit 
normal ˆ fan , the electric and magnetic fields faE  and faH  can all be considered 
as constant vectors everywhere on Ffa. Those requirements exclude that far  (and 
at the limit, ar r= ) be located on a sharp edge or on a corner, but they don’t 
exclude the possibility for the sheet to have sharp edges or corners elsewhere, as 
depicted in  Figure 4 (p.13). It is well known that the fields may locally become 
infinite at such geometric discontinuities [5, Ch.4 and 5], but the edge condition, 
enforced to guarantee a unique solution, also ensures that the fields scattered by 
any bounded region enclosing these discontinuities remain finite at all other 
geometrically regular points in space, in particular at r  [6, Ch.2.1]. The surface 
integrals in (33) and (34) thus produce a well defined finite value at r  despite 
the presence of sharp edges and corners all around and inside the volume ( and, 
at the limit, around and inside the sheet ). Similarly, we define the circle with 
surface Ffb around fbr  and exclude it from F1b. The radii of the circles Ffa and Ffb 
will respectively be denoted by ρa and ρb. The integral over F is then subdivided 
into : 

 
1 11 i a fa b fb fa fbF F F F F F F Fi − −≠

= Σ + + + +∫ ∫ ∫ ∫ ∫ ∫  (35) 

ˆ fan  

ˆ fbn  

V1 
V0 

F1a 

F1

far  
Ffa 

Ffb 

S1

S1a 

fbr  

a br r r= =  

ˆan  

ˆbn  

Sr 
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where the first three integrals are regular at all times and the two last ones 
become singular when both far  and fbr  merge with r . Let us concentrate on the 
first singular integral on Ffa. To determine its limit value when fa ar r→ , we 
consider far  to be already located at a very small distance ad λ<<   from ar . We 
also require ρa to be so small that 'R R r r λ= = − <<  for any integration point 

'r  in Ffa. Then we can approximate the free-space Green’s function and its 
gradient on Ffa by their asymptotic values : 

 
1

4 4

jkRe
G

R Rπ π

−

= ≅  (36) 

 
3 3

1
'

4 4

jkRjkR R
G e R

R Rπ π

−+
∇ = ≅  (37) 

With (36) and (37), the three components of the integral on the circular and flat 
infinitesimal surface Ffa in (34) can be approximated by : 

 
'

ˆ ˆ'
4fa fa

fa fa
F F

j dS
j G n E dS n E

R

ωε
ωε

π
  × ≅ ×   ∫ ∫  (38) 

 
3

1
ˆ ˆ' ' '

4fa fa
fa fa

F F

R
n H G dS n H dS

Rπ
  × × ∇ ≅ × ×   ∫ ∫  (39) 

 
3

1
ˆ ˆ' ' '

4fa fa
fa fa

F F

R
n H G dS n H dS

Rπ
  ⋅ ∇ ≅ ⋅   ∫ ∫  (40) 

Letting then far  merge with ar  (and Ffa with the disc Sr of radius ρr), the first 
integral (38), involving G, reduces to : 

 
2 2

0 0 0

'
lim 2

r

fa a
fa

r r r r
F

dS d
d d

R

π ρ πρ ρ
θ ρ θ πρ

ρ
→ = = =∫ ∫ ∫ ∫  (41) 

Next, if the (radius ρr of the) surface Sr tends to zero, then (41) also reduces to 
zero. The integrals (39) and (40), involving 'G∇ , both contain the same singular 
vector integral. Since ar  is not located on a sharp edge or on a corner, we show in 
Appendix A that : 

 
3

ˆ
lim '

24fa a
fa

a
r r

F

nR
dS

Rπ
→

+
=∫  (42) 

The result is independent of the size of the surface Sr. Consequently, the limit of 
(42) remains unchanged when the radius of the surface Sr tends to zero. Note 
though that (42) is not independent of the shape of Sr : it holds only if Sr is 
symmetric around ar . For asymmetric shapes, a tangential term normal to ˆ

fan  
arises that does not cancel out. This unpleasant mathematical peculiarity is very 
rarely mentioned [3], [7, p.54], and nowhere clarified. We close this debate by 
observing that the limit value of (35) when F1a merges with S1a has a unique 
value, independent of the choice of Sr : the additional tangential term is present 
with opposite signs in both the integrals over Sr and S1a-Sr. In the context of 
numerical integration, where the surface Sr can be a flat polygon of any shape 
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and finite extent, Yaghjian [8] proposed a generalized expression for the electric 
field integral equation (EFIE) including this tangential term. We will assume 
here that the tangential term vanishes through a proper choice of the principal 
value area Sr. 

Proceeding similarly with fb br r→  , we obtain : 

 { }0 0

'
lim lim lim 2 0

b fb b b
fb

r r b
F

dS

R
ρ ρ π ρ→ → →

 
= = 

 
∫  (43) 

 0 3

ˆ
lim lim '

24
b fb b

fb

b
r r

F

nR
dS

R
ρ

π
→ →

  + 
= 

  
∫  (44) 

Finally, we can write : 

 

ˆ ˆ
ˆlim

2 2

ˆ ˆ
ˆ

2 2

a a
F S a a a a

F S

b b
b b b b

n n
n H n H

n n
n H n H

→    = + × × + ⋅   

   + × × + ⋅   

∫ ∫
⌢

⌢
 (45) 

where the bar across the integral sign reminds us that the singular terms have 
been extracted (principal value integral). Noting now that, for any vector K  and 
unit vector n̂  : 

 ˆ ˆ ˆ ˆn K n n K n K   × × + ⋅ =     (46) 

we obtain the first vector form of the magnetic field integral equation (MFIE) for 
an arbitrary sheet, fully embedded in the volume V0, with opposite faces 
Sa+Sb=S : 

{ }

( ){ }

1
( ) ( ) ( )

2

ˆ ˆ ˆ' ' '
a b

inc
a b

S S

H r H r H r

j G n E n H G n H G dSωε
+

= + +

   + × + × × ∇ + ⋅ ∇   ∫
 (47) 

The vector form of the electric field integral equation (EFIE) can likewise be 
established for the same sheet from (33) : 

{ }

( ){ }

1
( ) ( ) ( )

2

ˆ ˆ ˆ' ' '
a b

inc
a b

S S

E r E r E r

j G n H n E G n E G dSωµ
+

= + +

   − × + × × ∇ + ⋅ ∇   ∫
 (48) 

We recall that all the fields and electromagnetic properties are those ( on S ) 
inside V0 and that the unit normal n̂  points outside V0. 

It can now be demontrated with (47), (48) and the unicity theorem that a 
dielectric sheet of any shape and size is transparent to electromagnetic waves, 
regardless of its finite complex permittivity ε and permeability µ. In other words, 
a dielectric sheet does not scatter any fields. The total fields everywhere on both 
faces of the dielectric sheet are thus equal to the incident fields. This trivial 
solution is perfectly in line with (47) and (48) : if ( ') ( ')iE r E r=  and ( ') ( ')iH r H r=  
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everywhere around the sheet, then because of the opposite normals on both faces, 
the integral over Sa exactly cancels the integral over Sb and we are left with the 
identities : 

 { }1
( ) ( ) ( )

2
i i iE r E r E r= +  (49)  

 { }1
( ) ( ) ( )

2
i i iH r H r H r= +  (50) 

The unicity theorem finally ensures that this trivial but correct solution is the 
only solution in the case of dielectric sheets. 

As a result, the EFIE and MFIE formulation for sheets will be specialized in 
§1.12 to perfect electric conductors (PEC) or perfect magnetic conductors (PMC), 
for which the conductivity – namely either the imaginary part of ε, see (19), or 
that of µ – is considered to be infinite. 

An important remark must be made here : the factor 1/2 appearing in (42) and 
(44) is obtained because the surface is locally flat in the neighbourhood of ar , 
where the subtended solid angle equals 2π. Some authors have proposed to 
generalize this factor when the observation point is located on an edge or on a 
corner of a volume, taking into account the solid angle Ω subtended on the edge 
or on the corner [4, p.163][ 9 ][ 10 ]. It is our opinion though that such a 
modification is useless : except in a few highly symmetric cases, either the total 
electric or magnetic field in the right hand sides of (47) and (48) become zero or 
infinite on sharp edges or corners [5][11], rendering the factor affecting the total 
field at such locations pointless, as well as the whole evaluation of (47) and (48). 
In the specific case of sheets, the angle subtended by an edge is always 4π. 

1.4.2 Sheet in contact with more than one volume 

We must recall that the MFIE (47) and EFIE (48) are not written “for the sheet” 
but inside the volume V0, that fully embeds the sheet. These equations are 
written for any regular observation point r  on the sheet surface, but inside V0 . 
As such, they involve fields inside V0. 

If both faces of the sheet are in contact with two different volumes, as shown in 
Figure 7 (p.18), then we must write an EFIE and a MFIE in each of these 
volumes. 

The same stretching-unstretching process can be applied to the sheet of Figure 7, 
followed by the limit process. If we write the MFIE1 inside V1, then we obtain : 

{ }

( ){ }
1 1

1 1

1 1 1 1 1 1 1 1 1 1

1
( ) ( )

2

ˆ ˆ ˆ' ' '
S V

inc
S

S S

H r H r

j G n E n H G n H G dSωε
+

= +

   + × + × × ∇ + ⋅ ∇   ∫
 (51) 

where 1 ( )inc
H r  is the incident field at r  created by sources contained in V1, if 

any. The subscripts “1” remind us that the fields and electromagnetic properties 
are those inside V1. Only 1 / 2SH  has been extracted, and not 1 2( ) / 2S SH H+ . 
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Indeed the surface integral over the surface enclosing V1 is computed on 
S1=S1V+S1S. 

 

Figure 7 : Sheet squeezed between two volumes 

Similarly, the MFIE2 in V2 is : 

{ }

( ){ }
2 2

2 2

2 2 2 2 2 2 2 2 2 2

1
( ) ( )

2

ˆ ˆ ˆ' ' '
S V

inc
S

S S

H r H r

j G n E n H G n H G dSωε
+

= +

   + × + × × ∇ + ⋅ ∇   ∫
 (52) 

Finally, to treat the most general case of a partly embedded sheet, we must 
remember that the EFIE and MFIE are written for a given observation point r , 
located on the enclosing surface Si of the volume Vi. 

 

Figure 8 : Partly embedded sheet 

In Figure 8 we introduce the notation 
a

r  to designate the observation point 
mathematically collocated with ar  but physically situated on the opposite face of 
the sheet. The EFIE0, inside V0, at points ar  and br  are : 

{ }

( ){ }
0

0 0

0 0 0 0 0 0 0 0 0 0

1
( ) ( ) ( )

2

ˆ ˆ ˆ' ' '

inc
a a a

S

E r E r E r

j G n H n E G n E G dSωµ

= + +

   − × + × × ∇ + ⋅ ∇   ∫
 (53) 

{ }

( ){ }
0

0

0 0 0 0 0 0 0 0 0 0

1
( ) ( )

2

ˆ ˆ ˆ' ' '

inc
b b

S

E r E r

j G n H n E G n E G dSωµ

= +

   − × + × × ∇ + ⋅ ∇   ∫
 (54) 

It is important to note that : 

− The surface S0 consists of the surface S1 enclosing V1 and both superimposed 
faces of that part of the sheet fully embedded in V0 (pink coloured) 

 

 

 

 

 

 

V1 V0 

ar  br  

ar  
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− The electric fields 0( )aE r  and 0( )aE r  on either faces of the sheet are different 
from each other for a perfectly conducting sheet 

− 0 0( ) ( )a aEFIE r EFIE r=  

1.5 Generalized formulation for mixed materials 

The Stratton-Chu equations and their modification for perfectly conducting 
sheets are actually dealing with one single body enclosed in a surface S 
embedded in free space V0. We already presented a slightly more general 
situation in §1.4.2 for the case of a sheet in contact with several bodies. In this 
paragraph we generalize the EFIE and MFIE for the case of several arbitrary 
bodies, volumes or sheets, perfectly conducting or not, all embedded in one 
infinite domain : free space. The objective is to determine the electric and 
magnetic field at any ordinary observation point r  in space, namely a point 
where the fields as well as their first derivatives are continuous. We exclude 
thereby every point r  located on a sharp edge or on a corner. 

Let us consider several adjacent domains Di with volume Vi bounded by a closed 
surface Si. Every domain Di is linear, isotropic and homogeneous. D0 represents 
free space, extending to infinity. D1 and D2 are dielectric bodies, possibly lossy. D3 
is a perfect conductor, electric or magnetic. We also consider a perfectly 
conducting sheet made of three branches and three pairs of opposite faces. We do 
not consider in this book the particular case of imperfectly conducting bodies for 
which the finite and inhomogeneous conductivity can be replaced by a 
Leontovitch impedance boundary condition [12][13]. 

 

Figure 9 : Geometry for the mixed material problem 

We include in every non perfectly conducting domain Di one or even several 
harmonic sources , ,si si siJ M ρ  all operating at the same angular frequency ω, and 
confined in a volume Vsi of finite extent. The fields created by the sources in Di 
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add up to produce everywhere in space, and in particular at the observation point 
r , a primary field ( ), ( )

p p
i iE r H r . 

For scattering problems, sources located sufficiently far away from the scatterers 
are represented by the plane waves they create, in which case they belong to the 
unbounded domain D0 or D1. For near field excitation, they can be represented by 
elementary electric or magnetic dipoles or loops and they can be located in any 
domain. For radiation problems, the sources are confined in generators and only 
their effects at the end of the feed lines are modelled, for example by delta gaps 
[14], magnetic frills [15][16] or microstrip transmission lines [17]. All these 
primary fields combine to form a total primary field ( ), ( )p p

E r H r . The combined 
reaction of every domain Di to this total primary field is the creation of a 
secondary (scattered) field ( ), ( )s s

E r H r . In linear materials, the primary and 
secondary fields simply add up to establish a total electromagnetic field 

( ), ( )E r H r  everywhere in space. 

Provided the observation point r  is not situated on a sharp edge or corner, where 
the fields can be singular, we can write (28) separately for every volume Vi 
enclosed within Si : 

 

( ){ }

' ' . '

ˆ ˆ ˆ' . ' '

i

i

si
i i si si i i

V
i

i i i i i i i i i i
S

j G J M G G dV

j G n H n E G n E G dS

ρ
ωµ

ε

ωµ

  
− − × ∇ + ∇ 
  

   = − × + × × ∇ + ∇   

∫

∫
 (55) 

where the free-space Green’s function in domain Di is : 

 
exp( )

( , ')
4

i
i

jk R
G r r

Rπ

−
=  (56) 

with 'R r r= −  and i i ik ω ε µ= . The electromagnetic properties εi and µi are the 
permittivity and permeability of the homogeneous, linear and isotropic body Vi 
and the sources , ,si si siJ M ρ  are confined in a volume Vsi of finite extent, which is 
a part of Vi. In the example of Figure 9 (p.19), only V0 and V2 contain field 
sources. The fields iE  and iH  are the total fields existing inside Vi, possibly on 
Si, while ˆin  is the unit normal to Si pointing outside Vi. 

The observation point r , appearing only in the free-space Green’s function Gi , is 
kept temporarily outside Vi, inside an infinitesimal volume V∈ enclosed in the 
surface S∈. Considering for example Vi = V0, depending on the location of  r  (see 
Figure 9), the exclusion volume is a sphere (cases 1 and 5), a half sphere (cases 2 
and 3), or two half spheres on both sides of a sheet (case 4). Case 1 has been 
explained in §1.3 to obtain (29). Case 2 has been described by Poggio and Miller 
[4, pp.159-170]. Cases 3 and 4 are treated in this paragraph in a way similar to 
case 2, namely with the help of half spheres, but has been demonstrated in §1.4 
with a different technique. Case 5 has been explained in §1.4.1 to obtain (33) or 
(34). 

When the radius ∈ of the (half) sphere(s) is reduced to zero, the singular integral 
over the surface S∈ becomes : 
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{ }

{ }

0 0 0 0 0 0 0 0 0 0 0

0 1

0 2

0 0 3

0 4 0 4

ˆ ˆ ˆlim ' . ' . '

( ) 1

( ) / 2 2

( ) ( ) / 2 3

( ) ( ) / 2 4

0 5

S
j G n H n E G n E G dS

E r case

E r case

E r E r case

E r E r case

case

ωµ
∈

∈→      − × + × × ∇ + ∇     







= = 

 +




∫

ɶ
 (57) 

where the tilde notation 0( )E rɶ  is introduced to summarize all possible cases. 

The volume integral over the sources , ,si si siJ M ρ  in (55) can be identified as the 
incident field ( )

inc
iE r  produced by these sources. In the example of Figure 9 (p.19) 

it is equal to zero in volumes V1 and V3, as they contain no sources. 

Equation (55) becomes the EFIEi in domain Di : 

 
{ }

( ) ( )

ˆ ˆ ˆ' . ' '
i

inc
i i

i i i i i i i i i i
S

E r E r

j G n H n E G n E G dSωµ

= +

     − × + × × ∇ + ∇     ∫

ɶ

 (58) 

Inside any perfectly conducting volume there can be no sources and the fields are 
identically zero : equation (58) vanishes identically in the case of V3. 

Similarly for the MFIEi in domain Di : 

 
{ }

( ) ( )

ˆ ˆ ˆ' . ' '
i

inc
i i

i i i i i i i i i i
S

H r H r

j G n E n H G n H G dSωε

= +

     + × + × × ∇ + ∇     ∫

ɶ

 (59) 

In §1.4 we have interpreted the surface integral as the field scattered by a unique 
passive body outside Di enclosed in the surface Si, while the incident field was 
created by the unique sources all contained within Di. 

In a multidomain context, and especially a multi-source configuration, this 
interpretation must be revised. When r  is not located on the surface Si, the 
fields iEɶ , iHɶ  and iE , iH  are the total fields due to the combined effect of all 
sources and all domains, but the incident field inc

iE , inc
iH  is not the sum of the 

contribution of all sources contained in every domain, but only the fields created 
by the sources in domain Di. The surface Si is the surface delimiting the domain 
Di, and not the surface of a single passive scatterer : outside Di, also enclosed in 
Si, there are possibly many different bodies, and there can be other sources in 
some of these bodies. The surface integral summarizes the combined contribution 
of everything outside Di, namely all sources and all scattering bodies outside Di. 
Added to the fields inc

iE  and inc
iH  created by the sources inside Di, the fields 

created by “everything outside Di” produces the total field inside Di. 

If there are no sources outside Di, the surface integral can be interpreted as the 
scattering contribution from all bodies outside Di excited by the incident field due 
to the sole sources contained inside Di. 
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If there are sources outside Di, the surface integral is the sum of the scattering 
from all bodies outside Di and the fields generated by the sources outside Di. 

1.6 Equivalent surface current densities 

In (28) we observe a great symmetry between sJ  and n̂ H× , between sM  and 
n̂ E− ×  and between 0/sρ ε  and ˆ.n E . This suggests that n̂ H×  and n̂ E− ×  can be 

seen as surface current densities (on the surface S) and ˆ.n E−  as a surface charge 
density (on S), all contributing together with the volumic source current and 
charge densities sJ , sM  and sρ  in V to the total fields at r . 

We introduce therefore the equivalent surface current densities, defined 
everywhere inside every domain Di on its bounding surface Si : 

 ˆi i iJ n H= + ×  (60) 

 ˆi i iM n E= − ×  (61) 

We remind that ˆ
in  is the normal to Si pointing outside Vi. Note also that the 

volumic source current densities sJ  and sM  have units A/m² and V/m² while 
equivalent surface current densities iJ  and iM  have units A/m and V/m. 

1.7 Boundary conditions 

In §1.3, 1.4 and 1.5 we have established the electric (EFIEi) and magnetic 
(MFIEi) field integral equations valid inside every domain Di, and in particular at 
their inner boundary Si. To solve uniquely this set of equations, the relationships 
between the fields on both sides of the boundaries of all adjacent domains must 
be added. 

Referring to Figure 10 (p.23), the case of S∞, the outer surface of the unbounded 
domain D0, is particular : when it recedes to infinity, while all the sources of the 
fields are confined in a volume Vs of finite extent, then Sommerfeld’s radiation 
condition at infinity [18] ensures that a surface integral over S∞ of the electric 
and magnetic fields (or their components) reduces to zero. 

Every ordinary point at the interface between adjacent domains is shared by 
exactly two domains. The only exceptions to this rule are the points situated on 
S∞, treated above, and eventually those situated on sharp edges or corners. These 
singular points have been excluded when we have established the EFIEi and 
MFIEi, as the fields at these points are not necessarily continuous, continusously 
differentiable and finite. 

At the interface separating two domains Di and Dj the total fields at every 
ordinary point of the interface are related by the boundary conditions listed in 

Table 3. The electric fields iE  and jE  are the fields at the same observation 

point of the interface, respectively inside Di and inside Dj. The same applies to 
H , D  and B . 
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Figure 10 : Geometry for the boundary conditions 

 

Table 3 : Boundary conditions summary 

Di and Dj  
have finite 

conductivity 

Di has finite 
conductivity 

Dj is PEC 

Di has finite 
conductivity 
Dj is PMC 

ˆ ˆ 0i i j jn E n E× + × =  
ˆ 0

0

i i

j

n E

E

× =

=
 

0jE =
 

ˆ ˆ 0i i j jn H n H× + × =  
0jH =

 
ˆ 0

0

i i

j

n H

H

× =

=
 

ˆ ˆ. . 0i i j jn D n D+ =  
0jD =

 
ˆ . 0

0

i i

j

n D

D

=

=
 

ˆ ˆ. . 0i i j jn B n B+ =  
ˆ . 0

0

i i

j

n B

B

=

=
 

0jB =
 

 

These equations are usually said to be related to the normal and tangential 
components of the fields. It is correct for the normal components but it is a slight 
abuse of language for the tangential components. 

The correct expression for the tangential component of E  is ˆ ˆtE n n E= − × × . The 
vector n̂ E×  has the same amplitude as tE , but it is rotated by 90° in the plane of 
the interface, as shown in Figure 11. 

S∞ 

Si 

Sj ˆ jn

ˆin  
 

Di 

Dj 

D0   (free space) 
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Figure 11 : Normal and tangential components 

The classical proof of the boundary equations summarized in Table 3 (p.23) is 
based on the Stokes' and the divergence theorems [19, pp.19-31] : 

 ( )
C S

A dl A dS= ∇ ×∫ ∫∫�  (62) 

 ( ) ( )ˆ. .
S V

A n dS A dV= ∇∫∫ ∫∫∫�  (63) 

with the contour C, the surface S and the volume V being partly in both domains. 
This procedure is mathematically questionable because theorems requiring the 
continuity of A  and of its first derivative are used to prove the discontinuities of 
A  across the boundary. Stratton overcomes this problem by supposing that the 

fields vary extremely rapidly but continuously at the crossing of the interface 
[1, p.34]. 

1.8 Relations between normal and tangential components 

Equations (58) and (59) contain both tangential and normal components of the 
total electric and magnetic fields. Similarly, the boundary conditions at the 
interface between domains listed in Table 3 (p.23) also involve the normal and 
tangential components. 

Maxwell’s equations allow to show that the normal and tangential components of 
the fields are not independent from each other. The differential form of these 
relationships can be found for example in [4, p.169] : 

 ( )1
ˆ ˆ'sn E n H

jωε

−
⋅ = ∇ ⋅ ×  (64) 

 ( )1
ˆ ˆ'sn H n E

jωµ

+
⋅ = ∇ ⋅ ×  (65) 

Using (64) and (65) the integral relationships (66) and (67), where S is a closed 
surface and G is the free-space Green’s function, are demonstrated in 
Appendix B : 

 ( ) ( )1
ˆ ˆ' ' '

S S
G n E dS G n H dS

jωε

+
 ∇ ⋅ = ∇∇ ⋅ × ∫ ∫  (66) 

ˆ ˆ tn n E E− × × =  

n̂ E×  

n
⌢  

E  ( )ˆ ˆ.nE n E n=  
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 ( ) ( )1
ˆ ˆ' ' '

S S
G n H dS G n E dS

jωµ

−
 ∇ ⋅ = ∇∇ ⋅ × ∫ ∫  (67) 

These relationships are used in §1.9 to rewrite the surface integrals occurring in 
the EFIEi and MFIEi in function of the normal or tangential components only. 

1.9 First and second form of the integro-differential equations 

We introduce the impedance Zi, the admittance Yi, and reintroduce the wave 
number ki inside a domain Di : 

 1
i i i iZ Y µ ε−= =  (68) 

 i i ik ω ε µ=  (69) 

With (8), the impedance of free space Z0 ≈120π ≈377Ω. Considering the 
definitions (60), (61) and the expressions (68) and (69), we can introduce (64) in 
(58) for the EFIEi and (65) in (59) for the MFIEi, to obtain the first vector form of 
the EFIEi and MFIEi : 

 { } { }2
( ) ( ) ' ' ' ' '

i i

inc i
i i i i i s i i i i

S S
i

jZ
E r E r k G J J G dS M G dS

k
= − − ∇ ⋅ ∇ − × ∇∫ ∫ɶ  (70)  

 { } { }2
( ) ( ) ' ' ' ' '

i i

inc i
i i i i i s i i i i

S S
i

jY
H r H r k G M M G dS J G dS

k
= − − ∇ ⋅ ∇ + × ∇∫ ∫ɶ  (71) 

Introducing instead (66) in (58) for the EFIEi and (67) in (59) for the MFIEi, we 
obtain : 

 ( )2( ) ( ) ' ' '
i i

inc i
i i i i i i i

S S
i

jZ
E r E r k G J dS M G dS

k
= − + ∇∇ ⋅ − × ∇∫ ∫ɶ  (72)  

 ( )2( ) ( ) ' ' '
i i

inc i
i i i i i i i

S S
i

jY
H r H r k G M dS J G dS

k
= − + ∇∇ ⋅ + ×∇∫ ∫ɶ  (73) 

Expanding the differential operators (see Appendix C) we obtain the second 

vector form of the EFIEi and MFIEi : 

 ( ) { }2 2
3, 3 , 2,

ˆ ˆ ˆ( ) ( ) . ' '
i i

inc
i i i i i i r i i i i i

S S
E r E r Z J f J R R f k dS M R f k dS = − − − ×  ∫ ∫ɶ  (74)  

 ( ) { }2 2
3, 3 , 2,

ˆ ˆ ˆ( ) ( ) . ' '
i i

inc
i i i i i i r i i i i i

S S
H r H r Y M f M R R f k dS J R f k dS = − − + ×  ∫ ∫ɶ  (75) 

with the adimensional unit vector and functions : 

 ˆ R
R

R
=  (76) 

 3, 2 3

1

4( ) ( )

ijk R

i
i i i

j j e
f

k R k R k R π

− 
= + − 
 
 

 (77) 
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 3 , 2 3

3 3

4( ) ( )

ijk R

r i
i i i

j j e
f

k R k R k R π

− 
= + − 
 
 

 (78) 

 2, 2

1

4( )

ijk R

i
i i

j e
f

k R k R π

− 
= + 
 
 

 (79) 

In the first form (70) and (71) the surface current densities iJ  and iM  appear 
along with their first derivative, as well as the free-space Green’s function. In the 
second form (74) and (75), the free-space Green’s function appears up to its 
second derivative, while the surface current densities appear without any 
derivative. 

Let us remember with (57) that the tilde vector notations ( )iE rɶ  and ( )iH rɶ  
represent the total field when the observation point r  is located inside Vi, only 
half of it if r  is on the surface Si, or the average between the total fields on both 
faces of Si in the case of an embedded perfectly conducting sheet. The field itself 
inside Vi is under consideration when the scattered near or far field must be 
computed from the surface current densities. The expressions on the surface Si 
will be used to solve the integro-differential equations, along with the boundary 
conditions. 

1.10 Near and far scattered fields 

We have derived expressions for the EFIEi and MFIEi valid inside any linear 
homogenous isotropic domain Di. We refer to §1.5 for a discussion about the 
meaning of the incident and scattered fields inside Di. 

1.10.1 Exact near field expressions 

Provided all sources are inside Di, then in (70) and (74) the scattered electric field 
can be viewed as the sum of an electric field scattered by the equivalent electric 
current density (80) and an electric field scattered by the equivalent magnetic 
current density (81) : 

 
{ }

( )

2

2
3, 3 ,

( ) ' ' '

ˆ ˆ. '

i

i

sJ i
i i i i s i i

S
i

i i i i r i i
S

jZ
E r k G J J G dS

k

Z J f J R R f k dS

= − ∇ ⋅ ∇

 = −  

∫

∫
 (80)  

 
{ }

{ } 2
2,

( ) ' '

ˆ '

i

i

sM
i i i

S

i i i
S

E r M G dS

M R f k dS

= × ∇

= ×

∫

∫
 (81)  

Similarly, in (71) and (75), the scattered magnetic field can be viewed as the sum 
of a magnetic field scattered by the equivalent magnetic current density (82) and 
a magnetic field scattered by the equivalent electric current density (83) : 



Chapter 1 : Electromagnetics  

  27 

 
{ }

( )

2

2
3, 3 ,

( ) ' ' '

ˆ ˆ. '

i

i

sM i
i i i i s i i

S
i

i i i i r i i
S

jY
H r k G M M G dS

k

Y M f M R R f k dS

= − ∇ ⋅ ∇

 = −  

∫

∫
 (82) 

 
{ }

{ } 2
2,

( ) ' '

ˆ '

i

i

sJ
i i i

S

i i i
S

H r J G dS

J R f k dS

= − × ∇

= − ×

∫

∫
 (83) 

1.10.2 Far field approximation 

The expressions (80) to (83) can be greatly simplified in the far field from a 
scattering or radiating object / antenna. 

Considering the patch antenna of Figure 12 the radiated fields at a distant point 
r  result from integrals taken over the whole surface of the antenna. The 
integration point 'r  is therefore running across the whole surface of the patch 
antenna. We can define a reference point 0 anywhere on this antenna, usually in 
the feed area, from which the vectors r  and 'r  are defined. 

 

Figure 12 : Far field geometry 

If the observation point r  is sufficiently far away from the antenna, the 
following approximations can be applied : 

− ˆ ˆrR u≈  

− R r≈   for the amplitude terms 

− ˆ'. rR r r u≈ −  for the phase term 

If we also consider in (77) to (79) that only the dominant term j/(kiR) remains, 
then (80) to (83) become in the far field :  

 ( ) ( )ˆ'.
ˆ ˆ( ) . '

4

i
i r

i

jk r
jk r usJ

i i i i i r r
S

e
E r jk Z J J u u e dS

rπ

−
 ≈ −
 ∫  (84)  

 ( )ˆ'.
ˆ( ) '

4

i
i r

i

jk r
jk r usJ

i i i r
S

e
H r jk J u e dS

rπ

−

 ≈ − × ∫  (85) 

 ( )ˆ'.
ˆ( ) '

4

i
i r

i

jk r
jk r usM

i i i r
S

e
E r jk M u e dS

rπ

−

 ≈ × ∫  (86)  

 ( ) ( )ˆ'.
ˆ ˆ( ) . '

4

i
i r

i

jk r
jk r usM

i i i i i r r
S

e
H r jk Y M M u u e dS

rπ

−
 ≈ −
 ∫  (87) 

r  

0 ˆru  
R̂'r  

R 

r 
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1.11 Normal and tangential components of the integro-differential 
equations on the surface Si 

The integro-differential equations (70), (72) and (74) for the EFIEi or (71), (73) 
and (75) for the MFIEi are vector equations, evaluated at an ordinary 2 
observation point r , involving all three components of the electric and magnetic 
field. For three reasons we will now project these equations either on ˆ ( )in r , the 
unit normal to Si pointing outside Vi, or on a direction perpendicular to ˆ ( )in r . 

The first reason is that we need to enforce the boundary conditions at the 
interface between every pair of adjacent domains; as we have seen in §1.7, the 
boundary conditions are related to the tangential and to the normal component of 
these fields, not to the total fields. We also remember from §1.8 that the normal 
and tangential boundary conditions are not independent from each other. 

Secondly we observe under the integrals that the fields are already projected on 
the two directions prescribed by the boundary conditions, whereas only the 
extracted principal value term appears as the full three-dimensional field. 

Thirdly, we would like integro-differential equations where the only unknowns 
are the surface current densities iJ  and iM , and not the total fields iE  and iH . 

Therefore we project the EFIEi and MFIEi on either the normal to Si, 
premultiplying them with ˆ ( )in r ⋅   , or on Si , with the ˆ ( )in r ×    operation : 

 
{ }

{ }2

ˆ ˆ( ) ( ) ( ) ( ) ' '

ˆ ( ) ' ' '

i

i

inc i
i i s i i i i

S
i

i
i i i i s i i

S
i

jZ
n r E r J r n r M G dS

k

jZ
n r k G J J G dS

k

⋅ = + ∇ ⋅ − ⋅ × ∇

− ⋅ − ∇ ⋅ ∇

∫

∫

ɶ

 (88)  

 
{ }

{ }2

ˆ ˆ( ) ( ) ( ) ( ) ' '

ˆ ( ) ' ' '

i

i

inc i
i i s i i i i

S
i

i
i i i i s i i

S
i

jY
n r H r M r n r J G dS

k

jY
n r k G M M G dS

k

⋅ = + ∇ ⋅ + ⋅ × ∇

− ⋅ − ∇ ⋅ ∇

∫

∫

ɶ

 (89) 

 
{ }

{ }2

ˆ ˆ( ) ( ) ( ) ( ) ' '

ˆ ( ) ' ' '

i

i

inc
i i i i i i

S

i
i i i i s i i

S
i

n r E r M r n r M G dS

jZ
n r k G J J G dS

k

× = − − × × ∇

− × − ∇ ⋅ ∇

∫

∫

ɶ

 (90)  

 

{ }

{ }2

ˆ ˆ( ) ( ) ( ) ( ) ' '

ˆ ( ) ' ' '

i

i

inc
i i i i i i

S

i
i i i i s i i

S
i

n r H r J r n r J G dS

jY
n r k G M M G dS

k

× = + + × × ∇

− × − ∇ ⋅ ∇

∫

∫

ɶ

 (91) 

We will further call these projections nEFIEi or nMFIEi for the normal 
projections, and tEFIEi or tMFIEi for the tangential projections.  

                                            
2 See §1.1 for the definition of an ordinary point 
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Similar expressions can be derived from the second form of the EFIEi (74) and 
MFIEi (75) : 

 

( )

2
2,

2
3, 3 ,

ˆˆ ˆ( ) ( ) ( ) ( ) '

ˆ ˆˆ ( ) . '

i

i

inc i
i i s i i i i i

S
i

i i i i i i r i
S

jZ
n r E r J r k n r M R f dS

k

Z k n r J f J R R f dS

⋅ = + ∇ ⋅ + ⋅ ×

 + ⋅ −  

∫

∫

ɶ

 (92)  

 

( )

2
2,

2
3, 3 ,

ˆˆ ˆ( ) ( ) ( ) ( ) '

ˆ ˆˆ ( ) . '

i

i

inc i
i i s i i i i i

S
i

i i i i i i r i
S

jY
n r H r M r k n r J R f dS

k

Y k n r M f M R R f dS

⋅ = + ∇ ⋅ − ⋅ ×

 + ⋅ −  

∫

∫

ɶ

 (93)  

 
( )

2
2,

2
3, 3 ,

ˆˆ ˆ( ) ( ) ( ) ( ) '

ˆ ˆˆ ( ) . '

i

i

inc
i i i i i i i

S

i i i i i i r i
S

n r E r M r k n r M R f dS

Z k n r J f J R R f dS

× = − + × ×

 + × −  

∫

∫

ɶ

 (94)  

 
( )

2
2,

2
3, 3 ,

ˆˆ ˆ( ) ( ) ( ) ( ) '

ˆ ˆˆ ( ) . '

i

i

inc
i i i i i i i

S

i i i i i i r i
S

n r H r J r k n r J R f dS

Y k n r M f M R R f dS

× = + − × ×

 + × −  

∫

∫

ɶ

 (95) 

The equations obtained with the normal projection are scalar, while those 
obtained with the tangential projection yield two-dimensional vectors lying on Si. 

It is important to remember that everything outside the integrals, ˆ ( )in r , ( )inc
E r , 

( )inc
H r , ( )J rɶ  and ( )M rɶ  depend on a fixed observation point r  on the surface Si, 
and that all derivatives ( s∇ and ∇ ) are taken with regard to the coordinate r . 
Inside the integrals, the vector functions ( ')J r  and ( ')M r  depend on 'r  only 
whereas the free-space Green’s function iG  depends on 'r r− . The derivatives 
( '

s∇ and '∇ ) are taken with respect to the coordinate 'r . 

1.12 Perfectly conducting sheets 

We have seen in §1.4.1 that a dielectric sheet is completely transparent to 
electromagnetic waves. The boundary conditions listed in  

Table 3 (p.23) in §1.7 show that the electric (magnetic) field is normal (tangent) 
to the surface of a perfect electric conductor (PEC). We turn now our attention to 
the MFIE (47) and EFIE (48) particularized for a PEC sheet, introducing the 
electric surface current density J  defined by (60). 

Considering the location r  in Figure 13 (p.30) where the PEC sheet is embedded 
on both sides Sa and Sb in one domain ( case 4 in Figure 9, p.19 ) : 

 { } { }2 '1
( ) ( ) ( ) ' '

2 a b

inc
a b s

S S

jZ
E r E r E r k GJ J G dS

k +
= + − + ∇ ⋅ ∇∫  (96) 

 { } { }1
( ) ( ) ( ) ' '

2 a b

inc
a b

S S
H r H r H r J G dS

+
= + + × ∇∫  (97)  
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Figure 13 : PEC sheet 

In (96) and (97) the integrals on Sa + Sb can be computed as an integral on the 
face Sa only, but with the sum of the current densities on both faces Sa and Sb in 
the integrand. If the observation point ar r= is situated on the face Sa, projecting 
the EFIE and MFIE with ˆ ( )an r ⋅    or ˆ ( )an r ×    we obtain : 

 
( )

( ) ( ){ }2 '

ˆ ( ) ( ) ( )

ˆ ( ) ' '
a

inc
a s a b

a a b s a b
S

jZ
n r E r J J r

k

jZ
n r k G J J J J G dS

k

⋅ = + ∇ ⋅ −

− ⋅ + + ∇ ⋅ + ∇∫
 (98)  

 ( ){ }ˆ ˆ( ) ( ) ( ) ' '
a

inc
a a a b

S
n r H r n r J J G dS⋅ = ⋅ + × ∇∫  (99) 

 ( ) ( ){ }2 'ˆ ˆ( ) ( ) ( ) ' '
a

inc
a a a b s a b

S

jZ
n r E r n r k G J J J J G dS

k
× = − × + + ∇ ⋅ + ∇∫  (100)  

 
( )

( ){ }
( )

ˆ ˆ( ) ( ) ( ) ' '
2 a

a binc
a a a b

S

J J r
n r H r n r J J G dS

−
× = + × + × ∇∫  (101)  

The important observation is that (99) and (100) contain only ( )a bJ J+ , whereas 
(98) and (101) also contain ( )a bJ J− . Either (99) or (100) can therefore be used to 
determine the sum of the surface current density on both faces of a PEC sheet, 
but none of these four integral equations allow to find aJ  and bJ  isolately. To 
this end, it is necessary to combine any two equations, except (99) and (100) as 
they both contain only ( )a bJ J+ . 

Dual equations and conclusions can be established for PMC sheets. 

1.13 Sum of Fields on both sides of a flat perfectly conducting sheet 
of arbitrary shape 

We now present simple closed form expressions for the sum of the fields on both 
sides of a flat perfectly conducting sheet such as the one depicted in Figure 14 
(p.31). The observation point r  can be anywhere on the flat sheet, except on a 
sharp edge or on a corner, where some components of the fields can be infinite. 

As the sheet is flat, regardless of its shape and dimensions, then both vectors 
' ( ') .( ')G r r C r r∇ − = −  and ( ')J r  are always lying in the plane of the sheet for 

every pair ( , ')r r  in the sheet. As a consequence : 

 ˆ( ) ' ( ') 0n r G r r⋅∇ − =  (102) 

Sb 

Sa 

D0 
r  
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 ˆ( ) ( ') ' ( ') 0n r J r G r r × × ∇ − =   (103) 

Starting from (96) and (97) this leads to the two following closed form expressions 
for the sum of fields on both faces of a flat PEC sheet, where n̂  can again be 
either ˆan  or ˆbn  : 

 ( )ˆ ˆ2
inc

a bn H n H H× = × +  (104) 

 ( )ˆ ˆ2 inc
a bn E n E E⋅ = ⋅ +  (105) 

Choosing for example ˆ ˆan n= , (104) and (105) can be rewritten in terms of 
equivalent surface current densities : 

 ˆ2 inc
a a bn H J J× = −  (106) 

 ( )ˆ2 inc
a s a b

jZ
n E J J

k
⋅ = ∇ ⋅ −  (107)  

Equation (106) is an exact generalization for flat PEC plates of finite extent and 
arbitrary shape of the well known physical optics approximation : let the incident 
field come from the a side of a flat PEC plate of infinite extent, then 0bJ =  in 

(106). This result had already been announced [20], but the given demonstration, 
based on reaction integral equations instead of field integral equations, must be 
considered as incomplete as it explicitely ignores the edges. 

 

Figure 14 : Flat perfectly conducting sheet of arbitrary shape 

To conclude, it is worth mentioning that : 

− Equations (104) and (105) could have been derived easily and directly from 
the (anti)symmetry relationships listed in [21, p.636] or also in [22, p.497] 
valid for the electric and magnetic field scattered by a flat PEC sheet of any 
shape and extent 

− Dual properties apply to a flat PMC sheet 

1.14 Canonical expressions 

All the equations obtained in §1.11 can be nicely summarized in a short notation 
that will be very useful during the discretization steps. 

ˆ ˆ( ) an r n=  

Sa 

Sb 

r
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Considering an observation point r  and the outwards directed unit normal ˆ ( )in r  
on the surface Si enclosing domain Di , we define the vector functions applied to 
another vector function F  : 

 { } { }( ) ( ) ( )i s i
i

j
N F r F r n r

k
= ∇ ⋅

⌢ɶ ɶ  (108) 

 { } ˆ( ) ( ) ( )i iT F r n r F r= ×ɶ ɶ    (109)  

 { } { }(1) 2( ) ( ') ( ') ' ( ') ' ( ') '
i

i i s ii S
i

j
D F r k G r r F r F r G r r dS

k
= − − ∇ ⋅ ∇ −∫  (110)  

 { } ( )(2) 2
3, 3 ,

ˆ ˆ( ) '
i

i i r ii
S

D F r k F f F R R f dS = − ⋅  ∫  (111) 

 { } { }(1)
( ) ' '

i
ii

S
K F r F G dS= × ∇∫  (112) 

 { } { }(2) 2
2,

ˆ( ) '
i

i ii S
K F r k F R f dS= ×∫  (113) 

where  

− ( ')iG r r−  is the free-space Green’s function in the domain Di with 
wavenumber ki, whose expression is given by (56) 

− R̂  and the functions 2,if , 3,if  and 3 ,r if  have been defined by (76), (77), (78) 
and (79) 

− The tilde notation in (108) and (109) has been defined by in §1.5 

Note that : 

− all these functions have the dimension of the vector function F  

− Only the functions iNɶ  and (1)
iD  contain the first derivative of the vector 

function F  

− { } { } { }(1) (2)
( ) ( ) ( )ii iD F r D F r D F r= =  

− { } { } { }(1) (2)
( ) ( ) ( )ii iK F r K F r K F r= =  

The first form of the integro-differential equations, (88) to (90), and the second 
form of the same equations, (92) to (95), can now be rewritten as : 

 { } { }{ }ˆ ˆ( ) ( ) ( ) ( ) ( )
inc

i i i i i i i i in r E r n r N D Z J r K M r ⋅ = ⋅ − − 
ɶ  (114) 

 { } { }{ }ˆ ˆ( ) ( ) ( ) ( ) ( )
inc

i i i i i i i i i in r Z H r n r K Z J r N D M r ⋅ = ⋅ + + − 
ɶ  (115)  

 { } { }{ }ˆ ˆ( ) ( ) ( ) ( ) ( )
inc

i i i i i i i i in r E r n r D Z J r T K M r × = × − + − 
ɶ  (116) 

 { } { }{ }ˆ ˆ( ) ( ) ( ) ( ) ( )
inc

i i i i i i i i i in r Z H r n r T K Z J r D M r × = × − − − 
ɶ  (117) 
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The sole difference between the first and second form of the equations resides in 
the use of (1)

iD  or (2)
iD  for the integro-differential operator iD  and (1)

iK  or (2)
iK  

for the integral operator iK . 

