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Abstract

Low hardware costs, short measurement times, fast data handling, and flexibility in taking
measurements under harsh conditions, are some of the key requirements of today’s sensors.
These sensor characteristics are influenced or determined by the number of measurements.
The classic sampling theory fixes a lower bound on the number of samples needed, known
as the Shannon-Nyquist sampling rate. Over the past decade, a new measurement method-
ology has gained a lot of attention: Compressed Sensing (CS). The advent of CS is motivated
by the observation that in many applications the measurements, performed at high sampling
rates and thus generating high data volumes, are followed by a compression step. Compressed
Sensing incorporates the compression step into the measurement phase. Under certain con-
ditions on the signal sparsity and on the measurement methodology, CS allows to reconstruct
the sensed signal from a number of samples far below the Shannon-Nyquist bound. In this
work, Compressed Sensing is applied on Stepped-Frequency Continuous Wave (SFCW) and
Synthetic Aperture Radar (SAR) measurements. In our work, the applicability of Compressed
Sensing on SFCW and SAR data is evaluated for two applications: (1) The Non-Destructive
Testing (NDT) of 3D-printed objects and (2) Through-the-Wall Radar Imaging (TWRI).

3D-printing or Additive Manufacturing (AM) is a rapid growing production technique
which allows to manufacture any part from a Computer-Aided Design (CAD) model. De-
fects and printing flaws are common in AM and the quality of the printed objects can vary.
An evaluation of the integrity of the inner structure of the part is thus necessary. In our study,
we explore a NDT technique based on a mm-wave sensor using a SAR architecture for poly-
mer printed objects. The proposed NDT technique has the advantage, compared to common
techniques like X-ray tomography or ultrasound, to be contactless and to use non-ionizing
radiation. The technique performs a lot of time-consuming measurements, generating large
amounts of data. Compressed Sensing is utilized in this application to decrease the number of
samples. The number of samples is further decreased by adding Side Information (SI) which
can be a previous measurement of the same or a similar object or a synthetic measurement.

Through-the-Wall Radar Imaging (TWRI) is gaining a lot of interest by both the research
community and the industry and is of interest for police, defence forces, fire and rescue per-
sonnel and first responders. A TWRI radar utilizes UWB signals combined with a scanning
strategy along a wall to image the hidden scene and detect the presence of human targets be-
hind the illuminated wall. A large technological gap exists between the commercial solutions,
which are fast and easy to handle, and the published research prototypes, which deliver high
resolution images. Compressed Sensing seems a good candidate to reduce that gap. In the
presented study, a promising approach is tested. We combine different CS techniques which
results in a sensor capable to deliver high quality TWRI radar images from a low number of
samples by intelligently exploiting the already scanned part of the scene. Moreover, the sen-
sor autonomously adapts his sampling rate to the signal sensed along the scanning path. This
new approach is successfully tested on real TWRI data for the detection of static human targets
through a wall.
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Chapter 1

Introduction

The number of sensing devices is exponentially growing as well in almost all branches
of the industry as in our daily live. A good example is the massive introduction of
sensors in the automotive industry. Today’s modern cars have an average of 60 up to
100 sensors on board. This steep growth in number of sensors and applications is only
made possible thanks to the ongoing digital revolution. The digitization allows the de-
sign and production of cheaper, more flexible and more robust sensing devices when
compared to their analog counterparts [Davenport et al.2011]. At the very heart of this
revolution lies the theoretical work of Kotelnikov, Nyquist, Shannon and Wittaker [Kotel-
nikov1933, Nyquist1928, Shannon1949, Whittaker1915]. Their results dictate that the in-
formation of an analog signal can be fully captured by taking equidistant samples at a
sampling rate equal to at least two times the highest frequency present within the analog
signal. Since then, this theorem, commonly referred to as the Shannon-Nyquist theorem,
has governed the design of all digital sensing systems. But, this theoretical bound entails
practical and technical challenges.

First, in some applications, as for example in imaging and video applications, measuring
at the imposed Nyquist rate, generates vast volumes of data that are difficult and cumber-
some to handle and to transmit. This problem has been tackled with the rise of the trans-
form coding schemes which form the foundations of for example the JPEG2000 [Acharya
and Tsai2005], the MPEG [Le Gall1991] or the MP3 [McCandless1999] standards. The
aim of these lossy compression techniques is to represent the high-dimensional data in a
concise way, while limiting the distortions introduced by doing so. Therefor, a transfor-
mation basis, such as the Discrete Cosine Transform (DCT) (used in the JPEG standard)
or the wavelet transform (used in the JPEG2000 standard), is needed. These transforma-
tions allow to concentrate the important information of the signal in a small number of
coefficients which are preserved, whereas the rest of the coefficients are neglected.

A second challenge is that in some applications sampling at the Nyquist rate is techni-
cally impossible (because of, for example, the limitations of analog-to-digital converters
[Walden1999]) or very costly or time consuming. This problem is not addressed by the
compression techniques. A full measurement is first performed at a sampling rate dic-
tated by the Nyquist rate, before the compression is applied and the data is reduced by
throwing away that part that was measured but appears not to be relevant. The idea
of incorporating the compression phase during the acquisition gained a lot of attention
with the work of Candès, Romberg, Tao and Donoho [Candès et al.2006, Donoho2006]
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around 2006. This new framework is known as Compressed Sensing (CS) or Compres-
sive Sampling. Their work started an avalanche of publications in a multitude of research
fields and applications. One of the first impressive results were obtained in the field of
medical imaging. More precisely, the application of CS on Magnetic Resonance Imagery
(MRI) can reduce the measurement time to a fraction of the original required time [Lustig
et al.2007, Gamper et al.2008]. Encouraged by these many and relevant results, we started
our study on applying CS in the field of microwave imaging.

Research questions

In this dissertation we try to explain and evaluate different approaches for applying CS
in the domain of microwave imaging, using synthetic and real measurements. We will
search and formulate answers to the following series of subjects and questions.

1. The microwave images obtained from as well the simulated as from the real data
are obtained with a Vector Network Analyser. This type of equipment measures
the reflection parameter at discrete frequencies. This implies that the signal in one
dimension corresponds to a Stepped Frequency Continuous Wave (SFCW) signal.
This 1D-signal is expanded to a 2D-measurement in order to obtain an image, by
using a Synthetic Aperture Radar (SAR) strategy. To start with, we want to evalu-
ate the applicability and measure the impact of applying CS on SFCW and on SAR
measurements.

2. Next, we will explore and test recent and promising techniques and extensions on
CS using synthetic experiments. More precisely, we want to evaluate the perfor-
mance of CS combined with: (1) a sequential measurement approach, (2) a Singular
Value Decomposition (SVD), (3) a Principal Component Analysis (PCA), (4) (multi-
ple) homogeneous side information(s) and (5) heterogeneous side information.

3. A first application we selected is the Non-Destructive Testing (NDT) of polymer
additive manufactured parts. We first want to evaluate if mm-wave SAR sensing
can be a relevant alternative for the existing structural health monitoring techniques,
such as X-ray tomography or ultrasound sensing, by forming a mm-wave image of
the inner structure of 3D-printed objects. Subsequently, we want to evaluate the
performance of CS for this specific application. In many NDT cases, complementary
information on the object under test is known prior to the measurement. This can
for example be a measurement of the same or a similar part earlier in time. We want
to explore, evaluate and compare different techniques for incorporating this side
information during the CS construction of the mm-wave image, using real data.

4. The second application is Through-the-Wall Imaging (TWI) using a Synthetic Aper-
ture Radar. This application was selected because we observe a huge gap between
the TWI radar prototypes presented in a research context and the commercially
available systems. We believe that CS is a good candidate to help to close this gap.
The most important differences are: the image quality and the image resolution and
on the other hand the sensor user-friendliness and measurement times. We per-
formed a series of experiments, with a self-built prototype, by imaging scenes popu-
lated with multiple human targets behind a wall. Using the real data obtained with
these experiments, we want to evaluate the applicability of CS on this type of real
data. We finally want to combine different CS techniques such as CS with multiple
weighted SI and sequential CS.
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Unique contributions of this thesis

Multiple novel techniques and approaches are presented in this dissertation. The unique
contributions obtained in the framework of this PhD are enlisted hereunder:

– If a measured signal is sparse or has a sparse representation, Compressed Sensing
reconstruction techniques allow to reconstruct that signal from a number of samples
obtained at a rate below the Nyquist rate. The number of samples needed to obtain
a correct reconstruction depends, amongst other things, on the sparsity of the sig-
nal. The exact sparsity of the signal is unknown and can only be guessed prior to
the measurement. In [Malioutov et al.2010] a method is proposed to fix an upper
bound on the reconstruction error for Gaussian measurements, using a small num-
ber of extra cross-validation samples. In section 3.4, this approach is enlarged to the
Discrete Fourier Transform measurements. To estimate the upper bound several ap-
proximations are made. We empirically study the impact of the approximations and
show that the upper bound will be overestimated but remains relevant. We further
demonstrate that the number of cross validation measurements can be kept fairly
small compared to the total number of unknowns.

– In Section 3.6.2 a novel approach is presented to perform change detection using het-
erogeneous SI. The proposed technique is based on a source separation technique,
presented in [Deligiannis et al.2017], and consists of a coupled dictionary learning
step end a CS reconstruction step with Side Information.

– In the field of (I)SAR imaging, coherent background subtraction is the commonly ap-
plied technique to exploit the Side Information coming from a measurement sharing
a high degree of similarity with the signal to reconstruct. In Section 4.3.2 a CS recon-
struction technique incorporating multiple weighted Side Informations is proposed
in stead of the coherent background subtraction technique. The proposed solution
has the advantage over the background subtraction method, that it is not affected by
low quality Side Information.

– In Section 5.5, a new way of applying CS in Through-the-Wall Radar Imaging is
proposed. This novel approach blends the CS-reconstruction phase with the mea-
surement phase. In a nutshell: the SAR sequentially performs measurements until it
detects autonomously that a certain reconstruction quality has been obtained (with-
out having access to the ground truth). The reconstruction is performed using a
CS algorithm which exploits the already performed part the SAR measurements as
weighted Side Information. This novel approach has the advantage that only the
desired reconstruction quality needs to be chosen whereas the sensor adapts the
sampling rate on the fly in order to achieve that requirement.

Organization of this dissertation

The remainder of this thesis is organized as follows:

– Chapter 2 gives the reader a concise overview of CS and highlights some important
theoretical results. More precisely, we discuss the necessary conditions on the mea-
surement modality and on the signal properties for CS to be applicable. We end the
chapter with a discussion of different CS reconstruction algorithms which will be
used for obtaining the results presented in the later chapters.
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– In chapter 3, we explore a set of CS methods and approaches which will be applied
on the real data in chapters 4 and 5 of this dissertation. We start by evaluating the
applicability of CS on synthetic data obtained through SFCW and SAR measure-
ments. Further in this chapter, we explore multiple novel techniques combined with
CS and SFCW and SAR measurements. Those approaches are: sequential CS, PCA,
SVD, CS with homogeneous SI, dictionary learning and CS with heterogeneous SI.
This chapter can be seen as a toolbox of techniques from which we will select the
appropriate approaches in the next chapters.

– Chapter 4 starts with an outline of the NDT-needs for additive manufactured parts.
We then explain the measurement setup and the measurements performed on a 3D-
printed test object. Subsequently, we evaluate the impact of using a CS reconstruc-
tion algorithm on the robustness against sampling below the Nyquist rate. Finally,
we compare different approaches for adding homogeneous SI during the CS con-
struction of the NDT image: coherent background subtraction, `1`1-minimization
and CS with multiple weighted SI.

– In chapter 5, we discuss the use of CS on real TWI data. The chapter starts with
a comparison between the research TWI radar prototypes and the commercial sys-
tems. Next, we build our own TWI radar prototype, based on a Vector Network
Analyser. This system is used to perform a series of measurements. These mea-
surements are used to compare several wall mitigation techniques combined with
CS. Finally, we propose an online reconstruction technique combining a sequential
reconstruction approach with multiple weighted side information.

– Chapter 6 concludes this dissertation. In this final chapter, we resume our results
and list the most important contributions obtained from this study. We end with a
series of ideas and hints for future work.
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Chapter 2

Compressed Sensing

2.1 Introduction

In this chapter we give a concise overview of the CS theory necessary for a good under-
standing of the following chapters. We start with the Shannon-Nyquist theorem which
fixes the number of samples needed when sensing a signal. This theoretical lower bound
can be decreased using Compressed Sensing, if the sensing modality and the sensed sig-
nal satisfy some conditions. These conditions on the sensed signal and on the measure-
ment matrix, which are linked to the new sampling bound, are discussed in sections 2.2.1
and 2.2.2 of this chapter. Efficient algorithms exist for reconstructing the unknown signal
from a subsampled measurement. In section 2.2.3, we discuss two families of CS re-
construction algorithms: Basis Pursuit algorithms and Matching Pursuit algorithms. We
explain a couple of implementations which are used in the later chapters and compare
them in terms of computation time, uniformity and robustness against subsampling.

2.2 The basic problem

2.2.1 A set of linear measurements

Suppose a discrete signal of interest x with N elements: x = (x1, x2, ..., xN) ∈ CN . In order
to access this unknown vector, the signal x is sensed through a set of linear measurements.
The vector of measurements y ∈ Cn is obtained after applying the measurement matrix
A ∈ Cn×N , modelling the measurement process, on x:

y = Ax. (2.1)

In order to represent a real context where measurements are noisy, a noise vector e ∈ Cn

is added to the equation (2.1):
y = Ax + e. (2.2)

In general, this set of n linear equations has a unique solution for x only if n ≥ N, which
bounds the minimum number of measurements n to the number of unknowns N.
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2.2.2 The Shannon-Nyquist theorem

For a continuous-time signal x(t), the sampling bound is determined by the Shannon-
Nyquist sampling theorem. The Fourier-transform of a continuous-time signal x(t) is
defined by:

z(ω) =
∫ +∞

−∞
x(t)e−jωtdt. (2.3)

x is a signal with bandwidth B if z is supported in [−B, B]. The Shannon-Nyquist theorem
states [Jerri1977]: if x(t) contains no frequencies higher than B Hertz, then it is completely
determined by giving its ordinates a series of points, spaced 1

2B seconds apart. This sam-
pling theorem dictates thus how many samples are needed to sense the continuous-time
signal x(t). As will be explained in detail in section 3.2.1, the discretised version of the
equation 2.3 can be rewritten as the expression 2.1, where A is a Discrete Fourier Trans-
form (DFT) matrix and where then number of rows is dictated by the Shannon-Nyquist
theorem.