Note also with (80), (81), (82) and (83) that the operator iD  applied to i iZ J  ( iM  ) 
yields that part of the “scattered” electric ( magnetic ) field due to the equivalent 
electric ( magnetic ) current density, while the operator iK  applied to iJ−  
( i iY M  ) yields that part of the “scattered” magnetic ( electric ) field due to the 
equivalent electric ( magnetic ) current density. By quoting “scattered” we remind 
the refer to the actual meaning of “scattered field” in a multidomain and 
multisources environment (see the end of §1.5). 

1.15 Summary 

This chapter has laid the theoretical fundations for the following ones, devoted to 
the numerical resolution of electromagnetic scattering problems with the Method 
of Moments. To this end, exact integral equations must be derived from 
Maxwell’s equations and boundary conditions must be expressed. In this process, 
the unknowns appear under the form of equivalent current densities, electric 
and/or magnetic, defined at the bounding surface of every non perfectly 
conducting volumic homogenous region. 

To analyze any combination of three-dimensional homogeneous, linear and 
isotropic bodies, new integral expressions have been presented and demonstrated 
that are very general in many ways : they are given in their full three-
dimensional vector form for both the electric and magnetic version, they have 
been derived for the specific case of sheets, they have been proposed in a first and 
second form, and they have been cast into canonical forms with the introduction 
of original notations.  

The generalization of the existing EFIE and MFIE to the case of sheets has 
revealed a new set of theorems valid for flat perfectly conducting sheets of finite 
extent and arbitrary contour. One of these theorems can be regarded as a 
generalization of the well-known physical optics approximation. 

The generalization to the full three-dimensional vector forms has permitted to 
derive a new formulation based on the normal components of the EFIE and 
MFIE, aside those exclusively used, based on the tangential components. 
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2 Method of Moments 

 

Despite the existence of a very mature and complete theory of electromagnetics, 
most real life problems are too complex and would remain unsolvable without the 
help of numerical approximation techniques. The Method of Moments is one of 
them, particularly well suited to analyze the harmonic scattering or radiation by 
the objets under consideration in this book : homogeneous and isotropic bodies 
that are not too large as compared to the wavelength.  

The discretized version of the canonical exact expressions obtained in chapter 1 is 
kept very general. This allows a detailed discussion on basis functions, for which 
two important observations are made, explained and illustrated. Firstly curl 
conforming basis functions cannot be used in conjunction with the electric or 
magnetic field integral equation. Secondly the limited linearity of the most 
popular basis functions – RWG and rooftop – is responsible for some erratic 
behavior in the fine details of the solution, especially but not exclusively close to 
edges. 

Also the testing process and resulting expressions are presented in a very general 
form based on the full vector expressions, putting new light on the tangential 
testing and introducing the normal testing. A closer look to the possible testing 
functions involved in this crucial step reveals why some choices are wrong, 
acceptable or very good. To illustrate these original considerations, unused 
testing schemes are successfully applied. 

2.1 Preamble 

In chapter 1 we have presented harmonic integro-differential equations and 
boundary conditions that describe exactly electromagnetic problems, such as the 
radiation by an antenna or the scattering by a complex body, made of dielectric 
and/or perfectly conducting bodies. After normal or tangential projection, the 
initial vector equations can all be expressed in function of only two vector 
unknowns, the equivalent surface electric and magnetic current densities iJ  and 

iM . If we can solve the integro-differential equations for those current densities, 
excited at the surface Si of every domain Di by the combined effect of all sources, 
then many interesting properties can be deduced from them : radiated or 
scattered near and far field, radiation pattern, scattering coefficients, impedance 
at access feeds if the body is used as an antenna. 

Exact solutions for finite-sized volumic structures are only known for a few 
simple and smooth geometries, like the sphere [1], the tri-axial ellipsoid [2][3] 
and the torus [4]. No solution is known to date for perfectly conducting or 
dielectric volumes having sharp edges or corners, the simplest of all being the 
cube and the cylinder with circular base. For finite-sized PEC sheets, many 
solutions exist for the circular disc, for example [5][6], and one solution is known 
to the author for the rectangular sheet [7]. 
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Aside these few canonical but useful examples, one must resort to numerical 
methods to find an approximation of the solution to real-life problems involving 
complex-shaped antennas or scatterers. Among the many mature numerical 
methods available today, the Method of Moments (MoM) will be used and 
analyzed in this book. It starts from the correct expressions of the integro-
differential equations and only introduces errors when solving these numerically. 

It is interesting to mention here that even analytical solutions are usually 
approximate in practice, when it comes to evaluating them; such solutions, 
derived from separation of variables and suitable special functions, usually 
involve infinite summations which must be truncated. Furthermore, the 
evaluation of the special functions is almost exclusively done computationally 
nowadays, a process not strictly always reliable and sometimes suffering from 
convergence issues. 

Instead of presenting the general theory of the MoM, which can be found in its 
full extent in the first reference book that introduced it [8], we choose to apply it 
directly to the integro-differential equations presented in §1.14, showing how a 
matrix system of equations is created to obtain an approximate solution. 

2.2 Basis functions 

Except in a few simple cases, it is not possible to find in every domain Di the 
analytic expressions for ( )iJ r  and ( )iM r  that would be the exact solution at any 
location r  on the boundary Si. In the MoM, we try to find instead an 
approximation (see §5.1) in the form of a series expansion : 

 
1

( ) ( )

J
i

i i

i

N
J

i j j

j

J r J f r

=

≅ ∑  (118) 

 
1

( ) ( )

M
i

i i

i

N
M

i m m

m

M r M f r

=

≅ ∑  (119) 

where the vector functions 
i

J
jf  and 

i

M
mf  are known basis functions and 

ij
J ,

imM  
are unknown complex scalar coefficients to determine. 

If the basis functions are defined for every r  over the entire surface Si, they are 
called entire domain basis functions (§2.2.3). Otherwise they are called 
subdomain basis functions (§2.2.4). 

2.2.1 Scalar or vector basis functions 

With (118) and (119) we introduced vector basis functions. The two-dimensional 
vectors ( )iJ r  and ( )iM r  could also be represented by scalar basis functions ( for 
x, y and z components separately for example ). This choice is quite natural for 
flat structures, as will be shown in the entire domain basis function example of 
§2.2.3, but a major difficulty arises from this choice for non flat structures : the 
boundary conditions are expressed in terms of normal and tangential components 
(see §1.7), and they become tedious to enforce on arbitrary three-dimensional 
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structures because all three components are involved simultaneously. Therefore, 
vector basis functions are preferred, as they allow easy enforcement of the 
boundary conditions through decoupled parameters. 

2.2.2 Discretized equations 

With equations (114) to (117) we have established canonical expressions for the 
first and second form of the n- or tEFIEi and n- or tMFIEi, valid inside a volumic 
dielectric domain Di possibly enclosing, completely or partially, dielectric or 
perfectly conducting volumes and/or perfectly conducting sheets, and possibly 
enclosed itself in surrounding free-space, entirely or partially. 

Inserting in (114) to (117) the expansions (118) and (119), we obtain : 

 
{ } { }

( ) ( )

( ) ( ) ( )

J M
i i

i i i i

i i

inc
i i

N N
J M

i i j i i j m i m

j m

n r E r

n r Z J N D f r M K f r

⋅ =

 
  ⋅ − −  
  
∑ ∑

⌢

⌢ ɶ
 (120) 

 
{ } { }

( ) ( )

( ) ( ) ( )

J M
i i

i i i i

i i

inc
i i i

N N
J M

i i j i j m i i m

j m

n r Z H r

n r Z J K f r M N D f r

⋅ =

 
  ⋅ + −  
  
∑ ∑

⌢

⌢ ɶ
 (121) 

 
{ } { }

( ) ( )

( ) ( ) ( )

J M
i i

i i i i

i i

inc
i i

N N
J M

i i j i j m i i m

j m

n r E r

n r Z J D f r M T K f r

×

 
  = × − + −  
  
∑ ∑

⌢

⌢ ɶ
 (122) 

 
{ } { }

( ) ( )

( ) ( ) ( )

J M
i i

i i i i

i i

inc
i i i

N N
J M

i i j i i j m i m

j m

n r Z H r

n r Z J T K f r M D f r

× =

 
  × − − −  
  
∑ ∑

⌢

⌢ ɶ
 (123) 

These discretized equations contain J M

i i
N N+  complex scalar unknowns 

ij
J  and 

imM  independent of r  instead of two complex vector unknowns ( )J r , ( )M r . To 
solve them for 

ij
J  and 

imM , we need to generate at least J M

i i
N N+  independent 

equations. 

The exact and discretized integro-differential equations represent an infinity of 
equations that must all be verified simultaneously at every possible location r  
on Si. During the testing process, described in §2.3, we will reduce this infinite 
number of equations to a finite number. 

2.2.3 Entire Domain basis functions 

The basis functions used in the analytical methods are of the entire domain type 
and orthogonal in nature : sinusoidal, Bessel or Legendre functions, Chebyshev 
polynomials or power series. If the set of basis functions is complete, which most 
often requires an infinite number of orthogonal functions, the series expansion 
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can be made equal to the exact solution. Consequently, truncation of the series 
yields an approximation of the exact solution. 

As an example, let us try to model the sum of the electric current density 
variations on both sides of a LxW rectangular PEC sheet lying in the z = 0 plane 
with the following expansion : 

 ˆ ˆ( , ) ( , ) ( , )x yJ x y x J x y y J x y≅ +  (124) 

with :  

 ( , ) ( , )
x

x mn mn

m n

J x y a J x y=∑∑  (125) 

 ( , ) ( , )y
y pq pq

p q

J x y b J x y=∑∑  (126) 

 ( , ) sin cos
2 2

x
mn

m L n W
J x y x y

L W

π π      
= + +      

      
 (127) 

 ( , ) cos sin
2 2

y
pq

p L q W
J x y x y

L W

π π      
= + +      

      
 (128) 

The use of entire domain basis functions such as (127) and (128) is efficient only 
when the first few functions suffice to approximate ( )iJ r  and ( )iM r  to the 
desired accuracy. This is the case if the expansion functions match the 
eigenfunctions of the problem and when the eigenfunctions series are rapidly 
convergent. There are many possible sets of basis functions for a given problem. 
Some sets may give faster convergence, or matrix elements which are easier to 
evaluate, or on the contrary divergence. In the example of the rectangular sheet, 
the convergence can be greatly improved if the growth to infinity in the vicinity of 
the edges is included, with additional factors like 2 1/ 2

[1 (2 / ) ]y W
−−  for (127) and 

2 1/ 2
[1 (2 / ) ]x L

−−  for (128) [9][10][11]. The function 12( , )xJ x y  is represented in 
Figure 15, with and without the additional edge factor. 

  

(a) without edge factor (b) with edge factor 

Figure 15 : Entire domain basis function over a rectangular sheet 

The entire domain basis functions are powerful to model smooth variations such 
as those encountered on regularly shaped geometries, for example rectangular 
and circular sheets. However their disadvantages are numerous : 
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− To benefit from the use of entire domain basis functions it is necessary to 
guess the function to approximate 

− They are not versatile enough to model complex shapes (consider for example 
slots and notches in the rectangular sheet) 

− If elaborate basis functions are used, they can render the computations 
occurring to fill the MoM matrix tedious and lengthy 

− The use of entire domain basis functions is likely to increase the condition 
number very rapidly with the order of the MoM matrix [12, p.461]. It is 
therefore vital to use as few terms as possible in the expansion 

As we are interested in the modelling of arbitrary three-dimensional geometries, 
we turn now our attention to subdomain basis functions. 

2.2.4 Subdomain basis functions 

Subdomain basis functions require that subdomains be defined in all domains Di. 
The way of dividing the surface Si enclosing Di into subdomains is strongly 
related to the characteristics of the basis functions, but also to the way boundary 
conditions between domains are enforced. Remembering that we must discretize 
integro-differential expressions including integrals over the entire surface Si, the 
complete set of subdomains must entirely cover Si. 

Ideally a curved surface Si should be divided into small curved subdomains 
conformal to Si, as shown in Figure 16. 

 

Figure 16 : Curved mesh on a sphere 

This requires in turn that vector basis functions be defined on a curved surface. 
Such subdomain basis functions have been studied [13][14], but are not widely 
used due to their increased mathematical complexity, but also to the difficulty to 
model curved surfaces that cannot be represented with polynomial functions. 

The most popular way of meshing a surface Si with elementary subdomains is by 
far with straight-edged triangles, quadrangles, or a combination of both. A mesh 
constructed with such subdomains cannot exactly conform to a curved surface Si, 
for which this meshing choice introduces an additional discretization error 
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(see §5.1) : not only the current densities are approximated, but also the 
surface Si. 

 

Figure 17 : Mesh of a sphere with flat triangles 

Subdomain basis functions can be defined on individual subdomains (pulse basis 
functions, §2.2.6), pair of subdomains (see §2.2.8), or even larger groups of 
subdomains ( characteristic basis functions [ 15 ], synthetic functions [ 16 ], 
multiresolution hierarchical basis functions [17], star loop decomposition of basis 
functions [18] ). Most basis functions defined on two or more subdomains require 
that all adjacent subdomains share exactly entire edges (Figure 18a,b). Most 
meshing algorithms produce only such meshes. As a consequence, it is impossible 
to define zones where the mesh is very fine and others where it is very coarse 
without a progressive transition region (Figure 18b). If this constraint is relaxed, 
meshes like the one depicted in Figure 18c permit strong local mesh refinements 
with much fewer subdomains. In this book we will use meshes based on flat 
triangular patches of the type (a) and (b) in Figure 18. 

   

(a) (b) (c) 

Figure 18 : Meshes with triangles 

Subdomain basis functions are most often polynomial functions of order n. The 
basis function can be a complete expansion, including all terms up to order n, or 
not (see §2.2.8). Higher order polynomial functions introduce more unknowns in 
the subdomain, namely the coefficients of the polynomial expansion, but they 



Chapter 2 :  Method of Moments 

  43

allow the use of larger subdomains [19]. The dimensions of the subdomains are 
indeed determinant for the accuracy of the approximation of the integro-
differential equations by the MoM matrix system of equations. Linear basis 
functions (see §2.2.7) require subdomains with characteristic dimensions not 
larger than λ/8( 3 ), while 8th-order polynomial functions can be used with 
subdomains as large as 2λ( 4 ). Defenders of higher order polynomial basis 
functions claim that the net number of unknowns is in their advantage 
[20, p.289]. One drawback is the increased complexity in the computation of the 
MoM matrix elements. 

To better model the infinite current densities flowing in the close vicinity (r << λ) 
of some sharp edges, modified basis functions are sometimes used that include a 
r1/2 behavior [21]. We did not use such functions in this book. 

Basis functions are also categorized as “curl free” or “div free”. This property is 
closely related to the fact that such functions enforce some continuity 
requirements between adjacent subdomains, typically the continuity of the 
normal or the tangential component (see §2.2.5). 

It is often said that elongated subdomains are not recommended [22][23], the 
main reason being that the evaluation of numerical integrals is not very 
accurate, even with a large number of quadrature nodes (see §5.3.1). Opposite 
conclusions are also reported [24]. In this book we provide numerical evidences 
that this warning is not entirely justified (§§5.5.3, 6.6, 6.8, 6.9 and 6.10), even if 
elongated subdomains seem to degrade the condition number of the MoM matrix 
(see §5.2.2). 

2.2.5 Conforming functions 

When basis functions span over adjacent subdomains, some continuity 
requirements can be incorporated in their very definition. In the finite element 
literature, basis functions that maintain continuity between subdomains are 
known as conforming functions. Similarly, vector basis functions that impose 
tangential (normal) continuity between subdomains are called curl (divergence) 
conforming. 

A discretization of the vector Helmholtz equation : 

 21
r

r

E k Eε
µ

 
∇ × ∇ × =  

 
 (129) 

containing curls of curls, should employ a basis functions set that imposes 
tangential continuity but not normal continuity [10, §9.8]. 

The integro-differential equations (114) to (117) do not contain the curl of the 
surface current densities but instead, in most formulations, their surface 
divergence. As explained hereafter, it is advantageous in such a case to consider 

                                            
3 See FEKOTM  User’s manual 
4 See WIPL-DTM User’s manual 
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basis functions that maintain normal continuity between subdomains. We also 
show with the example of a dielectric cube (see §6.6.2) why curl conforming basis 
functions are not physically acceptable to model electric or magnetic current 
densities on dielectric bodies. 

On a closed surface S, we consider a polygonal subdomain with contour Γ and 
surface Spatch carrying the vector basis function CF . 

 

Figure 19 : Polygonal subdomain and its neighbours 

Then we define : 

− A scalar step function ( )rΠ  which is unity inside the patch and zero outside 

− An arbitrary extension F  to CF  extending it outside the patch, with the 
unique requirement that F  be continuous and have continuous first 
derivative everywhere on the patch contour Γ 

The surface divergence of the basis function CF  can now be written :  

 ( ) ( ) ( )s C s s sF F F F∇ ⋅ = ∇ ⋅ Π = ∇ Π ⋅ + Π ∇ ⋅  (130) 

The gradient of the step function ( )rΠ  is a unit vector everywhere normal to the 
edges of the patch, coplanar with the patch, multiplied by a Dirac function : 

 ˆ ( )s n r rδ Γ∇ Π = − −  (131) 

Any integral over the total surface S involving the surface divergence of the basis 
function can now be written as : 

 ˆ( ')( ) ( )( ) ( ')( )
patch

s C s
S S

G r r F dS G r r n F dl G r r F dSΓΓ
− ∇ ⋅ = − − ⋅ + − ∇ ⋅∫∫ ∫ ∫∫�  (132) 

The line integral arises from the abrupt discontinuity of the basis function across 
the patch boundaries. It is usally termed as a line current contribution. Looking 
carefully at (132) we observe that the line integral can be cancelled in two ways. 

− Locally within the patch if the normal component of the basis function is 
forced to zero on the patch boundaries. In this case, the ˆ( )n F⋅  term is 
reduced to zero. 

− Globally over adjacent patches if the normal component of the basis function 
is forced to be continuous across the patch common boundaries Γc. In this 
case, the ˆ( )n F⋅  term changes sign on Γc from one patch to the other and the 
sum of both line integrals is identically zero. 

n̂  

n̂  

n̂

n̂

n̂
Spatch 

Γ 
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Basis functions with such properties are called divergence conforming. Famous 
and widely used examples of such functions are the Rao Wilton Glisson, or RWG 
function (§2.2.8) and the rooftop function (§2.2.9).  

Basis functions can be used even if they are not divergence conforming, but the 
line integral term in (132) should not be omitted [25]. 

2.2.6 Pulse basis function 

The simplest basis functions are pulse basis functions. With this choice, the 
surface current densities are forced to be constant over every subdomain of the 
mesh. Considering any flat polygonal subdomain, they can be entirely defined 
with two independent parameters for the basis function representing J  and two 
for the basis function representing M : 

 ˆ ˆ( )
i i i

J J J
j j x j yf r x A y A= +  (133) 

 ˆ ˆ( )
i i i

M M M
m m x m yf r x A y A= +  (134) 

where the unit vectors x̂ , ŷ  are local to every subdomain. 

For a closed surface containing J

iN subdomains to represent J  and M

iN  
subdomains to represent M , there are 2( )

J M

i i
N N+  unknowns. 

Aside their mathematical simplicity, another advantage of these elementary 
functions is that they are defined on isolated elements. It is therefore possible to 
use meshes like the one depicted in Figure 18c (p.42), where very fine elements 
can be joined to much larger elements without smooth transition. This is not 
possible with neither RWG nor rooftop functions (see §§2.2.8 and 2.2.9). 

Pulse basis functions should only be used if the discretized integro-differential 
equations contain no derivatives of the equivalent surface current densities, 
otherwise such terms would be discarded : this would lead to high errors 
whenever the discarded terms have a significant contribution in the whole 
equation. In §1.9 we have established (74) and (75), that we called second form of 
the integro-differential equations. This second form is suitable to be used in 
conjunction with pulse basis functions as the current densities appear without 
any derivatives. Neither this second form, nor pulse basis functions have been 
used in this book. 

2.2.7 Linear basis function 

A complete linear vector expansion over any flat polygonal subdomain requires 
six independent parameters for J : 

 ( ) ( )ˆ ˆ( )
i i i

J J J J J J J
j j x x x j y y yf r x A B x C y y A B x C y= + + + + +  (135) 

and an equivalent expression for the M basis functions, with six additional 
independent parameters. If appropriate continuity relationships are incorporated 
in the basis functions themselves, independently of the problem to solve, then the 
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number of unknowns will be reduced while rendering the basis functions more 
physical in their attempt to represent the equivalent surface current densities. 

If we require the normal of the basis function to be continuous across every edge 
of the polygons, it becomes natural to look for basis functions defined on edges 
and not on isolated elements. 

Let us consider with Figure 20 two triangles T +  and T −  sharing a common edge 
e delimited by the vertices 1 and 2. We refer to the two other edges of both 
triangles as their free edges.  

Any location r  inside T+ is given by : 

 1 1 2 2 1 2(1 )
p

r r r rλ λ λ λ +
+ + + += + + − −  (136) 

where 1r , 2r  and 
p

r +  correspond to the vertices 1, 2 and p+, while 10 ( ) 1rλ+≤ ≤  
and 20 ( ) 1rλ+≤ ≤  are the barycentric coordinates of r . 

 

Figure 20 : Geometry for barycentric coordinates in a pair of triangles 

The most general expression for a linear vector function lying on T +  and having 
no component normal to its two free edges is :  

 1 1 2 2ˆ ˆ( ) ( ) ( )f r K u r L u rλ λ+ + + + + + += +  (137) 

Where 1̂u
+  and 2û

+  are unit vectors directed from vertex p+ to 1 and 2, 
respectively and K+, L+ are free parameters. Similarly, within T −  :  

 1 1 2 2ˆ ˆ( ) ( ) ( )f r K u r L u rλ λ− − − − − − −= +  (138) 

A similar pair of positive and negative functions can be defined on every edge of 
the mesh. A closed surface entirely meshed with N triangles counts 1,5N edges. 
As every edge supports two basis functions with two degrees of freedom each, the 
total number of free parameters is 6N. This is exactly the same as with (135), 
indicating that any linear vector function can be described either by an element-
based representation (135), or an edge-based representation such as the pair of 
functions (137) and (138). 

If we impose now to both edge-based functions the additional constraint that the 
norm of their normal component be continuous across the common edge at any 
location er  on the edge, namely : 

p+ 

n̂+

n̂−  

1̂u
+  

2û
+  1̂u

−  

2û
−  p- 

1 

2 

T +  
T −  
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 ˆ ˆ( ) ( )e ef r n f r n
+ + − −= −  (139) 

then they become coupled in the form : 

 1 2
1 2

1 2

( ) ( )
ˆ ˆ( )

ˆ ˆ ˆ ˆ

r r
f r K u L u

u n u n

λ λ+ +
+ + +

+ + + +
= + +

⋅ ⋅
 (140) 

 1 2
1 2

1 2

( ) ( )
ˆ ˆ( )

ˆ ˆ ˆ ˆ

r r
f r K u L u

u n u n

λ λ− −
− − −

− − − −
= − −

⋅ ⋅
 (141) 

and the only two degrees of freedom are now K and L. 

The coupled functions (140) and (141) are the most general linear divergence 
conforming vector functions that can be defined on a surface meshed with 
triangles [26]. To use these divergence conforming functions in an expansion such 
as (118), we must define two basis functions for every pair of triangles and their 
common edge : 

 1
1 1

1

( )
ˆ( )

ˆ ˆ

r
f r u

u n

λ±
± ±

± ±
= ±

⋅
 (142) 

 2
2 2

2

( )
ˆ( )

ˆ ˆ

r
f r u

u n

λ±
± ±

± ±
= ±

⋅
 (143) 

These adimensional functions are a field of parallel vectors aligned with a free 
edge, with a maximum norm at the vertex of the common edge belonging to this 
free edge, then linearly decreasing to become zero on the other free edge : 

 

Figure 21 : Coupled linear divergence conforming functions over a pair of 
adjacent triangles 

In Figure 21, 1 ( )f r
−  has not been represented to maintain readability. 

The divergence of (142) and (143) is constant inside each triangle : 

 1 2
1 /

( )
0

s or
h r in T

f r
elsewhere

± ±
±

±
∇ ⋅ = 


  (144) 

where h+ (h-) is the height of triangle T +  ( T − ) on the common edge. 

p+ 

p- 

1 

2 

T −
T +  
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In a mesh containing N triangles, thus 1,5N edges, the number of unknowns is 
now 3N for J  and 3N for M . 

2.2.8 Rao Wilton Glisson (RWG) basis functions 

The RWG function [ 27 ] is a special case of the most general divergence 
conforming linear functions on triangles presented in §2.2.7 : the RWG function 
imposes that the normal component be not only continuous but also constant 
everywhere on the edge. It is easy to show that this additional constraint leads to 
K=L in (140) and (141). As a consequence, there is now only one basis function 
per edge instead of two, and the number of unknown parameters in a mesh with 
N triangles is reduced to 1,5N for J  and 1,5N for M . 

This now unique basis function on the pair of triangles T + and T −  sharing the 
edge e looks like : 

 

Figure 22 : RWG basis function 

and takes a simple mathematical form in local polar coordinates : 

 /
( )

0

h r in T
f r

elsewhere

ρ ± ± ±
±

±
= 


 (145) 

where h+ (h-) is again the height of triangle T +  ( T − ) on the common edge. The 
surface divergence of a RWG basis function is constant in T +  and T − , equal but 
with opposite signs in both triangles : 

 
2 /

( )
0

s
h r in T

f r
elsewhere

± ±
±

±
∇ ⋅ = 


  (146) 

To support the RWG functions, the surface Si of every domain Di must first be 
discretized with adjacent and non overlapping flat triangles. Moreover, the 
definition of RWG requires that every regular5 edge in the mesh must be shared 
by exactly two triangles. This excludes meshes like the one depicted in Figure 
18c. A mesh of a torus, suitable for RWG functions, is shown in Figure 23 (p.49). 

                                            
5 See §3.2 for the definition of regular and singular edges 

p+ 

p- 

T+

T-
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2 

e 
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ρ +  r −  
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Figure 23 : Mesh of a torus 

To compute the current density at any location r  on the surface Si inside one of 
the triangles of the mesh, only three RWG functions (and their associated 
unknowns Je,i or Me,i) are involved : those defined on each of the 3 edges of the 
triangle, as illustrated in Figure 24. 

 

Figure 24 : Current density in a triangle computed with 3 RWGs 

Supposing that the same RWG functions , ( )e if r  are used to model the electric 
and magnetic current density : 

 , , , , , ,( ) ( ) ( ) ( )i l i l i m i m i n i n iJ r J f r J f r J f r= + +   (147) 

 , , , , , ,( ) ( ) ( ) ( )i l i l i m i m i n i n iM r M f r M f r M f r= + +   (148) 

The price to pay though for this reduction of the number of unknowns per edge is 
the loss of a degree of freedom : as opposed to (142) and (143), RWG’s are unable 
to model a surface current density with a transverse gradient, as represented in 
Figure 25 : 

 

Figure 25 : Surface current density with transverse gradient 

Such a current density field implies a normal component through any edge 
crossed by the current density that is not constant along the edge, but 

r  
l 

m

n 
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proportional to the gradient of the current density. Such current density fields 
are most often encountered in the close vicinity of edges [ 28 ]. A direct 
consequence of the limited linear representation allowed by RWG functions is 
that current densities flowing parallel to edges where such a gradient is present 
are forced to zigzag (see §6.9). There are also situations where the normal 
component of the current density must be allowed to vary along some edges of the 
mesh. The strong deformations imposed to the current density flow resulting 
from the use of RWG functions is revealed in §6.7.1 and explained with Figure 
116 (p.192). 

In this book we are interested in multidomain problems, including dielectric 
volumes and perfectly conducting plates or sheets. We explain in detail in 
chapter 3 how to properly define RWG’s in such a complex situation. 

2.2.9 Rooftop functions 

Rooftop functions are defined similarly to RWG’s, but on a pair of flat rectangles 
or parallellograms instead of flat triangles [29]. 

 

Figure 26 : Rooftop functions 

Their mathematical expression, in coordinates local to every parallelogram, is : 

 
ˆ( ) /

( )
0

r p u h r in P
f r

elsewhere

± ± ± ±
± ± − ⋅

= 


 (149) 

where h+ (h-) is the height of the parallelogram P+ (P-) on the common edge and 
û

±  is a unit vector parallel to the two free edges of the parallelogram connected 
to the common edge. 

Similarly to RWG’s, they are divergence conforming, exhibit a constant surface 
divergence over every parallelogram, and cannot represent a transverse current 
density gradient. 

2.3 Testing 

In the mathematical theory of linear vector spaces, the process of testing means 
applying a suitable inner product to a (vector) function to turn it into a scalar. 
Doing so, we project the function onto a subspace of its original space. The 
properties of a suitable inner product ,f g between f and g are commutativity, 
linearity and positive definiteness :  

û−  

p
+  

r

h+ 

P+ 
P- 

p
−  

û+  
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 , ,f g g f=  (150) 

 , , ,f g h f h g hα β α β+ = +  (151) 

 
0 0

,
0 0

if f
f f

if f

∗ > ≠

= =
 (152) 

In electromagnetics, the inner product between two functions is defined as 
[8][30] : 

 , ( ) ( )f g f r g r dr= ⋅∫  (153) 

The product becomes a dot product if the functions are vector functions. 

In mathematics ( respectively, quantum physics ) the function f is complex 
conjugated in the definition of the inner product, allowing the definition of the 
norm of a function ( respectively, a probability function ), two quantities that 
need to be positive. 

2.3.1 Normal and tangential testing 

The four discretized equations (120) to (123) actually originate from only two 
independent three-dimensional vector equations, the EFIEi and the MFIEi, that 
we projected on the normal ˆ ( )in r to the surface Si or onto a direction tangent to 
Si, at location r  on Si. These projections resulted in two scalar equations, the 
nEFIEi (120) and nMFIEi (121), and two vector equations, the tEFIEi (122) and 
tMFIEi (123). 

At this stage, for the sake of generality, we test the scalar equations with sets of 
arbitrary scalar functions : 

 ( ),( ) 1..
i

E n
e i iw r e N for the nEFIE=  (154) 

 ( ),
( ) 1..

i

H n
h i iw r h N for the nMFIE=  (155) 

and we test the vector equations with sets of arbitrary vector functions :  

 ( ),( ) 1..
i

E t
e i iw r e N for the tEFIE=  (156) 

 ( ),
( ) 1..

i

H t
h i iw r h N for the tMFIE=  (157) 

Defining now the arbitrary normal vector testing functions : 

 ˆ( ) ( ) ( )
i ie e iN r w r n r=  (158) 

 ˆ( ) ( ) ( )
i ih h iN r w r n r=  (159) 

and the arbitrary tangential vector testing functions : 



Chapter 2 :  Method of Moments 

  52

 ˆ( ) ( ) ( )
i ie i eT r n r w r= ×  (160) 

 ˆ( ) ( ) ( )
i ih i hT r n r w r= ×  (161) 

Equations (120) to (123) become, after multiplying them with the appropriate 
testing function (158) to (161), integrating over the discretized surface Si and 
rearranging the cross and dot products : 

  

{ } { }

( ) ( )dS

( ) ( ) ( ) dS

i

i

J M
i i

i i i i i

i ii

inc
e i

S

N N
J M

e i j i i j m i m

j mS

N r E r

N r Z J N D f r M K f r

⋅

 
  = ⋅ − −  
  

∫

∑ ∑∫ ɶ

 (162) 

 

{ } { }

( ) ( )dS

( ) ( ) ( ) dS

i

i

J M
i i

i i i i i

i ii

inc
h i i

S

N N
J M

h i j i j m i i m

j mS

N r Z H r

N r Z J K f r M N D f r

⋅

 
  = ⋅ + −  
  

∫

∑ ∑∫ ɶ

 (163) 

 

{ } { }

( ) ( )dS

( ) ( ) ( ) dS

i

i

J M
i i

i i i i i

i ii

inc
e i

S

N N
J M

e i j i j m i i m

j mS

T r E r

T r Z J D f r M T K f r

⋅

 
  = ⋅ − + −  
  

∫

∑ ∑∫ ɶ

 (164) 

 

{ } { }

( ) ( )dS

( ) ( ) ( ) dS

i

i

J M
i i

i i i i i

i ii

inc
h i i

S

N N
J M

h i j i i j m i m

j mS

T r Z H r

T r Z J T K f r M D f r

⋅

 
  = ⋅ − − −  
  

∫

∑ ∑∫ ɶ

 (165) 

These expressions can be contracted into a global matrix system of equations : 

 

, , ,

, , ,

, , ,

, , ,

EJ n EM n E n
i i i

HJ n HM n H n
i i i i

EJ t EM t E t
ii i i

HJ t HM t H t
i i i

Z Z V

Z Z J V

MZ Z V

Z Z V

   
   
    

=    
    
   
      

 (166) 

The elements of the eight sub-blocks of the matrix and the four sub-vectors on 
the right hand side are given below : 
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 { }( ),
( , )

( ) ( ) dS
i ii i

i

EJ n J
i e i i je j

S

Z Z N r N D f r = ⋅ − ∫ ɶ  (167) 

 { }( ),
( , )

( ) ( ) dS
i ii i

i

EM n M
e i me m

S

Z N r K f r= − ⋅∫  (168) 

 { }( ),
( , )

( ) ( ) dS
i ii i

i

HJ n J
i h i jh j

S

Z Z N r K f r= ⋅∫  (169) 

 { }( ),
( , )

( ) ( ) dS
i ii i

i

HM n M
h i i mh m

S

Z N r N D f r = ⋅ − ∫ ɶ  (170) 

 ,
( )

( ) ( )dS
ii

i

E n inc
e ie

S

V N r E r= ⋅∫  (171) 

 ,
( )

( ) ( )dS
ii

i

H n inc
i h ih

S

V Z N r H r= ⋅∫  (172) 

and 

 { }( ),
( , )

( ) ( ) dS
i ii i

i

EJ t J
i e i je j

S

Z Z T r D f r= − ⋅∫  (173) 

 { }( ),
( , )

( ) ( ) dS
i ii i

i

EM t M
e i i me m

S

Z T r T K f r = ⋅ − ∫ ɶ  (174) 

 { }( ),
( , )

( ) ( ) dS
i ii i

i

HJ t J
i h i i jh j

S

Z Z T r T K f r = − ⋅ − ∫ ɶ  (175) 

 { }( ),
( , )

( ) ( ) dS
i ii i

i

HM t M
h i mh m

S

Z T r D f r= − ⋅∫  (176) 

 ,
( )

( ) ( )dS
ii

i

E t inc
e ie

S

V T r E r= ⋅∫  (177) 

 ,
( )

( ) ( )dS
ii

i

H t inc
i h ih

S

V Z T r H r= ⋅∫  (178) 

Note that the impedance Zi has been incorporated in the expressions of the ZEJ, 
ZHJ  and VH elements : when the boundary conditions between domains will have 
to be enforced (see §3.6), it will imply equalities between 

ij
J  (and 

imM ), and not 
between 

ii jZ J . 

The size of the subblock ,EJ n
iZ  is ( ,E n

iN  by J
iN ), the size of the subvector ,H t

iV  is 
( ,H t

iN  by 1), and so on for all the other subblocks and subvectors. The global Z 
matrix has thus size ( , , , ,E n H n E t H t

i i i iN N N N+ + +  by J M
i iN N+ ). The matrix system 

of equations (166) represents the discretized MoM version of the integro-
differential equations (114) to (117), valid on the inner discretized surface Si of 
domain Di. 
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Except in the unique case where domain Di is free space enclosing a unique PEC 
object, the matrix system of equations (166) cannot be solved in its own : a 
similar system of equations must be written for all dielectric domains and the 
boundary conditions must be enforced between all these domains. This is the 
topic of chapter 3, particularly in §3.6. In any case, the arbitrary scalar and 
vector testing functions still need to be specified. 

2.3.2 General considerations about testing 

Every element ( , )i it bZ  of the Zi matrix in (166) results from the testing of a 
function of bif , a basis function defined on the subdomain Sbi, by a testing 
function tif  defined on subdomain Sti. We call self terms those obtained when the 
testing and basis subdomains are identical, and quasi-self terms those where 
partial overlapping occurs. Self and quasi-self terms should not be annihilated in 
the testing process as they are relatively large and contribute significantly to the 
solution [10, p.39]. To understand this statement, we must take a closer look at 
the vector functions ( )iN rɶ , ( )iT rɶ , ( )iD r  and ( )iK r , defined in §1.14. 

 

Figure 27 : Quasi self term 

We consider a subdomain basis function ( ')bif r  which is non zero only on the 
pentagon Sbi, a flat portion of the total discretized surface Si (coloured and 
delimited in orange in Figure 27). We consider also a subdomain testing function 

( )tif r  defined only on the hexagon Sti (coloured and delimited in green in Figure 
27), another flat portion of Sdi having some area Sci in common with Sbi. 

In the testing integrals, for example (169) and (173), the observation point r  is 
running everywhere inside Sti. 

At every location r  the vectors ( )iD r  and ( )iK r  that are being tested result 
from the integral over Sbi of a function involving the two vectors ( ')bif r  and R̂  : 

 { } ( )(2) 2
3, 3 ,

ˆ ˆ( ) ( ') ( ') '
bi

bi i bi i bi r ii
S

D f r k f r f f r R R f dS = − ⋅  ∫  (179) 

 { } { }(2) 2
2,

ˆ( ) ( ') '
bi

bi i bi ii S
K f r k f r R f dS= ×∫  (180) 

As we chose coplanar Sbi and Sti subdomains, ( ')bif r  and R̂  are both coplanar to 
Sbi for every possible position 'r . The vector ( )iD r  is a linear combination of 

( ')bif r  and R̂  : it is therefore also coplanar with Sbi. As the cross product 

( )biN rɶ

( )biK r  

( )bif r  
'r

r  

( )biD r  

( )biT rɶ

( )biK r  

r  
( )biD r  ( ')bif r  
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between ( ')bif r  and R̂  is always normal to Sbi, the same applies to the vector 
( )iK r . From the expressions of 3,if , 3 ,r if  and 2,if , given by equations (77), (78) 

and (79), we also note that the norm of the complex vectors ( )iD r  and ( )iK r  are 
globally decreasing with increasing R̂ , especially when kiR >> 1. 

The vector ( )iN rɶ  originates as the principal value extraction from the nEFIEi or 
nMFIEi integrals at r . The same applies for ( )iT rɶ  and the tEFIEi or tMFIEi. 
Consequently : 

− ( )iN rɶ  or ( )iT rɶ  exist only when r  is inside Sbi, where ( )bif r  also exists 

− ( )iN rɶ  always appear in the nEFIEi or nMFIEi in combination with ( )iD r , 
while ( )iT rɶ  is combined with ( )iK r  in the tEFIEi or tMFIEi 

− Where they exist, ( )iN rɶ  and ( )iT rɶ  have a magnitude larger than or similar 
to ( )iD r  and ( )iK r . 

By definition, ( )iN rɶ  is normal to Sbi while ( )iT rɶ  is coplanar with Sbi and 
perpendicular to ( )bif r . 

 { } { }( ) ( ) ( )i bi s bi i
i

j
N f r f r n r

k
= ∇ ⋅

⌢ɶɶ  (181) 

 { }( ) ( ) ( )i bi i biT f r n r f r= ×
⌢ ɶɶ  (182)  

For the quasi self term ( , )i it bZ  where Sti and Sbi are coplanar, the four vectors 
( )iN rɶ , ( )iT rɶ , ( )iD r  and ( )iK r  are depicted in Figure 27 (p.54) when r  belongs 

to Sbi, while only ( )iD r  and ( )iK r  are present when r  does not belong to Sbi. 
The vectors ( )iN rɶ  and ( )iD r  are perpendicular to each other, as well as ( )iT rɶ  
and ( )iK r , and also ( )iD r  and ( )iK r . 

Considering the orthogonalities between all these vectors, as the nEFIEi or 
nMFIEi must be tested with a vector normal to Sti, while the tEFIEi or tMFIEi 
must be tested with a vector coplanar to Sti, Table 4 summarizes that, regardless 
of the testing function, self terms, coplanar quasi self terms and more generally 
all coplanar Sti / Sbi situations cannot be tested without discarding the ( )iD r  or 
the ( )iK r  vector. 

Table 4 : Discarded terms (in red) for coplanar situations 

Component 

 

Normal Tangential 

E (EFIE) N-D -K -D T-K 

H (MFIE) K N-D K-T -D 

Current density J M J M 

 

This observation emphasizes the importance of the principal value terms ( )iN rɶ  
or ( )iT rɶ  in the four following cases : nEFIEi or tMFIEi applied to a PEC structure 
and nMFIEi or tEFIEi applied to a PMC structure. These four cases result in a Zi 
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matrix formed by only one of the four cells in Table 4 (p.55), where the discarded 
term is present. For example, for the tMFIEi applied to a PEC structure (yellow 
highlighted in Table 4), the global matrix system of equations (166) reduces to : 

 , ,HJ t H t
i i iZ J V   =     

 (183) 

In these Zi matrices, the entries involving overlapping testing and basis function 
subdomains are located on the main diagonal. A dominant main diagonal leads to 
a well conditioned matrix. On the other hand, if these diagonal terms are brought 
down with a wrong testing procedure, the Zi matrix becomes ill conditioned. In 
the four cases mentioned above, a wrong testing function is one that also discards 
or strongly affects the remaining term, ( )iN rɶ  or ( )iT rɶ . Coming back to the 
example (183) of the tMFIEi applied to a PEC structure, it cannot be tested with 
a tangential function aligned with ( )bif r , otherwise the main diagonal is nearly 
reduced to zero6. The ideal choice is ˆ ( ) ( )i bin r f r× , aligned with ( )iT rɶ  at all times, 
producing a dominant main diagonal. A dual conclusion applies for PMC 
structures analyzed with tEFIEi. Note that the normal testing of the nEFIEi or 
nMFIEi does not allow such a wrong choice, as the direction of the normal ˆ ( )in r  
is unique and both ( )iN rɶ  and ( )iK r  are aligned with it. 

If we analyze a PEC structure with the tEFIEi, only the ( )iD r  term will 
contribute to the main diagonal. Careful observation of (179) shows that ( )bif r  is 
an appropriate testing function, while ˆ ( ) ( )i bin r f r×  will negatively affect the self 
term ( )iD r , in an average way over Sbi. As opposed to the case of tMFIEi applied 
to a PEC structure, the main diagonal is not nearly reduced to zero, but 
sufficiently diminished to render the Zi matrix ill-conditioned. 

To obtain the J  and M  current densities flowing at the interface between a 
dielectric domain D1 embedded in another dielectric domain D2 (free-space) we 
must anticipate on §3.6 and explain that the global Z matrix is a combination of 
two submatrices Z1 and Z2, written independantly in both domains. In the cases 
of the PMCHWT and the Müller combination schemes based on the tEFIEi and 
tMFIEi, this global Z matrix is :  

 
, , , , , ,

1 2 1 2 1 21 2 1 2 1 2

, , , , , ,
1 2 1 2 1 21 2 1 2 1 2

EJ t EJ t EM t EM t E t E t

HJ t HJ t HM t HM t H t H t

Z Z Z Z V VJ

MZ Z Z Z V V

α α α α α α

β β β β β β

   + + + 
   = 
   + + +    

 (184) 

Referring again to Table 4 (p.55), the Z matrix encompasses the four cells 
indexed with E, H, J and M. The main diagonal is due to the ( )D r  terms 
produced by the tEFIEi and by the tMFIEi. The role of ( )iT rɶ  is therefore of minor 
importance. In fact, the ( )iT rɶ  term completely disappears with the PMCHWT 
combination scheme when ( )bif r  is the testing function. If we restrict the testing 
functions to ( )bif r  and ˆ ( ) ( )i bin r f r× , chosen identically in both domains, it is 
mandatory to use the same testing functions for the tEFIEi and the tMFIEi. 
Indeed if we use 1( )bf r  and 2( )bf r  for the tEFIE1 and tEFIE2, then 1 1ˆ ( ) ( )bn r f r×  

                                            
6 It is not exactly reduced to zero because RWG span over a pair of triangles. Self 
terms involve thereby two overlapping and two adjacent triangles. 
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and 2 2ˆ ( ) ( )bn r f r×  for the tMFIE1 and tMFIE2, the M  current density is poorly 
tested in both the tEFIEi and both the tMFIEi. Similarly, the J  current density 
would be poorly tested if we use 1 1ˆ ( ) ( )bn r f r×  and 2 2ˆ ( ) ( )bn r f r×  for the tEFIE1 
and tEFIE2, then 1( )bf r  and 2( )bf r  for the tMFIE1 and tMFIE2. Using ( )bif r  or 
ˆ ( ) ( )i bin r f r×  everywhere (called PMCHWT-f-f or PMCHWT-nxf-nxf in this book) 

eludes the problem. Nevertheless, both J  and M  are poorly tested in this case, 
but one of them in the the tEFIEi only and the other one in the tMFIEi only, or 
oppositely. To ensure proper testing of both J  and M  everywhere in the Zi 
matrix, some authors have proposed mixed testing schemes, such as for example 

ˆ( ) ( ) ( )bi i bif r n r f r+ ×  [31]. We compare in §6.2.5 the excellent results obtained 
with both the PMCHWT-f-f and the PMCHWT-nxf-nxf. There are no reports in 
the literature, known to the author, of PMCHWT-nxf-nxf. But there are many 
examples where PMCHWT-f-f is used, or even presented as the right choice 
[32][33][34]. 