2.2.3 Undersampling

Classic linear algebra bounds thus the number of samples to the length of the signal. This
result has a serious impact on measurement setups: (1) it sets a lower bound for the sam-
pling rate (for example, for analogue to digital convertors), (2) if measurement times are
not negligible, the number of samples will impact the total measurement time (for ex-
ample, for Magnetic Resonance Imaging (MRI) and Computer Tomography (CT), where
measurement times and radiation exposure must be minimized) and (3) high sampling
rates can rapidly generate large data volumes which need to be transmitted and or pro-
cessed (for example in Synthetic Aperture Radar (SAR) applications).
In many daily life applications, the important information is stored in only a small num-
ber of entries of the signal x compared to the total length of the signal. These signals
are called sparse signals (with sparsity k) if the signal contains k non-zero elements or
is called compressible if only k elements are not close to zero. Alternatively, for many
non-sparse signals, the signal can be expressed in a basis in which only a small number
of components are non-negligible (for example the wavelet basis for images). Since the
locations of the nonzero elements in x are unknown prior to the measurement, the num-
ber of measurements (or the number of rows of A) can not be reduced or will lead to an
underdetermined set of equations. This observation intuitively motivates the following
questions and opens the path to sampling below the Shannon-Nyquist bound:

1. Can we sample and compress at the same time?

2. How to take compressive samples (or: What are the properties that the measurement
matrix A must fulfill)?

3. How can the signal x be recovered from the compressive samples?

These questions have been examined intensively since the advent of Compressed Sens-
ing, around 2004 and the results have been applied in a large variety of applications. The
main key results, which are of importance for the later sections, are presented in the next
section 2.3.
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2.3 Main results in Compressed Sensing

Compressed Sensing has proven that under certain conditions on x (see: 2.3.1) and A (see:
2.3.2), a unique solution can be found from an incomplete set of linear measurements
(n < N) in a stable and robust way and that efficient algorithms for determining this
unique solution do exist.

2.3.1 Conditions on the signal

The cornerstone of the Compressed Sensing theory is the assumption that the unknown
vector x is sparse, has a sparse representation or is compressible. A vector is called k-
sparse if the entries of x are all zero except in a small number (≤ k) of coordinates:

x ∈ CN , ‖x‖0 := |Supp(x)| ≤ k ≤ N, (2.4)

where Supp(·) denotes the support of a vector and is defined as the set of indices of the
non-zero elements of x. ‖·‖0 is a pseudo-norm indicating the sparsity of x. In general, the
p-norm of a vector is defined as follows:

‖x‖p :=
( N

∑
i=1

|xi|
p
)1/p

with 1 ≤ p ≤ ∞ (2.5)

In practice, many signals are not exactly sparse but contain a large number of elements
close to zero. These signals can be well approximated by a compressed k-sparse version
of the original signal. Formally, compressible signals are defined as signals x obeying:

|x∗i | ≤ Ci−1/q, (2.6)

with x∗ a non-increasing rearrangement of x, C is a positive constant and 0 < q < 1.
In the case that the signal is not sparse nor compressible in the measurement basis, a
change of bases (Ψ) can be applied in order to obtain a sparse or compressible signal α:

y = Ax = AΨα = Θα. (2.7)

Popular choices for Ψ are the Discrete Fourier basis, the Discrete Cosine basis and Wavelet
bases which are known to be a good choice for images, etc [Lewis and Knowles1992].
The reconstruction of the vector x from an underdetermined set of equations is not self-
evident since the coordinates of the nonzero elements of x are a priori unknown. The
solution can be found by solving:

min
x
‖x‖0 s.t. y = Ax. (2.8)

Unfortunately, this problem turns out to be NP-hard [Muthukrishnan et al.2005]. The
work in [Candes et al.2006] demonstrates that the `0-minimization can be relaxed towards
an `1-norm if the measurement matrix A satisfies certain properties (see: 2.3.2):

min
x
‖x‖1 s.t. y = Ax. (2.9)
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This problem is known as Basis Pursuit (BP) and is a convex minimization problem which
is no longer NP-hard. y = Ax only holds in an ideal noiseless world. The BP problem
can be adapted for noisy signals towards:

min
x
‖x‖1 s.t. ‖Ax− y‖2 ≤ ε, (2.10)

known as Basis Pursuit Denoising (BPDN) and where ε = ‖e‖2.
We will now summarize some important theoretical results on the properties that a the
measurement matrix A must possess in order to be able to recover a k-sparse vector x, by
solving (2.9) or (2.10).

2.3.2 Conditions on the measurement matrix

Null-space property

The null-space property is defined as follows [Foucart and Rauhut2013]:
A matrix A ∈ Cm×N is said to satisfy the null space property relative to a set K ⊂ [N] if:

‖vk‖1 < ‖vk̄‖1 , ∀v ∈ ker A \ {0}

It is said to satisfy the null space property of order k if it satisfies the null space property
relative to any set K with cardinality(K) ≤ k. [N] is the ensemble {1, ..., N}. vk denotes a
vector in Ck, which is the restricted version of v to the indices in K. And vk̄ is a restricted
version of v to the indices which are not in K.

Theorem [Foucart and Rauhut2013]: Given a matrix A ∈ Cn×N, every k-sparse vector
x ∈ CN is the unique solution of problem (2.9) if and only if A satisfies the null space prop-
erty of order k.

Unfortunately, the null-space property is computationally hard to verify.

Coherence property

The mutual coherence of a matrix A is defined as (with ai and aj: the columns i and j of
A):

µ(A) = max
i 6=j

∣
∣〈ai, aj〉

∣
∣

‖ai‖2

∥
∥aj
∥
∥

2

. (2.11)

A sufficient condition for the recovery of all k-sparse vectors x through (2.9) is [Foucart
and Rauhut2013]:

(2k− 1)µ < 1. (2.12)

The mutual coherence of a matrix A is lower bounded by [Foucart and Rauhut2013]:

µ ≥

√
N − n

n(N − 1)
. (2.13)

Combined with the condition in (2.12), this implies that the recovery of a k-sparse vector
is achievable with a number of measurements n of order k2. This lower bound on n can
severely be improved.
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Restricted Isometry Property

A popular condition on the measurement matrix is the RIP.

The Restricted Isometry Property (RIP) [Candes and Tao2005] holds with parameters
(k,δ), if:

(1− δ) ‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ) ‖x‖2
2 (2.14)

holds for all k-sparse vectors x.

This implies that all eigenvalues of A∗K AK, where AK is a column-submatrix of A with
K ⊂ [N] and cardinality(K) ≤ k, are in the interval [1− δ, 1 + δ], or that every k columns
of A are near orthogonal [Foucart and Rauhut2013]. Candès proves in [Candes et al.2006]
that the problem in (2.9) is equivalent to the problem in (2.8) if A satisfies the RIP with
parameters (3k, 0.2). These parameters are further sharpened by Candès in [Candes2008]:

Theorem [Candes2008]: Assume that the measurement matrix A satisfies the RIP with param-
eters (2k,

√
2− 1). Then every k-sparse vector x can be exactly recovered from its measurements

y = Ax as a unique solution to the linear optimization problem (2.9).

For measurements corrupted with noise e, Candès further proves that BPDN is stable.
This means that the distance between the reconstructed vector ( x̂) and x is bounded:

Theorem [Candes2008]: Let A be a measurement matrix satisfying the RIP with parameters
(2k,
√

2 − 1). Then for any k-sparse signal x and corrupted measurements y = Ax + e with
‖e‖2 ≤ ε, the solution x̂ to problem (2.10) satisfies: ‖x̂− x‖2 ≤ Ckε, where Ck depends only on
the RIP constant δ.

This result can be extrapolated to compressible signals:

Theorem [Candes2008]: Let A be a measurement matrix satisfying the RIP with parameters
(2k,
√

2− 1). Then for any arbitrary signal x and corrupted measurements y = Ax + e with

‖e‖2 ≤ ε, the solution x̂ to problem (2.10) satisfies: ‖x̂− x‖2 ≤ Ckε + C′k
‖x−xk‖1√

k
, where xk

denotes the vector of the largest coefficients in magnitude of x.

Verifying if a matrix satisfies the RIP is NP-hard [Bandeira et al.2013]. It has been proven
that some matrices (for example: Gaussian, Bernoulli and partial Fourier matrices) sat-
isfy the RIP conditions with overwhelming probability [Candes and Tao2005, Baraniuk
et al.2008] [Rudelson and Vershynin2005] ("with overwhelming probability" is defined in
[Candes and Tao2005] as: "with a probability decaying exponentially in n").
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2.3.3 CS reconstruction algorithms

Basis Pursuit algorithms

The BP (2.9) and BPDN (2.10) problems are convex optimization problems which can be
solved by efficient algorithms. Numerous performant and competitive implementations
do exist. We now briefly introduce those implementations which are used to perform the
experiments in the further sections of this dissertation.

`1-MAGIC
This is a set of recovery procedures, written by Emmanual Candès and Justin Romberg
in Matlab, for solving a convex optimization problem within 7 separate contexts. The
problems are either recast as a linear program, which is the case for the BP problem and
is solved using a generic path-following primal-dual method. Or, the problem is recast
as a second-order cone program, solved by a log-barrier algorithm. A detailed descrip-
tion of both algorithms can be read in [Boyd and Vandenberghe2004]. The functions of
`1-MAGIC used for solving the BP problem: l1_eqpd.m and for BPDN: l1qc_logbarrier.m
or l1qc_newton.m. The code, a detailed description of these functions and a users guide
can be found in [Candes and Romberg2005].

SPGL1
SPGL1 is a Matlab software package, written by Ewout Van Den Berg and Michael Fried-
lander, for solving the BP, the BPDN and the Least Absolute Shrinkage and Selection Op-
erator (LASSO) problem. It implements a root-finding algorithm and a spectral project-
gradient algorithm. The pseudo-code and a detailed description of the algorithms are
presented in [Van Den Berg and Friedlander2008] and the user manual and the SPGL1
software can be found at [SPG]. The method supposes that the noise level is approxi-
mately known. In contrast to `1-MAGIC, SPGL1 supports complex valued coefficients.

CVX
Michael Grant and Stephen Boyd developed a solution for solving convex optimization
problems, using the object-oriented features of Matlab [Grant et al.2008]. The imple-
mentation is based on two developments: (1) Disciplined Convex Programming (DCP),
which is a methodology for constructing convex models. DCP consists of an atom li-
brary of functions or sets with known properties on curvature and monotonicity and
of a ruleset containing a finite enumeration of ways in which atoms may be combined
while preserving convexity. (2) A graph implementation which encapsulates a method
for transforming instances of a specific function into a structure compatible with one of
the underlying solvers. For the standard CVX user, the transformations and underlying
solvers are opaque. The user writes the problem in accordance with the DCP ruleset. CVX
then verifies the compliance and transforms the model to a solvable form. It then calls an
appropriate solver and translates the numerical results back to the original problem. All
this happens autonomously without user intervention.
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Matching Pursuit algorithms

The second group of algorithms we discuss are greedy algorithms. Many variations and
extensions do exist but they are mostly based on the orthogonal matching pursuit algo-
rithm.

Orthogonal Matching Pursuit (OMP):
OMP is put forward in [Mallat and Zhang1993] as a sparse approximation algorithm
for reconstructing sparse signals from an underdetermined set of measurements and the
method is thoroughly analyzed by Joel Tropp and Anna Gilbert in [Tropp and Gilbert2007].
The starting point is the observation that the measurement vector y is a linear combina-
tion of k columns from A, in other words: y has a k-term representation over the matrix
A. In order to reconstruct x, we need to identify the participating columns of A when
taking the measurement y.
OMP is a greedy algorithm (a pseudo code for the algorithm can be found hereunder):
the first iteration starts with determining which of the columns of A is the most correlated
with the measurement vector y. The selected column is then added to the set of selected
columns Λi and erased from A. The set of selected columns is used to find an new es-
timate for x: x̂ by solving a least squares problem. Finally a residual is determined by
subtracting the contribution of the already selected elements of x from the measurement
vector y. These steps are repeated for k iterations, hoping that the algorithm has selected
and reconstructed the right k nonzero elements of x.

Algorithm 1 Orthogonal Matching Pursuit

1: INPUT: measurement matrix A(n× N); measurement vector y(n× 1); sparsity level k of
x(N × 1)

2: OUTPUT: estimate for x: x̂(N × 1); residual r(n× 1)
3: procedure
4: Initialize: r0 = y; index set: Λ0 = ∅; iteration counter i = 1; A0 = zeros(n, N)
5: While i ≤ k Do:
6: Ai = Ai−1
7: find index λi: λi = arg maxj=1,...,N |〈ri−1, A(:, j)〉|
8: augment the index set with λi: Λi = Λi−1 ∪ {λi}
9: replace the column λi of Ai by the corresponding column of A: Ai(:, λi) = A(:, λi)

10: set A(:, λi) equal to 0
11: solve a least squares problem to obtain a new estimate for x: x̂ = minx ‖y− Aix‖2
12: Update the residual and iteration counter: ri = y− Aix̂ and i = i + 1
13: End

The total reconstruction time for the OMP algorithm depends on the number of iterations
and thus on the sparsity of the signal. For each iteration, one column of A is selected and
one element of x is reconstructed. Donoho et Al. proposed a modified version of OMP,
called Stagewise Orthogonal Matching Pursuit (StOMP) [Donoho et al.2012]. Instead of
only selecting the largest component of the proxy |〈ri−1, A(:, j)〉|, it selects all the coor-
dinates whose values are exceeding a chosen threshold and the algorithm iterates over
an arbitrary chosen number of iterations, a value that can be chosen much lower than
the sparsity of x. In their work, the authors of [Donoho et al.2012] propose to use the
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notion of false alarms. A false alarm is a wrongly selected coordinate. They propose
two thresholding strategies: (1) False alarm control: maximising the number of detec-
tions while guaranteeing that the total number of false alarms does not exceed n− k. (2)
False discovery control: maximising the number of detections while guaranteeing that
the number of false detections does not exceed a fixed fraction of all detections. StOMP
is faster than OMP but does not provide the same reconstruction guaranties as the BP
reconstruction approach.