Additional detailed information about the Müller combination scheme and 
appropriate testing functions can be found in [35]. Two examples are treated in 
§§6.2.5 and 6.8.2 with Müller-f-f and/or Müller-nxf-nxf. We present hereafter 
three examples of testing schemes, where the testing function is defined on a 
whole surface (Galerkin), along a line (Razor blade) or at a single point (point 
matching). 

2.3.3 Galerkin testing 

The discretized EFIEi and MFIEi (120) to (123) contain J M

i i
N N+  scalar unknowns. 

If we want to determine them by solving a square matrix system of equations, we 
must use exactly J M

i i
N N+  testing functions. As there are J M

i i
N N+  basis functions, 

they are natural candidates to construct the testing functions as well. When the 
testing and basis functions are identical, the procedure is called “Galerkin 
testing”. This is only possible for the tEFIEi and the tMFIEi. Indeed, the testing 
functions need to be normal to Si in the case of the nEFIEi and the nMFIEi., 
while the basis functions must lye on Si. 

A linear operator, in this case an integral equation denoted IE, is self adjoint 
with respect to the inner product defined by (153) if : 

 
___ ___

[ ] [ ]
t b

t b b t
S S

f IE f f IE f⋅ = ⋅∫ ∫  (185)  

When Galerkin testing is applied to a self adjoint operator, it produces a 
symmetric matrix. This property, only fulfilled by the tEFIEi, allows to reduce 
the matrix fill time by a factor close to two. Many examples where Galerkin 
testing is used can be found throughout Part II. 

2.3.4 Point Matching 

The discretized equations (120) to (123) are valid at every possible location r  on 
Si. If we evaluate these equations at J M

i iN N+  locations, we can generate J M

i iN N+  
equations. This sampling process comes down to incorporate a scalar Dirac 
function in the definition of the testing functions (154) to (157). There are 
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infinitely many possibilities to choose the J M

i iN N+  locations. To obtain a good set 
of independent equations and a good approximation for the current densities, it 
seems reasonable to evaluate the discretized equations at the centroid of every 
element of the mesh, though it is by no means a general rule [36, p.64]. 

For (122) or (123), this sampling process leads to J M

i iN N+  two-dimensional vector 
equations. To obtain scalar equations the vector equation must be dot multiplied 
with, or projected onto an “adequate” vector. Some examples of solutions obtained 
with point matching, which is equivalent to use only one node in the quadrature 
for the outer integral (see §5.3.2), are presented in §§6.2.1, 6.2.2 and 6.5.1. 

2.3.5 Razor blade testing 

In the point matching testing scheme the discretized equations are evaluated at a 
single point, whereas in the Galerkin testing scheme, they are averaged over a 
surface with a weighting (or testing) function. Halfway between these two 
extremes a razor blade testing function is defined along a line. In the example of 
Figure 28 the razor blade testing function is a constant vector defined on a 
triangle pair, aligned with the dotted line between the centroid of every triangle 
and the centre of the common edge. 

 

Figure 28 : Example of a razor blade function 

This type of testing function has not been used in this book. We refer to [10] for 
additional details and to [37] for a comparison between Galerkin and razor blade 
testing. 

2.4 Summary 

In this chapter the Method of Moments is introduced in a practical way, applied 
to the electromagnetic scattering problems we aim to solve, described by the 
canonical expressions presented at the end of the previous chapter. As the choice 
of the basis and testing functions is very important, we spent quite some time to 
review their purpose, as well as the properties and (dis)advantages of the many 
functions available. 

Subdomain divergence conforming vector basis functions were recognized as 
particularly adapted to our situation. In this family, the Rao Wilton Glisson 
functions have been selected despite some serious drawbacks that have been 
explained in this chapter and illustrated in chapter 6. The rejection of curl 

p+ 

p- 

T+

T- 
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conforming functions, sometimes encountered in the literature, has also been 
explained and illustrated.  

Regarding the testing functions, they have been introduced in a very general 
way, in line with the canonical expressions derived in chapter 1 for both the 
normal and tangential components of the EFIE and MFIE. Some general and 
original considerations have shown why some choices of testing functions can be 
disastrous, acceptable or even advantageous. 
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3 Method of Moments Formulation for 

Multiple Regions 

 

In chapter 1 the exact integral expressions valid at the inner bounding surface of 
a volume or on one of the superimposed faces of a sheet have been established. To 
summarize all possible expressions occurring in a mixed material situation, a 
new unique notation has been introduced. In chapter 2 the integral equations 
applicable inside a single domain have been discretized in a general way to allow 
some discussion about the basis and testing functions. In this chapter a 
particular choice is made for the discretized equations, they are written in every 
domain and we incorporate the boundary conditions to solve the entire problem. 
The original contributions in this process are the definition of a singular edge, a 
solder line and a sector with its electromagnetic nature and RWG properties, the 
use of a sector table to organize and visualize the complex filling of the 
impedance matrix, and the unified presentation of the combination step for both 
dielectrics and perfect conductors. 

3.1 Preamble 

Composite structures made of homogeneous PEC and dielectric bodies are of 
considerable importance in radar scattering, antenna design, microwave 
engineering. In [1][2][3][4] only composite objects with a symmetry axis are 
considered. In some other works involving arbitrary three-dimensional objects, 
either the metallic and dielectric objects are not allowed to be in contact, or the 
treatment of the junctions is quite complex and not fully developed [5][6][7][8]. To 
date some quite general approaches have been presented [9][10][11]. In this 
chapter we make new steps towards a complete treatment. First of all, the PEC 
bodies are presented along with their PMC dual counterpart. Next, both volumic 
bodies and sheets are combined in every possible way. The concepts of singular 
edges, branched bodies and solder line are introduced, and the importance of 
electrical continuity is emphasized. The essential notion of RWG sectors is 
identified, for which two important properties are demonstrated. The treatment 
of composite structures is made very general to allow the use of any testing 
scheme, coupled to any redundancy reduction scheme. Finally, a new general 
approach based on the sector property table is proposed. In [12] a systematic 
approach is described to build the composite Z matrix and V vector corresponding 
to a collection of linear isotropic homogeneous domains Di bounded by a closed 
surface Si. To explain the additional concepts and properties that are introduced 
in this book, we illustrate and comment the procedure with a worked example : 
Figure 29 (p.64) highlights separately the three bodies entering the elementary  
composite structure : two pyramids (L for Left and R for Right) made of two 
distinct dielectric materials, lossy or not, and one metallic branched plate (P), 
considered to be PEC. These three bounded bodies are embedded in a fourth 
unbounded one : free space (O). 
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Figure 29 : Two pyramids (L,R) and one branched plate (P) 

This elementary structure is meshed with 9 triangles only, and the edge numbers 
are clearly identified in Figure 30 : 

 

Figure 30 : Edge numbers 

In chapter 1 we have established several forms for the three-dimensional EFIEi 
and MFIEi in every domain Di, as well as their normal and tangential projections 
on the bounding surfaces Si. From here on we will restrict ourselves to the 
tangential projections, called in this book the tEFIEi and tMFIEi : 

 { } { }{ }ˆ ˆ( ) ( ) ( ) ( ) ( )
inc

i i i i i i i i in r E r n r D Z J r T K M r × = × − + − 
ɶ  (186) 

 { } { }{ }ˆ ˆ( ) ( ) ( ) ( ) ( )
inc

i i i i i i i i i in r Z H r n r T K Z J r D M r × = × − − − 
ɶ  (187) 

The meaning of the iD , iK  and iTɶ  operators can be found in §1.14, along with 
their expressions in the first and second form of the integro-differential 
equations. The vector ˆ ( )in r  is the unit normal to Si at r , pointing outside Di. We 
know that in PEC domains, volumes or sheets, the surface current densities iJ  
and iM  are identically zero, but to develop a general scheme, we will omit for a 
while that domain P is a (PEC) sheet : the index i can therefore be L, R, O or P. 

To obtain a numerical MoM solution to the integro-differential equations (186) 
and (187), we approximate the boundaries Si with flat triangles and the unknown 
surface current densities iJ  and iM  with RWG functions (see §2.2.8). For 
example in domain L where SL is composed of four triangles : 
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where ,e Lf  are the RWGL functions defined all around SL on the edges 
e ∈ EL = {1,3,4,5,6,10} and Je,L, Me,L are the unknown coefficients corresponding 
to every RWGL defined on SL inside DL. As we will show in the next paragraphs, 
things get a little more complicated inside DO. To explain clearly how to build the 
RWGi in every domain Di we must first introduce the concepts of singular edges, 
branches and sectors. 

3.2 Singular edges and branches 

In the physical world no object has some dimension exactly equal to zero. The 
thin dielectric substrate supporting a patch antenna, or an even thinner metallic 
coating both have a finite thickness. Very thin plates have thus a non zero 
volume delimited by a closed surface made of an upper and a lower face and very 
thin side faces. Solving electromagnetic problems involving plates with the MoM 
would require too many elements if the very thin side faces were to be meshed 
with quasi equilateral triangles. There is one way out for perfectly conducting 
plates : as soon as the thin dimension of the plate is much smaller than λ, say for 
example λ/100, it is simply reduced to zero. In this book we already called “sheet” 
a plate from which the thin dimension has been reduced to zero. This 
mathematical trick is possible and leads to meaningful solutions thanks to the 
infinite conductivity of a perfectly conducting sheet. chapter 4 is entirely devoted 
to the MoM analysis of such sheets. As explained in §1.4.1, a thin dielectric plate 
cannot be modelled by a dielectric sheet : the latter is simply electromagnetically 
transparent. For thin dielectric plates, we propose instead to reduce the number 
of triangles on the thin sides with linearly or logarithmically distributed meshes 
and elongated triangles (see §§Analytical analysis - very elongated triangles, 6.6, 
6.8, 6.9 and 6.10). Other approaches have recently been reported [13][14]. 

The mesh of a mathematical sheet that can be generated with readily available 
meshers will be identical for opposite faces and will consist of a unique set of 
superimposed elements. In this case, every inner edge of a plate is singular : it 
actually represents two physically distinct edges belonging to the upper and the 
lower face. A body with two branches left and right of a singular inner edge can 
be of three types, as depicted in Figure 31 : 

 

Figure 31 : Bodies with 2 branches 

To form a complete linear base for the surface current densities iJ  and iM  the 
RWGi functions must completely cover the closed surface Si enclosing every 
domain Di, as depicted in Figure 36 (p.69). On every edge of Si we must thus 
define one RWGi for every pair of triangles belonging to a face of Si. The 
homogeneous domain DG, coloured in green in Figure 32 (p.66), has five branches 
on edge e. Consequently, five distinct faces of SG share the edge e. The singular 
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edge e supports therefore 5 RWGs in domain DG, as represented in Figure 32. 
The edge e also supports other RWGi, not represented in Figure 32, for every 
other domain Di touching e. 

 

Figure 32 : Homogeneous domain with 5 branches 

3.3 RWG scheme on singular edges 

3.3.1 Physical Continuity and Sector Concept   

On every edge e in the mesh of a composite structure, two or more domains meet. 
If none of these domains has branches on e (or : they all have one branch) then e 
supports one group of RWGs. In order to simplify the enforcement of the 
boundary condition, we choose to orient these RWGs in a tail-arrow sequence 
from one domain to the other around the edge, as depicted in Figure 33. Note 
that the sheet has been drawn with a finite thickness to help visualize the RWGs 
inside and outside it. 

 

Figure 33 : Edges with no branched domains 

Branches are a local property of a homogeneous domain. Domain V2 and the 
sheet are NOT two branches of one single homogeneous body on edge z, unless 
they are made of the same material and soldered together. 

If only one of the domains attached to e has b branches on e, then this domain 
partitions space around the edge in b sectors in which groups of mutually 
independent RWGs must be defined. Figure 34 (p.67) shows a body with three 
branches. The singular edge in the mathematical model represents three physical 
edges, on which the RWGs would be defined as depicted if the physical model was 
used instead of the mathematical model. To represent correctly the physical 
reality with the mathematical model, we must maintain the same RWG scheme 
on the singular edge. 

sheet Volume

(V1) 

Volume 

(V2) 

Embedding volume (0)

0 

0 

z 

 (V1) 
 (V2) 

sheet 

e 



Chapter 3 : Method of Moments Formulation for Multiple Regions  

  67 

 

Figure 34 : Edge with one domain having three branches 

3.3.2 Solder line 

Let us now consider the situations of Figure 35. The singular mathematical 
model alone makes it impossible to distinguish which homogeneous domain is 
continuous across the edge. The two only physical possibilities are presented, 
along with the corresponding RWG scheme : black arrows for the grey domain 
and blue arrows for the red domain. The important observation here is that the 
RWGs supporting the current densities on the inner surface of both domains 
depend on the physical reality, that must be reproduced by the mathematical 
model. 

In our MoM implementation, to eliminate such ambiguities, we have introduced 
the notion of solder line, represented as a void dot in the middle of the 
mathematical model in Figure 35. It is a line, as opposed to sheets (=surface) or 
bodies (=volumes), defined with electromagnetic properties to impose the 
continuity of only one of the branched domains on a singular edge. An example is 
given in §6.11. 

 

Figure 35 : Homogeneity and continuity 

3.3.3 Sector table 

It is not physical to have several branched bodies continuous across each other, 
but it is perfectly possible to imagine several branched bodies on a single edge, 
aside each other, as depicted in Figure 38 (p.71).  
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If N domains share an edge e and they all have only one branch, then there is 
only one sector on e. If only one of the N domains has 2 branches, then there will 
be 2 sectors on e. If a second domain has also 2 branches on e, then there will be 3 
sectors on e (see Figure 38, p.71). In general, if each domain Di attached to e has 
bi branches, then 

 ( )1 1
N

i

i

S b= + −∑  (190) 

sectors are created around e, where N is the number of domains Di on e. 

In the example of Figure 29 (p.64), most edges define only one sector, except 
edge 9 (2 sectors) and edge 10 (3 sectors). This can be derived from (190), 
considering that only domain P has two branches on edge 9 and only domain P 
has three branches on edge 10. 

Another important property of sectors is their electromagnetical nature. If at 
least one domain around an edge within a sector is a PEC (respectively PMC) 
then the sector is of electric (magnetic) nature and tagged “E” (“M”). If none of the 
domains around an edge within a sector is a PEC or a PMC, then the sector is of 
dielectric nature and tagged “D”. To be complete, one can also theoretically 
imagine a sector containing both a PEC and PMC sectors, and tag it as “E+M”. 

We are now ready to present in Table 5 a summary that will prove very useful in 
the next paragraphs and chapters. 

Table 5 : Sector table 

m Edge Sector L P R O Type Nature

1 1 1 X X I D
2 2 1 X X II D
3 3 1 X X X III D
4 4 1 X X X III D

5 5 1 X X X IV E

6 6 1 X X X IV E
7 7 1 X X X V E
8 8 1 X X X V E
9 9 1 (L) X X VI E
10 9 2 (R) X X VI E
11 10 1 (U) X X X VII E

12 10 2 (L) X X VI E

13 10 3 (R) X X VI E
14 11 1 X X VI E
15 12 1 X X VI E
16 13 1 X X VI E  

The sectors around the singular edges 9 and 10 have been named and numbered 
and they are attributed a unique number m. The domains contained in every 
sector m are recorded with a X in the corresponding LPRO column. In the forelast 
column of Table 5 the 16 sectors are classified in VII types according to the 
domains they contain : a type I sector contains domains L and O, a type II sector 
contains domains R and O, and so on. In the last column, mentioning the 
electromagnetic nature of every sector, we observe that only four sectors are 
dielectric, those not in contact with the PEC sheet P. 
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Figure 36 : RWGi functions in the four domains 

In Figure 36 the RWGi for every domain Di are depicted as oriented arrows on 
every edge of Si. Yellow arrows for L, light blue for R and deep blue for the 
embedding domain O. As RWGs are purely geometrical functions that can be 
defined inside every homogeneous domain Di, red RWGs have also been drawn 
inside the sheet P. Note in Table 5 (p.68) and in Figure 36 that the embedding 
domain O has a RWG in every sector, except m=11. 

3.4 Local ZI=V systems of equations 

Having determined every RWGi functions in every domain Di, we can discretize 
the tEFIEi and tMFIEi. Then, to build a Zi matrix and Vi vector for every domain 
Di, we still have to choose for every sector m and in every domain Di contained in 
sector m a tangential testing function , ,ˆ( ) ( ) ( )

E E
m i i m iT r n r w r= ×  and 

, ,ˆ( ) ( ) ( )
H H

m i i m iT r n r w r= × . We refer to §2.3.2 for the choice of testing functions. In 
this book, in particular for the examples treated in chapter 6, we consider only 
the following cases : 

For “E” sectors : 

 , ,

E

m i m iT f=   (191) 

 , ,
ˆH

m i i m iT n f= ×  (192) 

For “D” sectors : 

 , , ,

E H

m i m i m iT f T= =  (193) 

 , , ,
ˆE H

m i i m i m iT n f T= × =  (194) 

where ,m if  is the RWGi in sector m and domain Di and ˆin  is the unit normal to Si 
at r , pointing outside Di. 

It is important to note here that the testing function for the tMFIEi or tMFIEi 
depends on the electromagnetic nature of the sector : for example tMFIEi can be 
tested with ,m if  or ,ˆi m in f×  in “D” sectors, but only with ,ˆi m in f×  in “E” sectors. 



Chapter 3 : Method of Moments Formulation for Multiple Regions  

  70 

We obtain, for every domain Di : 

 

, , , , ,

, , , , ,

( )
i i

i i

EJ EM E
mn i n i mn i n i m i

n N n N

iHJ HM H
mn i n i mn i n i m i

n N n N

Z J Z M V

m M
Z J Z M V

∈ ∈

∈ ∈

+ =

∈
+ =

∑ ∑

∑ ∑
 (195) 

where : 

 { }
,

, , ,( ) ( )
m i

EJ E
mn i i m i i n i

S
Z Z T r D r f dS = − ⋅  ∫  (196) 

 { }
,

, , ,( )
m i

HJ H
mn i i m i i i n i

S
Z Z T r T K f dS = − ⋅ − ∫ ɶ  (197) 

 { }
,

, , ,( )
m i

EM E
mn i m i i i n i

S
Z T r T K f dS = ⋅ − ∫ ɶ  (198) 

 { }
,

, , ,( ) ( )
m i

HM H
mn i m i i n i

S
Z T r D r f dS = − ⋅  ∫  (199) 

 
,

, , ( )
m i

E E inc
m i m i i

S
V T r E dS= ⋅∫  (200) 

 
,

, , ( )
m i

H H inc
m i i m i i

S
V Z T r H dS= ⋅∫  (201) 

The integrals are computed over Sm,i , the pair of triangles belonging to the 
discretized closed surface Si supporting ,m if . 

We can easily determine from Table 5 (p.68) that the set of sectors contained in 
DL are ML = NL = {1,3,4,5,6,11}, and similarly for the other domains. 

The four local ZiIi =Vi systems of equations can be gathered in a single raw global 
ZI=V system of equations as shown in Figure 37 : 

N L N L N P N P N R N R N O N O

M L Z
EJ

Z
EM

J V
E

M L Z
HJ

Z
HM

0 M V
H

M P Z
EJ

Z
EM

J V
E

M P Z
HJ

Z
HM * M = V

H

M R Z
EJ

Z
EM

J V
E

M R Z
HJ

Z
HM

M V
H

M O 0 Z
EJ

Z
EM

J V
E

M O Z
HJ

Z
HM

M V
H

 

Figure 37 : Local ZI = V system of equations 

Still this raw global system of equations does not fully represent the composite 
structure : the boundary conditions between domains must be accounted for. 

In [12], a global system of equations is built from the local ZiIi=Vi systems of 
equations in two additional steps : 

− Include the boundary conditions 

− Deal with the redundant equations arising from the previous step 
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In §§3.6 and 3.7 we complete and illustrate this procedure from the practical 
point of view of the programmer, who favours an efficient and all purpose 
implementation. 

3.5 Two properties of RWG sectors 

At this stage a programmer needs to allocate sufficient memory to store the Z 
matrix and V vector. As every Ji and Mi unknown is attached to one RWGi, itself 
defined on one edge, the number of Ji and Mi unknowns in the raw global system 
of equations is the sum of the Ji and Mi unknowns attached to every edge. 
Allocating memory based on the size of the raw global system of equations would 
lead to a huge waste of memory, as we will see. 

The two following properties, demonstrated further in this paragraph, provide 
the optimal answer : 

(P1) The Ji and/or Mi unknowns attached to every RWGi within a sector of an 
edge are all equal, regardless of the nature of the sector 

(P2) If the sector contains a PEC and/or a PMC, then Mi =0 and/or Ji =0 for this 
sector 

Figure 38 shows an edge common to two bodies having two branches each : the 
bounded domain B1 and free space B2. They create three sectors : RED is “E”, 
whereas GREEN and BLUE are “D”. 

 

Figure 38 : The two properties of RWG sectors 

(P1) allows to write J1 =J2 =J3 and M1 =M2 =M3 in RED, J1 =J2 and M1 =M2 in 
BLUE, J1 =J2 =J3 and M1 =M2 =M3 in GREEN. If the three sectors were “D”, the 
edge would have 3J and 3M unknowns. As RED is “E”, (P2) adds M1 =M2 =M3 =0, 
eliminating one M unknown. 

We demonstrate (P1) in the most complex sector (RED), containing the PEC 
wedge. 
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Figure 39 : Demonstration of (P1) 

In Figure 39 we have drawn the normal component only of the electric current 
density across the edge e in sector m, with dotted lines on the T- triangles and 
solid line on the T+ triangles. 

Considering the interface between domain 1 and 3, the boundary conditions 
(see §1.7) impose that 1 3 0J J− ++ =  anywhere inside the 1 3T T− +=  triangle. On the 
edge e, in sector m, we must thus also have for the normal component that 

1 3 0n nJ J− ++ = . 

With RWG functions (see §2.2.8) : 

− The electric current density inside the triangle Ti within domain Di depends 
only on the three unknowns attached to the three edges of Ti 

− The norm of the normal component of the electric current density on the 
edge e in sector m is continuous across the edge. For example 3 3| | | |n nJ J− += . 
Note that this is not true for the tangential component, thus also not for the 
total current density. 

− The normal component of the electric current density on the edge e in sector 
m is also constant all along the edge and depends only on the Jm unknown 
on this edge. For example, 3

nJ −  and 3
nJ +  are both determined by the single 

scalar Jm,3. 

As we have defined the RWGs within a sector in a tail arrow sequence, we can 
thus write : 

 ,1 ,3m mJ J=  (202) 

Applying now the boundary conditions on the interface between domains 2 and 3, 
we obtain similarly : 

 ,2 ,3m mJ J=  (203) 

If we propagate these equalities from one domain to the next adjacent domain, 
we deduce that a single unknown Jm needs to be determined in the “E” sector m 
on edge e. 

J only 

B1 B1 

1 2 

3 
m 



Chapter 3 : Method of Moments Formulation for Multiple Regions  

  73 

In a dielectric sector, only one Jm and only one Mm unknown are needed. 

To demonstrate (P2) we remember that the boundary condition at the surface of a 
PEC, for example in domain 1, states that 1 0M + = . Similarly, we have in domain 
2 that 2 0M − = . Propagating with (P1) the null normal component of the magnetic 
current density between adjacent domains, we can immediately write in sector m 
with electromagnetic nature “E” : 

 ,1 ,2 ,3 0m m mM M M= = =  (204) 

As a summary, on every edge the number of J unknowns is the sum of the 
number of “E” and “D” sectors, while the number of M unknowns is the sum of 
the number of “M” and “D” sectors. 

3.6 Global ZI=V system of equations 

Coming back to the composite structure of Figure 29 (p.64), we continue to ignore 
that sheet P is perfectly conducting and we derive a full dielectric solution. In 
Table 5 (p.68) we count m=16 pairs of Jm and Mm unknowns : the size of the 
global Z matrix is thus 32 x 32. 

In the raw ZI=V system of equations of Figure 37 (p.70), the forced equality of the 
unknowns within a sector due to property (P1) results in the collapsing of these 
unknowns to only one in the I vector and the summing of the corresponding 
columns of Z. For m=3 we have JL=JR=JO and ML=MR=MO. Exactly the same 
scheme applies for m=4, the other sector of type III. To contract notations, we will 
from now on represent sector types instead of the sectors themselves, 
remembering that a sector type stands for every individual sector of this type. 
Figure 40 (p.74) shows how property (P1) transforms the raw ZI=V system of 
equations. If a domain does not belong to a given sector type, for example domain 
L in type II, or domain O in type VII, then the corresponding rows and columns 
are shaded, meaning a zero value. We obtain a ZI=V system of equations that 
correctly represents the composite full dielectric structure but it is highly 
redundant : 16x6=96 equations for only 16+16=32 unknowns. The reason of this 
apparently unphysical situation is quite simple : every row corresponds to an 
equation created by the testing procedure, as required by the MoM. We have 
originally chosen to test every EFIEi and MFIEi with as many testing functions 
as there are sectors all around Si, to obtain square ZiIi=Vi local systems of 
equations, regardless of the boundary conditions between domains. The same 
way we were free to choose the testing functions , we are now  free to select or 
combine some of the 96 equations to end up with a square ZI=V global system of 
equations. 
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n 1 2 03-04 05-06 07-08 11 1 2 03-04 05-06 07-08 11

Type I II III IV V VI VII I II III IV V VI VII

m Z J J J V

1 I L L L L L L L L J1 L

2 II J2

03-04 III L L L L L L L L J3 L

05-06 IV E L L L L L L L L J4 L

07-08 V J5

VI J6

11 VII L L L L L L L L J7 L

I L L L L L L L L J8 L

II J9

III L L L L L L L L J10 L

⇒⇒⇒⇒ IV H L L L L L L L L J12 L

V J13

VI J14

VII L L L L L L L L J15 L

I J16

II J11

III M1

IV E P P P P P P P P M2 P

V P P P P P P P P M3 P

VI P P P P P P P P M4 P

VII P P P P P P P P M5 P

I M6

II M7

III M8

⇒⇒⇒⇒ IV H P P P P P P P P M9 P

V P P P P P P P P M10 P

VI P P P P P P P P M12 P

VII P P P P P P P P M13 P

I         M14  

II R R R R R R R R M15 R

III R R R R R R R R M16 R

IV E         M11  

V R R R R R R R R R

VI          

VII R R R R R R R R R

I          

II R R R R R R R R R

III R R R R R R R R R

⇒⇒⇒⇒ IV H          

V R R R R R R R R R

VI          
VII R R R R R R R R R

I O O O O O O O O O O O O O

II O O O O O O O O O O O O O

III O O O O O O O O O O O O O

IV E O O O O O O O O O O O O O

V O O O O O O O O O O O O O

VI O O O O O O O O O O O O O

VII

I O O O O O O O O O O O O O

II O O O O O O O O O O O O O

III O O O O O O O O O O O O O

⇒⇒⇒⇒ IV H O O O O O O O O O O O O O
V O O O O O O O O O O O O O

VI O O O O O O O O O O O O O
VII  

Figure 40 : Redundant ZI=V system of equations 

Until recently many combination schemes have been analyzed or proposed 
[15][16], but by far the most widely used combination scheme is PMCHWT [17], 
named by Mautz and Harrington [18] after Poggio, Miller, Chang, Harrington, 
Wu and Tsai [19][20]21]. The so-called “Müller” combination scheme [22][23] was 
recently rediscovered, and presented as a very interesting alternative [ 24 ], 
especially to eliminate the low frequency break-down problem (see §5.2.4). In 
both combination schemes, the discretized and tested tEFIEi and tMFIEi are 
combined over every domain Di. The global result is symbolized in Figure 41 
(p.75), where the red row (IV H) results from the combination of the red rows of 
Figure 40.  
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n 1 2 03-04 05-06 07-08 11 1 2 03-04 05-06 07-08 11

Type I II III IV V VI VII I II III IV V VI VII

m Z J M J V

1 I L  O L  O JI L  O

2 II  |   RO - - - - - - - - - - - - - - -    O   RO JII   RO

03-04 III  | L RO | L RO JIII L RO

05-06 IV E  | LP O | LP O JIV LP O

07-08 V  |   PRO |   PRO JV  PRO

VI  |  P O  P O JVI  P O

11 VII L   - - - - - - - - - - - - - - - - - - - - - - - - - LPR L   LPR JVII LPR 

I L  O L  O    O L  O L  O    O    O L   MI L  O

II   RO   RO   RO    O   RO    O   R MII   RO

III L RO L RO L  O   RO    O L R MIII L RO

⇒⇒⇒⇒ IV H LP O LP O  P O  P O LP  MIV LP O

V   PRO   PRO  P O  PR MV  PRO

VI  P O  P O  P  MVI  P O

VII LPR  LPR MVII LPR  

Figure 41 : Full dielectric ZI=V system of equations 

As an example the entry “ P O” at position IV,V in each of the four quadrants 
means a combination with contribution from the P and O domains : 

 

( , ), ( , ),

, ,

( , ), ( , ),

, ,

i i

i i

EJ EM
i IV V i i IV V i

D P O D P O

HJ HM
i IV V i i IV V i

D P O D P O

Z Z

Z Z

α α

β β

= =

= =

∑ ∑

∑ ∑
 (205) 

If the RWGs are all oriented in a tail-arrow sequence, as shown in Figure 33 
(p.66), then αi = 1 = βi for PMCHWT, whereas αi = εi and βi = µi for the Müller 
scheme [24]. In the particular case of PMCHWT-f-f (the testing 
function , , ,

E H

m i m i m iT f T= = ), the iTɶ  term in (197) and (198) is discarded. We refer to 
§2.3.2 for more information about testing schemes. 

The PMCHWT is sometimes considered to be unsuitable for the analysis of 
dielectric bodies with low contrast. In the limit case of a body with εr = ε0 
(see §6.1.4) PMCHWT was reported to yield unstable results [25], while the 
Müller solution would produce more accurate results [18]. We show in chapter 6 
with numerous examples that PMCHWT and Müller can both produce excellent 
and similar results in this particular case. 

From the practical point of view of the programmer, the full dielectric Z matrix 
and V vector can be obtained directly from Table 5 (p.68). The V vector and the Z 
diagonal entries are combinations on every domain belonging to the sector type. 
We remind that in the proposed notation a sector type stands for every sector of 
this type individually. For example position VI,III is actually a mxn block with 
m = {9,10,12,13,14,15,16} and n = {3,4}. 

3.7 PEC / PMC case 

We take now into account the PEC nature of the branched sheet P. This 
introduces 2 additional conditions. Firstly, there are neither iJ  nor iM  current 
densities inside PEC or PMC domains. This results in the suppression of the 
whole block indexed P in the global raw ZI=V system of equations of Figure 
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37 (p.70). In the full dielectric ZI=V system of equations of Figure 41 (p.75), every 
contribution from domain P in the Z and V combinations disappear. 

Secondly, property (P2) results in the suppression of the corresponding columns 
in Z. These two consequences can be visualized below, where the deleted 
contributions are in red and struckthrough (P) : 

n 1 2 03-04 05-06 07-08 11 1 2 03-04

Type I II III IV V VI VII I II III

m Z J M J V

1 I L  O L  O JI L  O

2 II  |   RO - - - - - - - - - - - - - - -    O   RO JII   RO

03-04 III  | L RO | L RO JIII L RO

05-06 IV E  | LP O | JIV LP O

07-08 V  |   PRO |  JV  PRO

VI  |  P O JVI  P O

11 VII L   - - - - - - - - - - - - - - - - - - - - - - - - - LPR L   JVII LPR 

I L  O L  O    O L  O MI L  O

II   RO    O   RO   RO MII   RO

III L RO L RO MIII L RO

IV H LP O 0 LP O

V   PRO  0  PRO

VI  P O 0  P O

VII L   LPR  0 LPR  

Figure 42 : ZI=V system of equations with a PEC 

We also remind with (191) to (194) that every sector of nature “E” cannot be 
tested the same way they would be tested if they were of nature “D”. 

Again we obtain a redundant system of equations. The usual schemes to obtain a 
square system of equations are called EFIE (the lower grey zone is dropped), 
MFIE (the higher grey zone is dropped) or CFIE (both grey zones are combined 
with some weighting between EFIE and MFIE) [26]. The CFIE (Combined Field 
Integral Equation) is a possible solution to eliminate the resonances occurring 
when the EFIE or the MFIE is used to solve volumic bodies (see §5.2.3). 

For the embedded parts of a perfectly conducting sheet, the scheme presented in 
this paragraph fails, as it leads to a singular Z matrix. The integro-differential 
equations relevant for sheets have already been presented in §1.4. Chapter 4 is 
devoted to the treatment of sheets with the MoM, in particular with a new 
formulation, the E-MFIE. 

3.8 Summary 

In this chapter the Method of Moments has been extended to the most general 
case of multiple linear, homogeneous and isotropic regions. Instead of a purely 
theoretical approach, we chose to treat a simple but representative example that 
illustrates the steps allowing to incorporate the boundary conditions to the 
discretized integral equations, in the case of RWG basis functions.  

During this process, several concepts have been introduced : singular edges and 
branches, electromagnetic sectors around an edge and their properties, 
summarized in a table, physical continuity and solder line. Some of those 
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concepts will be reused ( singular edge, in chapter 4 ) or illustrated ( solder 
line, in chapter 6 ) 

The last step of the treatment of multiple regions (combination) has been 
explained in a general way, presenting PEC or PMC sectors as a special case of 
dielectric sectors. The most widely used combination schemes for dielectric 
sectors - PMCHWT and Müller - have been explained, along with less common 
ones, showing at the same time how infinitely many other combination schemes 
could be derived. 

The special case of embedded sheets, for which the general canvas described in 
this chapter fails, is treated in chapter Method of Moments  
for perfectly conducting sheets. 
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4 Method of Moments  

for perfectly conducting sheets 

 

In chapter 3 a unified scheme was proposed to solve numerically with the Method 
of Moments and RWG basis and testing functions the problem of scattering by 
any combination of volumes or sheets. It had to be recognized though that this 
scheme fails in presence of sheets exhibiting embedded edges. In this chapter, the 
reasons why such edges lead to a singular impedance matrix are explained for 
the first time in every detail for the most general case of sheets with multiple 
branches. The severe singularities of the EFIE are pretty well known, and the 
cure for a simple sheet with two branches became the standard and unique way 
to solve sheets. The case of the MFIE is far more interesting. In the literature it 
is everywhere repeated that the MFIE cannot be used to solve sheets, most of the 
time without any justification and very rarely with a vague or incomplete one. It 
is not surprising, as the full comprehension requires to use the correct expression 
of the MFIE for sheets, derived in chapter 1 of this book. This correct expression 
is also indispensable for the E-MFIE, a novel formulation we introduce in this 
chapter to fully solve sheets within the unified solving scheme proposed in 
chapter 3. Finally an efficient implementation of the E-MFIE is also suggested. 

4.1 Preamble 

In this book we call “sheet” an infinitely thin plate. A sheet can have multiple 
branches, be twisted and contain holes, as depicted in Figure 43. 

 

Figure 43 : Moebius-ring sheet, with 2 holes and 1 branch 

We consider the scattering by a three-dimensional finite-sized perfectly electric 
conducting (PEC) sheet of arbitrary shape illuminated by an incident wave. Very 
few analytical solutions are available for PEC sheets. The most famous examples 
are the half plane [1], the strip [2], and the quarter plane [3] for infinite sheets, 
then the circular disc [4] and the square plate [5] for finite-sized sheets. All these 
solutions allow the determination of the electric current densities on both faces 
everywhere on the surface of these simple canonical sheets. They show for 
example that the current density on the face illuminated by the incident plane 
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wave is intenser than on the shadowed face. To solve for the current densities at 
the surface of arbitrary-shaped sheets like the one depicted in Figure 43 (p.81), 
one must resort to a numerical technique, such as the Method of Moments (MoM) 
described in chapter 2. In the specific case of a zero volume body, namely a sheet 
it is well known that only the tEFIE can be used, and that it yields only the sum 
of the current densities on opposite faces. It is also well known that the tMFIE 
cannot be used (alone) as it depends on both the sum and the difference of the 
current densities [6][7][8]. If one is interested in the individual current densities 
on both faces, for example to determine a shielding level or to quantify leakage 
currents flowing outside an imperfectly shielded enclosure, it is suggested in [6] 
to incorporate their sum obtained from the tEFIE into the tMFIE, then solve for 
their difference, and finally extract the individual current densities from their 
sum and difference. This elegant approach does not say how to cope with the 
current densities flowing around the sheet borders. Moreover it is not applicable 
as such for sheets with branches like the ones depicted in Figure 43 and Figure 
44. In this chapter we first review in detail the singular behavior of the tEFIE 
and the tMFIE impedance matrices when applied alone to arbitrary PEC sheets. 
Next we introduce the E-MFIE, a generalized formulation that yields the 
individual current densities everywhere on an arbitrary PEC sheet. An efficient 
implementation of the E-MFIE is then proposed. The E-MFIE is illustrated by an 
example in §6.9. 

4.2 Theory 

4.2.1 tEFIE-f and tMFIE-nxf for PEC sheets 

The E-MFIE formulation described in this book is based on the tEFIE and 
tMFIE, the tangential projections of the EFIE and MFIE (see §1.11). It uses 
RWG basis functions (see §2.2.8), but it naturally extends to rooftop functions 
(see §2.2.9). For reasons explained in §2.3.2 the tEFIE is tested with the ( )RWG r  
itself, and therefore denoted tEFIE-f. Similarly, the tMFIE is tested with 
ˆ( ) ( )n r RWG r×  and denoted tMFIE-nxf. The vector ˆ( )n r  is the unit normal to the 

triangle pair Sn supporting ( )nRWG r and pointing outside the sheet.  

 

Figure 44 : Opposite faces, inner and border edges of a sheet 

Since we are dealing with sheets and not with volumes, it is essential from here 
on to specify the face where the observation point, r  or its opposite r  (see Figure 

44), is situated as it determines the orientation of the unit normal to that face, 
ˆ( )n r or ˆ( )n r . 

ˆ( )n r  

r  

ˆ( )n r  

r  
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The first step in the MoM is to create a mesh made of adjacent non-overlapping 
triangles and to define the basis functions. In the case of sheets, it is customary 
to generate only one unique mesh for every pair of opposite faces. One could 
imagine creating two different meshes for every pair of opposite faces. Such 
meshes are beyond the scope of this book as they would require careful treatment 
of singularities that appear in the interactions between partly overlapping 
triangles on opposite faces. 

PEC sheets meshed uniquely for every pair of opposite faces have at first sight 
two types of edges. The border edges surrounding the sheet and supporting only 
one RWG, folded around the edge. The inner edges separate the space all around 
them in two or more electrically isolated sectors in which independent current 
densities are flowing (see §3.3). Consequently, they support one RWG in every 
sector. In Figure 44 (p.82) the inner edges are represented as dotted lines while 
border edges are solid lines. Actually, every edge can be regarded as defining p 
sectors, where p=1 for border edges and  p≥2 for inner edges. We call  p-edge an 
edge supporting p sectors. We further qualify a p-edge as “embedded” if all its p 
sectors belong to the same homogenous domain, for example free space, or any 
other dielectric medium. As there are no fields and currents inside a PEC 
structure, we remind that the tEFIE and tMFIE are written inside dielectric 
domains only. Every part of the sheet can be individually in contact with only one 
or several dielectric domains.  

In the worked example of Figure 45 (p.84) there are seven border edges defining 
sectors 1 to 7, one 2-edge defining sectors 8 and 9 and one 3-edge defining sectors 
10, 11 and 12. It is straightforward but important to note here that for every 
border edge b ( for example b = 5 in Figure 45b ) : 

 ( ) ( )b bRWG r RWG r
+ −

= −  (206) 

where the superscripts + and – indicate the positive and negative triangles 
supporting the RWG. 

Conventionally we will orient the RWG’s all around every inner edge i in a tail-
arrow sequence, as depicted in Figure 45 (p.84) for the 2-edge (sectors 8,9) and for 
the 3-edge (sectors 10,11,12). This choice, proposed in [9] and elaborated in §3.3, 
will ease the discussion that follows as it permits to generalize (206) to p-edges. 
For example in sectors 10, 11 and 12 of Figure 45b (p.84) : 

 

10 11

11 12

12 10

( ) ( )

( ) ( )

( ) ( )

RWG r RWG r

RWG r RWG r

RWG r RWG r

+ −

+ −

+ −

= −

= −

= −

 (207) 

With every RWG properly defined, the vector electric current density at any point 
r  on any face of any part of the sheet can now be linearly approximated by : 

 ( ) ( )
N

nn

n

J r J RWG r≈∑  (208) 
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where Jn is the complex scalar unknown linked to the ( )nRWG r  defined on one 
edge in one sector. The total number N of Jn unknowns is equal to the total 
number of all sectors around every edge of the mesh. If Np is the number of p-
edges, then N=Σ[p.Np]. In the case of Figure 45, N1=7, N2=1 and N3=1 so that 
N=12. 

 

Figure 45 : Elementary Sheet with 1- 2- and 3-edges and 12 sectors  
(a) : 3D view , (b) : 2D projection 

These Jn unknowns can be determined by solving a NxN system of equations 
ZI=V that will be established in §§4.2.2 and 4.2.3. Including (208) in the general 
expressions for the EFIE and MFIE for PEC sheets given in §1.12, we hereafter 
discretize the tangential component of the EFIE (called tEFIE in this book) and 
of the MFIE (called tMFIE in this book). Then we dot multiply the discretized 
equations with the appropriate weighting function ( )w r . As an example, let us 
consider with reference to Figure 45 that the observation point 12r r

+= , then 12r
− , 

is running on triangles 12T
+ , then 12T

− , in sector 12. For the tMFIE-nxf, developed 
in §4.2.3, we also need to consider 

12
r

+ , the point opposite to 12r
+  from the 

perspective of sector 12 ( then 
12

r
−  , the opposite of 12r

− ). It is recognized that 

1012
r r

+ −=  ( 1112
r r

− += ) and 12 10T T
+ −=  ( 12 11T T

− += ), as illustrated in Figure 45. To 
maintain general expressions in what follows, we use m or n to refer to sectors 
and N for the total number of unknowns and equations. 
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+
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4.2.2 tEFIE-f applied to PEC sheets 

From (122) the discretized tEFIE at mr r
+=  on the triangle mT

+  reads : 

 
1

ˆ ˆ( ) ( )[ ] ( ) ( )
N

inc
m n n m n m m m

n

n r Z D r J n r E r
+ + + +

=

− × = ×∑  (209) 

with the expression on the triangle pair n n nS T T
+ −= + , choosing for example the 

first form (110) for nD  : 

 { }
{ }

(1) (1) (1)

2 '

2 '

( ) ( ) ( )

( ') ' ( ') '

( ') ' ( ') '

n

n

n m n m n m

n nn n s n m
T

n

n nn n s n m
T

n

D r D r D r

j
k G RWG r RWG G r r dS

k

j
k G RWG r RWG G r r dS

k

+

−

+ + + − +

+ + +

− − +

= +

= − ∇ ⋅ ∇ −

+ − ∇ ⋅ ∇ −

∫

∫

 (210) 

where Gn is the free-space Green’s function in sector n. 