Compressive Sampling Matching Pursuit (CoSaMP):
CoSaMP [Needell and Tropp2009] is a further improved version compared to StOMP,
implementing a much larger selection of largest components of the proxy. This set of
selected components is merged with the components appearing in the current approx-
imation. The re-injection of the already selected components enables the algorithm to
correct for false detections. The sparsity of the solution is assured by a pruning stage
when the new approximation for x is calculated. The different steps of the algorithm can
be summarized as follows [Needell and Tropp2009]:

1. Identification: A proxy of the residual is calculated from the current estimation and
locates the 2k largest components.

2. Support merge: The set of newly detected components is merged with the compo-
nents appearing in the current approximation.

3. Estimation: A least-squares problem is solved in order to obtain a new approxima-
tion for x.

4. Pruning: Only the k largest components of the elements of the solution of the least-
squares problem are retained.

5. Update: A new residual is calculated.

Algorithm 2 Compressive Sampling Matching Pursuit

1: INPUT: measurement matrix A(n× N); measurement vector y(n× 1); sparsity level k of
x(N × 1); maximum number of iterations MaxIt

2: OUTPUT: estimate for x: x̂(N × 1); residual r(n× 1)
3: procedure
4: Initialize: r0 = y; index set: Λ0 = ∅; iteration counter i = 1; Supp(x̂)=∅
5: While i ≤ MaxIt Do:
6: Ai = zeros(n, N)
7: find 2k indices: λ2k = {arg max2k

j=1,...,N |〈ri−1, A(:, j)〉|}
8: Λi = Supp(x̂) ∪ λ2k
9: Ai(:, Λi) = A(:, Λi)

10: solve a least square problem to obtain a new estimate for x:
11: x̂temp = minx ‖y− Aix‖2
12: prune the estimate, only the k largest components are retained:
13: x̂ = maxk(x̂temp)
14: Update the residual and iteration counter:
15: ri = y− Ax̂ and i = i + 1
16: End
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Many other variations of the OMP algorithm have been proposed, for example: Comple-
mentary Matching Pursuit (CMP).

Matching Pursuit versus Basis Pursuit algorithms

In this subsection we make a brief comparison between the two discussed families of re-
construction algorithms: the basis pursuit algorithms, solving the BP(DN) problem and
the greedy matching pursuit algorithms. The conclusions are illustrated with some exper-
iments that are performed on simulated sparse signals sensed with a subsampled random
Gaussian measurement matrix, since they are known to fulfil the conditions guarantee-
ing a correct BP- and MP-reconstruction. We wish a reconstruction algorithm to have
following properties: a low computational complexity, a short computation time, a guar-
antee for a successful reconstruction, and to be robust against compressible signals and
measurement noise.

1. Computation time:
Together with their simplicity to implement, greedy algorithms are mainly popu-
lar because of their short computation times compared to BP algorithms under cer-
tain settings. This is illustrated in Fig 2.1 and Fig 2.2. For this experiment 64 ran-
dom sparse signals are created (the positions of the non-zero elements are randomly
picked and the values are drawn from a standard normal distribution) with signal
length (N) equal to 512 and a sparsity rate (k/N) of 5%. These signals are measured
through a random Gaussian matrix. The measurements are subsampled with a sub-
sampling rate (n/N) of 30%. Fig 2.1 depicts the mean reconstruction times over the
64 executions. The experiment is repeated for increasing dimensions of N from 256
up to 1600. We observe that for small signal lengths (< 600) both OMP and CoSaMP
outperform all BP algorithms. We further remark that the CoSaMP is largely faster
than all the other algorithms. Fig 2.2 then, shows the results for a fixed signal length
equal to 512 and a varying sparsity rate between 2% and 50%. We can again con-
clude that CoSaMP has the shortest computation time under all circumstances. We
also remark the relative fast reconstruction times of SPGL1 compared to `1-MAGIC
and CVX in both experiments.
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FIGURE 2.1: Mean reconstruction time (over 64 iterations) for increasing signal
lengths (N) for random vectors (k/N = 5% and n/N = 30%). The reconstructions
are obtained with (1) the BP algorithms: SPGL1 , `1-magic and CVX and (2) the

MP algorithms: OMP and COSAMP.
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FIGURE 2.2: Mean reconstruction time (over 64 iterations) for increasing sparsity
rates (k/N) for random vectors (N = 512 and n/N = 30%). The reconstructions
are obtained with (1) the BP algorithms: SPGL1 , `1-magic and CVX and (2) the

MP algorithms: OMP and COSAMP.
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2. Uniformity:
The recovery by an algorithm is defined to be uniform [Lin and Li2013] if, with high
probability, the support of every sparse signal can be reconstructed under appro-
priate conditions. Whereas nonuniform recovery guarantees that for a given sparse
signal, its support can be reconstructed on the draw of the random matrix, with
high probability and under appropriate conditions. It is reported, that in contrast
with the BP algorithms, OMP is nonuniform [Needell and Tropp2009]. CoSaMP on
the other hand guarantees uniformity [Needell and Tropp2009]. We illustrate this
by performing the following Monte Carlo test:

– First we create 3000 random vectors of length N equal to 256 and with only k =
8 nonzero elements which are randomly selected.

– Each of these vectors are sensed by a random Gaussian matrix of size 77 × 256.
– Using these measurements, the original signals are reconstructed with three dif-

ferent CS reconstruction algorithms: a basis pursuit algorithm (CVX), OMP and
CoSaMP.

– In order to assess the reconstruction performance, the relative error is measured
after each reconstruction. The relative error is the ratio of the Euclidean dis-
tance between the reconstructed and the original signal to the `2-norm of the
original signal. The results are depicted, using boxplots, in Figure 2.3 (a) for the
reconstruction of the noiseless vectors.

– Figure 2.3 (b) shows the results obtained after performing the same experiment
after adding white gaussian noise, with a signal to noise ratio equal to 15 dB, to
the measurements.

We observe in Figure 2.3, that with all of the three reconstruction algorithms low
relative errors are obtained. We further see that only the OMP fails to deliver a good
reconstruction for all the vectors. This nonuniformity property of OMP was sum-
marised as follows by Tropp et al. in [Tropp and Gilbert2007]: With Gaussian or
Bernoulli measurement matrix, BP can, with high probability, recover all sparse sig-
nals. In the same setting, OMP recovers each sparse signal with high probability but
with high probability fails to recover all sparse signals.
In figure 2.3 (b), we discover the excellent reconstruction from the subsampled mea-
surements contaminated with noise, when using a BPDN algorithm (CVX) and if
the noise level is well estimated.
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FIGURE 2.3: Boxplots of the relative error for BP (CVX) and MP (OMP and
CoSaMP) algorithms. In (a) : reconstruction form noiseless measurements and

in (b): reconstruction from measurements with a SNR = 15 dB.

3. Robustness:
The robustness of the CS algorithms against subsampling is, besides the computa-
tion time and the uniformity, a very important property for evaluating the CS algo-
rithm. From the theorems we discussed in this chapter, it is clear that the reconstruc-
tion performance is a function of the sparsity of the signal to reconstruct. In order
to evaluate the robustness of the reconstruction algorithms, we perform a series of
tests to measure the mean relative reconstruction error for the possible combinations
of N, n and k. The relative error is the ratio of the Euclidean distance between the
reconstructed and the original signal to the `2-norm of the original signal. These
results are presented in phase diagrams, which were introduced by Donoho and
Tanner in [Donoho and Tanner2009]. The mean relative reconstruction error is cal-
culated for all combinations of the undersampling fraction δ = n/N (the ratio of the
number of samples to the signal length) and the sparsity ratio ρ = k/n (the ratio of
the number of nonzero elements in the original signal to the number of samples).
The results of these tests are represented in a diagram with on the horizontal axis
the undersampling fraction and on the vertical axis the sparsity ratio.
The diagrams in Figure 2.4 depict several phase diagrams. The diagrams on the
left hand side represent the relative errors calculated from 256 reconstructions of
each combination of ρ and δ. We performed this experiment with three different CS
reconstruction algorithms: (1) a basis pursuit algorithm: SPGL1, (2) OMP and (3)
CoSaMP. We observe that the CoSaMP algorithm has the smallest blue zone, which
characterises the combinations of ρ and δ delivering a very low relative reconstruc-
tion error. The diagrams on the right hand side depict the mean reconstruction time
spent by the three different CS algorithms to obtain a reconstruction for the differ-
ent combinations of ρ and δ. As expected, the basis pursuit algorithm is the slowest
algorithm. Whereas CoSaMP is many times faster than the other algorithms for all
possible combinations of ρ and δ.

The results presented and discussed in this chapter were obtained by performing syn-
thetic measurements with a random Gaussian matrix. The matrices modelling the sensors
utilized in chapters 4 and 5, are the Discrete Fourier matrix and the Synthetic Aperture
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Radar measurement matrix. In the next chapter we will focus on the performance of CS
in combination with these matrices.
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FIGURE 2.4: Phase diagrams using a BP algorithm (SPGL1), OMP and CoSaMP.
On the left hand side: the mean relative reconstruction error as a function of the
undersampling fraction δ and the sparsity ratio ρ. On the right hand side: the

computation time as a function of δ and ρ.
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Chapter 3

Compressed Sensing applied on
SFCW and SAR measurements

3.1 Introduction

In this chapter we concentrate on using CS together with two different measurement
modalities: (1) Stepped-Frequency Continuous Wave (SFCW) measurements and (2) Syn-
thetic Aperture Radar (SAR) measurements. These two modalities will be used for ob-
taining the real data for the experiments described in the chapters 4 and 5. We will start
with the description of the Discrete Fourier Transform (DFT) and we will link this trans-
form to the SFCW measurement matrix. Through a series of tests, presented in sections
2 and 3, we will show that Compressed Sensing can lower the demanding upper bound
for the number of samples dictated by the Shannon-Nyquist theorem for as well SFCW as
for the SAR measurements. This lower bound is a function of the sparsity of the signal,
which is a priori unknown for most applications. In other words, we know with high
probability that we can obtain an exact reconstruction of the sensed signal from a much
lower number of samples, but, unfortunately, we can not tell a priori how many samples
we have to take. A solution to this problem, named sequential CS, is explored in section 4.
In section 5 we describe a series of signal processing methods, such as the Singular Value
Decomposition (SVD) and the Principal Component Analysis (PCA), which can be com-
bined with CS to obtain an even better reconstruction performance with CS under certain
circumstances. The corner stone of CS is the prior assumption that the signal is sparse
or has a sparse representation in a known basis. This prior knowledge is sometimes not
the only knowledge we have on the signal before starting the measurement. In section 6
we will test and evaluate different methods for adding this supplementary information,
known as Side Information (SI), into the CS reconstruction. We will treat two distinct
cases: (1) Homogeneous SI: where the SI is obtained with the same sensing modality and
(2) Heterogeneous SI: where the SI is obtained through a different measurement system.
This chapter can be perceived as a toolbox of methods which we explore and evaluate on
synthetic data in this chapter and which will be used on real data, when appropriate, in
the chapters 4 and 5 of this dissertation.
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3.2 SFCW measurements

3.2.1 The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is the discretised version of the continuous Fourier
transform z(ω) of a continuous function x(t):

z(ω) =
∫ +∞

−∞
x(t)e−jωtdt, (3.1)

where the function x(t) is known in N equidistant samples, separated by a time interval
T:

z(ω) =
N−1

∑
l=0

x(l)e−jωlT . (3.2)

Since there is only a finite number of samples, the DFT treats the data as if they were
periodic (with a period equal to NT). The equation (3.2) can thus be rewritten as:

z(n) =
N−1

∑
l=0

x(l)e−j 2π
N nl with n ∈ [0 : N − 1]. (3.3)

Or expressed in matrix form:










z(0)
z(1)
z(2)

...
z(N − 1)










=










1 1 1 ... 1
1 W W2 ... WN−1

1 W2 W4 ... W2(N−1)

...
...

...
. . .

...
1 WN−1 W2(N−1) ... W(N−1)(N−1)



















x(0)
x(1)
x(2)

...
x(N − 1)










, (3.4)

with W = e−j2π/N .

The minimum number of samples N, needed to capture all the information in x(t), is dic-
tated by the Shannon-Nyquist theorem. We will now demonstrate the aliasing problem
that appears when sampling at a sampling rate below the Nyquist sampling rate and we
show how to break through this bound with Compressed Sensing.