Due to (206), we have for every triangle pair Sb where b is a (border) 1-edge, and 
for any observation point r : 

 ( ) ( ) ( ) 0b b bD r D r D r
+ −= − ⇒ =  (211) 

With (207) this property generalizes to embedded p-edges. For example in sectors 
10, 11 and 12 of Figure 45 (p.84) :  

 

( )10 11 10 11 12

11 12

12 10 1

( ) ( ) ( ) 0

( ) ( )
: ( ) 0

( ) ( )

p

n

n

D r D r D D D r

D r D r
in general D r

D r D r

+ −

+ −

+ −
=

= − + + =



= − ⇒
=

= − 
∑

 (212) 

If all p sectors around a p-edge do not belong to the same domain, then the 
corresponding opposite equalities in (212) are not true anymore. Indeed the 
electromagnetic properties εn and µn differ in these sectors, thus also kn and Gn. 
Dot multiplying the discretized tEFIE by ˆ ( ) ( )mm m mn r RWG r

++ + +× , integrating over 

mT
+ , we obtain after elimination of the ˆmn

+ ×  term : 

 
1

( ) ( ) ( ) ( )
m m

E E
mn m

N
inc

m mn m n m n m m m
T T

n

z v

Z RWG r D r dS J RWG r E r dS
+ +

+ +

+ ++ + + +

=

− ⋅ = ⋅∑ ∫ ∫
��������������� �������������

 (213) 

Adding the contribution of mT
− , we obtain the complete ZEI=VE system of 

equations for the tEFIE-f (m=1..N) : 

 ( )
1 1

N N
E E E E E E

n mn n mn mn m m m

n n

J z J z z v v v+ − + −

= =

= + = + =∑ ∑  (214) 
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4.2.3 tMFIE-nxf applied to PEC sheets 

The tMFIE for a PEC sheet, written for an observation point on the sheet where 
both faces are embedded in a single domain, includes a principal value term 
containing the difference between the current densities on opposite faces (see 
§1.12). On mT

+ and mT
−  respectively : 

 { } ( ) ( ){ }1
ˆ ˆ( ) ( ) ( ) ' ' ' ' ( ) ( )

2
m m m n m m m i mm S

J r J r n r J r G r r dS n r H r
++ + + + + + +− + × × ∇ − = ×∫  (215) 

 { } ( ) ( ){ }1
ˆ ˆ( ) ( ) ( ) ' ' ' ' ( ) ( )

2
m m m n m m m i mm S

J r J r n r J r G r r dS n r H r
−− − − − − − −− + × × ∇ − = ×∫  (216) 

where S is the total surface of the sheet, including both faces everywhere. If the 
domains are different on both faces of the PEC sheet at the observation point, 
then the principal value term only contains the current density in the domain in 
which the tMFIE is written, while S is restricted to the surface of the sheet in 
contact with the domain containing the observation point (see §1.4.2). 

After discretization of (215) with (208), we obtain : 

 { }
1 1

1
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

2

N N

n nn m m m n n m m m i mm
n n

J RWG r RWG r n r J K r n r H r
++ + + + + + +

= =

− + × = ×∑ ∑  (217) 

with : 

 { }
{ }

( ) ( ) ( )

( ') ' ( ') '

( ') ' ( ') '

n

n

n m n m n m

n n m
T

n n m
T

K r K r K r

RWG r G r r dS

RWG r G r r dS

+

−

+ + + − +

+ +

− +

= +

= × ∇ −

+ × ∇ −

∫

∫

 (218) 

Similarly to (211) and (212), we have the properties at any observation point r  
for border edges b and for embedded p-edges, for example in sectors 10, 11 and 12 
of Figure 45 (p.84) : 

 ( ) ( ) ( ) 0b b bK r K r K r
+ −= − ⇒ =  (219) 

 

10 11 10 11 12

11 12

112 10

( ) ( ) ( ) 0

( ) ( )
: ( ) 0

( ) ( )

p

n

n

K r K r K K K r

K r K r
in general K r

K r K r

+ −

+ −

+ −
=

= − + + =


= − ⇒
=

= − 
∑

 (220) 

Note that exactly three RWGn do contribute to each principal value term in (217). 
For instance, on 12T

+  : 
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 7 8 1012 7 12 8 12 12 12( ) ( ) ( ) ( )J r J RWG r J RWG r J RWG r
+ + + += + +  (221) 

 7 8 1012 7 12 8 12 12 12( ) ( ) ( ) ( )J r J RWG r J RWG r J RWG r
+ + + += + +  (222) 

Before proceeding, we replace these ( )nRWG r  in the principal value term by the 
equivalent ˆ ˆ( ) ( ) ( )nn r n r RWG r− × × . Next we dot multiply the discretized tMFIE by 

mRWG , integrate over mT
+ , redistribute the dot and cross products to obtain : 

 

{ }

{ }

1

ˆ( ) ( ) ( ) ( )

ˆ( ) ( ) ( )

m

H
mn

m

H
m

N

mn m m n n mmT
n

z

mm m i m
T

v

J n r RWG r I r K r dS

n r RWG r H r dS

+

+

+

+

+ ++ + +

=

++ + +

× ⋅ +

= × ⋅

∑ ∫

∫

�����������������������

�������������������

 (223) 

where : 

 { }1
ˆ ˆ( ) ( ) ( ) ( ) ( )

2
n nn m mm m mI r n r RWG r n r RWG r

+ + ++ +−
= × + ×  (224) 

 ˆ ˆ( ) ( )m m
n r n r

++ = −  (225) 

As opposed to the operators D  in (211), (212) and K  in (219), (220), the principal 
value term I  in (224) has a different property, this time for any pair of opposite 
observation points r and r  denoted by r . Taking again the example of sectors 
10, 11 and 12, if r  belongs to one of the triangles attached to the 3-edge, then : 

 
12

10

( ) 0n

n

I r

=

≠∑  (226) 

If r  does not belong to one of the triangles attached to the 3-edge, this sum is 
identically zero. 

Adding also the contribution from mT
− , we finally obtain the complete ZMI=VM 

system of equations for the tMFIE-nxf (m=1..N) : 

 ( )
1 1

N N
M M M M M M

n mn n mn mn m m m

n n

J z J z z v v v
+ − + −

= =

= + = + =∑ ∑  (227) 

4.3 Singularities arising with PEC sheets 

4.3.1 Singularity of ZE obtained with the tEFIE-f 

Considering the properties (206) and (207) for mRWG  in the equation (213) it is 
easy to derive, in the example of Figure 45 (p.84), that for any (column) n of ZE : 
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 8 9 9 8

10 11 11 12 12 10

( 1..7)E E
mn mn

E E E E
n n n n

E E E E E E
n n n n n n

z z m

z z z z

z z z z z z

+ −

+ − + −

+ − + − + −

= − =

= − = −

= − = − = −

 (228) 

These relationships show that the sum of the p rows of ZE corresponding to all p 
sectors around an embedded p-edge are identically zero, for example : 

 ( ) ( ) ( )10 10 11 11 12 12 0E E E E E E
n n n n n nz z z z z z for all n
+ − + − + −+ + + + + =  (229) 

Border edges yield rows filled with zeros, while inner edges yield linearly 
dependent rows, making ZE singular. The classical way [9] to circumvent the 
singularity of the tEFIE-f system of equations and solve sheets anyway is to 
remove for every embedded edge one RWG in one sector. Indeed (212) in (213) 
and (214) ensures that : 

 0E
mp

p

z for all m=∑  (230) 

Considering (229) and (230), the rows and columns of ZE involving the embedded 
3-edge defining sectors 10, 11 and 12 in Figure 45 (p.84) look like : 
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where the parentheses enclose a (sub)vector or a (sub)matrix spanning over rows 
and/or columns 1 to 9. Adding rows 10 and 11 to row 12 and adding columns 10 
and 11 to column 12 leads to a 11×11 system of equations surrounded by zeros 
that can be uniquely solved for J1 to J9, J10-J12 and J11-J12 , but not for J10, J11 or 
J12 individually : 

 

( ) ( ) ( )
( )
( )

( ) ( )1..9,1..9 1..9,10 1..9,11
1..91..9

10,1..9 10,10 10,11 10 12
10

11 12
1111,1..9 11,10 11,11

12

0

0

0

0
0 0 0 0

E E E
E

E E E
E

EE E E

Z z z
vJ

z z z J J v
J J

vz z z
J

           −    =  −              
 

 (232) 

This process must be repeated for every embedded edge to extract from ZEI=VE a 
regular and thus solvable subsystem. In the most common case of an embedded 
2-edge, considering that opposite directions have been chosen for the RWGs in 
the two sectors (see Figure 45, p.84), a solution is obtained for the sum of the 
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current densities in both sectors. Considering again the example of Figure 45 
(p.84), row and column 8 must be removed from (232) and a solution is obtained 
for J7-J8. Removing one RWG in every sector also implies that border edges, 
having only one sector, are completely discarded. Fortunately, the sum of the 
normal components of the current densities around the border edge b is known to 
be zero [10][11, p. 653]. Since it is entirely determined by the unknown Jb, this 
unknown does not need to be calculated and the corresponding rows and columns 
can be discarded. In the example of Figure 45 (p.84), rows and columns 1 to 7 
must also be removed from (232). 

4.3.2 Singularity of ZM obtained with the tMFIE-nxf 

Considering the properties (206), (207) and (225), it is easy to derive from 
equation (223), based on the example of Figure 45 (p.84), that for any (column) n 
of ZM : 
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With (227), the two first relationships in (233) show that, for any (column) n : 
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To generalize (234) we now show that only embedded p-edges with an even 
number of sectors ( p=2,4,6,…) yield linearly dependent rows and columns. If we 
consider an embedded 3-edge and an embedded 4-edge, equation (233) means 
that the p elements z1..p,n can be schematically expressed as depicted in Figure 
46 : 

 

Figure 46 : tMFIE-nxf  zmn elements around a p-edge 
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dependence. If the number of rows is odd, for example p=3, one obtains 
an+bn-(bn+cn)=an-cn while row 3 contains an+cn, meaning linear independence. It 
is straightforward to generalize this reasoning to any value of p, even or odd. 

Unfortunately, though the tMFIE-nxf is less singular than the tEFIE-f when 
applied to PEC sheets, the simple combination of rows and columns to obtain J1-
Jp, J2-Jp … Jp-1-Jp for every p-edges is not possible with the tMFIE-nxf. Such a 
unique solution to the rank deficient system of equations (232) could indeed be 
obtained because not only the rows but also the columns of ZE are linearly 
dependent. This is ensured by (230), stemming from (212). As shown by (223), the 
elements of ZM contain two terms : K  and I . The integral term K  satisfies 
property (220), similar to (212). But the principal value term I  does not, in view 
of property (226). As a consequence, the columns of ZM are not linearly dependent 
and cannot be combined to allow the unique solution J1-Jp, J2-Jp … Jp-1-Jp, as for 
the tEFIE-f. 

This impossibility to obtain a unique solution can be related to the fact that the 
tMFIE-nxf depends on both the sum of the current densities on both faces of a 
sheet, through the K  term, but also on their difference, through the I  term. On 
the other hand, the tEFIE-f depends only on the sum of the current densities on 
both faces of a sheet, through the D  term in (210). 

4.4 E-MFIE for PEC sheets 

4.4.1 The E-MFIE formulation 

Instead of removing rows and combining columns, we now propose to maintain 
all RWGs on every edge and sector, and mix tEFIE-f and tMFIE-nxf rows to 
construct a regular Z matrix. For the border edges, only the tMFIE-nxf can be 
used, since the tEFIE-f rows are identically zero. For 2-edges, we use the tEFIE-f 
on one face and the tMFIE-nxf on the other face. Note that the choice of the 
tEFIE-f and tMFIE-nxf faces is local to every edge, entirely arbitrary and there is 
no need to maintain the same choice for adjacent edges. For p-edges, we are free 
to select q tEFIE-f and p-q tMFIE-nxf among the p sectors. If p is even, q must be 
greater than 0 and smaller than p. If p is odd, we are free to choose the 
tMFIE-nxf exclusively (q=0). For example, (235) is one possible ZI=V system of 
equations that can be assembled with the E-MFIE for the elementary structure 
in Figure 45 (p.84). 

This very simple E-MFIE scheme has the advantage of being universal : 
regardless of the presence of volumes or sheets made of various materials, there 
is only one procedure to generate the mesh and the RWGs everywhere. The 
E-MFIE needs to be used only on every embedded p-edge of sheets, and the 
individual current densities are obtained everywhere directly from the one-step 
resolution of a global ZI=V system of equations. Note also that the E-MFIE 
provides the current densities flowing around border edges. The ease of 
implementation of the E-MFIE scheme is particularly advantageous in presence 
of p-edges with p ≥ 3 and partly embedded sheets. In such cases indeed, the 
derivation of the current densities on opposite faces of sheets becomes less 
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straightforward than described in [6] for a simple PEC sheet embedded in free 
space, as will be shown in §4.4.2.  
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However the E-MFIE has the disadvantage to require a Z matrix of dimension 
N=Σ[p.Np] whereas a tEFIE-f solution with elimination of one unknown per 
embedded edge (see §4.3.1) requires a Z matrix of dimension NE=Σ[(p-1).Np]. For 
regular sheet shapes, where the number of border edges is small as compared to 
the number of inner edges, N is somewhat larger than 2NE. For fractal sheets, or 
sheets containing many holes, the ratio between border edges and inner edges 
increases and N can become closer to 3NE. The memory required to store a Z 
matrix of size NxN is proportional to N2, while the CPU time to solve the ZI=V 
system of equations rates as N2 with an efficient iterative solver or as N3, with a 
direct LU solver. Considering a ratio N/NE comprised between 2 and 3 and a 
direct LU solver (or an efficient iterative solver), the E-MFIE solution is 8 to 27 
(respectively 4 to 9) times slower to obtain than the classical tEFIE-f solution. 
This significant increase in required CPU time is the price to pay to access the 
current densities on both faces of the sheet in one step only. If this price is not 
acceptable, we propose hereafter an efficient implementation of the E-MFIE, at 
the expense of a multi-step resolution scheme. 

4.4.2 Efficient implementation of the E-MFIE 

For a sheet containing p-edges with p≥ 3, several E-MFIE matrices can be 
constructed, depending on the number of tEFIE-f and tMFIE-nxf rows that are 
chosen. Since the efficient implementation of the E-MFIE is based on the 
separate resolution of the tEFIE-f and tMFIE-nxf portions of the E-MFIE system 
of equations, it requires that a maximum of tEFIE-f rows be chosen. For the 
example of Figure 45 (p.84) we must select the tMFIE-nxf for every 1-edge, only 
one tEFIE-f for the 2-edge (sector 9) and two tEFIE-f for the 3-edge (sectors 11 
and 12). The resulting ZI=V system of equations is depicted in Figure 47 (p.92), 
where the m,n indices denote the sectors. 

In the Z matrix, blank cells correspond to zero values and identical symbols are 
used for identical values. We can make three observations. 

Firstly we consider the zmn terms where n is a border edge (1 to 7 in this 
example). Due to (211) the corresponding tEFIE-f submatrix is zero. Due to (219), 
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(220) and (226) the corresponding tMFIE-nxf submatrix is very sparse, and 
purely real as it is entirely determined by the principal terms (224). 

Secondly, the square tMFIE-nxf submatrix Zmn where both m an n are border 
edges is symmetric, and can therefore be filled faster. 

1 2 3 4 5 6 7 8 9 10 11 12

9 -A A -B-C B C J1

EFIE 11 -D D -E-F E F J2 VE
12 -G G -H-I H I J3

1 AA HH -a a aa bb cc J4

2 HH BB -b b dd ee ff J5

3 CC JJ -c c gg hh ii * J6 =

4 JJ DD -d d jj kk ll J7

MFIE 5 EE KK e f -vv-uu vv ww J8 VH
6 KK FF g h -xx-yy xx yy J9

7 GG j k mm nn oo J10

8 LL MM l m pp qq rr J11

10 NN PP QQ n p ss tt uu J12

Real Complex  

Figure 47 : E-MFIE matrix for the example of Figure 45 

Thirdly we consider in the tMFIE-nxf portion the zm(1..p) interaction terms 
between a triangle pair Sm and the p triangle pairs S1…Sp around a p-edge. If no 
triangles in the pair Sm superimposes to one of the triangles in S1…Sp, then the 
sum zm(1)+...+zm(p)=0. Otherwise, this sum is a real value obtained from the sum of 
the principal terms only, which are far easier and faster to compute than the 
integral terms (218). These properties stem from (220) and (226). The interaction 
terms for which the above sum is zero are grey-shaded in Figure 47. In the 
tEFIE-f portion of the E-MFIE matrix, the same sum zm(1)+…+zm(p)=0 at all times, 
due to (212). 

We can thus transform the original ZI=V system of equations into that shown in 
Figure 48 : 

1 2 3 4 5 6 7 8+9 10+11+12 9 11 12

9  A B C J1

EFIE 11  D E F J2 VE

12  G H I J3

1 AA HH aa+bb+cc a bb cc J4

2 HH BB dd+ee+ff b ee ff J5

3 CC JJ gg+hh+ii c hh ii * J6 =

4 JJ DD jj+kk+ll d kk ll J7

MFIE 5 EE KK e+f f vv ww J8 VH

6 KK FF g+h h xx yy J10

7 GG j+k mm+nn+oo k nn oo J9-J8

8 LL MM l+m pp+qq+rr m qq rr J11-J10

10 NN PP QQ n+p ss+tt+uu p tt uu J12-J10

Real Complex  

Figure 48 : Efficient E-MFIE system of equations 

This system of equations can now be solved through the following steps. With VE, 
the 3x3 tEFIE submatrix provides J9-J8, J11-J10 and J12-J10. Next we subtract 
from VH the 9x3 complex part of the MFIE portion multiplied by the 3x1 vector 
[J9-J8;J11-J10;J12-J10], to form VH’. The 9 remaining unknowns J1 to J8 and J10 can 
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now be obtained from VH’ and the real sub-block of the 9x9 MFIE submatrix. 
Finally J9, J11 and J12 are derived in an obvious way from the previous results. 

The increased implementation complexity of this procedure as compared to the 
simple one-step E-MFIE procedure described in §4.4.1 is worth it only if the size 
NE of the tEFIE-f submatrix is a significant portion of N, the size of the E-MFIE 
matrix. In the example of Figure 45 (p.84), N/NE=4. As mentioned at the end of 
§4.4.1, N/NE should be comprised between 2 and 3 for realistic sheets. In such 
cases, a computing time reduction by a factor between 3 and 4 can be expected if 
a direct LU solver is used. A sparse solver can also be used to speed up the 
resolution of the tMFIE-nxf submatrix system of equations [12]. 

4.5 Summary 

This chapter was devoted to embedded sheets, as it was recognized that this case 
only didn’t fit in the general canvas described in chapter 3 to treat any 
combination of linear, homogeneous and isotropic bodies. 

In the first place, the singularities associated with the impedance matrices of 
both the tEFIE and tMFIE are analyzed in great details, starting from the 
correct three-dimensional vector expressions valid for sheets established in 
chapter 1.  

The tEFIE analysis is not entirely new, excep the generalization to p-edges, for 
which a detailed explanation of the singular behaviors as well as the widely used 
cure are paralleled to the explanations given afterwards for the tMFIE.  

In the case of the tMFIE, a much less singular behavior is revealed, especially for 
embedded edges supporting an odd number of sectors. Despite this milder 
singularity, it is fully demonstrated why there is no cure available, as for the 
tEFIE, closing once for all the nebulous debate about the mysterious inability of 
the tMFIE to deal with so-called “open surfaces”.  

Additionally, a new formulation is proposed – the E-MFIE – that allows to fully 
solve arbitrary perfectly conducting sheets according to the general canvas 
described in chapter 3. Moreover, this new formulation yields a richer solution 
than the one obtained with the cured tEFIE : the current densities on both faces 
and around every edge are revealed instead of only their sum. The E-MFIE is 
illustrated in chapter 6.  

Fitting to the general canvas of chapter 3 with an easy implementation has a 
price : a larger impedance matrix. If the generality and ease of implementation is 
deemed less important than the resource needed to obtain the richer solution, 
then an efficient implementation of the E-MFIE is proposed. 
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5 Accuracy of the Method of Moments 

 

The Method of Moments is expected to yield an accurate approximation of the 
unknown exact solution. In this chapter we first review the various types of 
errors that can be encountered and we explain how they can be controlled or 
avoided. Next we concentrate on the numerical integration errors, especially 
those occurring in the evaluation of singular integrals. The many ways to cope 
with these problematic integrals are reviewed, with their advantages and 
disadvantages. In line with our objective of generality, we choose the integration 
strategy that offers the greatest versatility : high efficiency polynomial 
quadratures. But to quantify how well the main objective of accuracy is also met 
with this choice, we propose an original detailed three-level analysis. First the 
accuracy of the numerical integration is measured with the help of self derived 
exact solutions for the interaction between two adjacent triangles, regular and 
elongated. Secondly we verify our observations at system level on a canonical 
elementary body. Finally, in §6.12 at the end of chapter 6, we confirm our 
conclusions with a double pyramid made of mixed material and meshed with 
regular triangles, and with the challenging case of a very thin dielectric plate 
containing elongated triangles. 

5.1 Approximations introduced by the Method of Moments 

The Method of Moments is a numerical technique where a set of exact 
integro-differential equations are being discretized. In Electromagnetics, these 
integro-differential equations are derived from Maxwell’s equations. For 
problems involving only homogeneous and isotropic domains, they can be 
expressed in function of two unknown surface current densities J  and M . After 
discretization, these integro-differential equations become a ZI=V matrix system 
of equations, where the vector I contains all coefficients to determine an 
approximation for J  and M . This was the topic of chapters 2, 3 and 4. 

The integro-differential equations involve two or more domains delimited by 
closed surfaces. Except in a few specific cases where entire domain basis 
functions can be used (see §2.2.3), the boundaries of these domains must be 
partitioned into subdomains. When a rounded surface is replaced by a series of 
flat facets, or when an exponential flaring is replaced by a spline fitting, a small 
but sometimes non negligible geometrical error is introduced, illustrated by 
Figure 70 (p.143) and quantified in Table 17 (p.153). 

When subdomain basis functions (see §2.2.4) are used to represent the equivalent 
current densities, the exact solution is generally replaced by a constant, 
piecewise linear or higher order polynomial function. The physical error, due to 
the approximation of the physical magnitudes of interest, is inherent to the 
numerical method. As such it is unavoidable, but this error is expected to tend 
towards zero if the polynomial order of the approximating functions is increased, 
and/or if the size of the subdomains is reduced [1, p.70]. The influence of the 
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mesh density is shown in §§6.2.4 and 6.7. However this convergent behavior can 
only be expected if some conditions are fulfilled : 

− the basis functions must possess sufficient derivability with regard to the 
integro-differential operator applied to them. For example, using pulse basis 
functions (§2.2.6) to represent the equivalent surface current densities as 
constant over every mesh element in a discretized equation where the 
surface divergence of these current densities is present will not guarantee a 
better approximation if the size of the subdomains is reduced [2, p.51].  

− the basis functions must be able to represent the actual physical behavior of 
the surface current densities.  

o On some edges and corners, depending on the geometry and 
electromagnetic properties of the domains as well as on the incident 
fields, the surface current densities can be infinite, while their growth 
towards infinity close to such edges and corners is usually very slow. Any 
attempt to represent this specific behavior with a linear, or even a higher 
order polynomial function, will always suffer from a large absolute error 
in the close vicinity of the edges and corners, regardless of the fineness of 
the mesh. 

o As explained in §2.2.5 and illustrated in §6.6.2, basis functions must not 
impose tangential continuity between subdomains to model equivalent 
surface densities around edges and corners of a dielectric body. 

In this book, we also explained and illustrated another aspect of the physical 

error, appearing for example with RWG (§2.2.8) and rooftop (§2.2.9) basis 
functions, because they are defined as incomplete linear expansions over a pair of 
adjacent subdomains, imposing that the normal component of the surface current 
densities be constant along every edge of the subdomains. Therefore surface 
current densities showing a strong transverse gradient cannot be modelled and 
lead to unphysical zigzagging (see for example Figure 68, p.141 - top left - and 
Figure 138, p.215). In cases where the normal component of the surface current 
densities must vary significantly along an edge, very distorted patterns result 
(see Figure 116, p.192 and Figure 129, p.205). 

As a result of the geometrical and physical approximations, the Method of 
Moments produces a ZI=V matrix system of equations. The errors on the surface 
current densities J  and M  are directly proportional to I=Z-1V , thus also 
strongly dependent on the accuracy of the elements of the impedance matrix Z 
and the source vector V. Theses elements are obtained through numerical 
integrations, called quadratures (§5.3.1). The elements of V are easy to obtain 
with a very high accuracy, but in the formulations containing the 1/R3 
singularity (§5.3.3), some crucial elements of Z require much more care. Poorly or 
wrongly estimated zij and/or vi elements can induce moderate to high errors on 
some Ij elements, that can be greatly amplified if the Z matrix exhibits a large 
condition number (§5.2.2). The quadrature errors are covered extensively in §§5.4 
and 5.5. 
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5.2 Numerical issues and limitations 

5.2.1 Problem size – CPU time limitation 

If linear RWG basis functions are used over quasi equilateral triangles, their 
edges a should be at most λ/10 long. The average surface of such triangles is 

2
3 / 4a . A sphere of diameter D=nλ has a surface 2Dπ . Approximately 

2 2
(400 / 3) 725n nπ ≈ quasi equilateral triangles are required to mesh it. For a 
cube of dimensions DxDxD, using rectangular triangles with the same average 
surface necessitates approximately 2924n triangles. For a PEC structure, the 
number of complex elements in the Z matrix is NxN, where N is the number of 
(triangle) edges. For a dielectric structure, the size of Z is 2Nx2N. A closed 
surface completely meshed with T triangles counts exactly 1,5T edges. The 
number of bytes required to represent complex numbers in double precision is 
compiler dependant. Considering the ANSI-C minimum of 16bytes, mostly 
encountered, the largest value of n for a PEC or dielectric sphere, and for a PEC 
or dielectric cube that can be solved within 2GBytes of RAM memory in double 
precision is reported in Table 6. If triangles smaller than λ/10 are used, for 
example to improve the overall accuracy, or when the structure presents details 
possibly much smaller than λ/10, the maximum dimensions of the total surface 
that can be analyzed diminishes. 

Table 6 : Largest size in nλ units that fits within 2GBytes 

 PEC Dielectric 

Sphere (diameter = nλ) n ≤ 3,26 n ≤ 2,31 

Cube (side = nλ) n ≤ 2,89 n ≤ 2,04 

 

It is clear from Table 6 that the classical Method of Moments cannot be used on a 
single 32-bits laptop for structures stretching across many wavelengths, or even 
for subwavelength structures containing too many dielectrics and very fine 
details.  

There are variations and improvements of the original MoM to handle these 
situations, such as the use of macro basis functions [3], or aggregate synthetic 
functions [4], and the multilevel fast multipole algorithm [5][6], but they are 
beyond the scope of this book. Indeed in chapter 6 we analyzed only structures 
small enough to allow global or local mesh refinements while keeping all 
problems solvable within 2GBytes of RAM with the classical Method of Moments 
explained in chapters 2, 3 and 4. 

Nevertheless, a novelty has been introduced for the fine analysis of the surface 
current densities close to edges or corners, and along the sides of very thin PEC 
or dielectric plates : lin- and log-distributed meshes. These meshes use very 
elongated triangles instead of quasi equilateral triangles, reducing thereby 
drastically the number of unknowns and the size of the Z matrix. A detailed 
analysis of the accuracy that can be obtained with such elongated triangles and 
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meshes can be found in §§5.5.3, 6.2.5, 6.6, 6.8, 6.9 and 6.10, along with the impact 
on the condition number (see §5.2.2). 

5.2.2 Condition number 

The Method of Moments leads to a ZI=V system of equations. It can be solved for 
I either with a direct solver (such as LU, or QR decomposition) or with an 
iterative solver (for example : Conjugate gradient method). For iterative solvers, 
the speed of convergence to an accurate enough solution, or even the convergence 
itself, can be jeopardized if the condition number of the matrix Z becomes too 
large. Much work has been done during the last decennia to develop efficient 
preconditioners and reduce the condition number of Z. This area is a whole field 
in itself and will not be addressed in this book, where only direct solving has been 
considered. 

Direct solvers do not suffer from poor or lack of convergence, but they can suffer 
from an excessively high condition number, especially if the elements of Z and/or 
V are poorly estimated, as explained hereafter. Even if those elements are well 
estimated, an excessively high condition number favours the propagation of 
roundoff errors during the direct solving phases. This problem is further 
enhanced for large matrices, and/or if single precision is used instead of double 
precision. Our experience, in particular with very thin plates and elongated 
triangles, shows that condition numbers in excess of 1012 start to cause such 
problems when double precision is used. 

In the field of numerical analysis, the condition number of a function with respect 
to an argument measures how much the function can change in proportion to 
small changes in the argument. The "function" is the solution of a problem and 
the "arguments" are the data in the problem. A problem with a low condition 
number is said to be well-conditioned, while a problem with a high condition 
number is said to be ill-conditioned. For example, the condition number 
associated with the linear equation : 

 ZI V=  (236) 

gives a bound on how inaccurate the solution I will be if there is an error on the 
elements of Z or those of V. Considering also the perturbed equation : 

 ( )VZ I I V V+ ∆ = + ∆  (237) 

one can apply the Schwarz inequality to both (236) and (237) : 

 V Z I≤  (238) 

 1
V I Z V

−∆ ≤ ∆  (239) 

where any vector and matrix norms can be used. The most common is the 
Euclidian 2-norm : 
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 2
i

i

V V V V∗= = ∑  (240) 

 
2

ij

i j

Z Z= ∑∑  (241) 

Combining (238) and (239), we conclude that : 

 ( )
V I V

Z
I V

κ
∆ ∆

≤  (242) 

where the condition number κ(Z) is given by : 

 1( )Z Z Zκ −=  (243) 

Considering now the perturbed equation : 

 ( )( )ZZ Z I I V+ ∆ + ∆ =  (244) 

one obtains :  

 ( )
Z

Z

I Z
Z

I I Z
κ

∆ ∆
≤

+ ∆
 (245) 

When the Euclidian 2-norm is used for (243), it can be shown that the condition 
number is equal to the ratio of the largest to the smallest singular value σ of Z : 

 max

min

( )
( )

( )

Z
Z

Z

σ
κ

σ
=  (246) 

The identity matrix has a condition number equal to 1, while a singular matrix 
has at least one null eigenvalue and therefore an infinite condition number. 

Equations (242) and (245) show that small relative errors introduced in the 
estimation of Z and/or V can be amplified by the condition number κ(Z). These 
errors are down-limited by the finite machine precision, especially when 8-digits 
numbers (float) are used instead of 16-digits (double). They can become much 
worse than the machine-precision limit when the elements of Z are evaluated 
with low order or inappropriate quadratures (see §5.5). 

When the Method of Moments is applied to two dielectric domains (e.g. a finite-
size dielectric body embedded in free space), the global matrix system of 
equations is obtained after a combination of the local matrix system of equations 
written in each domain D1 and D2 : 

 
, , , , , ,

1 2 1 2 1 21 2 1 2 1 2

, , , , , ,
1 2 1 2 1 21 2 1 2 1 2

EJ t EJ t EM t EM t E t E t

HJ t HJ t HM t HM t H t H t

Z Z Z Z V VJ

MZ Z Z Z V V

α α α α α α

β β β β β β

   + + + 
   = 
   + + +    

 (247) 

As explained in §2.3.1, this combination is only possible if the impedance Zi of 
each domain Di is incorporated in the zij terms belonging to the ,EJ t

iZ  and ,HJ t
iZ  
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subblocks, while the I vector contains J and not ZiJ. Doing so, those terms in Z 
lose their adimensionality (see §§1.14 and 2.2.7). In the PMCHWT combination 
scheme (see §3.6), as αi = 1 = βi those terms become in the average approximately 
Z0 times larger than in the remainder of the Z matrix, where Z0 ≈120π is the 
impedance of free space. Modifying the whole system of equations as shown in 
(247) makes the whole Z matrix adimensional and rescales the elements of Z and 
I to a similar order of magnitude. The condition number of the rescaled Z is 
thereby approximately reduced by a factor Z0. 

 
, , ,

0 0

, , ,
0

/

/

EJ t EM t E t

HJ t HM t H t

Z Z Z VZ J

MZ Z Z V

    
   = 
       

 (248) 

In the Müller combination scheme (see §3.6), as αi=εi and βi=µi, the global Z 
matrix can be made adimensional if the following rescaling is applied : 

 
, , ,

0 0 0 00

, , ,
0 0 0 0

/( ) / /

/( ) / /

EJ t EM t E t

HJ t HM t H t

Z Z Z VZ J

MZ Z Z V

ε ε ε

µ µ µ

    
   = 
       

 (249) 

The E-MFIE matrices (see §4.4) contain both a ,EJ tZ  and a ,HJ tZ  subblock that 
are both applied to the whole vector J. Dividing both subblocks by Z0 as in (248) 
has no effect on the condition number as the whole matrix is divided by a unique 
value. 

As the condition number can be greatly improved by the above described 
operations, it becomes meaningless to make comparisons of condition numbers 
from one problem to another unless a reference configuration for Z is adopted. In 
the literature, condition numbers are very often reported, but without any clear 
mention of eventual manipulations on Z. 

To conclude this paragraph, we list below a series of observations revealed by the 
examples treated in chapter 6. In these examples, when available, the condition 
number (CN) has always been computed for the adimensional versions of Z 
described by (248) or (249) with the built-in function ‘cond’ available in 
Matlab 7.1TM. 

− The CN of the tEFIE∇f-f and tEFIE∇G-f are always quasi identical. We refer 
hereafter to any of them as tEFIE-f. 

− The CN of the tMFIE-nxf is always 100 to 1000 lower than for the tEFIE-f. 

− For homogeneous or regular meshes, the CN for the tMFIE-nxf is fairly 
independent on the mesh characteristic length h, while it increases 
approximately with 1/h for the tEFIE-f. 

− The CN of both the tEFIE-f and the tMFIE-nxf increase if an irregular mesh 
(with elongated triangles) is used instead of a regular one, but the increase 
is more important for the tEFIE-f. 

− For a very thin PEC plate of thickness t and with 90° edges the CN 
increases proportionally to (1/t)2, for both the tEFIE-f and the tMFIE-nxf. 
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− For a given structure, the CN of the PMCHWT-f-f in the dielectric case is 
fairly identical to the CN of the tEFIE-f in the PEC case. 

− The CN of the PMCHWT-nxf-nxf and Müller-nxf-nxf is much lower than the 
CN of the PMCHWT-f-f and Müller-f-f. 

− The CN of a dielectric sphere improves for higher permittivities εr with the 
PMCHWT-f-f and the Müller-f-f combinations, but it degrades with the 
PMCHWT-nxf-nxf and the Müller-nxf-nxf combinations. 

5.2.3 Resonance 

In 1949, when he derived the two alternative integral equations later named 
EFIE and MFIE [7] for a volume enclosed in a bounding surface S, Maue already 
noted the non-uniqueness of the exterior solution at interior cavity resonance 
frequencies [8]. In the case of the EFIE applied to a PEC volume, the existence of 
such internal resonances causing high spurious radiated fields can easily be 
proved and understood from a physical and numerical viewpoint. They appear 
because the boundary condition ˆ 0n E× = imposed only on the outside surface S of 
the PEC volume does not guarantee zero surface current densities, at the 
resonant frequencies determined by the geometry of S, inside the PEC volume. 
Mathematically, these spurious surface current densities do not radiate outside 
the PEC volume. But the geometrical and numerical approximations involved in 
the MoM induce some leakage that will contribute to a possibly large error in the 
scattered fields [9]. The physical explanation for the even larger spurious fields 
caused by the MFIE applied to the same PEC volume is less obvious [10]. At the 
MFIE resonance frequencies, identical to the EFIE ones, non zero n̂ E×  are 
allowed on S equal to the current densities of the interior cavity modes. We refer 
to [11, §4.3.2] for a physical explanation of the resonances that can also occur in 
presence of dielectric scatterers when either the EFIE or the MFIE alone is used. 
Again, the resonance frequencies are identical to those encountered if the 
dielectric object would be a PEC object solved with the EFIE or MFIE alone. 

For a spherical cavity of diameter D filled with air, the lowest resonance 
frequency is produced by the TM101 mode. It corresponds to a wavelength 
λ0=D/1.145. Otherwise stated, there is no resonance if D <1.145λ0. For a cubical 
cavity DxDxD, the lowest resonance frequencies of the TE110, TM101 and TM011 
modes are identical and correspond to D <0.7071λ0. If the cubical or spherical 
cavities are filled with a dielectric of relative permittivity εr, then λ0 must be 
replaced by 0 / rλ λ ε=  in the above formulas [12, Chap4]. 

For dielectric structures, the widespread use of PMCHWT or Müller formulation 
(see §3.6), where both the EFIE and MFIE coexist, eliminates the resonances. For 
PEC structures, many cures have been proposed, such as : 

− inserting of a lossy object inside the region [13]. The resonance frequencies 
become complex and are damped, but not completely suppressed. Moreover, 
the number of unknowns and the complexity of the problem are increased. 
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− inserting of shorts in the resonance cavity to push the resonance frequencies 
of the resonant modes higher [14]. 

− searching for a minimum norm solution of the EFIE [15]. A disadvantage of 
this method is that it requires to choose weights for the least-squares error 
and the norms that need to be formed. 

− augmenting the EFIE or MFIE with the boundary conditions for the normal 
component of the fields on S [16]. This method increases the number of 
unknowns and leads to an overdetermined system of equations, that must 
be solved for example with a least-squares error procedure. 

− combining the EFIE and MFIE into a Combined Field Integral Equation 
(CFIE). This last method is by far the most popular and will be shortly 
explained hereafter. 

The CFIE is based on various works [17][7][18] and was first established under 
the following form : 

 CFIE =   tEFIE-f +   tMFIE-nxfa b  (250) 

where a = α, b = Z0(1-α), 0 < α < 1 and Z0 ≈120π is the impedance of vacuum. The 
proof of the uniqueness of the CFIE solution has been given [18], but only partial 
assertions have been published about its connection with the cavity problem [19]. 
Several variants have been proposed [20][21][22], but it is beyond the scope of 
this book to enter into more details. Instead, for all examples treated in chapter 6 
we took care to properly dimension the PEC objects to avoid this phenomenon. 
Resonance problems are also avoided in all dielectric cases with the use of either 
PMCHWT or Müller combination schemes. 

5.2.4 Low frequency breakdown 

If a PEC structure is solved with the tEFIE-f, it can suffer from the so-called low 
frequency breakdown problem [23][24]. If the frequency is very low, or if the 
mesh density is very high compared to the wavelength, the Z matrix becomes 
very to extremely ill-conditioned. No clear limit is mentioned in the abundant 
literature to quantify “very low” or “very high”. In fact, the condition number 
degrades progressively with decreasing frequency or increasing mesh density. 
The limit to an acceptable highest value for the condition number is 
implementation dependent (single or double precision, direct or iterative 
solving,…), and probably also problem dependent (single PEC volume, multiple 
dielectric domains,…). We refer to §5.2.2 for a detailed discussion on condition 
numbers. 

The low frequency breakdown problem has also been reported for dielectric 
scatterers solved with PMCHWT-f-f [25]. On the other hand, it has been proved 
that tMFIE-nxf doesn not suffer from low frequency breakdown [26]. 

It is not within the scope of this book to address this specific problem, but we 
mention the three main cures that have been proposed during the last 
decennias : the loop-tree or loop-star decomposition [23][ 27 ][ 28 ][ 29 ], the 
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stabilization of the EFIE [ 30 ][ 31 ], or the use of an appropriate Müller 
formulation [32]. 

In the examples treated in chapter 6, the low frequency breakdown has been 
avoided by choosing objects and meshes with a ratio characteristic dimension/λ 
large enough to ensure acceptable condition numbers. 

5.3 Numerical integration 

In §2.3.1 we have presented very general expressions for the discretized integro-
differential equations and the possible testing schemes. In §3.4 and for the 
remainder of this book, we have restricted ourselves to the first form of the 
tangential integro-differential equations (see §1.9), RWG basis functions , ( ')n if r  
(see §2.2.8) and RWG or nxRWG testing functions , ( )m iT r . In every domain Di, 
the elements of the local Zi matrix that we have to compute are double surface 
integrals over Sm,i and Sn,i, the domains of definition of , ( ')n if r  and , ( )m iT r . They 
have the form : 

 { }
,

, , ,( ) ( )
m i

EJ
mn i i m i i n i

S
Z Z T r D r f dS = − ⋅  ∫  (251) 

 { }
,

, ,
, , ,

ˆ ( ) ( )
( ) ( )

2m i

m i n iHJ
mn i m i i n i

S

n r f r
Z T r K r f dS

 ×
= ⋅ − 

  
∫  (252) 

with : 

 { } { }
,

(1) 2
, , ,( ) ' ' '

n i
n i i i n i s n i ii S

i

j
D f r k G f f G dS

k
= − ∇ ⋅ ∇∫  (253) 

 { } { }
,

(1)
, ,( ) ' '

n i
n i n i ii S

K f r f G dS= × ∇∫  (254) 

The free-space Green’s function Gi, the impedance Zi and the wavenumber ki 
inside domain Di are defined with (56), (68) and (69). ,ˆ ( )m in r  is the unit normal to 
Sm,i. 

In the next paragraphs, we examine in detail the non trivial problem of 
accurately evaluating these integrals. 

5.3.1 Quadratures over triangles 

The double surface integrals (251) and (252) have no close form analytical 
solution, they must be evaluated numerically. It was not long after the invention 
of infinitesimal calculus by Isaac Newton and Gottfried Leibniz, during the 
seventeenth century, that numerical quadratures for one-dimensional domains 
have been developed. Just to name two of them, the Newton-Cotes formulas and 
Simpson’s rules. Until recently, many variations and improvements to these 
early methods have been proposed, but it was not before the mid twentieth 
century that the first quadrature over triangles has been published [33]. Three 
quadrature strategies have been reported : polynomial moment fitting, Duffy’s 
transformation, and extrapolation [34]. 
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The extrapolation technique, based on the work of Richardson [35], was first 
exploited by Romberg for one-dimensional integrations [ 36 ] to improve the 
convergence rate of the trapezoidal integration rule. It was then easily extended 
to the integration over a square by several authors during the 1960s. In the next 
decade, it required much more effort to transpose this theory from the square to 
regularly shaped triangles [37][38][39], then more recently to arbitrary triangles 
[40]. 

With Duffy’s transformation [41], the two-dimensional integration over a triangle 
is transformed into an integration over a square, that can be performed as the 
product of two one-dimensional integrals. In principle, any pairs of one-
dimensional quadrature rules can be used, such as for example the Gauss-
Legendre or Gauss-Jacobi rules [42]. 

In the polynomial moment fitting method, the integral over the domain Si bis 
replaced y a weighted sum on a set of nodes : 

 ( ) ( ), ,
i

N

i n i n n i
S

n

f x y dxdy w f x y S≅∑∫  (255) 

A quadrature is thus defined by the coordinates (xn,yn) of N nodes and their 
associated weights (wn), for example : 

 

Figure 49 : 5 nodes quadrature 

The number of nodes N, their location and weights are determined such that the 
integral is exactly identical to the sum in (255) when the integrand fi(x,y) is any 
polynom in the two variables x and y up to a degree d. A quadrature rule is said 
to be minimal when its number of nodes N reaches the lower bound determined 
by the following results [43] : 

 

( 2)( 4)

8
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 (256) 

Long after the seven-points and fifth degree quadrature of Radon [33], a minimal 
formula of degree 4 with all positive weights was constructed by Schmid [44]. 
Exploiting for the first time the symmetry groups of the triangle, Lyness and 
Jespersen developed symmetric quadrature rules up to a degree 11 [45], later on 
extended up to a degree 20 by Dunavant [46] and up to a degree 30 by Wandzura 
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and Xiao [47]. These quadratures are given with 16 significant digits. Some of 
them, but not all, are minimal. 

In the fictive example shown in Figure 49 (p.104) :  

− the sum of the weights equals 1/2 and not 1. This supposes using 2Si instead 
of Si in the summation (255). This is common practice for quadratures over 
triangular domains, for which the norm of the cross product of any two sides 
of the triangle equals 2S.  

− the nodes are irregularly located inside the triangle, on its edges and 
vertices 

− some nodes are located outside the triangle 

− the weigths are positive or negative 

The two last properties are undesirable. A good quadrature should have all its 
nodes inside the integration domain (to avoid extrapolation of the integrand 
outside the domain) and positive weights (to improve convergence and stability) 
[34]. Quadratures where the nodes respect the symmetry groups of the triangle 
are also regarded as preferable, but not indispensable. 

In this book, we have restricted ourselves to polynomial quadratures. For reasons 
that will be explained in §5.3.3, their nodes will be distributed strictly inside the 
triangle, and not on their edges or vertices. 

5.3.2 Practical integration within the MoM 

Before investigating in detail the possible inaccuracies due to the quadratures, 
we explain concretely how the numerical integration of the double surface 
integrals must be performed to approximate (251) or (252) with a polynomial 
quadrature. RWG functions span over a pair of adjacent triangles, as illustrated 
by Figure 50 : 

 

Figure 50 : Test and Basis RWG 

The double integrals involving the test triangle pair , , ,m i m i m iS T T
+ −= ∪  and the 

basis triangle pair , , ,n i n i n iS T T
+ −= ∪  will thus be decomposed in four separate 

integrals : 

,m iT

,n if

Test 
Basis 

Sm,i 
Sn,i 
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, , , , , , , , , ,m i n i m i n i m i n i m i n i m i n iS S T T T T T T T T+ + + − − + − −

= − − +∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫  (257) 

Considering the example shown in Figure 51, the part of the analytical double 
surface integral in (252), involving ,m iT

+  and ,n iT
−  and the vector function (1)

iK , 
will be approximated by the following nested summation if the testing function 

, ,m i m iT f
+ +=  : 
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∑ ∑

 (258)  

Note that the number of nodes does not need to be the same, or even from the 
same type of quadrature, for the inner (basis) and outer (test) surface integral. 

 

Figure 51 : Numerical integration of a double surface integral 
Any numerical integration scheme introduces an additional error in the 
application of the MoM : the quadrature error. For a given quadrature type, the 
accuracy required in the evaluation of every integral will dictate the required 
number of nodes for this integral. On the other hand, the time needed to perform 
all the nested integrations will increase as PxQ, if P and Q are respectively the 
number of nodes for the outer and inner integrals. The tradeoff is clearly to use 
as few nodes as possible while guaranteeing the desired accuracy in the final 
result. 

Polynomial quadratures are very performant with integrands that can accurately 
be approximated with polynomial expansions. Unfortunately, the free-space 
Green’s function and especially its gradient introduce complications when the 
test and basis domains Sm,i and Sn,i are very close to each other, or even overlap. 
The resulting Zmn,i terms have been called (quasi) self terms in §2.3.2, and were 
shown to be dominant in the Z matrix. As such, they require special care and 
must be evaluated with sufficient accuracy. 

5.3.3 1/R and 1/R³ singularities 

Equations (251) and (252) contain the free-space Green’s function and/or its 
gradient. When the observation point r  in the test element Sm,i also belongs to 
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the basis element Sn,i, the distance 'R r r= −  can become zero in the integration 
process. As can be seen in its Taylor’s polynomial expansion (259), the free-space 
Green’s function then goes to infinity as 1/R. The gradient of the free-space 
Green’s function (260) is even more singular, going to infinity as 1/R³. 
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With an integrand exhibiting such a behavior, the inner integrals cannot be well 
approximated by a polynomial function of moderate order in the vicinity of the 
singularity R=0. As shown in Figure 55, Figure 56 and Figure 57 (pp.115 to 117) 
the accuracy of polynomial quadratures becomes extremely poor in such a 
situation, even with a high number of nodes. 

There are several strategies to cope with these singularities. The two last ones 
actually avoid the singularities by eliminating them. 

− A few specialized quadratures are available to handle singular integrals 
over triangles [48][49]. Unfortunately they are tailored for specific singular 
behaviors which are not those encountered here. 

− The extrapolation integration technique mentioned in §5.3.1 has been 
extended to deal with several types of singular integrands, belonging to the 
class of homogeneous functions [50][51]. 

− Adaptive quadrature schemes have been developed, mainly to accommodate 
integration domains other than squares, circles or triangles. Based on 
successive decompositions of the integration domain in affine subdomains, 
they ensure convergence for regular and singular integrands. Being general 
purpose in essence, they require a very large number of nodes to obtain 
several exact significant digits, typically many hundreds [52]. 

− For integrand functions having a 1/R singularity on a vertex, Duffy’s 
transformation naturally eliminates it by projecting the vertex on one edge 
of a square [41]. Despite its mathematical elegance, this method has some 
disadvantages. Firstly, it requires manipulations to accommodate 
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singularities occurring all along an edge and not on a vertex only. Secondly, 
it is not efficient for 1/Rn singularities where n is not equal to 1 [53]. 
Thirdly it has been shown to be accurate only on sufficiently regular 
triangles [54], a drawback we cannot afford as we intend to make extensive 
use of elongated triangles. 

− In this book, we have considered the singularity extraction technique 
[55][56], explained in §5.4. 

5.4 Extraction of the 1/R and 1/R³ singularities for the free-space 
Green’s function 

To explain in detail the extraction process for the 1/R and 1/R³ singularities, we 
repeat hereunder the two types of terms entering the Zi matrix that contain 
double integrals of the free-space Green’s function and/or its gradient. We will 
omit from here on the subscript i, but remember that every element Zmn in the 
global Z matrix is a combination of elements Zmn,i from local Zi matrices 
originating from domains Di (see §3.6). 

 { }2
( ) ( ) ( ') ' ( ') ' ( ) '

m n

EJ
mn m n s

S S

jZ
Z T r k G R f r f r G R dS dS

k

 
= − ⋅ − ∇ ⋅ ∇  ∫ ∫  (261) 

 { }
ˆ ( ) ( )

( ) ( ') ' ( ) '
2m n

HJ m n
mn m n

S S

n r f r
Z T r f r G R dS dS

 ×
= ⋅ − + × ∇ 

  
∫ ∫  (262) 

As explained with (257), the integrals on Sm and Sn in (261) and (262) are a sum 
of integrals on the triangles mT + , mT −  and nT + , nT −  : mn mn mn mn mnZ Z Z Z Z++ +− −+ −−= + + + . 
The expressions of the RWG basis functions on the triangles nT +  and nT −  are 
given by (262), where nA

±  is the area of the triangle nT
±  and Ln is the length of 

the edge common to nT
+ and nT

− . 

 ( ') ( ' ) ( )
2

n
n n n n

n

L
f r r p C R r p

A

± ± ± ±
±

= ± − = ± − + −  (263) 

The functions /m mf C
− −  and /n nf C

+ +  are illustrated in Figure 52. 

 

 

Figure 52 : Vectors involved in the two nested integrals 
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When mT
±  and nT

±  share common points, R can go to 0, making the inner 
integrand in (261) and (262) infinite by virtue of the 1/R3 and 1/R terms 
revealed in (259) and (260). 

5.4.1 Singularity associated with ZHJ 

Let us consider first (262), containing only the gradient of the free-space Green’s 
function. For self terms situations, the tangential testing function ( )mT r  is 
perpendicular to ( ') ' ( )nf r G R× ∇  and the tested inner integral reduces to its 
principal value term (see also §2.3.2). For example the integral involving nT − = mT

−  
writes : 

 
1

ˆ( ) ( ) ( )
2m

HJ
mn m m n

T
Z T r n r f r dS

−

−− − − − 
= − ⋅ × 

 
∫∫  (264) 

This integral presents no singularity and can be integrated analytically  or 
numerically. Details are given in Appendix D, and show that numerical 
integration can be performed exactly with only 1 point for ( ) ( )m mT r f r

− −=  but 
requires 3 points for ˆ( ) ( ) ( )m m mT r n r f r

− − −= × . 

If m nT T
± ±≠ , the principal value term in (262) is identically zero and only the 

surface integral remains in the inner integrand. For example : 

 { }( ) ( ') ' ( ) '
m n

HJ
mn m n

T T
Z T r f r G R dS dS

− +

−+ − + 
= ⋅ × ∇  ∫ ∫  (265) 

For coplanar triangles, like mT
+  and nT

− , the three vectors involved in the dot and 
cross product in (262) cancel the integral. For example : 

 0
HJ
mnZ

+− =  (266) 

If the triangles share a common edge ( mT
−  and nT

+ ) or a common vertex ( mT
+  and 

nT
+ ) without being coplanar as in Figure 52 (p.108), the extraction of both the 

1/R3 and 1/R singularities decomposes (262) into the sum of three integrals. For 
example, for HJ

mnZ
−+  : 
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1 1
( ) ( ') '

84 4m n

jkR
m n

T T

jkR k
T r f r R e dS dS

RR R ππ π
− +

− + −
   +  ⋅ × − − 

      
∫∫ ∫∫  (267) 
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8m n

m n
T T

k
T r f r R dS dS

Rπ− +

− +
   
  ⋅ ×  

      
∫∫ ∫∫  (268) 

 
3

1
( ) ( ') '

4m n
m n

T T
T r f r R dS dS

Rπ
− +

− +
   

⋅ ×       
∫∫ ∫∫  (269) 

From here on in this paragraph indices ( n
+

 ) or superscript ( ‘ ) will both be used 
to refer to magnitudes related to nT

+ , thus depending on the variable 'r , and not 
on the variable r . 
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Using (263), valid for a triangular domain, and the fact that 0R R× = , (268) and 
(269) can now be rewritten as : 

 
2

( ) ( ) '
8m n

n m n
T T

k R
C T r r p dS dS

Rπ− +

+ − +  
+ ⋅ − ×   

 
∫∫ ∫∫  (270) 

 
3
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( ) ( ) '

4m n
n m n

T T

R
C T r r p dS dS

Rπ− +

+ − +  
+ ⋅ − ×   

 
∫∫ ∫∫  (271) 

The integrand of (267) is bounded everywhere on nT
+ . As shown in Figure 56 and 

Figure 57 (p.117), this regular inner integral can be evaluated quite accurately 
with polynomial quadratures, even with a limited number of nodes. 

The evaluation of (270) and (271), having singular integrands on nT
+ , can be 

performed as follows : analytical closed form solution for the inner integral, then 
numerical evaluation of the outer integral.  

These analytical closed form solutions are expressed in function of local 
coordinates and distances for the pair formed by the observation point r  and the 
triangle nT

+ , explained hereafter and illustrated in Figure 53.  

 

Figure 53 : Coordinates and distances involved in the inner integral 
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The signed values d’, 0
'iP , 'il

−  and 'il
+  are the coordinates in the ' 'ˆˆ ˆ, ,i i nm l n

+  basis 
respectively of r , '

ii
− and '

ii
+ , that can be obtained from ' 'iR r i

− −= − and 
' 'iR r i
+ += −  as :  

 ˆ ˆ' ' 'i n i nd R n R n
− + + += ⋅ = ⋅  (272) 

 0 ' 'ˆ ˆ' 'i i i i iP R m R m− += − ⋅ = − ⋅  (273) 

 'ˆ' 'i i il R m
± ±= − ⋅  (274) 

In Figure 53 (p.110) :  d’ < 0,  '
0il

− < ,  '
0il

+ >   and 0
' 0iP > . The positive values 

'
iR
−  (resp. '

iR
+ ) are the distances between r  and 'i −  (resp. 'i + ). 

Finally, the vector R  is decomposed into a surface component '( ')P r−  lying in 
the triangle nT

+  and depending on the integration variable 'r , and a normal 
component ˆ' ' nd d n

+= ⋅ , independent of the integration variable 'r . 

The integral (270) contains the 1/R singularity. The analytical solution for the 
inner integral is fully derived in Appendix E.3. The final result is given 
hereafter : 

 1 1' '
ˆ' ' ' ' ' ' '

n n n
i i

T T T
i

R P d
dS dS dS m I d K

R R R
+ + +

+ −−
= + = − +∑∫∫ ∫∫ ∫∫  (275) 

with : 
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 (276) 

 ( )
2

1 0 ' '1
' ' ' ' ' ' ln

2 ' '

i i
i i i i i i

i i

l R
I l R l R R

l R

+ +
+ + + − −

− −

  + 
= − +    +   

 (277) 

For any observation point r , (275) is finite and continuously differentiable. It 
can therefore be integrated numerically on mT

−  in (270) with great accuracy. 

The integral (271) contains the 1/R3 singularity. We observe from (260) that the 
contribution of (271) to the real part of (265) becomes dominant as soon as 

3
2/( ) 1/( )kR kR> , or approximatively / 5R λ< . This is always the case for adjacent 
triangles in a MoM mesh, as their characteristic dimension should never exceed 
λ/10 (see §2.2.4). It is therefore important to evaluate (271) with enough 
accuracy.  

The analytical solution for the inner integral is fully derived in Appendix E.3 : 
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3 3 3

' 1
' ' ' ' ( ) ( )

n n nT T T

R P
dS dS d dS s n

R R R
+ + +

= − + = +∫∫ ∫∫ ∫∫  (278) 

If r  is located anywhere in the plane containing nT
+ , including inside nT

+  or on 
its boundary (d’=0), then (278) reduces to the surface component (s) only. In this 
case indeed the vector R  is at all times coplanar with nT

+  during the integration 
over nT

+ , hence the vector resulting from this integration cannot have a 
component normal to nT

+ . This important remark solves the problem due to the 
discontinuity of the normal component (n) across nT

+ , mentioned hereafter. 

The analytical closed form solution for (n) is a vector directed along nn
+⌢  with 

norm ( )rΩ , the signed solid angle from which the triangle nT
+  is seen from the 

point r  [57]. The norm of this vector is thus bounded between -2π and +2π. The 
analytical expression of (n) is fully derived in Appedix E.3 and the final result is 
given hereafter : 

 

( ) ( )

3

0 03
1 1

2 2
0 01

'
( ) '

' ' ' ''
tan tan ( ' 0)

ˆ '
' ' ' ' ' '

0 ( ' 0)

nT

i i i i

n i
i i i i

d
n dS

R

P l P ld
d

n d
R d R R d R

d

+

+ −
− −

+
+ −=

= =

  
  

− ≠  
⋅   + +   


=

∫∫

∑
 (279) 

It is important to note here that (n) is a continuous function everywhere in space 
except on nT

+ , including its boundaries i nT
+∂  for i = 1,2,3. Indeed, if we consider a 

trajectory passing through the triangle, the function (n) tends to 2π on the side 
where ˆnn

+  is pointing to and to -2π on the other side. There is thus a 4π 
discontinuity across every inner point of the triangle nT

+ . For a trajectory that 
would cross the plane of nT

+  via a point belonging to one of the three edges, (n) 
tends to +π or -π depending from which side of ˆnn

+  we are approaching the edge. 
Finally, on the three vertices, the function (n) is equal to the opening angle of nT

+  
as seen from this vertex, again with a + or – sign depending on the approach side. 
For all points coplanar with, and outside nT

+ , the function (n) equals zero. We can 
generalize this in (279) by choosing that (n)=0 for all points coplanar to nT

+ , 
including inside nT

+  where (n) undergoes everywhere a jump with mean value 
zero between both sides of nT

+ . This choice is consistent with the remark made 
earlier as a comment to (278), stating that (n) should be equal to zero when d’=0. 

The analytical solution of (s) is also fully derived in Appendix E.3 : 
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∑ ∑∫∫ ∫

	 	

	 	  (280) 

It is easy to see that (s) is not bounded everywhere on mT
−  [57][56], as opposed to 

(n) : if r  is located anywhere on the edge common to nT
+  and mT

−  then (280) 
becomes infinite, as ' '

( ) ( ) 0i iR r l r
− −+ = . In this case the outer integral in (269) 

possesses at its turn a singular integrand, with logarithmic behavior. 
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A very elegant solution to avoid this logarithmic singularity in the outer integral, 
resulting from the  1/R³  singularity in the inner integral, has been proposed in 
[54], but it introduces some programming complexity : line integrals appear aside 
the surface integrals, but above all the order of integration on mT

−  and nT
+  must 

be inverted, as can be seen in the two expressions below in the case ( ) ( )m mT r f r
− −=  

and ˆ( ) ( ) ( )m m mT r n r f r
− − −= ×  : 

 
3

1
( ) ( ) '

4

( )
ˆ( ) ( ')

4

m n

n m

n m n
T T

m
n m m n n

T T

P
C f r r p dS dS

R

r p
C C p p m r dS dl

R

π

π

− +

+ −

+ − +

−
+ − − + +

∂

 −
+ ⋅ − ×   

 

 −
= − − × ⋅ 

 
 

∫∫ ∫∫

∫ ∫∫�

 (281) 
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It is further shown in [54] how the two surface integrals over mT
−  can be reduced 

to integrals of nR  and nRR  (n ≥ -1), for which closed form solutions are presented 
in Appendix E. 

A very general iterative and adaptative numerical integration scheme is proposed 
in [52] to cope with singular integrands, but it is far more complex to implement 
than Gaussian quadratures and requires a lot of nodes, typically several 
hundreds, to obtain three or more exact significant digits. Such a number of 
nodes is acceptable to compute isolated integrals, but it becomes prohibitive if 
used repeatedly to fill the complete Z matrix. 

We also mention an original proposal where the logarithmic singularity is 
extracted at its turn from the outer integral [ 58 ]. We have analyzed this 
technique and concluded that it provides the announced superior performances 
only in the case of quasi equilateral triangles. The results of this study are not 
reported in this book. 

Instead of those solutions, that are either tailored for specific (testing) situations, 
or require ad hoc modifications to the MoM code, we chose to investigate the 
possibility to use the high efficiency polynomial quadratures having only inner 
nodes described in [46] and [47]. To assess the ability or not for these 
quadratures to evaluate correctly the logarithmic singularity with a limited 
number of nodes, we derived several analytical solutions in a canonical case, 
presented in §5.5. 
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5.4.2 Singularities associated with ZEJ 

The integro-differential expression (261), contains both the free-space Green’s 
function and its gradient. Classically, when m mT f RWG= = , the derivative on the 
free-space Green’s function is transferred to the test function. We show in 
Appendix F how (261) then becomes : 

 { }2
( ) ( ') ' ( ) '

m n

EJ
mn m n s m s n

S S

jZ
Z k f r f r f f G R dS dS

k
= − ⋅ + ∇ ⋅ ∇ ⋅∫ ∫  (283) 

Doing so, EJ
mnZ  does not contain the 1/R3 singularity anymore, but only the 1/R 

singularity from the free-space Green’s function. We will call tEFIE∇f-f the 
alternate form (283), valid only when m mT f RWG= =  and tEFIE∇G-f the general 
form (261), valid for any testing function mT . 

If we consider EJ
mnZ

−+ , the extraction scheme leads to the following 
decomposition : 
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The singular term (285) can be integrated analytically on nT
+ , then numerically 

on mT
− , as follows : 
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R Rπ π− + − +

− + − +∇ ⋅ ∇ ⋅ = ∇ ⋅ ∇ ⋅∫ ∫ ∫ ∫  (287) 

Both (286) and (287) contain the integral of 1/ R  and/or /R R , that both have 
been treated with (275). The first term (284) is bounded everywhere on nT

+  and 
can therefore be integrated numerically. In [54], it is observed that the first 
derivative of the integrand is not continuous, what limits the accuracy of 
polynomial quadratures. The extraction of a second term, responsible for the 
discontinuity of the first derivative of the integrand, is therefore suggested : 
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 (288) 

A summary of the accuracy that can be obtained without or with extraction of one 
or two terms and integration with high efficiency quadratures [46][47] is given in 
Figure 55 (p.115). The computed integral is : 
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 ( ) '
T

G R dS∫∫  (289) 

The triangles T and the observation point r  are in the xy plane, as depicted in 
Figure 54. We consider three triangles T : one is right-angled and isosceles when 
Y=λ/10 and two are (very) elongated when Y=λ/103  (Y=λ/105). 

 

Figure 54 : Triangles T for the integral (289) 

The relative errors presented in Figure 55 are related to the real part of (289) 
only, as the imaginary part does not suffer from any singularity. Expression (289) 
has been computed without any singularity extraction (blue lines), with one term 
extracted (red lines) and finally two terms (green lines). As the exact solution to 
(289) is not known, we use as reference value to determine the relative error the 
solution obtained with 73 nodes and two terms extracted. 
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Figure 55 : Relative error on (289) 

It is made clear that for all triangles, from X/Y=10 to 105 : 

− Singularity extraction is indispensable when R can be equal to 0 

− The extraction of only one term allows to compute (289) with 4 to 5 exact 
significant digits 

− The extraction of two terms allows to compute (289) with 7 to 8 exact 
significant digits 

x 

y 

X = λ/10 

Y = λ/10 ,  λ/103  , λ/105 

( , )
3 6

X Y
r  
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In this book we have extracted only one term in singular integrals involving the 
free-space Green’s function. 

When ˆ ˆm m m mT n f n RWG= × = ×  the 1/R3 singularity due to the gradient of the 
free-space Green’s function can also be eliminated thanks to the Gauss 
divergence theorem [54], but as the test function is not divergence conforming the 
surface integral over mT

−  and mT
+  turns into a contour integral. For example, for 

the part of the integral involving ' ( )G R∇  and mT
−  in (261) : 

 
( )

( )

ˆ ( ) ( ) ' ( ') ' ( ) '

ˆ ˆ( ) ( ) ( ) ( ) ' ( ') '

m n

m n

m m s n
T S

m m m s n
T S

n r f r f r G R dS dS

m r n r f r G R f r dS dl

−

−

− −

− − −

∂

 
× ⋅ ∇ ⋅ ∇ 

 

 
= ⋅ × ∇ ⋅ 

 

∫∫ ∫∫

∫ ∫∫�

 (290) 

In this book, we have not used the transformation (290). Instead we have used 
the high efficiency polynomial quadratures having only inner nodes described in 
[46] and [47] to integrate either (283) when m mT f RWG= =  or the general form 
(261) for both m mT f=  or ˆm m mT n f= × . 

In this latter very general case (261), the extraction scheme leads to the following 
decomposition, for example for EJ

mnZ
−+  : 
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+ ∇ ⋅ − +   
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∫ ∫  (291) 
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  

∫ ∫  (292) 

We have seen with (275) and (278) how to integrate (292). 

The first term (291) is bounded everywhere on nT
+  and can therefore be 

integrated numerically. Figure 55 (p.115) shows how accurate this numerical 
integration can be for the first part of this integral, related to G(R). We now 
present a similar accuracy study for the second part, related to ( )G R∇ . The 
computed integral is now : 

 ( ) '
T

G R dS∇∫∫  (293) 

The triangles T and the observation point r  are those depicted in Figure 54 
(p.115). The integral (293) is complex and vector valued, having components in 
the x and y directions. Only the real part is affected by singularities. The relative 
error on the real part of the x and y component is presented in Figure 56 and 
Figure 57 (p.117). Expression (293) has been computed without any singularity 
extraction (blue lines) and with two terms (green lines). As the exact solution to 
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(293) is not known, we use as reference value to determine the relative error the 
solution obtained with 73 nodes and two terms extracted. 
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Figure 56 : Integral of xG∇  
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Figure 57 : Integral of yG∇  

Again, singularity extraction proves indispensable. With as few as 7 nodes, 
integral (293) can be computed with at least 5 exact significant digits. 

5.5 High efficiency quadratures and 1/R³ singularity 

5.5.1 Analytical analysis – regular triangles 

To quantify the accuracy that can be obtained with high efficiency polynomial 
quadratures in the evaluation of (271), containing the logarithmic singularity 
(280) in the outer integrand, exact analytical expressions have been derived with 
the aid of [59] for the following integral : 

 
3'

' '
( ) ( ') '

4 T T

C P
I T r r p dS dS

Rπ

 −
= + ⋅ − ×   

 
∫∫ ∫∫  (294) 
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The integral I has been calculated in the canonical situation depicted in Figure 
58 for both weighting function T f RWG= =  and ˆT n f= × , but only for α = 90°. It 
has also been computed numerically, and the two solutions are compared. 

 

Figure 58 : Geometry of the canonical case solved analytically 

All details are given in Appendix G, and summarized hereafter. 
When α = 90°, (294) reduces to : 

 ( ) ( )1 2 1 21 2

2 2

4 4
I I I I I I I

π π
− −+ +   = − = − − −

   
 (295) 

with : 
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 (296) 
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 (297) 

and : 

 ( , )
T f

P x y x
=

= −  (298) 

 2 2
ˆ ( , )

T n f
P x y x y y= × = + −  (299) 

No analytical solution could be found for 2I
+ . As this integral is regular (the 

integrand is bounded everywhere on T), it can be evaluated very accurately with 
the high efficiency polynomial quadratures, as shown in Table 7 (p.119). In the 
absence of analytical solution for 2I

+ , the numerical solution obtained with 73 
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nodes is used as a reference to measure the relative error when less nodes are 
used. Table 7 shows that the relative error improves very quickly, in a way 
similar to the inner integral (293) summarized in Figure 56 and Figure 57 
(p.117). 

Table 7 : Numerical integration of 2I
+  

#  
2, fI
+  : Numerical |Rel error| 

2,n fI
+

×  : Numerical |Rel error| 

1 -0.08450337367004 0.11e-0 -0.028167791223347 4.90e-0 

3 -0.094612293851424 1.37e-3 +0.007012501289788 21.4e-3 

4 -0.094697637869101 2.28e-3 +0.006604208568921 78.4e-3 

6 -0.094483384173796 10.3e-6 +0.007157053742892 1.20e-3 

7 -0.094478779228638 38.5e-6 +0.00717151008889 0.81e-3 

12 -0.094482452578854 0.42e-6 +0.007165729119605 1.30e-6 

16 -0.094482394759082 0.20e-6 +0.007165750921513 4.40e-6 

19 -0.094482408305059 54.9e-9 +0.007165727125872 1.05e-6 

25 -0.094482413691372 2.09e-9 +0.007165719331997 34.6e-9 

42 -0.094482413496551 28.7e-12 +0.00716571957576 0.56e-9 

61 -0.094482413493793 0.47e-12 +0.007165719579858 7.82e-12 

73 -0.094482413493837 Ref +0.007165719579802 Ref 

 

The exact analytical expressions for 1I
− , 1I

+  and 2I
−  are : 

Table 8 : Exact solutions 

 T f RWG= =  ˆT n f= ×  

1I
−  ( )11 9 2 ln 2 1 / 36 + +  

 ( )2 2 ln 2 1 /16 − − +  
 

1I
+  ( )11 12ln 2 1 / 36 − +  

 ( )2 3 2 ln 2 1 / 24 − + +  
 

2I
−  ( )11 3 2 ln( 2 1) 2 3ln 2

36 2

π+ + − +
 

( )1 ln( 2 1) 2 8 1

12 2

π+ − + −
 

 

The singular integrands in 1I
+ , 1I

−  and 2I
−  become infinite only on the edge ∂1T’ 

with a smooth logarithmic behavior. The relative error obtained with the high 
efficiency polynomial quadratures in the evaluation of the total terms fI  and 

nxfI  given by equation (294) is presented in Table 9 (p.120). 

The relative error is now improving much slower with the number of quadrature 
nodes. Surprisingly enough, the 16 and 42 nodes quadratures outperform all the 
other choices for both T f=  and ˆT n f= × , still showing a relative error around 
0,3% and 0,07% with 16 nodes. Table 7 shows that 3 (respectively 7) nodes are 



Chapter 5 : Accuracy of the Method of Moments  

  120 

necessary and sufficient to obtain a similar accuracy with the non singular 
integral 2, fI

+ ( 2,n fI
+

× ). 

Table 9 : Relative error on I 

# nodes fI = -0,03505 n fI × = 0,01074 

 Numerical Rel error Numerical Rel error 
1 -0,01693 -0,52 -0,00564 -1,53 
3 -0,02545 -0,27 +0,00384 -0,63 
4 -0,02613 -0,25 +0,00384 -0,64 
6 -0,02969 -0,15 +0,00685 -0,36 
7 -0,03102 -0,12 +0,00775 -0,28 
12 -0,03217 -0,082 +0,00868 -0,19 
16 -0,03517 +0,0033 +0,01074 +0,0007 

19 -0,03341 -0,047 +0,00954 -0,11 
25 -0,03420 -0,024 +0,01026 -0,044 
42 -0,03510 +0,0012 +0,01088 +0,0136 

61 -0,03450 -0,016 +0,01034 -0,037 
73 -0,03481 -0,007 +0,01056 -0,017 

 

Even with 16 or 42 nodes, the relative error on the 1/R³ singular term (294) is 
quite moderate. We must remember though that (294) is only a part of the total 
element mn mn mn mn mnZ Z Z Z Z

++ +− −+ −−= + + +  entering the Z matrix, for example mnZ
++ . 

Also the main term (267) and the 1/R singularity (268) must be added to (294) to 
obtain mnZ

++ . To quantify the global impact of the 1/R³ singularity, integrated 
numerically with polynomial quadratures, an elementary numerical example is 
analyzed in §5.5.2. 

5.5.2 Numerical example 

The four faces PEC pyramid depicted in Figure 59 is 1m x 1m x 1m and 
illuminated by a 10 MHz plane wave polarized along X and travelling from –Z to 
+Z. The six edges are numbered from 1 to 6. 

 

Figure 59 : Canonical PEC pyramid 

The electric current densities in the middle of each of the four faces obtained with 
the tMFIE-nxf are depicted with arrows, showing a strong X-Z orientation, as 
expected. 
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In Figure 60 we see the influence of the number of quadrature nodes in the 
evaluation of two singular terms : firstly Z12, the interaction between the RWGs 
defined on edges 1 and 2, then Z33, the self interaction on edge 3. For both 
elements it is apparent that the 16 and 42 nodes quadratures lead quicker to the 
correct value for these two elements. With the pyramid 12Z

++  corresponds to the 
analytical example of Figure 58 (p.118). The total value for 12Z

++ , computed for 
the pyramid with 16 nodes, equals 0,01076. In Table 9 (p.120) we read that the 
exact analytical value of the part of 12Z

++  due to the 1/R³ singularity equals 
0,01074, showing that the 1/R³ term is highly dominant in 12Z

++ . On the other 
hand, 12Z

++  is only approximately 8 times smaller than Z12, for which the value 
computed with 16 nodes is close to 0,0849. The relative error on Z12 is therefore 
approximately 8 times smaller than the relative error on 12Z

++  reported in Table 9 
(p.120). 

0,0845

0,0850

0,0855

0,0860

0,0865

0,0870

0,0875
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0,0885
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Figure 60 : Numerical integration of two singular terms 

In Figure 61 we show the real part of J3 and J5, the coefficients of the RWGs 
defined on edge 3 and 5, contributing to the strongest electric current densities 
present on the pyramid. 

2,17

2,18

2,19

2,20

2,21

2,22

2,23

3 7 12 16 19 25 42 61 73

# nodes

3,056

3,057

3,058

3,059

3,060

3,061

3,062

3,063

3,064

J3 J5

 

Figure 61 : Values of J3 and J5 on the pyramid of Figure 59 
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Both curves show a convergent behavior with higher number of nodes, from 
which we can roughly extrapolate the limit value for J3 (~2,18±0,01) and J5 
(~3,063±0,001). Again it is clear that the 16 and 42 nodes quadratures lead much 
quicker to the extrapolated limit value. 

5.5.3 Analytical analysis - very elongated triangles 

This canonical case represented in Figure 58 (p.118) and Figure 59 (p.120) is only 
representative of meshes where quasi equilateral triangles are used. In some 
instances though, as will be shown in §§6.5 and 6.7, (very) elongated triangles are 
useful to greatly diminish the total number of triangles in the mesh, thus the size 
of the Z matrix, equal to the number of triangle edges for PEC bodies, and twice 
this number for dielectric bodies embedded in free space. To this end, we 
generalize for arbitrary S, T and Z the analytical solution already presented in 
§5.5.1 and we examine again the ability of the 16 and 42 nodes quadratures to 
integrate (294) over very elongated triangles. 

  

Figure 62 : Elongated triangles 

This analysis provides quantitative arguments to the warning expressed in 
[60, p.34] regarding Gaussian integration rules on elongated triangles. 

The many symbolic integral expressions involved towards the final exact solution 
presented hereafter are given in Appendix H. They are so complex and lengthy 
that they have been calculated for the ˆT n f= ×  case only, with the aid of [59]. 
This testing function occurs for example when the tMFIE-nxf is applied to PEC 
bodies (see §2.3.2). It is also advised if the Müller scheme is applied to dielectrics 
[32]. 

For the situation depicted in Figure 62, the integral (294) reduces to : 
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with : 
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Again the last integral 2,n fI
+

×  could not be solved analytically, but it is bounded 
everywhere on T, as can be deduced from its expression : 
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 ( )
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22,
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S
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This regular integral will be integrated very accurately with the same high 
efficiency polynomial quadratures that will be used in the evaluation of the 
singular 1,n fI

−
× , 1,n fI

+
×  and 2,n fI

−
×  [46][47]. 

Figure 63 to Figure 65 show the relative error committed on (300), the total term 
I, in function of the number of quadrature nodes for fixed values of S, T and/or Z 
and across a wide variation range of S, T and/or Z. We define :¨ 

 

 Relative error in % = 100*Abs(Numerical/Exact-1) (309) 

 

where : 

 

 “Exact” = 1, 1, 2, 73 2,( )Exact Exact Numerical nodes ExactI I I I
+ − + −− − −  (310) 
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Figure 63 : Relative error as a function of S for T=1=Z 



Chapter 5 : Accuracy of the Method of Moments  

  126 

10
-6

10
-4

10
-2

10
0

10
2

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

1

3 4
6 7

12

16

19

25

42

61

73

T

R
e

la
ti
v
e

 e
rr

o
r 

in
 %

S = 1 = Z

7

42

73

3

I < 0I > 0

 

Figure 64 : Relative error in function of T for S=1=Z 

 

Figure 65 : Relative error in function of Z for S=1=T 

The 16 nodes quadrature does not always show the best relative error 
performance across the wide range of variation of S, T and Z , but it clearly 
provides the best overall relative error, nearly always better than 1%, sometimes 
close to 0,1% but sometimes as high as 10%. The peak areas on the vertical 
dotted line correspond to I=0, a region where the relative error grows artificially 
high due to its definition (309). One also observes, in Figure 64 and Figure 65, 
that when the ratio Z/T becomes smaller than 0.01, the twelve available high 
efficiency polynomial quadratures fail. Inumerical tends to zero and the relative 
error converges to 100 %. A detailed analysis shows that the twelve quadratures 
still perform well and estimate the three terms 1I

− , 1I
+ , 2I

−  with their respective 
accuracy (say for example 0.1% with 16 nodes and 10% with 3 nodes). The 
problem is that when Z/T becomes small(er than 0.01) the final result I is a 
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small number to be obtained from the difference of much bigger numbers I1 and 
I2. As can be seen in Table 10, when Z/T = 10-4 the relative error requested on I1 
and I2 must be lower than 0.01% to estimate I = I1-I2. with at least one exact 
digit. Such an accuracy on I1 and I2 is not attainable, even with the 16 nodes 
quadrature. 

Table 10 : I1 and I2 when Z/T becomes smaller than 0.01  

 Exact Numerical (16 nodes) 
S T Z I1 I2 I I1 I2 I 

1 1 10-4 0.1461837 0.1461574 0.0208581 0.1459128 0.1459126 0.0001108 
1 1 10-3 “ 0.1459238 0.0206738 “ 0.1458989 0.0011058 
1 1 10-2 “ 0.1436958 0.0197986 “ 0.1447217 0.0094784 
1 1 10-1 “ 0.1260032 0.0161391 “ 0.1232675 0.0181104 
1 1 1 “ 0.0507840 0.0107362 “ 0.0504452 0.0107438 

 

It should be remembered though that the singular integral I is only a fraction of 
the total Zmn element entering the Z matrix, sometimes negligible but not always. 
One could also argue that the vast majority of the Z matrix elements are related 
to non adjacent triangles. These elements do not lead to a singular integral such 
as (263) and can be computed very accurately. But on the other hand the few 
elements in Z related to adjacent or overlapping triangles should be the largest 
ones. In many cases, a poor estimation of the singular I elements has no 
significant impact on the final solution J and M. Still, as shown in §6.12, we have 
identified situations where the accuracy provided by the 16 nodes quadrature is 
essential for a good solution. 

As a conclusion, it is probably a safe idea to avoid the 1/R3 singularity with the 
transformation of the double integrals proposed in [54], but as will be shown in 
chapter 6, an efficient integration scheme including a 16 nodes quadrature only 
where needed is a good and moderately costly alternative, but without guarantee 
to work in any situation. 

5.6 Summary 

In the previous chapters new expressions, theorems and formulations have been 
presented, with an often repeated objective of generality. In this chapter we 
focused on another important objective of this book : ensuring the accuracy of the 
approximate result delivered by the Method of Moments. 

Before concentrating on the error produced by the numerical integrations 
occurring during the filling of the impedance matrix, we first reviewed the many 
numerical issues and limitations inherent to the application of the Method of 
Moments to electromagnetic problems : laptop resource limitations, high 
condition number, resonance and low frequency breakdown. In the examples 
treated in chapter 6, we deliberately chose to avoid those well-known pitfalls to 
make sure we isolated the numerical integration issue, if present. 

Numerical integration can be performed with several techniques, many of them 
being very accurate, but sometimes at the expense of complex programming. 
After reviewing most of these techniques, we justified our choice (high efficiency 
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polynomial quadratures) with the desire to maintain an easy and very general 
implementation. We also assessed the validity of this choice, especially in the 
integration of the singular integrals, that appeared to yield the main elements of 
the impedance matrix. To this end, extensive analytical effort has been put in the 
derivation of exact expressions for the singular interactions between two 
orthogonal triangles, regular and elongated. A direct comparison between 
analytical and numerical results has permitted to observe that two quadratures 
provided a much higher accuracy in the singular case : the 16 and 42 nodes ones. 
This observation was further supported at system level with the example of a 
simple canonical pyramid, then confirmed in chapter 6 with two large examples 
showing that the accuracy provided by the 16 and 42 nodes quadratures is 
necessary in some cases.  

These observations and confirmations do not form a complete and definitive 
demonstration though. The overall superiority of the 16 and 42 nodes 
quadratures have only been demonstrated in some cases, but not at all in 
general. Moreover, this superiority is limited : the absolute accuracy provided by 
those two quadratures remain quite modest as compared to the accuracy 
provided by the same family of high efficiency quadratures in the regular cases. 
As it is not at all guaranteed that some examples could be found where even the 
16 and 42 nodes quadrature would fail as well, we recommend for example to 
select an alternative where the 1/R³ singularity is eliminated, but at the expense 
of generality. 
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6 Numerical examples 

 

Part II of this book is entirely devoted to a large series of examples. Our 
originality and contribution resides in the analysis down to current density level. 
We believe that many of the observations and conclusions made in Part II are not 
accessible to whom only compares magnitudes resulting from the integration of 
those current densities, such as far fields or scattering coefficients. 

The examples have been selected and are presented in an evolutive sequence to 
serve several purposes.  

First of all, they illustrate and compare many concepts elaborated in Part I. 
Extensive cross-referencing is provided between Part I and Part II to help the 
reader either to find the example(s) illustrating a theory, or to refer to the theory 
supporting the observations or conclusions related to a given example. 

The second objective is to show and quantify the accuracy of the MoM in the 
interesting and useful case of a PEC sheet deposited on a very thin dielectric 
substrate. To reach this goal, we make extensive use of the reference solution 
described in §6.1.4, but we also start from the sphere and progressively deform it 
into a rounded cube, then a cube and finally a very thin plate. In the almost 
unique case of the sphere, the analytical solution is available for both the PEC 
and dielectric case. Moreover, the absence of sharp edges eliminates high 
gradients of surface current densities, what proves to yield the best accuracy for 
all tested formulations, as well as an excellent match between the tMFIE-nxf and 
the two tEFIE-f formulations. The sphere also offers a unique opportunity to 
precisely measure the flat facet error, due to the approximation of the curved 
surface with flat triangles. Armed with the solid and rich accuracy references 
provided by the sphere, we can measure the progressive degradation of the 
accuracy throughout all the above mentioned transitional geometries, until the 
very thin dielectric plate with a PEC coating. 

The third objective is to support with two full-scale geometries the conclusions 
drawn in chapter 5 : the superiority, or even the necessity, of the 16 and 42 nodes 
quadratures if our general and versatile integration strategy is chosen among the 
others, presented in chapter 5. 

The fourth objective is to extensively compare the two tEFIE-f and the tMFIE-nxf 
solutions for various PEC objects, and verify when or where both formulations 
provide convergent independent solutions. 

Great attention has been paid to provide every details necessary to reproduce all 
the results. Those details include the numerical integration parameters, as they 
play an essential part in this book. 
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6.1 Introduction 

6.1.1 Parameters common to all examples 

Except in §6.12 the incident field is always a plane wave with wavelength λ0 in 
free space (λ is the wavelength in dielectrics). The incoming electric field has 
unitary amplitude |Einc| = 1 V/m, whereby the incoming magnetic field has an 
amplitude |Hinc| = 2.653 mA/m ≈ 1/Z0. The zero phase reference of the plane 
wave is located at (x,y,z) = (0,0,0). 

 

Figure 66 : Angles definition for the incident plane wave 

As an example, the angles (θ, ϕ, α) defining a wave coming from -Z going to +Z 
and polarized along X are θ = 180° and ϕ - α = 180°. 

The first form of the integro-differential equations has been used (§1.9), along 
with the tangential projection of the integro-differential equations : tEFIE or 
tMFIE (see §1.11). 

The mesh, made of flat triangles, is unique for every interface between adjacent 
domains, and also for both faces of perfectly conducting sheets. The length of any 
edge in the mesh is always smaller than or equal to λ/9. The basis functions are 
always RWG, for both the electric and magnetic surface current densities (see 
§2.2.8). 

The E-MFIE used for sheets is always based on tEFIE∇G-f (see §5.4.2) and the 
tMFIE-nxf. 

Every element of Z, V and I has been generated, stored and used in double 
precision, with 16 significant digits. The ZI=V system of equations is solved with 
a direct LU decomposition. 

6.1.2 Variable parameters  

For PEC sectors (see §3.2), we can choose among : 

− tEFIE∇f-f or tEFIE∇G-f (see §5.4.2) 

− tMFIE-nxf 

− E-MFIE for embedded edges 

ϕ  X  

Y  

Z  

θ  

ûθ  

ûϕ  

incE  
incH  

α  
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For Dielectric sectors, we can choose a PMCHWT or a Müller combination (see 
§3.6) of either : 

− tEFIE-f (∇f or ∇G) and tMFIE-f  or 

− tEFIE∇G-nxf and tMFIE-nxf 

For PEC and dielectric sectors, more insight about the testing functions (denoted 
with the subscript -f or -nxf) is given in §2.3.2. 

To compute every zmn,i elements entering the Z matrix, the distance Rmin between 
the triangle pairs Sm,i and Sn,i is first determined. Singularity extraction (see 
§5.4) is applied only if Rmin < λ/10. When Rmin = 0, it is also detected individually 
for the four interactions between the two pairs of triangles which interactions are 
self terms, as they require a special treatment. For example, self terms reduce to 
the principal value in the tMFIE-nxf (see §2.3.2), but not in the tEFIE-f. The 
number of nodes used in the outer and inner integrals is different, and varies 
with Rmin. 

 

Figure 67 : Geometry to determine the number of quadrature nodes 

An example is given in Table 11, including also the number of nodes used in the 
numerical computation of the elements vm,i of the source vector V. 

Table 11 : Example of a scheme for the number of integration nodes  

 
Self 

Term 
Rmin< λ/100 Rmin ∈ [λ/100; λ/10] Rmin > λ/10 V 

Inner 3 3 3 3 -- 

Outer 42 16 7 3 3 

6.1.3 Presentation of the results 

After solving I=Z-1V, the vector I is used to compute the electric and magnetic 
current densities in the middle of every triangle inside every dielectric domain, 
as shown in §2.2.8 with (147) and (148). As we have used the harmonic version of 
Maxwell’s equations, the surface current densities we obtain are complex valued. 
We refer to (12) in §1.2 to relate these complex surface current densities to the 
physical surface current densities varying with time at frequency f = ω/(2π). 

The electric and magnetic surface current densities are normalized respectively 
to |Hinc| and |Einc|. The resulting magnitudes are thereby adimensional and 
vary in a limited range of values that is similar for J/|Hinc| and M/|Einc|, easing 
comparisons between them. 

,n iS

minR  
m,iS  
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For a visual and qualitative representation, the real and imaginary parts of the 
surface current densities are represented as oriented arrows, superimposed on 
the (meshed) geometry. Their length and color both indicate the amplitude of the 
surface current density. When the amplitude variation of the surface current 
densities is large, for example close to sharp edges, a logarithmic scale is used. 
Otherwise, a linear scale is used. 

We refer to §6.2.1 for a complete description of the quantitative analyses that are 
performed on every component of the current densities. 

The condition number of Z is computed with the function ‘cond’ in MatlabTM 7.1 
and denoted CN. For dielectric domains, CN is computed for the appropriate 
adimensional version of Z, as explained in §5.2.2. 

6.1.4 The εr = 1 reference solution 

One can imagine a body V with arbitrary bounding surface S, filled with a 
dielectric of relative permittivity εr ≈ 1, or even equal to one. To show that such a 
situation is not a trivial mathematical exercise, we give in Table 12 the relative 
permittivity of some gases. 