Let us consider the following signal:

x(t) = 3 + 6 sin (2π550t) + 4 sin (2π600t) (3.5)

This signal, depicted by the blue curve over a time interval of 20 ms in Figure 3.1, has
one DC component, one component at a frequency of 550 Hz and a component at 600 Hz.
This implies that the signal should be sampled at a sampling frequency of at least 1200
Hz. Let us now sample this signal at two different sampling frequencies: (1) at 2 kHz,
which is largely above the Nyquist sampling rate (the samples in the represented time
interval are encircled in red in Figure 3.1) and (2) at 1 kHz, which is below the Nyquist
sampling bound (highlighted with the yellow symbols). The second graph in Figure 3.1
shows the spectrum of the signal sampled at 2 kHz. As expected, we obtain three peaks:
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the first peak representing the DC component at 0 Hz and the two components at 550
Hz and 600 Hz. If we now look at the spectrum of the signal sampled at 1 kHz (the
third graph of Figure 3.1), two frequencies appear: the frequencies 550 Hz and 600 Hz are
aliased into the frequencies 450 Hz and 400 Hz respectively, because the signal is copied
in integer multiples of 1000 Hz on both sides of the frequency axis.
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FIGURE 3.1: The upper graph: the original signal (in blue) with in red: the
selected samples at a sampling rate of 2 kHz and in yellow the samples selected
at a sampling rate equal to 1 kHz. The middle graph: the spectrum of the signal
sampled at 2 kHz. The lower graph: the spectrum of the signal sampled at 1

kHz.

Let us now consider the same signal over a time interval of 2 seconds. The minimum
number of samples, needed at the Nyquist rate, is thus equal to 2400. From the original
samples, equidistantly taken over the 2 seconds time interval at the sampling rate of 2
kHz, we will now select only 2000 samples using two different strategies: (1) we take
2000 equidistant samples and (2) we randomly select 2000 samples out of the 4000 orig-
inal samples. From these undersampled signals, we will try to reconstruct the original
4000 samples using a CS algorithm (SPGL1) by exploiting the fact that the signal is sup-
posed to be sparse in the frequency domain. In other words, we will solve the following
minimization problem:

min ‖z‖1 s.t. y = SΨ−1z, (3.6)

where Ψ is a DFT matrix and serves as a sparsifying transform, S is a matrix of size
n× N which is obtained by randomly selecting n rows from the unit matrix and z is the
DFT-transform of x. y corresponds thus to the subsampled signal x. The first graph in
Figure 3.2 shows again the original signal (3.5) in blue, the equidistant selected samples
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are encircled in red and the randomly selected samples are marked with the yellow sym-
bols. The second and the third graph depict the spectrum of the reconstructed signals
from respectively, the 2000 equidistant samples and from the randomly selected samples.
We already note the importance of the subsampling strategy: in both cases, the signals
are reconstructed from 2000 samples, but the signal is only correctly reconstructed, thus
without aliasing, with the randomly selected samples.
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FIGURE 3.2: The upper graph: the original signal (in blue) with marked in red:
the equidistant samples and in yellow: the randomly selected samples. The
middle graph: the spectrum of the reconstructed signal from the equidistant
samples. The lower graph: the spectrum of the reconstructed signal from the

randomly selected samples.

3.2.2 Stepped-Frequency Continuous Wave measurements

We will now focus on Stepped-Frequency Continuous Wave (SFCW) measurements. A
SFCW sensor, as will be used during the real experiments discussed in chapter 4, emits L
discrete frequencies fl (l = 0, .., L− 1) evenly spaced (with a frequency step equal to ∆ f )
over the total bandwidth B. The signal is thus described by the following equation:

s(t) =
L−1

∑
l=0

rect

(
t− lTp

Tp

)

exp(j2π fl t), (3.7)

where rect(·) is the rectangular function and Tp is the period during which the total band-
width B is emitted (Figure 3.3).
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FIGURE 3.3: Stepped-frequency continuous wave signal.

The received signal is the sum of all K backscattered signals coming from K different
reflectors. Each of the K signals are received by the sensor antenna after a time equal
to the Round Trip Time (τ). This τ is equal to 2Rk

c where Rk is the distance between the
reflector k and the antenna and c is the propagation speed of the electromagnetic waves
through the medium (c = c0√

µε ). The total received signal is thus:

s(t) =
K−1

∑
k=0

L−1

∑
l=0

ak,l exp{j2π fl(t− τk)}. (3.8)

Which, after homodyne demodulation, becomes:

sb(t) =
K−1

∑
k=0

L−1

∑
l=0

ak,l exp{−j2π flτk}. (3.9)

This beat signal is the DFT of the reflectivity function x = ∑K−1
k=0 ∑L−1

l=0 ak,l . As was ex-
plained earlier, if we want to avoid aliasing in the reflectivity function, the sampling rate
in baseband, should at least be equal to 2B. Suppose we want to avoid aliasing over a
range equal to Rmax, which corresponds to a τ equal to 2Rmax

c , the frequency step size
should thus at most be equal to:

∆ f =
c

2Rmax
. (3.10)

Let us illustrate this with an example.
We synthetically create an SFCW sensor with following parameters:

– Frequency bandwidth: 8 GHz - 12 GHz

– Range resolution: c
2B = 0.0375m
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With this virtual sensor we want to sense the reflectivity function over a distance of 7.5
m. This maximum distance dictates that, according to the equation (3.10), ∆ f should be
equal to 20 MHz. In other words, at least 200 samples are needed if we want to avoid
aliasing. To test this number, we create a random reflectivity function containing 5 ran-
dom nonzero elements and we sense this signal by multiplying it with the DFT-matrix.
Now that we have the measurement at the Nyquist rate, we try to reconstruct the original
reflectivity function from a decreasing number of samples. The reconstructions are ob-
tained by performing an Inverse Fast Fourier Transform (IFFT) of the sampled measure-
ment and are then evaluated by calculating the Euclidean distance between the original
reflectivity vector and the corresponding reconstructed vector. The blue graph in Figure
3.4 depicts the reconstruction error obtained after the reconstruction from 4 samples up
to 200 samples. As expected, 200 samples are necessary in order to obtain a correct recon-
struction of the reflectivity function.

3.2.3 CS applied on SFCW measurements

We now repeat the same experiment, but this time, we use a CS algorithm (SPGL-1) to
reconstruct the reflectivity function by solving the following minimization problem:

min ‖x‖1 s.t. y = Ax, (3.11)

where y is the randomly sampled SFCW measurement (n samples), A is the DFT ma-
trix (n× N) and N is the length of the original reflectivity function. We observe that the
reconstruction error stays equal to zero when decreasing the number of samples down
to only 40. This result illustrates that, thanks to CS, the number of samples can be re-
duced severely below the number dictated by the Shannon-Nyquist theorem, for SFCW
measurements, if the reflectivity function happens to be sparse.
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FIGURE 3.4: Reconstruction error obtained after the reconstruction of a signal
from a sampled SFCW measurement, for an increasing number of samples, by

applying an IFFT (in blue) or a CS reconstruction algorithm (SPGL1) (in red).