The solution for the scattering by a volume filled with a linear, isotropic and 
homogeneous dielectric with relative permittivity equal to one is very simple : the 
surface current densities anywhere on S inside free space are given by : 

 0 0 incJ n H= + ×
⌢

 (311) 

 0 0 incM n E= − ×
⌢

 (312) 

The surface current densities on S inside the dielectric body are identical but 
with opposite sign. We will make extensive use of this simple reference solution 
throughout this chapter to assess the accuracy of several MoM formulations for 
various structures. 

Such a void body can also be combined with another non trivial body, PEC or 
dielectric. The void body can be loose from the other body, touch it or even 
completely embed it. The solution for the electric and magnetic current densities 
on the surface of the non trivial body should not be altered by the presence of the 
void body, independently of the shape, size and location of this void body. We will 
also make use of this property to examine the behavior of the MoM solutions in 
presence of more than one dielectric or PEC body (§§6.3.1 and 6.10.1). 

Table 12 : Relative permittivity of some gases 

Gas name εr 

Air 0°C 1,00059 
 40 atm 1,0218 
 80 atm 1,0439 
CO2, 0°C 1,000985 
H2, 0°C 1,000264 
Water vapor, 145°C 1,00705 



Chapter 6 : Numerical examples 

 

  141 

6.2 Sphere 

A sphere with radius λ0/6 is illuminated by a plane wave travelling in free space 
from -Z to +Z and polarized along X. The incoming electric field has unitary 
amplitude |Einc| = 1 V/m. The zero phase reference of the plane wave is located 
at (x,y,z) = (0,0,0). 

To illustrate how the electric and magnetic current densities look like, a first 
very accurate solution obtained with the MoM on a 748 triangles mesh is 
presented. The longest edge among all triangles has a length of λ0/20 when εr = 1 
and λ/10 of it when εr = 4. The magnetic current density being identically zero on 
the PEC sphere, it is not represented. 

 

Re [M/|Einc|] Im [M/|Einc|] 

  

  

 

Figure 68 : M/|Einc| : εr = 4 (Top) / εr = 1 (Bottom) 

 

0 1,000 0,500 



Chapter 6 : Numerical examples 

 

  142 

 
Re [J/|Hinc|] Im [J/|Hinc|] 

  

  

  

 

Figure 69 : J/|Hinc| : PEC (Top) / εr = 4 (Middle) / εr = 1 (Bottom) 

0 2,386 1,193 
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The electric surface current density is the highest on the PEC sphere, and 
decreases with εr on the dielectric sphere (Figure 69, p.142), while the opposite is 
true for the magnetic surface current density (Figure 68, p.141). Table 13 shows 
the largest amplitude of the surface current density J and M on the sphere : 

 

Table 13 : Maximum values of the surface current densities 

 Max(J/|Hinc|) Max(M/|Einc|) 

PEC 2,386 0 

εr = 4 1,523 0,937 

εr = 1 1,000 1,000 

6.2.1 tEFIE-f 

To quantify the accuracy of the tEFIE∇f-f and the tEFIE∇G-f (see §5.4.2) for 
several integration schemes, we compare the MoM solutions for the surface 
current density computed at every triangle centroid with the exact Mie solution 
[1] computed, with at least 6 correct significant digits, on the sphere at the same 
spherical coordinate as the triangle centroid. As illustrated in Figure 70, the flat 
facet mesh introduces an unavoidable geometrical error. 

 

 

Figure 70 : Mesh error on the sphere 

We use the mesh of Figure 71 (p.144), containing 608 quasi equilateral triangles. 
The largest triangle edge has a length of λ0/19. 

EFIE resonances are excluded as the sphere diameter is smaller than 1.145λ0 
(see §5.2.3). 

Mie 

MoM 
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Figure 71 : Regular λ0/19 mesh of a sphere with radius λ0/6 

The absolute error is computed separately for every component of the real and 
imaginary part of J , namely Re(Jx), Re(Jy), Re(Jz) and Im(Jx), Im(Jy), Im(Jz). To 
obtain relative errors in percent, these absolute errors are then multiplied by 100 
and divided by MaxJ, where : 

 ( )

max(Re ),max(Re ),max(Re ),
max

max(Im ),max(Im ),max(Im )

x y z

Mie Solution
x y z

J J J
MaxJ

J J J

  
=  

  
 (313) 

These relative errors, calculated at the spherical coordinate of every triangle 
centroid, are represented by a blue dot in Figure 72 (p.145). For all six 
components of J , the average and the standard deviation of every relative error 
are indicated, and the average is also illustrated by a red horizontal line. The X 
axis of every subplot is the Mie solution, scaled between –MaxJ/|Hinc| and 
+MaxJ/|Hinc|. 

We compare hereafter the tEFIE∇f-f and tEFIE∇G-f solutions for the eleven 
integration schemes listed in Table 14. In the 1 node integration scheme, all 
integrations are performed with only one node. In all other integration schemes, 
one or three nodes are used for the inner integrals and outer integrals for which 
Rmin > λ/100. 

Table 14 : Eleven integration schemes with tEFIE-f for the sphere  

 
Self 

Term 
Rmin< λ/100 Rmin ∈ [λ/100; λ/10] Rmin > λ/10 V 

Inner 1 1 1 -- 
Outer 1 1 1 1 

Inner 3 3 3 -- 

Outer 
3, 6, 7, 12, 16, 19, 

25, 42, 61, 73 
3 1 3 

 
A comparison between the tEFIE∇f-f and tEFIE∇G-f solutions obtained with the 
16 nodes quadrature can be found in Figure 72 (p.145). For the other integration 
schemes listed in Table 14, only the average relative error is reported in Table 
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15. For both the tEFIE∇f-f and the tEFIE∇G-f, the distribution of the relative 
errors on the 608 triangles is quite similar but also very good, with an average 
around 1% for all six components of J, and a maximum below 5%. The condition 
number of both Z matrices is quasi identical (500 and 515). 

 tEFIE∇f-f tEFIE∇G-f 

C
N = 500 

C
N = 515 

Figure 72 : Relative errors and CN (tEFIE-f, 16 nodes quadrature) 

Table 15 : Average relative error with tEFIE-f on PEC sphere in function of the 
number of integration nodes 

 tEFIE∇f-f tEFIE∇G-f 

 Re Im Re Im 

  Jx Jy Jz Jx Jy Jz Jx Jy Jz Jx Jy Jz 

1 0,93 0,75 0,74 0,76 0,83 1,11 2,93 1,70 1,94 1,68 1,26 1,62 
3 0,87 0,74 0,69 0,72 0,81 1,11 1,07 0,94 1,02 0,97 0,93 1,23 
6 0,86 0,73 0,69 0,71 0,81 1,11 0,89 0,92 0,96 0,87 0,95 1,18 
7 0,86 0,73 0,69 0,71 0,81 1,11 0,85 0,89 0,92 0,84 0,94 1,17 

12 0,86 0,73 0,69 0,71 0,81 1,11 0,83 0,87 0,88 0,81 0,92 1,16 
16 0,86 0,73 0,69 0,71 0,81 1,11 0,88 0,85 0,84 0,75 0,89 1,13 
19 0,86 0,73 0,69 0,71 0,81 1,11 0,84 0,86 0,86 0,78 0,91 1,15 
25 0,86 0,73 0,69 0,71 0,81 1,11 0,85 0,86 0,85 0,76 0,90 1,14 
42 0,86 0,73 0,69 0,71 0,81 1,11 0,88 0,85 0,85 0,75 0,89 1,13 
61 0,86 0,73 0,69 0,71 0,81 1,11 0,86 0,85 0,85 0,76 0,90 1,14 
73 0,86 0,73 0,69 0,71 0,81 1,11 0,87 0,85 0,85 0,75 0,90 1,13 
 

The tEFIE∇f-f contains only the 1/R singularity. After its extraction from the 
inner integral, the outer integral is never singular and can be integrated very 
accurately with only a few nodes. There is indeed no significant accuracy 
improvement if more than 6 nodes are used in the outer integral when 
Rmin < λ/100. Even an integration with only 1 node everywhere already yields an 
accuracy quite similar to the best one obtained with more nodes. The difference 
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between a 1 node and a 16 nodes integration is so tiny that is not perceptible in 
Figure 73. 

 

Re ( J ) – 16 nodes Im ( J ) – 16 nodes 

  

Re ( J ) – 1 node Im ( J ) – 1 node 

  

Figure 73 : tEFIE∇f-f with only 1 or 16 integration nodes 

The tEFIE∇G-f contains a 1/R and a 1/R³ singularity. After their extraction, the 
1/R³ singularity leaves a logarithmic singularity in the outer integral. As shown 
in §5.5 a higher number of nodes might be necessary to obtain acceptable 
accuracy, while the 16 and 42 nodes quadratures outperform the others, at least 
in the analyzed canonical cases. Table 15 (p.145) shows indeed an extremely 
small advantage of the 16 and 42 nodes quadratures, but this effect will be more 
convincing with other examples (§6.12). On the other hand, as can be seen in 
detail in Figure 74 (p.147), the relative error pattern with the 1-node integration 
scheme is visibly worse than the others, though still surprisingly acceptable. 
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tEFIE∇G-f   (1 node) tEFIE∇G-f   (16 nodes) 

 
CN = 655 

  

CN = 515 

Figure 74 : Relative error with tEFIE∇G-f and 16 nodes quadrature 

6.2.2 tMFIE-nxf 

We solve now exactly the same sphere scattering problem as in §6.2.1, but with 
the tMFIE-nxf. In this way we can measure the accuracy of this solution with the 
help of the exact Mie solution, and then compare the tMFIE-nxf solution to the 
tEFIE∇G-f solution, both containing the 1/R3 singularity. Table 16 shows that the 
evolution of the average relative error with regard to the exact Mie solution, as a 
function of the number of integration nodes chosen for the outer integral when 
Rmin < λ/100, is quite similar for both solutions. A detailed comparison, presented 
in Figure 75 (p.148), shows that the tMFIE-nxf performs slightly better than the 
tEFIE∇G-f, especially for the 1-node integration scheme. MFIE resonances are 
excluded as the sphere diameter is smaller than 1.145λ0 (see §5.2.3). 

Table 16 : Average relative error with tMFIE-nxf and tEFIE∇G-f 

 tMFIE-nxf tEFIE∇G-f 

 Re Im Re Im 

  Jx Jy Jz Jx Jy Jz Jx Jy Jz Jx Jy Jz 

1 2,41 1,01 1,16 0,99 0,72 1,06 2,93 1,70 1,94 1,68 1,26 1,62 
3 1,44 0,81 0,83 0,77 0,80 1,07 1,07 0,94 1,02 0,97 0,93 1,23 
6 1,15 0,76 0,75 0,75 0,80 1,06 0,89 0,92 0,96 0,87 0,95 1,18 
7 1,10 0,75 0,73 0,75 0,81 1,06 0,85 0,89 0,92 0,84 0,94 1,17 

12 1,03 0,74 0,72 0,75 0,81 1,06 0,83 0,87 0,88 0,81 0,92 1,16 
16 0,83 0,72 0,68 0,77 0,82 1,06 0,88 0,85 0,84 0,75 0,89 1,13 
19 0,97 0,73 0,70 0,75 0,81 1,06 0,84 0,86 0,86 0,78 0,91 1,15 
25 0,94 0,73 0,69 0,75 0,81 1,06 0,85 0,86 0,85 0,76 0,90 1,14 
42 0,91 0,72 0,68 0,76 0,81 1,06 0,88 0,85 0,85 0,75 0,89 1,13 
61 1,07 0,75 0,74 0,76 0,79 1,05 0,86 0,85 0,85 0,76 0,90 1,14 
73 0,92 0,73 0,69 0,76 0,81 1,06 0,87 0,85 0,85 0,75 0,90 1,13 
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Both solutions, when integrated with 16 nodes, show a maximum relative error 
with regard to the exact solution of less than 5%. If we compare directly the 
tMFIE-nxf and tEFIE∇G-f at every 608 triangle centroid, we find that the 
maximum difference between the two solutions is less than 3%, as shown in 
Figure 76 (p.149). 

The condition number is two orders of magnitude better with tMFIE-nxf than 
with tEFIE∇G-f in the 16 nodes case. It is only 6 times lower in the 1 node case. 

 
tMFIE-nxf   (1 node) tEFIE∇G-f   (1 node) 

CN=117 CN=655 

 tMFIE-nxf   (16 nodes) tEFIE∇G-f   (16 nodes) 

CN=5,56 CN=515 

Figure 75 : tMFIE-nxf and tEFIE∇G-f relative errors for a PEC sphere 
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Figure 76 : Direct comparison tMFIE-nxf / tEFIE∇G-f for a PEC sphere 

6.2.3 Homogeneous and inhomogeneous mesh 

We compare in Figure 77 (p.150) the relative errors obtained with tEFIE∇G-f and 
tMFIE-nxf with a uniform and with a less uniform mesh, both having a 
comparable number of similarly sized triangles. 

We use the following integration scheme : 

 
Self 

Term 
Rmin< λ/100 Rmin ∈ [λ/100; λ/10] Rmin > λ/10 V 

Inner 3 3 3 -- 
Outer 16 7 3 3 
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λ0/19 : 608 triangles λ0/75 to λ0/20 : 748 triangles 

 
CN=515 

 

CN=1520 

tEFIE∇G-f 

CC
N=5,56 

 

CN=12,8 

tMFIE-nxf 

Figure 77 : Relative errors on a (non) uniform mesh of a PEC sphere 

The tEFIE∇G-f and tMFIE-nxf solutions obtained with the uniform mesh are 
twice better than the solutions obtained with a mesh containing triangles 
moderately stretched around the -X and +X poles. The condition number follows a 
similar trends for both the tEFIE∇G-f and the tMFIE-nxf, while being much lower 
in the tMFIE-nxf case. 
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6.2.4 Mesh density 

In Figure 79 (p.152) we compare the relative errors of the solutions obtained with 
the tEFIE∇f-f for the PEC sphere meshed uniformly with finer and finer meshes 
presented in Figure 78. The maximum dimension of the triangle sides in each of 
the four meshes ranges from λ0/11 to λ0/51. 

 

   

 

 

 

 

 

λ0/11 : 216 triangles λ0/19 : 608 triangles 

 

 

 

 

 

 

λ0/36 : 3982 triangles λ0/51 : 8824 triangles 

Figure 78 : Four uniform meshes of a sphere 

The number of rows and columns of the Z matrix for the PEC sphere embedded 
in free space is N×N where N=1,5T is the number of mesh edges and T is the 
number of triangles in the mesh, mentioned in Figure 78. 
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λ0/11 : 216 triangles 
CN=206 

λ0/19 : 608 triangles 
CN=515 

  

λ0/36 : 3982 triangles 
CN=4760 

λ0/51 : 8824 triangles 
CN= 14111 

Figure 79 : Relative error of the tEFIE∇f-f with four meshes 

The relative errors do improve when the mesh is refined, proportionally to 1/h, 
where h is the mesh characteristic dimension [2]. This linear improvement is 
quite slow in comparison with the huge increase in solving resources : the 
required memory and the fill time of the Z matrix is proportional to N2, while the 
solving time is proportional to N3 with a direct solver and to kN2 with an iterative 
solver. 
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6.2.5 Dielectric sphere 

Next we analyse the dielectric sphere, for which a solution is sought with the 
PMCHWT and the Müller combination schemes, where the tEFIE∇G and tMFIE 
are both tested either with -f or -nxf. The inhomogeneous mesh contains 748 
triangles and is shown in Figure 77 (p.150). The length of the edge of every 
triangle is comprised between λ0/75 and λ0/20. On a dielectric sphere, not only an 
electric but also a magnetic surface current density is present. Both surface 
current densities will be considered in the comparisons. 

We use the following integration scheme : 

 
Self 

Term 
Rmin< λ/100 Rmin ∈ [λ/100; λ/10] Rmin > λ/10 V 

Inner 1 1 1 -- 
Outer 16 7 3 3 

 

The first analysis concerns a dielectric sphere with εr = 1.  

In this specific case, we can use two different reference solutions : 

− the “Mie” solution, computed on the sphere (see Figure 70, p.143) 

− the exact analytical solution (see §6.1.4), computed exactly at the triangles 
centroids, called hereafter “Facet” solution. 

Note that for εr = 1 = µr, the PMCHWT and Müller combination schemes (§3.6) 
are identical. 

Table 17 : Average relative errors for a dielectric sphere with εr = 1 

 

Table 17 shows that the average relative errors of the MoM solutions, relatively 
to the “Mie” solution (2 to 3%), are a factor 3 to 6 higher than the average error of 
the MoM against the Facet solution (0,4 to 1,1%). This was expected, and it 
reveals that the main contribution to the errors measured for the PEC sphere in 
the previous paragraphs is due to the flat facet approximation of the curved 
surface of the sphere (see Figure 70, p.143). 

 

In the second analysis, we compare the condition number and the average 
relative errors on various MoM solutions against the “Mie” reference solution for 
dielectric spheres with a relative permittivity ranging between εr = 1 and εr = 4. 

0,4 0,5 0,5 0,8 1,0 1,1 0,4 0,5 0,4 0,8 0,8 0,9

x y z x y z x y z x y z

PMCHWT-f-f 3,0 0,7 3,2 2,1 1,1 2,0 0,5 3,3 2,9 0,9 1,7 2,5 
PMCHWT-nxf-nxf 3,1 0,5 3,3 2,2 1,0 2,1 0,4 3,3 2,9 0,7 1,8 2,5 
PMCHWT-f-f 0,6 0,6 0,6 0,8 1,0 1,1 0,5 0,5 0,6 0,9 0,8 0,9 
PMCHWT-nxf-nxf 

Re M Im M Re J Im J

Ref = Mie 
Ref = Facet 
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Table 18 : Average relative error and condition number 
for dielectric spheres 

CN x y z x y z x y z x y z

f-f 1500 3,0 0,7 3,2 2,1 1,1 2,0 0,5 3,3 2,9 0,9 1,7 2,5

nxf-nxf 13 3,1 0,5 3,3 2,2 1,0 2,1 0,4 3,3 2,9 0,7 1,8 2,5

f-f 1486 2,7 0,7 2,8 2,3 1,2 2,2 0,8 3,5 2,9 0,6 2,0 2,6

nxf-nxf 36 2,7 0,6 2,8 2,3 1,2 2,3 0,8 3,7 3,2 0,5 2,2 2,8

f-f 993 2,7 0,7 2,8 2,3 1,2 2,2 0,8 3,5 2,9 0,6 2,0 2,6

nxf-nxf 19 2,7 0,6 2,8 2,3 1,2 2,3 0,7 3,5 2,9 0,5 2,0 2,7

f-f 1471 2,6 1,0 2,3 2,2 1,3 2,2 1,1 2,6 2,0 1,0 2,4 2,6

nxf-nxf 59 2,6 1,0 2,3 2,2 1,3 2,2 1,5 3,2 2,9 1,3 2,8 3,0

f-f 590 2,6 1,0 2,3 2,2 1,3 2,2 1,1 2,6 2,0 1,0 2,4 2,6

nxf-nxf 32 2,6 1,0 2,3 2,2 1,3 2,2 1,0 2,6 1,9 1,0 2,4 2,6

Im M

εr  = 1

εr  = 2

PMCHWT

PMCHWT

Muller

Re J Im J

εr  = 4

PMCHWT

Muller

Re M

 

 

This comparison summarized in Table 18 shows that : 

− The average relative errors on ReJ, ImJ, ReM and ImM do not vary 
significantly when εr increases from 1 to 4. 

− All combination and testing schemes perform evenly, but PMCHWT-nxf-nxf 
shows a slightly higher average relative error for higher εr. 

− The condition number for the PMCHWT-f-f is the highest. It slightly 
decreases with increasing εr. 

− The PMCHWT-nxf-nxf and Müller-nxf-nxf schemes exhibit a very low 
condition number, that seems to increase proportionally to εr. 

 

In the third and last analysis, we compare the two meshes of Figure 80, the first 
one containing 748 triangles, the second one 1748. 

        

Figure 80 : Two meshes for a sphere 

For the 748 triangles sphere, the longest triangle edge has a length of λ0/20 when 
εr = 1 and λ/10 when εr = 4. For the 1748 triangles sphere, the longest triangle 
edge has a length of λ0/27 when εr = 1 and λ/13 when εr = 4. 
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Table 19 : Influence of the mesh size  
on the average relative error and the condition number 

CN x y z x y z x y z x y z

748 1471 2,6 1,0 2,3 2,2 1,3 2,2 1,1 2,6 2,0 1,0 2,4 2,6

1748 17861 1,3 0,6 1,2 1,0 0,8 1,3 0,4 1,0 0,6 0,5 1,0 1,3

748 1500 3,0 0,7 3,2 2,1 1,1 2,0 0,5 3,3 2,9 0,9 1,7 2,5

1748 18062 1,7 0,4 1,8 1,1 0,7 1,4 0,3 1,7 1,4 0,6 1,0 1,5

748 0,60 0,60 0,60 0,80 1,00 1,10 0,50 0,50 0,60 0,90 0,80 0,90

1748 0,34 0,43 0,44 0,57 0,72 0,75 0,33 0,36 0,36 0,58 0,52 0,65

Re J Im J Re M Im M

εr  = 4 Ref = Mie

εr  = 1

Ref = Mie

Ref = Facet
 

As we observed with the PEC sphere, the average relative errors improve 
approximately as 1/h, if we define a characteristic length h in these 
inhomogeneous meshes as : 

 sphereS
h

Number of triangles
=  (314) 

In the case εr = 1 the same quantitative observation is true for both the Mie-MoM 
and the Facet-MoM comparison. 

The condition number is multiplied by more than a factor 12 between the 
inhomogeneous mesh with 748 and the one containing 1748 triangles. In 
comparison, the condition numbers computed in §6.2.4 with four homogeneous 
meshes increase much slower with higher mesh density. 
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6.3 Sphere in a half spherical shell 

We analyze now the mixed material body presented in Figure 81.  
The mesh has edges that are at most λ0/19 long, and the global Z matrix counts 
1726 J unknowns and 796 M unkowns. 

 

 

  

Figure 81 : Sphere in a half spherical shell 

We use the following integration scheme : 

 
Self 

Term 
Rmin< λ/100 Rmin ∈ [λ/100; λ/10] Rmin > λ/10 V 

Inner 3 3 3 -- 
Outer 16 3 1 3 

6.3.1 PEC sphere inside a εr = 1 shell 

We begin with a PEC sphere and a εr = 1 shell. The electric current density on the 
sphere should not be altered by the presence of a εr = 1 shell. This is confirmed by 
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Figure 82, where we compare the Mie and MoM solutions for J on the PEC 
sphere, with or without the εr = 1 shell. 

 
 

 

(a) : Sphere only 
tEFIE∇G-f 

 

(b) : Sphere and Shell 
tEFIE∇G-f + PMCHWT-f-f 

 

(c) : Sphere only 
tMFIE-nxf 

 

(d) : Sphere and Shell  
tMFIE-nxf + PMCHWT-f-f 

Figure 82 : Relative error on a PEC sphere, with and without εr = 1 shell 

As opposed to the current density on the PEC sphere, the current density on the 
εr = 1 shell is not the same as what it would be without the presence of the PEC 
sphere. 
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On the inside part of the shell : 

− the magnetic current density is identically zero, because this part of the 
shell is in contact with a PEC body 

− the electric current density is the one expected on the bottom half of the 
PEC sphere if it were alone fully embedded in free space.  

On the outside part of the shell, as suggested in Figure 83, the electric and 
magnetic current densities must produce everywhere in space the same electric 
and magnetic fields that would be scattered by the electric current density on the 
hidden bottom part of the PEC sphere. 

On the thin annular part of the shell : 

− the electric current density must be zero, because in the plane of the 
annular ring the incident and scattered magnetic fields are both lying in the 
XZ plane  

− the magnetic current density is expected to be quite high as the total electric 
field is the highest close to the PEC sphere and lies in the plane of the 
annular ring 

 

Figure 83 : Equivalent radiating electric and magnetic current densities 

On the outer spherical part of the shell : 

− the magnetic current density is expected to be very small as the total 
electric field is quasi radial at close distance from the sphere (it is exactly 
radial everywhere on the sphere) 

− the electric current density is expected to be very similar in shape, but 
somewhat lower in amplitude than the electric current density on the 
bottom half of the PEC sphere. 

All the observations made are confirmed by Figure 84 (p.159), where we present 
successively the current densities around the isolated sphere, in free space 
surrounding the half sphere and its shell, and in the shell alone : 

Inside free space 
Inside the shell 



Chapter 6 : Numerical examples 

 

  159 

 
Re [ J/|Hinc|] Im [ J/|Hinc|] 

  

  

 

Re [ M/|Einc|] Im [ M/|Einc|] 

  

 

Figure 84 : J and M on the εr = 1 shell and on the isolated PEC sphere 

0 2,412 1,206 

0 2,970 1,485 
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6.3.2 PEC sphere inside a εr = 9 shell 

In Figure 85 we compare the electric and magnetic current densities on a εr = 1 
and a εr = 9 shell, partly embedding the same PEC sphere as in §6.3.1. To make 
sure that all triangle edges are at most λ/9 long when εr = 9, a mesh is used 
where the triangle edges are twice smaller than in §6.3.1. The size of the global Z 
matrix is 10212x10212. The tEFIE∇f-f is used for PEC sectors and with tMFIE-f 
in dielectric sectors in the PMCHWT-f-f scheme.  

As in Table 13 (p.143), the electric surface current density gets higher in a 
dielectric with high permittivity : max[ J/|Hinc|]=2,896 in the εr = 9 shell and 
2,412 in the εr = 1 shell ( see Figure 84, p.159 ). 

 

Re [ J/|Hinc|] Im [ J/|Hinc|] 

εr=1 

  

εr=9 

  

 

Figure 85 : J on a εr = 1 and a εr = 9 shell 

0 2,896 1,448 



Chapter 6 : Numerical examples 

 

  161 

We have also seen with Table 13 (p.119) that the magnetic current density 
decreases on a dielectric with high permittivity. While max[ M/|Einc|] = 3,150 in 
the εr = 1 shell, it is only 0,850 in the εr = 9 shell. 

 

Re [ M/|Einc|] Im [ M/|Einc|] 

εr=1 

  

εr=9 

  

 

Figure 86 : M on a εr = 1 and a εr = 9 shell  

 

0 3,150 1,575 
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6.4 Rounded cube 

Halfway between the perfect shape of the sphere and the more challenging case 
of a cube, we analyze the cube with rounded edges and corners shown in 
Figure 87. 

 

Figure 87 : Mesh of a cube with rounded edges and corners 

The length of the sides of the cube is λ0/4 and the radius of the rounded edges and 
corners is λ0/40. It is illuminated with the same plane wave used in §6.2 and §6.3, 
a plane wave travelling from -Z to +Z and polarized along X. The incoming 
electric field has a unitary amplitude |Einc| = 1 V/m and its phase is zero at the 
centre of the cube. The mesh contains 1866 triangles of various sizes and shapes. 
The largest triangles, in the middle of the flat faces, have edges not exceeding 
λ0/13, while the smallest are λ0/127. 
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6.4.1 Dielectric rounded cube 

The only exact solution available for the rounded cube is the case εr = 1 (see 
§6.1.4). This reference solution will allow to quantify the accuracy of the MoM, 
and compare it with the accuracy obtained with the sphere. Note that there is no 
flat facet approximation error : the current densities J and M are calculated at 
the same location with the MoM solution and with the exact solution, namely at 
every triangle centroid. 

 

Re [J/|Hinc|] Im [J/|Hinc|] 

MoM solution (tEFIE∇G-f based) 

  

Exact solution 

  

 

Figure 88 : J/|Hinc| on the εr = 1 rounded cube 

 

0 1,004 0,502 
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Re [M/|Einc|] Im [M/|Einc|] 

MoM solution (tEFIE∇G-f based) 

  

Exact solution 

  

 

Figure 89 : M/|Einc| on the εr = 1 rounded cube 

Visually, there is no difference between the MoM and the exact solution.  
A quantitative comparison is given in Figure 90 (p.165). 

0 1,010 0,505 



Chapter 6 : Numerical examples 

 

  165 

Two solutions have been obtained with the PMCHWT-f-f, based on the tMFIE-f 
and either tEFIE∇f-f or tEFIE∇G-f. The following integration scheme has been 
used : 

 
Self 

Term 
Rmin< λ/100 Rmin ∈ [λ/100; λ/10] Rmin > λ/10 V 

Inner 3 3 3 -- 
Outer 16 16 3 3 

 

 

PMCHWT-f-f with tEFIE∇f-f 
CN=14294 

PMCHWT-f-f with tEFIE∇G-f 
CN=14360 

 
 

  

Figure 90 : Relative error for the εr = 1 rounded cube 

The observed relative errors are comparable to those already reported for the 
εr = 1 sphere in Table 17 (p.153). Extrapolating the conclusions of Table 18 
(p.154), we can expect similar relative errors for the εr = 2 and εr = 4 rounded 
cube, for which no exact solution is available. The condition numbers are similar 
to those already reported in Table 19 (p.155) for the sphere meshed with a mix of 
1748 regular and stretched triangles. 
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6.4.2 PEC rounded cube 

No analytical solution is available for the PEC rounded cube. But we can 
construct and compare two independent numerical solutions, for example with 
the tEFIE∇G-f and the tMFIE-nxf. 

 

Re [J/|Hinc|] Im [J/|Hinc|] 

tEFIE∇G-f 
CN=14374 

  

tMFIE-nxf 
CN=98 

  

 

Figure 91 : tEFIE∇G-f and tMFIE-nxf solutions ( PEC rounded cube ) 

As already observed in §6.2.2, the condition number of the tMFIE-nxf is 
significantly lower than the tEFIE∇G-f one. 

0 3,88 1,94 
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The following integration scheme has been used : 

 
Self 

Term 
Rmin< λ/100 Rmin ∈ [λ/100; λ/10] Rmin > λ/10 V 

Inner 3 3 3 -- 
Outer 16 16 3 3 

 

We have seen in §6.2 with the PEC sphere that both integro-differential 
equations yield very accurate solutions, when compared to the exact Mie solution, 
and both are very similar when compared against each other (see Figure 76, 
p.149). As both integro-differential equations also produce similar solutions for 
the rounded cube, and as both solutions are sound from a physical point of view, 
we can reasonably assume that these two MoM solutions are accurate within 
their differences.  

As can be seen in Figure 92, the difference between tEFIE∇G-f and tMFIE-nxf is 
somewhat larger for the rounded cube than for the sphere. This is especially true 
for the largest current densities, namely those flowing along the horizontal 
rounded edges. A closer look at Figure 91 (p.166) reveals that these highest 
current densities are somewhat intenser in the tEFIE∇G-f solution. This behavior 
will be amplified with the upcoming examples, where sharp edges will be present. 

 

PEC sphere 
( regular λ0/19 mesh ) 

PEC rounded cube 
( λ0/13 to λ0/127 mesh ) 

  

Figure 92 : Comparison tEFIE∇G-f and tMFIE-nxf for the PEC sphere  
and for the rounded cube 
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6.5 Cube : regular meshes 

The cube with rounded edges is modified to become a cube with sharp edges. To 
allow direct comparisons with the cube with rounded edges and corners, the 
dimensions of the cube remain identical (λ0/4 x λ0/4 x λ0/4) as well as the 
incoming plane wave (travelling from -Z to +Z, polarized along X, the incoming 
electric field has unitary amplitude |Einc| = 1 V/m and zero phase at the centre 
of the cube). 

We analyze the solutions obtained for two uniform meshes, with characteristic 
length λ0/11 and λ0/25, where the characteristic length is the largest side of any 
triangle in the mesh. 

 

  

λ0/11 : 240 triangles λ0/25 :  1208 triangles 

Figure 93 : Two uniform meshes for a cube with side λ0/4 

6.5.1 Dielectric cube 

In Figure 94 (p.169) and Figure 95 (p.170) and we superimpose the MoM and 
Exact solutions for εr = 1, for both the electric and magnetic current density. This 
qualitative comparison shows only distinguishable differences close to the 
vertical edges. The quantitative comparison reveals that : 

− The maximum relative error is in the order of 3 to 6% while the average 
relative errors are around or below 1% 

− The mesh refinement by a factor somewhat larger than 2 induces a 
reduction in both the maximum and average relative errors by a similar 
factor. 

The condition numbers are respectively 167 and 1014 for the λ0/11 and λ0/25 
meshes. 
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Re [J/|Hinc|] 

  

Im [J/|Hinc|] 

  

 

  

Figure 94 : J current density on a εr = 1 cube 

0 1,012 0,506 
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Re [M/|Einc|] 

  

Im [M/|Einc|] 

  

 

  

Figure 95 : M current density on a εr = 1 cube 

The above solutions have been obtained with the PMCHWT-f-f, combining the 
tEFIE∇G-f and the tMFIE-f.  

0 1,010 0,505 
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The following integration scheme has been used : 

 
Self 

Term 
Rmin< λ/100 Rmin ∈ [λ/100; λ/10] Rmin > λ/10 V 

Inner 3 3 3 -- 
Outer 16 3 1 3 

 

The average relative errors obtained when reducing or increasing the number of 
nodes in the outer integral when Rmin < λ/100 are listed in Table 20, and 
illustrated in Figure 96 for the highest surface current densities components. The 
advantage of the 16 nodes quadrature is visible, though very limited. 

 

Table 20 : Average relative error on the λ0/11 cube (εr = 1), PMCHWT-f-f 

 Re Im Re Im 

  Jx Jy Jz Jx Jy Jz Jx Jy Jz Jx Jy Jz 

1 1,58 1,13 3,54 1,86 1,57 2,13 1,39 1,56 3,35 1,69 1,71 2,11 
3 0,72 0,71 1,79 0,53 1,42 1,48 0,70 0,60 1,74 1,34 0,53 1,63 
6 0,76 0,70 1,12 0,46 1,40 1,34 0,69 0,53 1,08 1,31 0,41 1,39 
7 0,74 0,69 1,00 0,45 1,40 1,32 0,68 0,51 0,97 1,30 0,39 1,36 

12 0,71 0,69 0,87 0,43 1,39 1,29 0,68 0,48 0,87 1,30 0,38 1,33 
16 0,68 0,71 0,73 0,44 1,40 1,25 0,69 0,45 0,82 1,31 0,39 1,27 
19 0,69 0,70 0,77 0,43 1,39 1,27 0,68 0,46 0,82 1,31 0,38 1,30 
25 0,68 0,70 0,74 0,43 1,40 1,26 0,69 0,45 0,80 1,31 0,38 1,28 
42 0,68 0,71 0,73 0,44 1,40 1,25 0,70 0,45 0,82 1,31 0,39 1,27 
61 0,68 0,71 0,73 0,43 1,40 1,25 0,69 0,45 0,81 1,31 0,38 1,28 
73 0,68 0,71 0,73 0,43 1,40 1,25 0,69 0,45 0,81 1,31 0,39 1,27 
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Figure 96 : Relative error in function of the number of quadrature nodes 
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6.5.2 PEC cube 

There is no exact solution for the scattering by a PEC cube. As for the rounded 
cube (§6.4.2), we assess the accuracy of the MoM by comparing the tEFIE∇G-f and 
tMFIE-nxf solutions. In Figure 97 and Figure 98 we show the real and imaginary 
part of the electric current density for two uniform meshes with characteristic 
length h = λ0/11 and h = λ0/25.  

EFIE and MFIE resonances are excluded as the cube side is smaller than 
0,7071 λ0 (see §5.2.3). The condition number (CN) is much lower for the 
tMFIE-nxf, and nearly independent of h. It increases much faster than 1/h for 
the tEFIE∇G-f. 

 

tEFIE∇G-f 

 
CN=169 

 
CN=1063 

tMFIE-nxf 

 
CN=7,1 

 
CN=7,9 

 

Figure 97 : Re[J/|Hinc|] with tEFIE∇G-f and tMFIE-nxf ( PEC cube ) 

 

0 4,109 2,054 
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tEFIE∇G-f 

  

tMFIE-nxf 

  

 

Figure 98 : Im[J/|Hinc|] with tEFIE∇G-f and tMFIE-nxf ( PEC cube ) 

To allow direct visual comparison, every current density patterns in Figure 97 
and Figure 98 have been scaled to 4,109. We give in Table 21 the actual 
maximum electric current densities for every case : 

 

Table 21 : Max [ J /|Hinc|] 

 tEFIE∇G-f tMFIE-nxf 

λ0/11 mesh 3,306 2,930 

λ0/25 mesh 4,109 3,687 

0 4,109 2,054 
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In Figure 99 we present a summary of the differences between tEFIE∇G-f and 
tMFIE-nxf solutions for the PEC sphere, the PEC rounded cube and the two PEC 
cubes analyzed in §6.2, 6.4.2 and 6.5.2. 

 

PEC sphere 
( regular λ0/19 mesh ) 

PEC rounded cube 
( λ0/13 -- λ0/127 mesh ) 

 

PEC cube 
( regular λ0/11 mesh ) 

PEC cube 
( regular λ0/25 mesh ) 

Figure 99 : Comparison tEFIE∇G-f and tMFIE-nxf for several PEC bodies 

With the PEC rounded cube, the largest differences between tEFIE∇G-f and 
tMFIE-nxf were found to be due to the high current densities flowing close to the 
horizontal edges. This pattern is further enhanced with the PEC cube, and 
clearly visible in Figure 97 (p.172) and Figure 98 (p.173). 
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6.6 Cube : Log-distributed meshes 

To better capture the high current densities flowing along the horizontal edges, 
we introduce log-distributed meshes. As can be seen in Figure 100 the triangles 
of such a mesh are constrained in a multi level square grid. In a local XY 
coordinate system centered at every face the coordinates of the X and Y straight 
lines forming the three-level grid in Figure 100 are [-1 -0,99 -0,9 +0,9 +0,99 
+1]C/2 where C is the length of the side of the cube. This mesh is called 
log-distributed as the coordinates of the grid follow a logarithmic distribution and 
not a linear one. This distribution allows to compute the current densities very 
close to the edges and corners (λ0/800) with only 1238 triangles at the expense of 
reasonably stretched triangles. In comparison, meshing this C = λ0/4 cube with 
only right-angled “λ0/800” triangles would require 6x2x200²=480.000 triangles. 
The largest triangles, in the middle of the flat faces, have edges not exceeding 
λ0/13, while the smallest edges of the triangles located in the eight corners are as 
small as λ0/1131. The triangles adjacent to these smallest triangles as well as 
those defined all along the 12 cube edges are stretched with a largest to smallest 
edge ratio of 10:1. 

 

  

Figure 100 : Log-distributed mesh of the λ0/4 cube 
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6.6.1 Dielectric cube : εr = 1 

In this paragraph we quantify the accuracy of the MoM solution with a 
log-distributed mesh by comparing it to the exact solution in the case εr = 1. Two 
solutions are obtained with PMCHWT-f-f, using tMFIE-f and either tEFIE∇f-f or 
tEFIE∇G-f. 

The following integration scheme has been used : 

 
Self 

Term 
Rmin< λ/100 Rmin ∈ [λ/100; λ/10] Rmin > λ/10 V 

Inner 3 3 3 -- 
Outer 16 16 3 3 

 

In Figure 101 (p.177) and Figure 102 (p.178) the same amplitude and color 
scaling is used for the Exact and the MoM solutions, to allow direct visual 
comparison between the current densities.  

We give in Table 22 the actual maximum electric current densities for every 
case : 

 

Table 22 : Max [ J /|Hinc|] and Max [ M /|Einc|] 

  tEFIE∇f-f tEFIE∇G-f 

εr = 1 1,101 1,052 Max 

[J /|Hinc|] εr = 2 1,252 1,223 

εr = 1 1,10 1,05 Max 

[M /|Einc|] εr = 2 1,24 1,21 

 

The exact solution in the case εr = 1 gives maximum normalized current densities 
J/|Hinc| and M/|Einc| equal to 1 (see §6.1.4). The MoM solutions in this case 
overestimate these maximum current densities by 5 or 10%. 
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Re [J/|Hinc|] Im [J/|Hinc|] 

MoM solution (tEFIE∇G-f based) 

  

Exact solution 

  

 

Figure 101 : J/|Hinc| on the εr = 1 cube 

 

0 1,223 0,612 
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Re [M/|Einc|] Im [M/|Einc|] 

MoM solution (tEFIE∇G-f based) 

  

Exact solution 

  

 

Figure 102 : M/|Einc| on the εr = 1 cube 

0 1,210 0,505 
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PMCHWT-f-f with tEFIE∇f-f 
CN=3,225x107 

PMCHWT-f-f with tEFIE∇G-f 
CN=3,265x107 

Figure 103 : Relative error for the εr = 1 cube 

The electric current density J obtained with the MoM differs from the exact 
solution by as much as 12%. In comparison, the relative error was only 4% in the 
case of the rounded cube (Figure 90, p.165) and 3 to 6% for the uniformly meshed 
cube (Figure 94, p.169). 

The magnetic current density M obtained with the MoM differs from the exact 
solution by at most 14%. In comparison, the relative error was only 4% in the 
case of the cube with rounded edges and corners (Figure 90, p.165) and 3 to 6% 
for the uniformly meshed cube (Figure 95, p.170). 

The PMCHWT-f-f solution based on the tEFIE∇f-f and on the tEFIE∇G--f give 
comparable solutions with very similar relative errors. Also the condition 
numbers are quite similar, and both very high as compared to the homogeneous 
mesh of §6.5.1. 
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6.6.2 Dielectric cube : εr = 2 

There is no analytical solution for the dielectric cube, and we do not have two 
independent MoM solutions that we can compare against each other, such as the 
tEFIE-f and tMFIE-nxf for the PEC cube. In Figure 104 we present the solution 
obtained with PMCHWT-f-f ( tEFIE∇f-f+tMFIE-f ) for the λ0/4 cube with εr = 2. 

 

Re [J/|Hinc|] Im [J/|Hinc|] 

  

 

Re [M/|Einc|] Im [M/|Einc|] 

  

 

Figure 104 : J and M current density on a λ0/4 cube with εr = 2 

We expect the εr = 2 solution to be a smooth evolution away from the  εr = 1 
solution. This is the case if we compare Figure 101 (p.177) and Figure 102 (p.178) 
to Figure 104 (p.180). Remember that we have scaled the current densities 
identically for the εr = 1 and εr = 2 cases in all these figures; the actual maximum 

0 1,223 0,612 

0 1,210 0,505 
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amplitudes, reported in Table 22 (p.176), show that the maximum current 
densities when εr = 2 are 20 to 25% higher than when εr = 1. 

A closer look to the upper front corner (C/2; C/2; -C/2) and surrounding edges 
shows a surprising behavior. In Figure 105 we see that the magnetic current 
density loops around the corner. This creates a sheer discontinuity in the 
tangential component of M  across the edges : near the corner the magnetic 
current density bends to flow in opposite directions on every face. Another sheer 
behavior can be observed close to corner (C/2; C/2; C/2) with the electric current 
density. 

To understand these sheer behaviors, one has to think of the exact solution for a  
εr = 1 cube illuminated by a plane wave where the incident electric field incE  is 
neither normal nor parallel to any of the faces and compute the magnetic current 
density incM n E= ×  on every face around a corner. Due to the abrupt change of 
orientation of the normals to the faces, the same sheer behavior is observed for 
M . 

 

Electric current density Magnetic current density 

 

 

 

Figure 105 : Sheer current density on the edges of a dielectric 

It is possible to model these sheer tangential discontinuities with RWG functions, 
but it would not be possible with curl conforming functions (see §2.2.5). 

The condition number is 3,216x107, slightly lower than the εr = 1 case in §6.6.1.  
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6.6.3 PEC cube 

Again we present a comparison between the tEFIE-f and tMFIE-nxf solutions, as 
previously for the PEC sphere and (rounded) cube. The following integration 
scheme has been used : 

 
Self 

Term 
Rmin< λ/100 Rmin ∈ [λ/100; λ/10] Rmin > λ/10 V 

Inner 3 3 3 -- 
Outer 16 or 42 16 or 42 3 3 

 

To allow direct visual comparison, all current density patterns in Figure 107 
(p.183) have been scaled to 10,48. We give in Table 23 the actual maximum 
electric current densities for every case : 

Table 23 : Max [ J /|Hinc|] 

tEFIE∇G-f 10,48 

tEFIE∇f-f 10,41 

tMFIE-nxf 9,24 

 

A quantitative comparison between both tEFIE-f solutions shows in Figure 106 
that they differ by less than a fraction of a percent in the average, but by up to 
30% for some current densities. A closer look to the data reveals that these high 
differences are located near the eight corners, as can be seen in Figure 107 
(p.183). Using 42 nodes instead of 16 in the tEFIE∇G-f brings the maximum 
differences between both tEFIE-f down below 10%. 

 

tEFIE∇G-f (16 nodes) tEFIE∇G-f (42 nodes) 

  

Figure 106 : Comparison tEFIE∇f-f and tEFIE∇G-f 
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Re [J/|Hinc|] Im [J/|Hinc|] 

tEFIE∇f-f CN=3,49x107 

  

tEFIE∇G-f (16 nodes) CN=3,53x107 

  

tMFIE-nxf CN=25649 

  

 

Figure 107 : tEFIE-f and tMFIE-nxf solutions for the PEC cube 

 
The condition numbers are quasi identical for the tEFIE∇f-f and tEFIE∇G-f, and 
1300 times higher than the condition number of the tMFIE-nxf. 

EFIE and MFIE resonances are excluded as the cube side is smaller than 
0,7071λ0 (see §5.2.3). 

0 10,48 5,24 
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A quantitative comparison between the tEFIE∇f-f and the tMFIE-nxf solutions 
shows in Figure 108 that both solutions differ for the PEC cube with 3-levels log-
distributed mesh by up to 35%. To ease direct comparisons, we reproduce the 
differences between tEFIE∇f-f and tMFIE-nxf already measured for other PEC 
bodies (Figure 99, p.174). A closer look reveals that the electric current densities 
away from edges and corners obtained with the tEFIE∇f-f and the tMFIE-nxf 
differ by 5 to 10% only. Only the current densities computed on the elongated 
triangles along the edges differ significantly, the tEFIE∇f-f surface current 
density being always higher than the tMFIE-nxf surface current density. This 
cannot be attributed to the elongated triangles, as the same relative difference 
between tEFIE∇f-f and tMFIE-nxf is observed with regularly shaped triangles 
(see Figure 99, p.174). 

 

PEC sphere 
( regular λ0/19 mesh ) 

PEC rounded cube 
( λ0/13 -- λ0/127 mesh ) 

  

PEC cube 
( regular λ0/25 mesh ) 

PEC cube 
( 3-levels log-distributed mesh ) 

 
 

Figure 108 : Comparison tEFIE∇f-f / tMFIE-nxf for several PEC bodies 
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A closer look to the electric current density near the edges and corners shows 
that there is no sheer behavior on the PEC cube, as observed on the dielectric 
cube (see Figure 105, p.181). We can also observe in Figure 109 that the tEFIE∇f-f 
and tMFIE-nxf current densities are visually quite similar except very close to 
the horizontal edges. 

 

tEFIE∇f-f 

 

tMFIE-nxf 

 

 

Figure 109 : J/|Hinc| close to edges and corners of a PEC cube 

0 10,48 5,24 
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6.7 Thin plates : regular meshes 

We reduce one dimension of the λ0/4 cube analyzed in §§6.5 and 6.6 to obtain a 
plate of thickness λ0/100. In this paragraph we analyze the solutions obtained 
with four “uniform” meshes with higher and higher densities. We will also use 
four different log-distributed meshes in §6.8. 

 

 

(a) : λ0/20 mesh - 112 triangles 

 

(b) : λ0/40 mesh - 476 triangles 

 

(c) : λ0/60 mesh - 1022 triangles 

 

(d) : λ0/120 mesh - 2898 triangles 

Figure 110 : Four meshes for a plate λ0/4 x λ0/4 x λ0/100 

The sizes of the meshes indicated in Figure 110 (p.186) correspond here to the 
maximum radius of the circumscribed circle enclosing any triangle.  
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The correspondence with the previous characteristic length definition, based on 
the largest triangle edge, is given in Table 24 : 

 

Table 24 : mesh characteristic length 

Radius of 
circumscribed circle 

Largest edge 

λ0/20 λ0/12 

λ0/40 λ0/26 

λ0/60 λ0/40 

λ0/120 λ0/69 

6.7.1 Dielectric plate : εr = 1 

We first quantify the accuracy of the MoM solution by comparing it to the exact 
solution in the case εr = 1. The solutions are obtained with PMCHWT-f-f 
( tEFIE∇f-f + tMFIE-f ). The following integration scheme has been used : 

 

 
Self 

Term 
Rmin< λ/100 Rmin ∈ [λ/100; λ/10] Rmin > λ/10 V 

Inner 3 3 3 -- 
Outer 16 16 3 3 

 

In Figure 112 (p.189), Figure 114 (p.191) and Figure 115 (p.192) the same 
amplitude and color scaling is used for the Exact and the MoM solutions, to allow 
direct visual comparison between the current densities. The exact solution in the 
case εr = 1 gives maximum normalized current densities J /|Hinc| and M /|Einc| 
equal to 1 (see §6.1.4). The MoM solutions for the maximum normalized J and M 
current densities are also equal to 1,00 with an accuracy better than 1%. 

The condition numbers are given in Table 25. They are quite similar to those 
reported in Table 27 (p.197) for the same structures filled with PEC material 
instead of dielectric, and analyzed with tEFIE∇f-f. 

 

Table 25 : Condition number versus characteristic length (CL) 

Mesh CL λ0/20 λ0/40 λ0/60 λ0/120 

CN 1347 1948 2842 7813 
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In Figure 111 we summarize the relative errors measured on the electric current 
density with the four meshes. Note that the relative errors on the real parts 
range from 0 to 1%, while they range from 0 to 10% for the imaginary parts. The 
average and maximum relative errors diminish with a finer mesh. They are 
extremely small for the large current densities ( Re[ J/|Hinc|] ~1 ) but they are 
much higher for the smallest current densities ( Im[ J/|Hinc|] < 0,05 ). In Figure 
112 (p.189) the length scale of the ImJ arrows are magnified 20 times : it reveals 
that even the low current densities are very accurate everywhere, except on the 
two vertical thin sides. Similar observations and conclusions are made for the 
magnetic current density in Figure 113 (p.190) and Figure 114 (p.191). 
Additional comments are given in Figure 116 (p.192). 

 

 

(a) : λ0/20 mesh (b) : λ0/40 mesh 

 

(c) : λ0/60 mesh (d) : λ0/120 mesh 

Figure 111 : Relative error on the J current density for the εr = 1 plate 



Chapter 6 : Numerical examples 

 

  189 

 

Re [J/|Hinc|]    (x1) Im [J/|Hinc|]   (x20) 

PMCHWT-f-f ( tEFIE∇f-f + tMFIE-f ) 

  

Exact 

  

 

Figure 112 : J/|Hinc| for the εr = 1 plate with λ0/20 mesh 

0 1,00 0,50 
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(a) : λ0/20 mesh (b) : λ0/40 mesh 

 

(c) : λ0/60 mesh (d) : λ0/120 mesh 

Figure 113 : Relative error on the M current density for the εr = 1 plate 
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Re [M/|Einc|]    (x1) Im [M/|Einc|]   (x20) 

PMCHWT-f-f ( tEFIE∇f-f + tMFIE-f ) 

  

Exact 

  

 

Figure 114 : M/|Einc| for the εr = 1 plate with λ0/20 mesh 

0 1,00 0,50 
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As can be seen in Figure 112 (p.189), Figure 114 (p.191) and Figure 115, the large 
error on the vertical thin sides is related to the orientation of the single pairs of 
triangles meshing the thickness of the plate. We mention also that the same 
behavior is observed if PMCHWT-f-f ( tEFIE∇G-f + tMFIE-f ) is used instead of 
PMCHWT-f-f ( tEFIE∇f-f + tMFIE-f ), even if more nodes are used in the inner 
and outer integrals. 

 

PMCHWT-f-f ( tEFIE∇f-f + tMFIE-f )    (x20) 

  

 

Figure 115 : Large error on the vertical thin sides 

The explanation is quite simple. The exact solution requires a normal component 
varying from positive to negative along the diagonal, zero on the horizontal edges 
and constant on the vertical edges. The RWG’s impose a normal component 
constant all along every edge (§2.2.8). This limitation is not a problem for the 
horizontal and vertical edges, but on the diagonal the RWG’s choose for a zero 
normal component. The “best” RWG solution for this situation is depicted in 
Figure 116. 

 

 

Figure 116 : RWG solution on the thin vertical sides of the plate 

0 1,00 0,50 

(a) Exact solution (b) Best RWG approximation 
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6.7.2 PEC plate 

On the four next pages we show J/|Hinc| obtained by the tEFIE∇f-f and 
tMFIE-nxf for the four meshes presented in Figure 110 (p.186). 

 

Re [J/|Hinc|] Im [J/|Hinc|] 

tEFIE∇f-f   ( max J/|Hinc|= 8,746 ) 

  

tMFIE-nxf   ( max J/|Hinc|= 3,106 ) 

  

 

Figure 117 : J/|Hinc| on the PEC plate (λ0/20 mesh) 

 

0 8,746 4,373 
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Re [J/|Hinc|] Im [J/|Hinc|] 

tEFIE∇f-f   ( max J/|Hinc|= 7,615 ) 

  

tMFIE-nxf   ( max J/|Hinc|= 4,524 ) 

  

 

Figure 118 : J/|Hinc| on the PEC plate (λ0/40 mesh) 

 

0 8,746 4,373 
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Re [J/|Hinc|] Im [J/|Hinc|] 

tEFIE∇f-f   ( max J/|Hinc|= 6,975 ) 

  

tMFIE-nxf   ( max J/|Hinc|= 5,165 ) 

  

 

Figure 119 : J/|Hinc| on the PEC plate (λ0/60 mesh) 

 

0 8,746 4,373 
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Re [J/|Hinc|] Im [J/|Hinc|] 

tEFIE∇f-f   ( max J/|Hinc|= 6,598 ) 

  

tMFIE-nxf   ( max J/|Hinc|= 5,693 ) 

  

 

Figure 120 : J/|Hinc| on the PEC plate (λ0/120 mesh) 

 

0 8,746 4,373 
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Figure 117 (p.193) to Figure 120 (p.196) clearly show that the highest tEFIE∇f-f 
and tMFIE-nxf electric current densities observed on the top and bottom thin 
edges are very different from each other for the λ0/20 mesh, but converge to each 
other when the mesh is refined, as summarized in Table 26 : 

Table 26 : Max [ J/|Hinc|] 

 λ0/20 λ0/40 λ0/60 λ0/120 

tEFIE∇f-f 8,746 7,615 6,975 6,598 

tMFIE-nxf 3,106 4,524 5,165 5,693 

 

It seems that, in presence of elongated triangles, the tEFIE∇f-f overestimates the 
high edge current densities while the tMFIE-nxf underestimates them. It can be 
anticipated that a mesh finer than λ0/120 would further favour the convergence 
of the tEFIE∇f-f and tMFIE-nxf solutions. Unfortunately, such mesh densities 
require prohibitive computer resources and are far beyond the “best practice” 
density of λ0/10. 

The condition numbers (CN) presented in Table 27 confirm the observations 
made previously in §§6.2.3, 6.2.4 and 6.5.2, namely : 

− CN is much lower for the tMFIE-nxf than for the tEFIE∇f-f 

− CN is quasi independent of the mesh fineness for tMFIE-nxf 

− CN increases with 1/h for tEFIE∇f-f, if h is the characteristic length of the 
mesh (see Table 24, p.187) 

Table 27 : Condition numbers 

            h λ0/20 λ0/40 λ0/60 λ0/120 

tEFIE∇f-f 1316 2041 2974 7812 

tMFIE-nxf 103 68.8 66.1 70.4 

 

It is also worth noting that the CN of Table 27 are quite similar to those reported 
in Table 25 (p.187) for the same structures filled with dielectric material instead 
of PEC, and analyzed with a PMCHWT-f-f based on tEFIE∇f-f. 
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Figure 121 gives quantitative evidence that the lower current densities are more 
similar with tEFIE∇f-f and tMFIE-nxf. 

 

(a) : λ0/20 mesh (b) : λ0/40 mesh 

(c) : λ0/60 mesh (d) : λ0/120 mesh 

Figure 121 : Comparison tEFIE∇f-f and tMFIE-nxf on the PEC plate 

6.8 Thin plate : log-distributed mesh 

In this paragraph we present MoM results obtained with the log-distributed 
mesh depicted in Figure 122 (p.199). For the Level 2 mesh, [0,5] means that the 
constraining rectangular grid is located at a distance (0,5)xT/2 from every edge, 
where T=λ0/100 is the thickness of the plate. The Level 1 mesh is the λ0/60 mesh 
used in §6.7. A λ0/60 mesh is also used for the level 2, which means that the 
elongated triangles squeezed between the grid along the edges have two long 
sides of dimension around λ0/60 and one very thin side. 
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(a) : Level 1  

- 1022 triangles - 

 

(b) : Level 2 [0,5]   

-1594 triangles - 

Figure 122 : Two log-distributed meshes for the plate 

6.8.1 Dielectric thin plate : εr = 1 

In this paragraph we quantify the accuracy of the MoM solution for the two 
log-distributed meshes of Figure 122 by comparing it to the exact solution in the 
case εr = 1. The solution is obtained with PMCHWT-f-f, using tMFIE-f and 
tEFIE∇f-f. 

The following integration scheme has been used : 

 
Self 

Term 
Rmin< λ/100 Rmin ∈ [λ/100; λ/10] Rmin > λ/10 V 

Inner 3 3 3 -- 
Outer 16 16 3 3 

 

The exact solution in the case εr = 1 gives maximum normalized current densities 
J/|Hinc| and M/|Einc| equal to 1 (see §6.1.4). The MoM solutions for the 
maximum normalized J and M current densities are also equal to 1,00 , with an 
accuracy better than 1%. 
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Figure 123 summarizes the relative errors for the Level 1 and Level 2 meshes. 
They are both very small and quite similar to each other. We see in Figure 124 
(p.201) and Figure 125 (p.202) that the very small current densities on the thin 
vertical (ImJ) or horizontal (ImM) side are quite erroneous. The same 
phenomenon has already been observed with the regular mesh of the plate 
(§6.7.1) : it is due to the limitations of the RWG representation. We refer to 
Figure 116 (p.192) for a detailed explanation. 

 

Level 1 
CN=2842 

Level 2 
CN=2,29x106 

Figure 123 : Relative error on the J and M current density  
for the εr = 1 plate 

As already observed with the cube in §6.6.1, the condition number increases by a 
factor close to 1000 between the regular mesh and the log-distributed mesh. 
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Re [J/|Hinc|]    (x1) Im [J/|Hinc|]   (x20) 

PMCHWT-f-f ( tEFIE∇f-f + tMFIE-f ) 

  

Exact 

  

 

Figure 124 : J/|Hinc| for the εr = 1 plate with Level 2 mesh 

0 1,00 0,50 
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Re [M/|Einc|]    (x1) Im [M/|Einc|]   (x20) 

PMCHWT-f-f ( tEFIE∇f-f + tMFIE-f ) 

  

Exact 

  

 

Figure 125 : M/|Einc| for the εr = 1 plate with Level 2 mesh 

 

0 1,00 0,50 
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6.8.2 Dielectric thin plate : εr = 9 

For the PMCHWT and Müller combination scheme, the tEFIE∇G is used. 

 

Re [J/|Hinc|] Im [J/|Hinc|]    ( x6 ) 

PMCHWT-f-f   ( max [J/|Hinc|]= 1,048 ) 

  

Müller-nxf-nxf   ( max [J/|Hinc|]= 1,044 ) 

  

 

Figure 126 : J/|Hinc| on the εr = 9 plate (Level 2 mesh) 

 

0 1,048 0,524 
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Re [M/|Einc|] Im [M/|Einc|]    ( x30 ) 

PMCHWT-f-f   ( max [M/|Einc|]= 0,951 ) 
CN=2,28x106 

  

Müller-nxf-nxf   ( max [M/|Einc|]= 0,958 ) 
CN=4254 

  

 

Figure 127 : M/|Einc| on the εr = 9 plate (Level 2 mesh) 

The condition number in the Müller-nxf-nxf case is approximately 500 times 
lower than in the PMCHWT-f-f case, as already observed in §6.2.5.

0 0,958 0,479 
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Both solutions, PMCHWT-f-f and Müller-nxf-nxf, are quasi identical. 

 

Figure 128 : Comparison PMCHWT-f-f / Müller-nxf-nxf for εr = 9 plate 

As we already noted and explained in §§6.7.1 and 6.8.1, we can see in Figure 129 
that RWG functions are not adequate to model the smallest current density 
pattern on the thin sides of the plate (Im[M]) : the arrows are zigzagging 
somewhat erratically. The largest current density pattern (Re[M]) is similar on 
the vertical and horizontal thin sides to the patterns observed on the cube (see 
Figure 104, p.180). It is worth mentioning that the circular pattern of the 
magnetic current density on the vertical side couldn’t be modelled with linear 
basis functions (e.g. RWG) and the Level 1 mesh of Figure 122a (p.199). 

 

Re [M/|Einc|] Im [M/|Einc|]    ( x20 ) 

  

Figure 129 : Details of M/|Einc| on the εr = 9 plate 
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6.8.3 PEC thin plate  

Figure 130 shows J/|Hinc| obtained by the tEFIE∇G-f and tMFIE-nxf for the 
Level 2 mesh presented in Figure 122 (p.199). 

 

Re [J/|Hinc|] Im [J/|Hinc|] 

tEFIE∇f-f   ( max [J/|Hinc|]= 9,237 ) 
CN=2,48x106 

  

tMFIE-nxf   ( max [J/|Hinc|]= 7,804 ) 
CN=1008 

  

 

Figure 130 : J/|Hinc| on the PEC plate (Level 2 mesh) 

The condition number is again much lower for the tMFIE-nxf than for the 
tEFIE∇f-f.

0 9,237 4,618 
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The following integration scheme has been used : 

 
Self 

Term 
Rmin< λ/100 Rmin ∈ [λ/100; λ/10] Rmin > λ/10 V 

Inner 3 3 3 -- 
Outer 16 16 3 3 

 

In Figure 131 we present the differences between tEFIE-f and the tMFIE-nxf 
solutions, for the Level 1 and Level 2 meshes of the thin PEC plate. The 
comparison is not entirely correct here as the tEFIE∇G-f is used for the Level 2 
mesh while the tEFIE∇f-f is used for the Level 1, but it allows the following 
observations namely : 

− The average relative difference between the tEFIE∇G-f and tMFIE-nxf 
solutions is not too much affected if a higher level log-distributed mesh is 
used 

− The maximum difference between the tEFIE∇G-f and tMFIE-nxf solutions 
becomes slightly higher for the higher current densities that are computed 
closer to the edges with the higher order log-distributed meshes 

 

 

(a) : Level 1 

 

(b) : Level 2 

Figure 131 : Comparison tEFIE-f and tMFIE-nxf for Level 1 and 2 meshes 
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6.9 Very thin and infinitely thin PEC plate : edge currents 

6.9.1 Introduction 

The E-MFIE formulation (see §4.4) allows to compute the individual (electric) 
current densities on both sides of any (PEC) sheet. To demonstrate it, we will 
shrink the very thin plate analyzed in §6.7, using this time two types of very 
symmetric meshes, identical for the two large faces of the plate and the opposite 
faces of the sheet. These meshes are shown in Figure 132 (p.209). They will 
allow : 

− to compare the current densities on the plate and on the sheet 

− to compute the difference between the current densities on both sides at 
similar locations 

− to respect the symmetry of the geometry and the plane wave illumination 

The tEFIE∇G-f and tMFIE-nxf solutions for the very thin plates will be compared 
against each other, and with the E-MFIE solution for the sheet. The E-MFIE 
solution is a combination of the tEFIE∇G-f and tMFIE-nxf. The same integration 
schemes have been used for the tEFIE∇G-f for the plate and the tEFIE∇G-f used in 
the E-MFIE for the sheet. The same applies for the tMFIE-nxf. The integration 
schemes are : 

for the tEFIE∇G-f 

 
Self 

Term 
Rmin< λ/100 

Rmin ∈ [λ/100; 
λ/10] 

Rmin > λ/10 V 

Inner 3 3 3 -- 
Outer 42 42 3 3 

 

for the tMFIE-nxf 

 
Self 

Term 
Rmin< λ/100 

Rmin ∈ [λ/100; 
λ/10] 

Rmin > λ/10 V 

Inner 3 3 3 -- 
Outer 16 16 3 3 

 

For the large λ0/4 faces of the plate and for the two opposite faces of the sheet, we 
use a linearly or a logarithmically distributed mesh. The local coordinates of the 
Log grid inside the C = λ0/4 faces, according to the notation introduced in §6.6, is 
[-900 -892 -800 -600 -250 +250 +600 +800 +892 +900]/900x(C/2). 
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For the thin sides of the plate, we use at all times a linearly distributed mesh, 
with stretched triangles. The thickness of the plate will be λ0/100, λ0/1000 or 
λ0/10000. 

 

Linearly distributed mesh 
( 1296 triangles ) 

Logarithmically distributed mesh 
( 1944 triangles ) 

  

  

Figure 132 : Lin and Log Mesh for the (¼ x ¼ x 1/100)λ0  plate and sheet 

 

On the four next pages we present in Figure 133 and Figure 134 (Figure 135 and 
Figure 136) the solutions obtained with the linearly (logarithmically) distributed 
mesh, and comment them. Because of the large difference between high and low 
current densities, the color scale is logarithmic. 
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tEFIE∇G-f f    

( max | J |/|Hinc|= 14,21 ) 
tMFIE-nxf f    

( max | J |/|Hinc|= 6,97 ) 

  

E-MFIE   ( max | J |/|Hinc|= 4,60 ) 

 

 

Figure 133 : Re(J) /|Hinc| on a (¼ x ¼ x 1/100)λ0  PEC plate / sheet  
with linearly distributed mesh 

 

0,1749 
 

17,49 1,749 
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tEFIE∇G-f 

( max | J |/|Hinc|= 17,49 ) 
tMFIE-nxf 

( max | J |/|Hinc|= 6,97 ) 

  

E-MFIE   ( max | J |/|Hinc|= 4,60 ) 

 

 

Figure 134 : Im(J) /|Hinc| on a (¼ x ¼ x 1/100)λ0  PEC plate / sheet  
with linearly distributed mesh 

 

0,1749 
 

17,49 1,749 
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tEFIE∇G-f 

   ( max | J |/|Hinc|= 14,21 ) 
tMFIE-nxf 

   ( max | J |/|Hinc|= 12,14 ) 

 

E-MFIE   ( max | J |/|Hinc|= 23,79 ) 

 

 

Figure 135 : Re(J) /|Hinc| on a (¼ x ¼ x 1/100)λ0  PEC plate / sheet  
with logarithmically distributed mesh 

0,238 23,79 2,379 
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tEFIE∇G-f 

   ( max | J |/|Hinc|= 14,21 ) 
tMFIE-nxf 

   ( max | J |/|Hinc|= 12,14 ) 

  

E-MFIE   ( max | J |/|Hinc|= 23,79 ) 

 

 

Figure 136 : Im(J) /|Hinc| on a (¼ x ¼ x 1/100)λ0  PEC plate / sheet  
with logarithmically distributed mesh 

0,238 23,79 2,379 
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On the Lin distributed mesh, max | J |/|Hinc| is much lower for the E-MFIE 
(4,60) than for the tEFIE∇G-f (17,49) and tMFIE-nxf (6,97), as opposed to what is 
observed on the Log distributed mesh. This is explained by the fact that on the 
Lin distributed mesh of the plate, the highest current density is obtained on the 
top thin sides of the plate, computed much closer to the edge than on the large 
flat vertical face. These high current densities cannot be computed with the 
E-MFIE as the thin sides are excluded in the sheet model. With the Log 
distributed mesh, the grid is defined such that the highest current density is 
computed at the same distance from the edge on the large vertical flat face as 
well (see Figure 132, p.209). If we visually compare in Figure 137 the highest 
current densities on the large vertical face, represented on an identical linear 
scale, they are much more similar with tEFIE∇G-f, tMFIE-nxf and E-MFIE, 
except in the last triangles very close to the edge, where the E-MFIE computes 
(much) higher current densities than on the plate with the tEFIE∇G-f and 
tMFIE-nxf. These higher E-MFIE current densities, very close to the edges, seem 
to compensate for the absence in the sheet model of the current densities flowing 
on the thin sides of the plate. 

 

Lin distributed mesh Log distributed mesh 
tEFIE∇G-f 

  
tMFIE-nxf 

  
E-MFIE 

  

 
Figure 137 : Max (Im[J]) /|Hinc| on the sheet and on the plate 

0,238 23,79 2,379 
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We also make the following qualitative observations : 

− The tEFIE∇G-f and tMFIE-nxf solutions look very similar on the two large 
λ0/4 faces, but differ significantly on the four thin edges. This phenomenon 
had already been noted in §6.7. 

− On the large faces, in a small strip close to the upper and lower edges, the 
current density zigzag instead of flowing smoothly along a quasi straight 
line. This nonphysical behavior is due again to the limited linear 
representation of RWG functions. Close to the edges the current density 
exhibits a large transversal gradient with regard to the current flow 
direction. In §2.2.8 we explain why such a gradient cannot be modelled with 
RWG functions. As a consequence, in the triangles extending across the 
zone where this gradient is very large, the current density (orange) as 
modelled with RWG’s is forced to zigzag to maintain a constant normal 
component with their two neighbours (red and yellow arrows), where very 
different current densities are flowing. Note that there is no zigzag behavior 
in these neighbouring triangles : their base is parallel to the current density 
flow and the two other sides are crossed by current densities having similar 
norms. 

 

(a) : Lin distributed mesh 

 

(b) : Log distributed mesh 

Figure 138 : RWG and zigzag current densities near edges 

0n Figure 138 this zigzag effect appears to be less pronounced with the Log 
distributed mesh. Actually it is still present - see the very light zigzag of the 
yellow arrows - but it is better constrained in triangles with a very small 
dimension across the large gradient zone. 

As can be seen in Figure 135 (p.212) and Figure 136 (p.213) the Log distributed 
mesh brings the tEFIE∇G-f and tMFIE-nxf solutions much closer to each other, 
while allowing to better model the large transversal current density gradient 
close to the edges. The color scale for the current densities is logarithmic though, 
somewhat masking the quantitative differences between these three solutions. As 
we used identical meshes for the upper and lower faces of the plate and for the 
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sheet, we can present a quantitative comparison of the tEFIE∇G-f, tMFIE-nxf and 
E-MFIE solutions.  

Before that, we summarize in Table 28 the condition numbers for all cases : 

Table 28 : Condition numbers 

 tEFIE∇G-f tMFIE-nxf  tEFIE∇G-f tMFIE-nxf 

λ0/100 1,02x106 1693  2,41x108 3,50x105 

λ0/1000 2,33x108 93301  1,21x1010 2,08x107 

λ0/10000 5,34x1010 5,48x106  1,68x1012 1,74x109 

E-MFIE 890  6,17x107 

 Lin-distributed mesh  Log-distributed mesh 

 

As usual we observe that tMFIE-nxf is much better conditioned than tEFIE∇G-f, 
but this time the condition number of both formulations increases nearly 
proportionally with (1/t)2, if t is the thickness of the plate. 

With the E-MFIE formulation, the condition number is very low for the Lin-
distributed mesh, better than the tEFIE∇G-f and the tMFIE-nxf ones, but 
increases by five orders of magnitude for the Log-distributed mesh, where it only 
increases by two orders of magnitude for both the tEFIE∇G-f and the tMFIE-nxf. 

Despite the poorer condition numbers reported in Table 28, in the next 
paragraph we restrict the analysis to the Log-distributed meshes. For the same 
number of unknowns, those meshes drastically reduce the zigzag effect close to 
edges, even though they do not eliminate it. They also provide a better mesh 
refinement only where it is necessary and they reduce the differences between 
the tEFIE∇G-f and the tMFIE-nxf solutions. 
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6.9.2 EFIE / MFIE and E-MFIE comparisons on Log-distributed 
meshes 

If we call (-Z) the illuminated face and (+Z) the shadowed face, the 36 
comparisons to make are summarized in Table 29 : 

Table 29 : Comparison list for the plate and sheet 

Log mesh EFIE v MFIE EFIE v E-MFIE MFIE v E-MFIE 

(-Z) face 

(+Z) face 
λ0/100 (Re + Im) 

Log mesh EFIE v MFIE EFIE v E-MFIE MFIE v E-MFIE 

(-Z) face 

(+Z) face 
λ0/1000 (Re + Im) 

Log mesh EFIE v MFIE EFIE v E-MFIE MFIE v E-MFIE 

(-Z) face 

(+Z) face 
λ0/10000 (Re + Im) 

 

To reduce the number of comparisons we consider the properties (315) to (318), 
valid for flat PEC sheets, and demonstrated in §1.13. As i i

yH H=  is purely real 
everywhere on (both faces of) the flat PEC sheet, we have that : 

 ( ) ( )Re[ ] Re[ ] 2 | |Z Z
x x iJ J H
− +− =  (315) 

 ( ) ( )
Im[ ] Im[ ] 0

Z Z
x xJ J
− +− =  (316) 

 ( ) ( )
Re[ ] Re[ ] 0

Z Z
y yJ J
− +− =  (317) 

 ( ) ( )
Im[ ] Im[ ] 0

Z Z
y yJ J
− +− =  (318) 

We can expect these properties to be nearly fulfilled for the very thin PEC plates 
as well. In Figure 139 (p.218) we observe that the property (315) is fulfilled for 
the E-MFIE on the sheet, to the numerical errors introduced by the MoM. The 
same property is better and better fulfilled for the λ0/100, λ0/1000 and λ0/10000 
plates except close to the edges, where the highest current density is flowing (+Y 
and –Y edges). Similar observations apply for property (316), in Figure 140 
(p.219). Having measured how well these properties are fulfilled by the 
numerical implementation, it suffices to observe the current density on the 
illuminated face (-Z) only. 
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Figure 139 : ( ) ( )
Re[ ] Re[ ] 2

Z Z
x x iJ J H
− +− =  
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Figure 140 : ( ) ( )Im[ ] Im[ ] 0Z Z
x xJ J
− +− =  
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In Figure 141 we show Jx/|Hinc| on the (-Z) face of the Log distributed mesh. The 
thin sides of the plate, absent on the sheet, are not considered here. Jx is the 
main component of the electric current density except close to the vertical edges. 
In the coloured plots of Figure 141, the 27x27=729 regularly distributed locations 
actually correspond to the Log distributed locations where Jx/|Hinc| has been 
computed, namely at the centroids of all 9x9x4=324 triangles in the Log 
distributed mesh, or linearly interpolated between these 324 location to complete 
the regular 27x27 grid ( refer to  Figure 138b, p.215 ). 

 

Re [Jx] /|Hinc| Im [Jx] /|Hinc| 

  

  

  

Figure 141 : Jx/|Hinc| on the illuminated face (λ0/100 plate) 
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In Figure 142 we compare Jx/|Hinc| on the illuminated face (-Z) obtained with the 
tEFIE∇G-f and tMFIE-nxf. Both solutions agree within 15%, except : 

− For Re[Jx] and Im[Jx], in the “zigzag” area, where we know that the current 
density is badly approximated. We recall, with Figure 138 (p.215), that the 
zigzag area does not extend until the last triangles attached to the 
horizontal edge, where the difference between tEFIE∇G-f and tMFIE-nxf 
does not exceed 15% 

− For Im[Jx] only, in the middle of the vertical edge. But Jx/|Hinc| is very low 
there (EFIE : 0,375 / MFIE : 0,280). 

 

Re [Jx] /|Hinc| Im [Jx] /|Hinc| 

  

  

  

Figure 142 : Jx/|Hinc| on the illuminated face (λ0/100 plate) 
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In Figure 143 we show Jy/|Hinc| on the illuminated face (-Z). Globally over the 
plate, Jy is ten times lower than Jx, except in the vicinity of the vertical edge, 
where Jy is higher than Jx. 

 

Re [Jy] /|Hinc| Im [Jy] /|Hinc| 

  

  

  

Figure 143 : Jy/|Hinc| on the illuminated face (λ0/100 plate) 
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In Figure 144 we compare Jy/|Hinc| on the illuminated face (-Z) obtained with 
the tEFIE∇G-f and tMFIE-nxf. As Jy is quite small over the sheet, the relative 
errors can become quite high and lose signification. Instead we present the 
absolute difference, showing that it remains quite small (~0,2) as compared to the 
actual value of the Jy and Jx current densities. Figure 146 (p.225) gives more 
insight and perspective in the actual differences between both solutions. 

 

Re [Jy] /|Hinc| Im [Jy] /|Hinc| 

  

  

  

Figure 144 : Absolute difference EFIE-MFIE for Jy/|Hinc| 
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The electric surface current densities obtained with the tEFIE∇G-f and tMFIE-nxf 
on the λ0/100 PEC plate are superimposed in Figure 145. The color and size 
scaling is identical for the tEFIE∇G-f and tMFIE-nxf solution on every picture, 
but it is different from one picture to the other, to optimize the color contrast in 
each of the three selected zones. In all three cases, the largest arrows correspond 
to the tEFIE∇G-f solution. 

 

 

 

 

Figure 145 : Zoom on Im[Jx] close to the edges and corners 
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In Figure 146 we show how the tEFIE∇G-f and tMFIE-nxf solutions for Im[Jx] 
evolve when the thickness of the plate is reduced. The tEFIE∇G-f largest current 
density grows towards the E-MFIE solution, while the tMFIE-nxf largest current 
density slowly diminishes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 146 : Influence of the plate thickness on Im[Jx]/|Hinc| 
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In Figure 147 we quantify how the tEFIE∇G-f solution for the thin PEC plate gets 
closer and closer to the E-MFIE solution for the PEC sheet, for the highest 
current density component : Im[Jx]. The pictures on the left cover the whole 
plate, including the edges where the high differences mask the lower differences 
on the rest of the plate. The pictures on the right exclude a small portion of the 
plate along the four edges, to better reveal the differences tEFIE∇G-f / E-MFIE on 
the rest of the plate. It is apparent that the tEFIE∇G-f converges towards the 
E-MFIE solution, but quite slowly along the four edges of the plate. 

 

[ X/λ0 ; Y/λ0 ]∈ [-0.125 ; +0.125] [ X/λ0 ; Y/λ0 ]∈ [-0.12 ; +0.12] 

 

 

 

  

 

 

 

 

Figure 147 : Difference E-MFIE / EFIE for several plate thicknesses 
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6.10 PEC sheet on a thin dielectric plate 

We analyze now the combination of the plate and the sheet already analyzed 
separately in §6.9, with the same Log distributed mesh to allow comparisons. The 
plate (in white and unmeshed in Figure 148) acts as a thin dielectric substrate 
while the PEC sheet (in grey, meshed) can be seen as a coating deposited just on 
top of the substrate, in contact with it, on the illuminated (-Z) side of the plate. 

 

 

Figure 148 : PEC sheet on a dielectric plate 

 

Z 

X 

Y 
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In this problem there are three domains : O is free space, D is the dielectric 
substrate and P is the PEC sheet. To refer to §3.3 and Table 5 (p.68), there are 
four types of sectors : 

Table 30 : Sector table 

D P O Type Nature

X X I D

X X II E

X X III E
X X X IV E  

The type IV sectors correspond to the border (1-)edges of the PEC sheet. The type 
III (resp. : II) sectors correspond to the inner (2-)edges of the PEC sheet in 
contact with the substrate (resp. : free space) on the +Z (resp. : -Z) side. None of 
the inner or border edges of the PEC sheet are fully embedded in only one 
domain, so the E-MFIE scheme is not required here. For all three ‘E’ sector types 
we may use either the EFIE-f or the MFIE-nxf (or a CFIE). 

The Type I sectors correspond to all remaining (1-)edges that are not in contact 
with the PEC sheet. As dielectric sectors, they require a pair of independent 
integro-differential equations. 

Finally, for sector types containing several dielectric domains (I and IV), a 
combination scheme must also be chosen (see §3.6), like PMCHWT or Müller. 

6.10.1 PEC sheet on a εr = 1 substrate 

Similarly to the example of the sphere in a half spherical εr = 1 shell (§6.3.1), the 
substrate is transparent and the electric current density on the PEC sheet should 
be identical to the current density obtained on the isolated PEC sheet.  

For the isolated PEC sheet, the results obtained with the E-MFIE in §6.9 are re-
used. For the PEC sheet on a transparent dielectric substrate, either the 
tEFIE∇G-f or the tMFIE-nxf is used for the PEC sectors (II, III, IV) while the 
tEFIE∇G-f and the tMFIE-f are used together for the dielectric sectors (I) in the 
PMCHWT-f-f scheme. 

The integration scheme is : 

 
Self 

Term 
Rmin< λ/100 Rmin ∈ [λ/100; λ/10] Rmin > λ/10 V 

Inner 3 3 3 -- 
Outer 16 16 3 3 
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In Figure 149 we show Jx/|Hinc| on the (-Z) face of the Log-distributed mesh. The 
thin sides of the plate, absent on the sheet, are not considered here. Jx is the 
main component of the electric surface current density except close to the vertical 
edges (see Figure 151, p.231). In the coloured plots of Figure 149, the 27x27=729 
regularly distributed locations actually correspond to the Log distributed 
locations where Jx/|Hinc| has been computed, namely at the centroids of all 
9x9x4=324 triangles in the Log-distributed mesh, or linearly interpolated 
between these 324 location to complete the regular 27x27 grid. 

 

Re [Jx] /|Hinc| Im [Jx] /|Hinc| 

  

  

  

Figure 149 : Jx on the illuminated face with tEFIE∇G-f (“EFIE” above), tMFIE-nxf 
(“MFIE” below) for the PEC sheet on the εr = 1 plate (PMCHWT-f-f based on 

tEFIE∇G-f and tMFIE-f) and “E-MFIE” (in the middle) for the isolated PEC sheet 
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In Figure 150 we zoom on the very high current density flowing closest to the 
(top) horizontal edge. In the E-MFIE case the pair of quasi identical large arrows 
on the top correspond to the current density flowing on both sides of the sheet, 
visible there because of their large size. In the tEFIE∇G-f case, the pair of large 
arrows across the horizontal edge have very dissimilar sizes (red and light blue). 
In the tMFIE-nxf case, the same pair of arrows exhibits quasi identical sizes 
(yellow). 

 

tEFIE∇G-f  ( max | J |/|Hinc|= 28,43 ) 

 

E-MFIE ( max | J |/|Hinc|= 23,79 ) 

 

tMFIE-nxf ( max | J |/|Hinc|= 18,74 ) 

 

Figure 150 : Zoom on Im[Jx]/|Hinc| close to the horizontal edge 
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In Figure 151 we zoom on the high current density flowing closest to the (top) 
horizontal edge. The observations made for Figure 150 (p.230) can be transposed 
here. Note that these high currents flowing upwards (Y axis) cannot be seen on 
Figure 149 (p.229), where only Jx is shown. 

 

tEFIE∇G-f  ( max | J |/|Hinc|= 28,43 ) 

 

E-MFIE ( max | J |/|Hinc|= 23,79 ) 

 

tMFIE-nxf (max | J |/|Hinc|= 18,74 ) 

 

Figure 151 : Zoom on Im[Jx]/|Hinc| close to the vertical edge 
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We present in Figure 152 a quantitative comparison between tEFIE∇G-f, tMFIE-
nxf and E-MFIE for Re[Jx] and Im[Jx] on the illuminated face. Globally, they all 
agree within ±5% inside the plate, and within +50% for the largest current 
densities on the horizontal edges and for the very low currents close to the 
vertical edges. Again, the most significant differences occur in the “zigzag” area 
(see also Figure 142, p.221). 

 
Re [Jx] /|Hinc| Im [Jx] /|Hinc| 

  

  

  

Figure 152 : Difference in percent between tEFIE∇G-f, tMFIE-nxf and E-MFIE for 
Jx on the illuminated face of a PEC sheet deposited on a εr = 1 plate 
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There is no magnetic current density on the PEC sheet. Therefore we present in 
Figure 153 the magnetic current density M on the shadowed face (+Z) of the 
dielectric substrate. Due to the very large value of M close to the (corners of the) 
PEC sheet, the scale is logarithmic. 

 

Re [M] /|Einc| Im [M] /|Einc| 

PMCHWT-f-f  and tEFIE∇G-f   ( max|M|/|Einc| = 57,2 ) 

  

PMCHWT-f-f + tMFIE-nxf   ( max|M|/|Einc| = 54,8 ) 

  

 

Figure 153 : M/|Einc| on the shadow face of the εr = 1 plate + PEC sheet 

0,572 57,2 5,72 
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6.10.2 PEC sheet on a εr = 2 substrate 

In the next figures, we simply present the current densities on the plate and PEC 
sheet, with logarithmic scale. 

 

Shadowed face (+Z) Illuminated face (-Z) 

PMCHWT-f-f  and tEFIE∇G-f   ( max|J|/|Hinc| = 30,6 ) 

  

PMCHWT-f-f + tMFIE-nxf   ( max|J|/|Hinc| = 20,2 ) 

  

 

Figure 154 : Re [J] /|Hinc| on both faces of the εr = 2 plate + PEC sheet 

0,306 30,6 3,06 
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Shadowed face (+Z) Illuminated face (-Z) 

PMCHWT-f-f  and tEFIE∇G-f   ( max|J|/|Hinc| = 30,6 ) 

  

PMCHWT-f-f + tMFIE-nxf   ( max|J|/|Hinc| = 20,2 ) 

  

 

Figure 155 : Im [J] /|Hinc| on both faces of the εr = 2 plate + PEC sheet 

0,306 30,6 3,06 
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In Figure 156 we present the magnetic current density on the shadowed face 
obtained with the PMCHWT-f-f  and tEFIE∇G-f, and compare it with the εr = 1 
case. 

 

Re [M] /|Einc| Im [M] /|Einc| 

εr = 1   ( max|M|/|Einc| = 57,2 ) 

  

εr = 2   ( max|M|/|Einc| = 37,8 ) 

  

 

Figure 156 : M/|Einc| on the shadowed face of the  plate + PEC sheet  

0,572 57,2 5,72 
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In Figure 157 we present the magnetic current density on the shadowed face 
obtained with the PMCHWT-f-f + tMFIE-nxf, and compare it with the εr = 1 case. 

 

Re [M] /|Einc| Im [M] /|Einc| 

εr = 1   ( max|M|/|Einc| = 54,8 ) 

  

εr = 2   ( max|M|/|Einc| = 41,0 ) 

  

 

Figure 157 : M/|Einc| on the shadowed face of the dielectric plate  

0,572 57,2 5,72 
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6.11 Solder Line 

To illustrate the notion of solder line (§3.3.2), we analyze now a PEC bowtie, with 
gap or without gap, but with an air or a PEC solder line. 

 

 

(a) : without gap 

 

(b) : with gap 

Figure 158 : Bowtie geometry 

It is illuminated by a plane wave incoming from the spherical coordinates 
(θ, ϕ) = (45°,90°) and is polarized along X (α = 90°). 

The coordinates of the 6 nodes defining the bowtie of Figure 158a are : 

 1 2 3 4 5 6 
X/λ0 -1/4 -1/8 -1/4 +1/4 +1/8 +1/4 
Y/λ0 -1/2 0 +1/2 -1/2 0 +1/2 
Z/λ0 0 0 0 0 0 0 

 

The coordinates of the 8 nodes defining the bowtie of Figure 158b are : 

 1 2 3 4 5 6 7 8 
X/λ0 -1/4 -1/8 -1/4 +1/4 +1/8 +1/4 -1/8 +1/8 
Y/λ0 -1/2 +1/40 +1/2 -1/2 +1/40 +1/2 -1/40 -1/40 
Z/λ0 0 0 0 0 0 0 0 0 

 

The largest side of any triangle in the mesh is λ0/10. To obtain the current 
densities on both sides of the sheet, the E-MFIE formulation has been used 
(see §4.4). The following integration scheme has been used : 

 
Self 

Term 
Rmin< λ/100 Rmin ∈ [λ/100; λ/10] Rmin > λ/10 V 

Inner 3 3 3 -- 
Outer 16 3 3 3 

  

Figure 159 (p.239) and Figure 160 (p.240) show that the electric current densities 
on both sides of a λ0/20 air gap, or its limit case, the air solder line, are flowing 
independently. When the two PEC parts of the bowtie are joined with a PEC 
solder line, making it a unique PEC sheet, the electrical current density exhibits 
a continuous flow across the PEC solder line. 
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(a) : Gap length = λ0/20 

 

(b) : Gap length = 0 , air solder line 

 

(c) : Gap length = 0 , PEC solder line 

 

Figure 159 : Re[J]/|Hinc| on both sides of the PEC sheet(s) 

0 6,52 3,26 
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(a) : Gap length = λ0/20 

 

(b) : Gap length = 0 , air solder line 

 

(c) : Gap length = 0 , PEC solder line 

 

Figure 160 : Im[J]/|Hinc| on both sides of the PEC sheet(s) 

0 6,52 3,26 
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6.12 Examples where a 16 nodes quadrature is necessary 

6.12.1 Thin dielectric εr = 1 plate 

A (λ0/4 x λ0/4 x λ0/500) plate is illuminated by a plane wave characterized by 
(θ, ϕ, α) = (45°, 0°, 180°)7. The mesh is regular with characteristic dimension 
λ0/40. The MoM solutions obtained with the following integration schemes are 
compared against the exact analytical solution (see §6.1.4) : 

 
Self 

Term 
Rmin< λ/100 Rmin ∈ [λ/100; λ/10] Rmin > λ/10 V 

Inner 3 3 3 -- 
Outer variable 3 3 3 

 
The average relative errors obtained in function of the number of nodes in the 
outer integral when Rmin < λ/100 are listed in Table 31. The necessity to use at 
least 16 nodes quadrature is made even more evident in Figure 161 (p.242) and 
Figure 162 (p.243). 

Table 31 : Average relative error with PMCHWT-f-f (tEFIE∇f-f) 

 Re Im Re Im 
 Jx Jy Jz Jx Jy Jz Mx My Mz Mx My Mz 

3 16,2 13,3 4,52 13,0 16,9 4,10 19,8 24,7 6,01 22,4 17,1 5,99 
7 16,0 14,9 4,16 9,52 6,76 2,41 10,8 8,01 3,14 22,6 19,5 5,89 

12 3,51 3,45 0,77 2,69 2,98 0,61 2,90 2,69 0,56 5,15 5,24 1,01 
16 0,48 0,54 0,05 1,11 1,34 0,06 0,64 0,72 0,09 1,31 1,31 0,19 
19 0,78 0,81 0,14 1,49 1,62 0,23 1,19 1,07 0,15 1,86 2,01 0,26 
25 0,47 0,52 0,05 1,18 1,36 0,10 0,69 0,62 0,08 1,45 1,57 0,20 
42 0,33 0,43 0,02 1,04 1,28 0,05 0,34 0,48 0,06 1,18 1,20 0,18 
61 0,37 0,42 0,03 1,09 1,28 0,07 0,52 0,46 0,07 1,29 1,36 0,19 
73 0,33 0,40 0,02 1,03 1,24 0,05 0,39 0,43 0,06 1,19 1,24 0,18 

 

 

                                            
7 See §6.1.1 for the definition of those angles 
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PMCHWT-f-f (tEFIE∇f-f) PMCHWT-f-f  (tEFIE∇G-f) 

3 integration nodes 

  

7 integration nodes 

  

16 integration nodes 

  

Figure 161 : Re[J]/|Hinc| on a (λ0/4 x λ0/4 x λ0/500) plate with εr = 1 
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PMCHWT-f-f  and tEFIE∇f-f PMCHWT-f-f  and tEFIE∇G-f 

3 integration nodes 

  

7 integration nodes 

 
 

16 integration nodes 

  

Figure 162 : Re[M]/|Einc| on a (λ0/4 x λ0/4 x λ0/500) plate with εr = 1 
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6.12.2 PEC and dielectric pyramids 

We analyze a PEC pyramid on top of a dielectric εr = 1 pyramid, to show that 
accurate integration of the singular terms in the Z matrix is indispensable, even 
for such a simple example. 

   

Figure 163 : Lower dielectric and higher PEC pyramid with meshes 

It is illuminated by a plane wave incoming from the spherical coordinates 
(θ, ϕ) = (45°,90°) and is polarized in the YZ plane (α = 0°). 

The coordinates of the 5 nodes defining the two pyramids are : 

 

 X/λ0 Y/λ0 Z/λ0 

1 0 1/30 1/30 

2 -1/30 0 0 

3 0 2/30 0 

4 1/30 0 0 

5 0 1/30 -1/30 

 

The largest side of any triangle in the mesh is λ0/81. The following integration 
schemes have been used : 

 

 
Self 

Term 
Rmin< λ/100 Rmin ∈ [λ/100; λ/10] Rmin > λ/10 V 

Inner 3 3 3 -- 
Outer variable 3 3 3 

  

In Figure 164 (p.245) we limit the comparisons to Im[J], though similar 
observations can be made for Re[J]. In Figure 165 (p.246) we also give the 
tEFIE∇G-f and tMFIE-nxf solution for the PEC pyramid alone, obtained with a 16 
nodes quadrature in the outer integral when Rmin < λ/100. The solution for J on 
the PEC pyramid on top of the εr = 1 pyramid must be very similar, as in §6.10.1. 
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PMCHWT-f-f  and tEFIE∇G-f PMCHWT-f-f  and tMFIE-nxf 

3 nodes 

  

7 nodes 

  

12 nodes 

  

 

Figure 164 : Im[J]/|Hinc| : poor solutions with 3, 7 and 12 nodes 

0,0024 24,13 0,241 
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PMCHWT-f-f  and tEFIE∇G-f PMCHWT-f-f  and tMFIE-nxf 

Single PEC pyramid solution (16 nodes) 

  

16 nodes 

  

25 nodes 

  

 

Figure 165 : Im[J]/|Hinc| : Reference and good solutions (16, 25 nodes) 

0,0024 24,13 0,241 
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6.13 Summary 

In this chapter many examples have been selected to illustrate the theories and 
concepts exposed in every chapter of Part I : the new theorems about flat 
perfectly conducting sheets demonstrated in chapter 1, the issues raised in 
chapter 2 regarding the use of RWG or curl conforming basis functions, the solder 
line introduced in chapter 3, as well as the solution for composite bodies, the 
E-MFIE formulation elaborated in chapter 4, two examples supporting the 
accuracy analysis in chapter 5. 

To fulfill one of the main objectives of this book, the presentation of those 
examples in an evolutive sequence, from the sphere to the thin plate via a 
rounded cube and then a regular cube, allowed to measure and compare the 
accuracy and performances of various formulations for most examples. Aside the 
exact Mie solution for dielectric or perfectly conducting spheres, the void 
dielectric reference solution and the existence of two independent solutions for 
perfectly conducting volumes, the tEFIE and the tMFIE, were of valuable help in 
this process. The lowest average and maximum errors were observed for the 
homogeneously meshed sphere. A progressive degradation of these errors from 
several percent up to fifty percent was put in evidence across the successive 
examples, due to the presence of rounded or sharp edges and tips, or to the 
inhomogeneity of the mesh. 

The presented and analyzed results are exclusively the current densities, as 
opposed to the usual practice where global values are preferred, such as radiation 
patterns, scattering coefficients or impedances. We believe that those aggregate 
values hide many of the behaviors and phenomenons revealed only with careful 
observation of the current densities. This way we were able to precisely localize 
and quantify the differences between the tEFIE and the tMFIE, showing that the 
tEFIE overestimates current densities close to edges while the opposite is true for 
the tMFIE. We also observed quantitatively how these differences are attenuated 
when the mesh density is increased. Only a close look at the current densities 
could reveal the weaknesses of RWG basis functions close to edges, but also on 
the thin side of a dielectric plate and even on the sphere. Finally, the necessity to 
perform careful evaluation of the singular integrals - using for example our 16 or 
42 nodes polynomial quadratures - could only be detected and explained by the 
observation of localized erratic current densities.  

To greatly reduce the amount of triangles required to finely mesh the close 
vicinity of edges and tips, while allowing a detailed capture of the high gradients 
in current density flowing there, original log-distributed meshes have been 
proposed that use (very) elongated triangles. Though irregular triangles are 
mostly considered as bad elements to be avoided in a mesh, we have shown in 
this book that they can be used in confidence, provided the integrations are 
performed with enough accuracy and that the condition number is maintained 
below an acceptable level. 
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Conclusion 
 

This book was devoted to the resolution of the electromagnetic scattering by 
linear, homogeneous and isotropic three-dimensional bodies with the Method of 
Moments. Despite the fact that this problem has been tackled in many ways by 
hundreds of researchers for more than half a century now, significant 
improvements or even new contributions to the vast amount of already available 
results proved to be possible. 

The exact electromagnetic theory underlying the Method of Moments has been 
reviewed, extended and generalized. In this process, Maxwell’s equations are 
transformed into integral equations where the unknowns appear under the form 
of equivalent current densities, electric and/or magnetic, defined at the bounding 
surface of every non perfectly conducting volumic homogenous region. The correct 
vector forms of the electric and magnetic integral equations valid in the case of 
arbitrary sheets have been established through an original demonstration, taking 
into account the edge singularities. Those new equations have permitted to 
demonstrate a dual theorem that constitutes the exact generalisation of the 
physical optics approximation. They also allowed to fully understand why the 
MFIE cannot be used to solve sheets, with the additional consequence that a new 
formulation was added to the arsenal of the Method of Moments, named E-MFIE, 
that fully solves perfectly conducting sheets on both faces. With the introduction 
of new contracted notations, the exact theory and equations describing any 
combination of geometries (volumes or sheets) and materials (dielectric or perfect 
conductors) has been cast into canonical forms, putting in evidence the duality 
between the electric and magnetic formulations. Starting from the full vector 
expressions, new formulations based on the normal components has been 
proposed aside the already existing ones, based on the tangential components. 

The Method of Moments was then introduced in a practical way by discretizing 
the canonical expressions based on the tangential components, while maintaining 
the highest level of generality to allow a detailed and critical review of the basis 
and testing functions. Curl conforming basis functions are sometimes 
encountered in the literature, but we explain in Part I and illustrate in Part II 
why they must be banned. Also the widely used Rao Wilton Glisson (RWG) basis 
functions are shown to be only partly linear, and the consequences thereof are 
explained in Part I and visualized by several concrete examples in Part II. 
Finally, a series of considerations about the crucial step of testing reveal why 
some choices are optimal, acceptable or catastrophic for both the tangential and 
normal components based formulations. Again, many examples and comparisons 
from Part II support the assertions made in Part I. 

Similarly to the generalization step made with the exact theory, the Method of 
Moments has been generalized and made applicable to any combination of 
perfectly conducting and dielectric material within a simple and universal 
resolution framework. To this end, the original concepts of singular edge, solder 
line, and RWG sector table have been introduced in Part I and illustrated in Part 
II. The construction of the global Z matrix, and in particular the combination 
step, is fully explained in the most general case of dielectric sectors. Perfectly 
conducting sectors are presented as a special case of dielectric sectors, with the 
exception of embedded sheets, that required the development of the E-MFIE, a 
novel method combining the electric and magnetic formulations. With the 
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E-MFIE, sheets can now be solved in the same universal way as dielectric or 
perfectly conducting volumes. 

Having at our disposal an all purpose and very general method with solid 
theoretical foundations, we naturally selected for the practical computation of the 
many integrals involved in the Method of Moments an all purpose integration 
strategy with an easy and universal implementation scheme. To fulfill another 
important objective of this book, the accuracy of the selected high efficiency 
polynomial quadratures has been carefully evaluated in several original ways. 
For the first time analytical exact reference solutions have been derived for the 
representative cases of a pair of orthogonal adjacent triangles, regular or very 
elongated. This exact analytical analysis allowed to precisely quantify the modest 
accuracy attained by polynomial quadratures when integrating singular 
integrals, as compared to their performances with regular integrals. It also 
revealed an unexpected and superior performance of the 16 and 42 nodes 
quadratures. This observation was further confirmed by several examples, two of 
them showing in Part II that the accuracy provided by these two quadratures is 
necessary to avoid localized erratic current densities in the final solution. 

After careful control of their accuracy, the electric and magnetic field integral 
equations have been extensively compared, against exact solutions when 
available, or against each other via a convergence analysis, for example. A great 
accuracy or similarity was observed, except in the vicinity of sharp edges, where 
both solutions seem to diverge from the expectations. Metallic sheets are 
unavoidably surrounded by sharp edges. As the magnetic formulation cannot 
deal with sheets, we found another incentive to investigate the foundations of 
these apparent contradictions to the duality principle.  

In Part II, a series of evolutive examples have been presented to support and 
illustrate the theories developed in Part I, but also to provide many quantitative 
and comparative measurements of the local and average accuracy of various 
formulations available in the Method of Moments, including unused ones that we 
chose to apply anyway in this book. Instead of showing far-field based results, we 
deliberately chose to analyze the current densities themselves, as only they 
provide the most detailed insight . The electric and magnetic field integral 
equations are shown to provide equivalent accuracy, except in the vicinity of 
sharp edges. The use of regular meshes with various densities, but also the 
introduction of meshes using elongated triangles close to those edges, revealed 
that the electric formulation seems to overestimate the surface current densities 
and oppositely for the magnetic formulation. As we could show how unreliable 
RWG basis functions are in the vicinity of edges, no definitive conclusion could be 
drawn, except that other basis functions should be used there if a more accurate 
modelling of these strong current densities is required. 

For dielectric domains, the PMCHWT and Müller combinations based on the nxf 
testing schemes were found to be as accurate as the f testing scheme, while 
exhibiting a much better condition number, at least in the two analyzed 
situations. For perfectly conducting volumes, the magnetic field integral equation 
also proved to exhibit a much lower condition number insensitive to mesh 
refinements. Considering also that the magnetic field integral equation is not 
prone to low frequency breakdown, as opposed to the electric field integral 
equation, we conclude by saying that those less popular formulations deserve 
much more consideration by the electromagnetic community. 
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Appendix A 
 

We consider the flat circle Ffa centered on far  : 

 

Figure 166 : Integrals on Ffa 

The vector .fa a far r d n= +  is on the positive side (da ≥ 0) of fan , the unit normal to 

Ffa. Referring to Figure 166 we first decompose the integral (42) into : 
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From r  the surface Ffa is viewed under a signed solid angle ( , )ar FΩ , given by : 
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The limit for far r→  of the first integral is therefore : 
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The second integral is identically zero :  
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∫ ∫
  

Note that the second integral reduces to zero because r  is on the normal above 
the centre of a symmetric shape Ffa. 
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Appendix B 
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Appendix D 
 

Analytical and numerical integration of the principal value term 

D.1. m nf f≠  

On the triangle Tm depicted in Figure 167, having a surface A, and two RWG 
functions defined on edges m and n of length respectively Lm and Ln. 

( )
2

( )
2

m
m

n
n

L
f r p

A

L
f r q

A

±
= −

±
= −

 

 

Figure 167 : principal value term (1) 

We have the following integrals : 

(1) 
.

. .
2 12m

m n m n
m

T

n f L L
f dS

× ± ±
=∫  

(2) 2 2 2.
. . 3

2 96m

m n m n
m m m n

T

n f L L
n f dS L L L

A

× ± ±  × = + −
 ∫  

where 

( )

( ) ( ) / 2

L norm q p

A norm t p q p

= −

= − × −
	  

Numerical integration with Dunavant quadratures shows that only one node is 
sufficient to obtain the exact value of (1), but three nodes are needed for (2). 

r  
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mL  
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q  

L  

t  

mn  
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In this example,   L = 1, X = -2 and Y = 1    

=>  Lm = 3,1623  and   Ln = 2,2361 

If we consider that Lm and Ln < λ/10 and Tm is quasi equilateral, then : 

(1) < λ²/1200 

(2) < λ²/4160 

Note though that for a given Lm and Ln, (1) is unaffected by the shape of the 
triangle, but (2) is ! 

D.2. m nf f=  

If m nf f= , then (1) and (2) become : 
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Numerical integration with Dunavant quadratures shows that three nodes are 
needed for (2).  



 

259 

Appendix E 
 

E.1 Surface gradient and surface divergence theorems 

Considering : 

− A surface S with normal n  and with closed oriented contour C 

− The normal m  on C pointing outside S 

− A vector l n m= ×  defining the sense of integration everywhere on C  

− A vector function A  continuously differentiable on S 

− A scalar function B  continuously differentiable on S 

 

Figure 168 : Geometry for the surface divergence and gradient theorems 

We have the following equalities : 

( ) ( )s
S C

A dS A m dl∇ ⋅ = ⋅∫∫ ∫�  

( ) ( )s
S C

B dS B m dl∇ = ⋅∫∫ ∫�  

Note that the surface S does neither have to be polygonal nor flat, as depicted in 
Figure 168. 

The surface divergence and gradient are defined as : 

s n

s n

∇ = ∇ − ∇

∇ = ∇ − ∇
 

In the case of a flat surface S lying in the XY plane, they are given by : 

s x y

s x y

∇ = ∇ + ∇

∇ = ∇ + ∇
 

l

m

n

S

C
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E.2 Examples of a surface gradient and a surface divergence 

 

To illustrate the surface divergence notion, we prove below that : 

2 2
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'2 2
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n n
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n nP P

+ +   
= ∇ = ∇   

   + +   
 

Where the vectors R , P  and 'P  are depicted in Figure 169. 

 
Figure 169 : Surface divergence 

To calculate the surface divergence related to S, lying in the xy plane, let us 
express the vectors in the (x,y,n) coordinate system having its origin in Sρ , the 
projection of 'r on S : 
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To calculate the surface divergence related to S’, lying in the x’y’ plane, let us 
express the vectors in the (x’,y’,n’) coordinate system having its origin in 'Sρ , the 
projection of r  on S’ : 
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We have : 
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To illustrate the surface gradient notion, we prove that :  
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Note though that : 
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There is a sign difference for the full gradient, as opposed to the surface gradient 
! This is due to the definition of SP r ρ= −  and ' ' 'SP r ρ= − . These vectors end on 
r  and 'r  respectively, as opposed to 'R r r= − that always end on r . 

 

E.3 Complete derivation of the integral of Rn on S’ 

 

To obtain a general analytical expression, we make use of the surface divergence 
theorem to transform the surface integral into a line integral. If 'Sρ , the 

projection on S’ of r , lies inside S’ or anywhere on its boundary '
S∂  , then the 

surface divergence theorem cannot be used at P’=0 and a decomposition into two 

integrals on ' '
S Sε−  and '

Sε  is necessary as the function 
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 is not 

continuously differentiable at P’=0. In general, we may write : 
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Note that writing : 
( )' ' ' '

'. ' . ' '. ' ' '. ' '
S S S S

P m dl P m dl P m dl
ε ε∂ − ∂ ∂
     = +     ∫ ∫ ∫  implies that 

'm  must point outside S’-S’ε on ∂S’ and ∂S’ε , as depicted in Figure 171 (p.264). 

When 'Sρ  is located outside S’, (2) and (3) vanish and only (1) remains.  

 
Figure 170 : Geometry for the integral of Rn on S' 

Let us integrate the two last terms (2) and (3), knowing that in the most general 
case, when 'Sρ  is the vertex v for example, then '

Sε  is a portion of a circle with 

'r  

r  

R  

'P  
'

Sε

'S

'd  

'ε

'Sρ  

v  
'α
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opening angle α’. If 'Sρ  is located on '
S∂  but not on a vertex, then α’ = π ( '

Sε  is a 
half circle), and if 'Sρ  lies inside S’, then α’ = 2π ( '

Sε  is a full circle, as depicted in 
Figure 170) 

.  

Figure 171 : Geometry for integrals (2) and (3) 
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Inserting (2) and (3) into the expression of 
'

'n

S
R dS∫∫ , we get : 
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We can now build a recursive formula for these integrals as follows : 
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If S’ is a polygon, then ∂S’ = Σ(∂S’i) where every ∂S’i is a straight line on which 
0'( '). ' ( ') 'i iP r m r P cst= = . 

Then : 

'0 ' 2 2
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n n n n
i i
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i

K R dS P I n d K
n

−
  
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∑∫∫  

For a polygon S’, we can also build a recursive formula for the line integral 'n
iI , 

noting that ( )
2

2 0 2' 'iR R l= +  : 

 

Figure 172 : Geometry for the line integral 
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If we determine 1

'

'
'

i
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S
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∂
= ∫  and 3
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'
'
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dS
K

R

− = ∫∫ , the recursive expressions for 

'niI  and 'nK  allow to deduce easily 1
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The expression of 1
'iI
−  is obtained easily : 
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∫ ∫  

The function 1
'iI
−  is everywhere continuous(ly) differentiable and finite, except on 

the boundary ∂S’ of the surface S’, where it is infinite. 

On the contrary 1
'iI
+  is everywhere finite and continuous(ly) differentiable : 
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To derive a compact expression for 3'K − , we will use the fact that the function α’ 
for a flat polygon S’ can be expressed as : 
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As required, with this expression for α’ we have : 

− α’ = 0 if 'Sρ  is outside S’ 

− α’ = 2π if 'Sρ  is inside S’ 

− α’ = π if 'Sρ  is on 'S∂  but not on a vertex 

− α’ = inner opening angle of the polygon S’  if 'Sρ  is a vertex 
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The integral 3'K −  is singular (infinite) when d’ = 0.  

In practice, the function 3' 'd K −  is encountered. We give hereafter the physical 
meaning of this function. 

The solid angle sustended from the observation point r  by an oriented surface S’ 
is given by : 

' 2'

( '). ( ')
( ) 'n R

S
S

u r u r
r dS

R

 
Ω =  

 
∫  

where 'r  is the integration point on S’, 'R r r= − , nu  is a unit vector indicating 

the arbitrarily chosen orientation of the surface S’ at 'r  and the unit vector 
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'

'
R

R r r
u

R r r

−
= =

−
. ΩS’ can be positive or negative, depending on the relative 

orientations of nu  and Ru . 

 

Figure 173 : Solid angle 

In the case of a flat surface S’ : 

3 3
' 2 2' ' '
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' ' ' ' '. 'n R

S
S S S

u u d R
dS dS d R dS d K

R R

− −     Ω = = = =        
∫ ∫ ∫  

With this “signed solid angle” interpretation for 3
' 'd K

− , it is now easy to 
understand that this function is  

− bounded between -2π and +2π (for a flat surface S’)  

− continuous(ly) differentiable everywhere except on the surface S’, where it 
undergoes discontinuous jumps between positive values on the nu+  side and 
negative values on the nu−  side 

The functions 1'K −  and 1' 'd K −  are both everywhere finite and continuous(ly) 
differentiable : 

1 1 '0 ' 1 2 3

'
' ' . ' 'i i

S
i

K R dS P I d K− − − −= = −∑∫∫  

E.4 Complete derivation of the integral of nPR  on S’ 

 

To obtain a general analytical expression, we make use of the surface gradient 
theorem to transform the surface integral into a line integral. If n≤-3 and r  lies 
inside S’ or anywhere on its boundary '

S∂ , then the surface gradient theorem 
cannot be used at R=0 and a decomposition into two integrals on ' '

S Sε−  and '
Sε  

is necessary as the function 2nR +  is not continuously differentiable at R=0. In 
general, we may write : 

S’Ru  

r  

ΩS <0 

'r  

nu  
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To show that (2)+(3)=0, we place r above S’ and let d’ tend to 0. 

 

Figure 174 : Geometry for the gradient theorem 

With Figure 174 we can write : 
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Integration by parts shows that (2)+(3)=0, regardless of d’, ε’ and n. 

In the specific case of n=-3, we have for example : 
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These two expressions would be singular (infinite) for d’ = 0, but as their sum is 
identically zero for any d’ ≠ 0, it must remain so when d’ = 0. 

We can now write, for any n and r  :  
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If S’ is a polygon, then : 
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In general : 
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Let us consider the integral involving ,m iT + , ,n iT +  and ' ( )iG R∇  : 
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f f r G R dS dS

f f r G R dS dS

f G R f r G R

+ +

+ +

+ +

+ +

+ +

+ +

+ +

 
−∇ ⋅ ∇ 

 

  
= ∇ ⋅ ∇  

  

  
= ∇ ⋅ ∇  

  

= ∇ ⋅ + ∇ −

∫ ∫

∫ ∫

∫ ∫

( )

( )

( )
( )

, ,

, , ,

, ,

,

,

, , ,

, ,

,

,

. ' .

' ( ) ( ). ' ( ) . ' .

( ). ( ). ' .

'

( ) . '

m i n i

m i n i n i

m i n i

n i

s m i
T T

s n i s i m i i s m i
T T T

m i m i i
T T

s n i

i s m i
T

f dS dS

f G R f r dS G R f dS dS

f r m G R dS dS

f

G R f dS

+ +

+ + +

+ +

+

+

+ + +

+ +

∂
+

+

  
∇ ⋅  

  

  
= ∇ ⋅ + ∇ − ∇ ⋅  

  

 
+  

 
= ∇ ⋅

− ∇ ⋅

∫ ∫

∫ ∫ ∫

∫ ∫

∫
,

.
m iT

dS+

 
 
 
 

  
    

∫

 

Similarly : 

( )
( )

, ,

, ,

, ,

, ,

, ,

,

,

( ). ' ( ') ' ( ). ' .

( ). ( ). ' .

'

( ) . ' .

m i n i

m i n i

m i n i

m i s n i i
T T

m i m i i
T T

s n i

i s m i
T T

f r f r G R dS dS

f r m G R dS dS

f

G R f dS dS

− +

− +

− +

− +

− −

∂
+

−

 
−∇ ⋅ ∇ 

 

  
+  
   

= ∇ ⋅  
  − ∇ ⋅    

∫ ∫

∫ ∫

∫ ∫

 

As RWG functions have no component normal to the four edges of ,m iS∂  the line 
integral on ,m iT +∂  and ,m iT −∂  reduce to integrals on the edge common to ,m iT +  and 

,m iT − . The divergence conforming property of the RWG (see §2.2.5) then ensures 
that 

, ,

0
m i m iT T
+ −∂ ∂

+ =∫ ∫ .  
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Finally : 

, ,

, , , ,

,

, , , ,

( ). .

' ( ). '. ' ( ). '.

m i n i

m i n i m i n i

m i
S T

s m i s n i i s m i s n i i
T T T T

f r dS

f f G R dS dS f f G R dS dS

+

+ + − +

+ + − +

 
= 

 

−∇ ⋅ ∇ ⋅ − ∇ ⋅ ∇ ⋅

∫ ∫

∫ ∫ ∫ ∫
 

Similarly : 

, ,

, , , ,

,

, , , ,

( ). .

' ( ). '. ' ( ). '.

m i n i

m i n i m i n i

m i
S T

s m i s n i i s m i s n i i
T T T T

f r dS

f f G R dS dS f f G R dS dS

−

+ − − −

+ − − −

 
= 

 

−∇ ⋅ ∇ ⋅ − ∇ ⋅ ∇ ⋅

∫ ∫

∫ ∫ ∫ ∫
 

The total integral can now be rewritten in contracted form : 

{ }

{ }

, ,

, ,

2
, , , ,

2
, , , ,

( ). ( ) ( ') ' ( ') ' ( ) . ' .

( ). ( ') ' ( ). '.

m i n i

m i n i

EJ i
mn i m i i i n i s n i i

S S
i

i
i m i n i s m i s n i i

S S
i

jZ
Z f r k G R f r f r G R dS dS

k

jZ
k f r f r f f G R dS dS

k

 
= − − ∇ ⋅ ∇ 

 

= − + ∇ ⋅ ∇ ⋅

∫ ∫

∫ ∫
 

In this alternative and equivalent expression, the derivative of the free-space 
Green’s function has been transferred to the test function , ,( ) ( )m i m iT r f r RWG= = . 

 

A similar transformation is not possible with , , ,( ) ( ) ( )m i m i m iT r n r f r= ×  because 
this function is not divergence conforming. 
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Appendix G 
 

This Appendix gives every detail of the analytical solution summarized and 
analyzed in §5.5.1 

 

 

3'

' '

' '

' '
( ).( ') . '

4

'
( ).( ') .

4

'
( ). ( ')

4

T T

i i
T

i

i i
T

i

C P
I w r r p dS dS

R

C
w r r p m Q dS

C
w r r p m Q dS

π

π

π

 −
= + − ×   

 

 
= + − ×  

 
 

 = + − ×
 

∫∫ ∫∫

∑∫∫

∑∫∫

 

with 
'

' 2
2 '

L
C

A
= ± = ±  and 

' '
'

' '

( ) ( )
ln

( ) ( )

i i
i

i i

R r l r
Q

R r l r

+ +

− −

 +
=  

+  
. 

Considering :  

'
1

0

cos

sin

m α

α

 
 

= + 
 − 

 '
2

1

cos

sin

m α

α

 
 

= − 
 + 

 '
3

1

0

0

m

− 
 

=  
 
 

 

( ) ( )f C r p r p= − = −  is the RWG defined on T from vertex p . 

α 

X 

Z 

Y 

(1,0,0) 

'
1m

'
2m  

'
3m  

Sin(α) 

-Cos(α) 

T 

T’ 

'p (0,0,0)

'p p−  
( , ,0)r x y  

∂1T’ 

∂2T’ 
∂3T’ 

(0,1,0) p  
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 w f=  w n f= ×  

( ) '
1. 'w r p m− × =  .sinx α−  2 2

sin ( )x y yα + −  

( ) '
2. 'w r p m− × =  

.sin

2

x α
 2 2sin

( )
2

x y y
α−

+ −  

( ) '
3. 'w r p m− × =  0  0  

 

After computation of the vector cross and dot products, (284) reduces to the sum 
of only two integrals on edges ∂1T’ and ∂2T’, the integral on ∂3T’ being identically 
zero : 

{ }' '
1 2 1 2

2 sin 1 2 sin
( , ). ( ) . ( , ). ( )

4 42T T
I P x y Q r dS P x y Q r dS I I

α α

π π

 
= − = − 

 
∫∫ ∫∫  

with ( , )
w f

P x y x= = −  and 2 2( , )
w n f

P x y x y y= × = + −  

Integrals on ∂1T’ 

 

2 2
1 1' ( ) ' ( ) (1 ) (1 )R r l r x y x+ ++ = − + + −  

2 2
1 1' ( ) ' ( )R r l r x y x
− −+ = + −  

1 1' ( ) ' ( )R r l r+ ++  is always strictly positive for any position of r  inside T, except for 
r  = (1,0,0). The integrand of 1I

+  is singular only at (1,0,0). 

1 1' ( ) ' ( )R r l r
− −+  is always strictly positive for any position of r  inside T, except all 

along the common edge ∂1T’ ( y = 0 ). The integrand of 1I
−  is not singular though 

in r  = (0,0,0) because (0,0) 0P =  premultiplies '
1( )Q r . 

1 1 2 2

0 0

1 1 11 1 2 2

0 0

( , ).ln (1 ) (1 )

( , ).ln

y

x

P x y x y x dxdy

I I I

P x y x y x dydx

−

−+

−

  − + + −     
= = − 

  − + −    

∫ ∫

∫ ∫
 

The integrands related to ∂1T’ are depicted in Figure 175. 

X Y 

(1,0,0) 

T 

( , ,0)r x y  
'
1R
+  

l  
'
1R
−  '

1l
+  

'
1l
−  

(0,1,0) 

(0,0,0) 
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(a) : 1, fI
+  

 

(b) : 1, fI
−  

 

(c) : 1,nxfI
+  

 

(d) : 1,nxfI
−  

Figure 175 : Integrands related to ∂1T’ 
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If w f=  : 

( ) ( )

1 1 2 2
1,

0 0

1
2 2 2 2 2

1

0 2 2 2

0

2 2

2 2

.ln (1 ) (1 )

2 .ln (1 ) (1 ) ( 3) (1 )
1

4
( 2).ln (1 ) (1 )

2(1 ) .ln 2 1 ( 2).ln 2 1
1

4 ( 2).ln 1 1

y

f

y

I x x y x dxdy

x x y x x x y

dy

y x y x

y y y y

y y

−+

−

 = − + + −  

  − + + − + + − +   
 =
  − − − + − −    

   − + − − −      
=

+ − + −

∫ ∫

∫

( )

( )

( )

( )

1

0 2

1

3 2 2

3 2
2

2
2

0

(4 ) 2 3 1

2 2 5
2 2 1 2 1

3 9 3

1 2( 3 3) ( 6)
ln 2 1 .ln 1 1

4 3 3

( 6) 2
ln 2 1 .ln 1

3 3

11 12ln 2 1

3

dy

y y y

y y y y y

y y y y y
y y

y y
y y y

 
 
 

 + − − +    

  
− + + + − − +     
 

− + −   = + + + + −       
 
 −   − − + + +          

− + +
=

∫

0,01176435988237460...
6

= −

 

1 1 2 2
1,

0 0

1
1 2 2 2 2 2

0
0

2 2

1

0 2 2 2 2

3 3 2 2

.ln

.ln ln

(1 ).ln (1 ) (1 )

ln (1 ) (1 ) ln

8 12 ln (1 )

1

36

x

f

x

I x x y x dydx

xy x y x xy x x y y dx

x x x x x x x

dy

x x x x x x

x x x x

−−

−

 = + −  

    = + − − − + +        

  − + − − − −   
 =
  − + − + − +       

+ + −

=

∫ ∫

∫

∫

( )

1
3 2

2 2 2

1 2 2 2 2

0

1 12 ln 21 6

6 (2 3)ln (1 ) 12ln 1

3 2 sinh 1 2 6( 1) (1 ) 6ln (1 )

11 9 2 ln 2 1
0,617168175625671...

36

x x x x x

x x x x x x

x x x x x x x
−

  + − + − −     
 
  − − + − − − −     
 

  + − + + + − + + − +       

− − +
= = −  
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If w n f= ×  : 

1 1 2 2 2 2
1,

0 0

1
2 2 2 2

1 2 2 2

0

2 2 2 2

0

( ).ln (1 ) (1 )

6 ( 3 3 ).ln (1 ) (1 )

1
3(3 6 2).ln (1 ) (1 )

18

(2 5 14 18 11) (1 )

6(1 )(4

1

18

y

n f

y

I x y y x y x dxdy

x x y y x y x

y y x y x dy

x x y y x y

y y

−+
×

−

 = + − − + + −  

  + − − + + −   
 
  = + − + − + − −   
 
 + + + − + − +
  

−

=

∫ ∫

∫

( ) ( )

2

1 2 2

0

2 2 2

4 3 2

3
2 2 3

5 1).ln ( 2 1)

3(3 6 2). ln ( 2 1) ln ( 1 1)

2 (16 27 18) 1 (14 18 11)

3
4 2 9 2 6 9 2 9 6

2

1 7 23
1 6 3 6 ( 1) ln 2

18 2 4

y y

y y y y y dy

y y y y y y

y y y y

y y
y y y y y

  − + +  
     + − + + − + −       
 

− + − + − +  

 
+ − + + + − 

 

 −
= − + + − − − − + 

 
 

∫

( )

( )

( )

1

2 2 1

0

1

3
3 ( 3 2) ln 2 1 ln 1 1 sinh

4

2 3 2 ln 2 1
0,056719463...

24

y y y y y y−

 
 
 
 

  
   

 
    − − + − − + − +           

− + +
= = −

 

1 1 2 2 2 2
1,

0 0

1
1 2 2 2 2 2 2 2 2

0
0

2 2 3 2
1

2 20

4

( ).ln

1
( 7 9 ) 3 ( 3 3 ).ln

9

2 2 1(8 11 1) 7 9
1

9 3(1 )(4 5 1).ln 2 2 1 1

9

1

9

y

n f

y

I x y y x y x dxdy

x y x y y x x y y x y x dy

y y y y y y

dy
y y y y y y

y

−−
×

−

 = + − + −  

  = + + − + + − + −    

 − + − + − + 
=   + − − + − + − +    

− +

=

∫ ∫

∫

∫

( )

1
2 3 2

1 2 3 2

0

3 3( 1) ln 2 2 1 1
2

9 7 1 21
sinh 1 2 2 2 1(2 )

2 8 1616 2

2 2 ln 2 1
0,202903155...

16

y y y y y y

y y y y y y−

  − − − − + − +    
 
+ − + − + − − +   
 

− − +
= = −
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Integrals on ∂2T’ 

 

2 2
2 2' ( ) ' ( ) 2 cos 1 ( cos 1) 2R r l r x y y x yα α+ ++ = + + + + + +  

2 2
2 2' ( ) ' ( ) (1 ) ( cos 1) 2R r l r x y x y α− −+ = − + + + −  

2 2' ( ) ' ( )R r l r
+ ++  is always strictly positive for any position of r  inside T. The 

integrand of 2I
+  is regular everywhere. 

2 2' ( ) ' ( )R r l r
− −+  is always strictly positive for any position of r  inside T, except for 

r  = (1,0,0). The integrand of 1I
+  is singular only at (1,0,0). 

1 1 2 2

0 0

2
1 1 2 2

0 0

2 2

( , ).ln 2 cos 1 ( cos 1) 2
1

2
( , ).ln (1 ) ( cos 1) 2

y

x

P x y x y y x y dxdy

I

P x y x y x y dxdy

I I

α α

α

−

−

+ −

  + + + + + +     
=  

  − − + + + −    

= −

∫ ∫

∫ ∫
 

The integrands related to ∂2T’ are depicted in Figure 176 (p.279). 

We could not solve the symbolic integrals for any arbitrary value of α. In the case 
α = 90°, we could solve exactly 2, fI

−  and 2,n fI
−

×  but no analytic solution could be 
found for 2, fI

+  and 2,n fI
+

× . Fortunately 2, fI
+  and 2,n fI

+
×  can be estimated very 

accurately with polynomial quadratures, as the integrand is regular. 

X 

Z 

Y 

(1,0,0) 

T’ 
 ( , ,0)r x y  

'
2R
+  

2l  

'
2R
−  

'
2l
+  

'
2l
−  

(0, -Cosα, Sinα ) 
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(a) : 2, fI
+ (regular) 

 

(b) : 2, fI
−  

 

 

 

 

(c) : 2,nxfI
+ (regular)  

(d) : 2,nxfI
−  

Figure 176 : Integrands related to ∂2T’ 
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If w f=  : 

1 1 2 2
2,

0 0

1
2 2 2 2

1

0
1 1

2 2

0

.ln (1 ) (1 ) 2

1
.ln (1 ) (1 ) 2 ln (1 )

2

1 2
tan tan

(1 )2 (1 )

(1 ).ln (1 ) 2

x

f

x

I x x y x dydx

x
y x y x y x y y

x dx
x y y

xx y

x x

x

−−

−

− −

 = − + − −  

−    − + − − − − − + +        
=      −   + +      −  − +      

− −
=

∫ ∫

∫

( )
1

0
1 1

1

0

(1 )
(1 ) ln 2 1 (1 )

2

(1 ) (1 ) 1
ln 1 tan tan 2

2 2 2

ln 2 1
(1 ) .ln (1 ) 2 1

2 2 2

ln 2 1
(1 ) .ln 1 1

2 2

x
x x

dx
x x

x

x x x dx

x x x

π

π

− −

−   − − − + −    
 
   − −  + − + +             

   +    = − − + − −       

 + = − − + − −  

∫

∫

1

0

1
3 2 3 2

0

ln 2
2
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 
  
   −      
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= − − − − − − 
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If w n f= ×  : 
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2 2
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( ).ln (1 ) (1 ) 2
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( ) ( ) ( )

x

n f

n f n f n f

I x y y x y x dydx
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−−
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− − −
× × ×
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∫ ∫
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2

x

n f

x
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x

−−
×

−

− −

 = − + − −  

−    − + − − − − − + +        
=      −   + +      −  − +      

=

∫ ∫

∫
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0
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1 2
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2
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2 2 2 2

(1 ) .ln 1
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x x

x

x x x dx
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π
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−   − − − − − + −     
 
   − −  + − + +             

   +    = − − + − −       

= − −

∫

∫

1

0

1
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0
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1 ln 2
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1 (3 4 1)
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C

dx
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π

 
   +    + − − −       
 
 

 − +
= − − − − − − − 

  
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3 1 1

2 2

1
( ) .ln (1 ) (1 ) 2

2
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1
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(1 )(1 )

x
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− −

 = − + − −  

 − + − − − − − +  

 = + − − + + − + −  

    
 − − +  
  − − +   

∫ ∫
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1 3
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(1 ) 12ln 1 4 6 2 ln 2 1 6ln 2 3 2

236 2

1 1
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x
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dx
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 
 
 
 
 
 
 
 

 
  
   
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 
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∫
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x
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×

−
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∫ ∫
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2 2
2, 2, 2, 2,( ) ( ) ( )

1
(1 ln( 2 1) 2 2 8) 0,043618281..

12 2
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π

− − − −
× × × ×= + −

= + − − + = −
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Appendix H 
 

This Appendix gives every detail of the analytical solution summarized and 
analyzed in §5.5.3 
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×
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−
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    +    = + − +   −   + − +     

 + − + +  

= − − +

= −

∫

∫

2 2

2

4 3 2 2 3 4 3

0

3

ln( ) (12 1) (1 4 ) (3 4 )ln( )
12 12 24 36 16 12

12ln 13 12
144

S

x x

x

xS x S x S x x
S x C C x S S x

S T
S C

− − − + − + − − − −

 = − + 

 

2

2 1 2 1

2 2 2

2

2

1 / /
ln 1 ( / ) tan / 1 ( / ) tan

1 ( / ) 1 ( / ) 1 ( / )

/
ln / 1 ( / ) 1

1 ( / )

x
C

S T T Z
T S T S S Z

Z S S Z T S

S T
T S T S

Z S

− −

=

    
     + − + + +       + + +    

 − + + −  +

 

 

3 3 2 2
1 1

2 2 3/ 2 2 2

2 2 3
2 2 3

2 2 3/ 2

2 2
3 2 2

2 2 2 2

6( )
tan tan

( )( ) ( )

3 ( 3 )( )
(2) ln ( ) 2

18 ( )

3 ( ) ( )( ) 6(
6 ln ( )

S x Z y S Z yS

Z S xS Z Z S x y

dx S S Z S x
S x y y y

S Z

S S x y S x yS S x
y S x y

S Z S Z

− −
   − − +    +
  − +  − +    

+ −  = + − + + −  +

  − − +−
 + − + − − +
 + + 

{ }

( )

2

2

2

(1 / )

0

2 2

2 2

0

3
3

0

3
4

0

3

)

1
( ) 12ln( )

36

1 1
( ) 12ln( ) 3

36 4

12ln 3
144

T x S

S

S

y

S

y

y

S x yZ

S Z

T
S x S x C

S

T
S x S x C

S

ST
S C

−

−

+

 
= − − + 

 

 
= − − − + − 

 

 = + −  

∫

∫

 

2

22 3
1 2 1

2 3/ 22 22

3 2

2

3/ 22 2

6( / ) 1 ( / )12( / ) 12( / ) /
tan / 1 ( / ) tan

1 ( / ) 1 ( / ) 1 ( / )1 ( / )

6( / ) 1 3( / )1
12ln 1 ( / ) ln / 1 (

1 ( / ) 1 ( / )

y
C

S T S TS T S T T Z
T S S Z

S Z Z S T SS Z

S T Z S
T S T S

Z S Z S

− −

=

  +    − − + +    +   + ++    

   +
  + + − + + +

   + +   

2/ ) 4T S  −  

 



Appendix H 

  285 

(1 / )
2 2

2 2 2 2

2 2 2 2

2 2 2 2 2 2 2 2

2 20

2 2
2 2 2 2 2 2 2 2 2

2 2

0

2 ( ) ( )( )
2 ( ) ln ( )

2 ( ) ( ) ( )
(3) arg

4 ( )

( )
ln ( ) ( ) 2 ( )

T x S

S

S S x S x yS S x
S x y S x y

S Z S Z

S S x S x y S Z S x yT
th

S S xS Z

S S x
S y Z x y Z SZ x S x y

S Z

T

−
  − − +−   − + − + − −

   + + 

 − − + + − + = − +
 −+
 

−  − + + + − − − −
 +

=

∫

{ }2 2

0

2 3

0

2 3

3

( ) ( ) 2ln( )
4

1
( ) ( ) (3 6ln( ) 2)

4 9

1
( ) (3 6ln 2)

4 9

(12 24ln 8)
144

S

yT

S

yT

yT

yT

T
S x S x C dx

S

T T
S x C S x

S

T T
S C S

S

ST
C S

− − − +

= − − − − +

= − +

= − +

∫
 

2 2 2 2 22

2 2 2 2

2 2
2

2 2

1 ( / ) 1 ( / ) 1 1 ( / ) 1( / )
ln 1 ln

1 ( / ) 1 ( / ) 1 ( / ) 1 1 ( / ) 1

1 1
2 ln 1 2 1 ln 1 ( / )

1 ( / ) 1 ( / )

yTC

T S Z S Z SS T T T

Z SZ S T S Z S Z S

S S
T S

T TZ S Z S

=

    + + + + −      + + −       +     + + − + +    

         + − − + + −         + +  

i

2 2

2

1 ( / ) 1
2 1

1 ( / )

T SS

T Z S

 
 
 
 

+ − 
+ + 
  +

 

 

 

 