The quality of the reconstructed reflectivity function does not only depend on the number
of samples and the sparsity of the scene. The reconstruction performance using a DFT
matrix depends also on:

1. The CS reconstruction algorithm

2. The adopted sampling strategy

CS reconstruction evaluation

In order to obtain a clearer view on the CS performance for SFCW measurements, we will
now conduct a series of tests which will result in phase diagrams, depicting the proba-
bility of a good reconstruction estimated from 100 trials and this for each possible combi-
nation between the undersampling fraction δ = n/N (number of samples/length of the
reflectivity function) and the sparsity ratio ρ = k/n (number of nonzero elements of the
reflectivity function/number of samples). The representation of the results by a proba-
bility of successful reconstruction as a function of the undersampling rate and sparsity
ratio was first suggested in [Donoho and Tanner2009] and has the advantage to make the
reconstruction performances easy to interpret and compare. For this set of measurements
N is chosen to be equal to 200 and a reconstruction is categorised as successful if the rel-
ative error is smaller than or equal to 10−3, which is an arbitrarily chosen bound. When
decreasing the sparsity ratio the relative error decreases steeply to extremely low values.
This behavior limits the impact of the choice of the bound:

‖x̂− x‖2

‖x‖2
≤ 10−3, (3.12)
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where x is the original reflectivity function and x̂ is the CS reconstructed reflectivity func-
tion. The probability of successful reconstruction is calculated over 100 trials and the
same test is repeated three times. Each time, a different CS reconstruction algorithm is
tested:

1. The results obtained with the SPGL-1 Basis Pursuit algorithm are depicted in Figure
3.5. We can clearly identify two regions (or phases) in the diagram: (1) The red area,
where the probability to obtain a good reconstruction is equal to 100% and, (2) the
blue area where the probability is equal to 0%. We further observe that the transition
between the two phases is abrupt. This means that the zone, where the success of
the reconstruction for a combination of N, n and k is uncertain, is small.
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FIGURE 3.5: Phase diagram obtained using SFCW measurements with SPGL-
1. The color scheme depicts the probability of a successful reconstruction. We
observe two distinct areas: the blue area where the probability is equal to 0 and

the red area where the probability is equal to 1.

2. The phase diagram obtained with CVX is shown in figure 3.6. We see the same
trend as for the results obtained from the SPGL-1 algorithm. The red and blue areas
are comparable but the transition zone is even smaller with CVX.
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FIGURE 3.6: Phase diagram obtained using SFCW measurements with CVX.
The color scheme depicts the probability of a successful reconstruction. (blue:

probability = 0; red: probability = 1).
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3. Figure 3.7 shows the results obtained with a matching pursuit algorithm: OMP. First,
we observe that the red area is large and thus that this algorithm is successful over
a wide range of combinations of N, n and k. But, on the other hand we also see a
large transition zone, were the outcome of the reconstruction is unsure. Finally, to be
honest, we have to add the comment that we chose the number of iterations exactly
equal to the number of nonzero elements k of the signal to reconstruct. This number
k is, in most applications, unknown and must be guessed and the reconstruction
quality can thus deteriorate due to reconstruction noise.
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FIGURE 3.7: Phase diagram obtained using SFCW measurements with OMP.
The color scheme depicts the probability of a successful reconstruction. (blue:

probability = 0; red: probability = 1).

Sampling strategies

Compressed Sensing theory does not put restrictions on the way we have to sample when
using subgaussian matrices, allowing to take equidistant samples as we did in Chapter
2. But, as we discovered during the tests performed on CS with the DFT (3.2), the sam-
pling strategy can have a serious impact on the reconstruction performance when using
SFCW measurements. In general, a random sampling strategy is known, for example in
Magnetic Resonance Imagery (MRI) [Haldar et al.2011, Duarte and Eldar2011], to pro-
duce good results. The work in [Xu and Xu2015] proposes a deterministic selection of the
samples, or the rows of the DFT matrix, using Katz’ character sum estimation [Katz1989].
We now use the same experimental parameters as in [Xu and Xu2015] for comparing:
(1) the random sampling scheme, (2) the deterministic approach and, (3) the equidistant
sampling strategy. Therefore, we create random vectors of length N = 840, with an in-
creasing number of nonzero elements (k/N = 0.02, 0.04, ..., 0.2). These vectors are then
synthetically measured by applying the DFT-matrix in which only 29 rows are randomly
selected using the three different sampling strategies. This test is repeated 200 times and
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the reconstructions (obtained with CVX) are evaluated by calculating the reconstruction
success rate (a reconstruction is considered successful if the Euclidean distance between
the original vector and the reconstructed vector is smaller or equal to 0.001). The results
of this experiment are depicted in Figure 3.8 together with the symmetric confidence in-

tervals (= success rate ±1.96
√

0.25
200 ). We clearly see that the equidistant sampling is not

a good choice to subsample the SFCW measurements. We also observe that the random
and deterministic selection perform equally. Contrary to what is mentioned in [Xu and
Xu2015], the deterministic approach does not add a significant improvement to the re-
construction performance compared to the random sampling scheme.

FIGURE 3.8: Reconstruction success rate (with the confidence intervals) for dif-
ferent sampling strategies (N = 840, and n = 29).

3.3 SAR measurements

Synthetic Aperture Radar (SAR) measurements can somehow be seen as a 2-D extension
of the 1-D Frequency Modulated Continuous Wave (FMCW) measurements. In this work,
we will restrict ourselves to SAR systems based on a Vector Network Analyser (VNA),
measuring the S11 reflection parameter at a number of discrete frequencies within a cho-
sen bandwidth B:

S11( fp) =
SRx( fp)
SE( fp)

, (3.13)

where SRx( fp) and SE( fp) are the complex amplitudes of the received and the emitted
signal at frequency fp respectively. In other words this type of SAR emit SFCW signals.
In our work, we suppose that the Vector Network Analyser (VNA) emits a series of inde-
pendent signals at discrete frequencies. In reality, the signals have a bandwidth, defined
as the Resolution Bandwidth (RBW), since an infinite small bandwidth would result in
an infinite long sweep time. A smaller RBW lowers the noise floor, but extends thus the
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sweep time over the chosen span of frequencies. Thanks to a large total bandwidth B,
a reflectivity function with an excellent resolution can be obtained, equal to c

2B , in the
dimension of the propagation direction of the electromagnetic waves which is called the
range direction. The resolution in the cross-range direction however, is determined by the
dimensions of the antenna: the larger the antenna, the smaller the antenna beam width,
and thus the better the resolution in the cross-range dimension. In order to obtain good
quality images, the resolutions in the range and cross-range dimensions should be within
the same order of magnitude. This implies that large antennas are required. The SAR
offers a solution to this problem and avoids the necessity for an inconveniently large an-
tenna. The required large aperture is created synthetically by moving the antenna, which
can have small physical dimensions, in the cross-range direction (Figure 3.9). The resolu-
tion obtained with a SAR in the cross-range dimension can be approximated by [Oliver
and Quegan2004]:

∆rcross−range =
c

2 fc sin θ
, (3.14)

where fc is the center frequency of the total bandwidth and θ is the opening (-3dB) of the
real antenna. The raw data obtained from this type of data is stored in a raw data matrix
where the row t contains the complete measurement obtained at the sensor position spt
and the column p contains the S11 coefficient at frequency fp over all the sensor positions.
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FIGURE 3.9: Schematic representation of the working principal of a SAR with
physical opening angle θ and synthetic aperture L.
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The raw data needs to be compressed in both the range and azimuth dimension in or-
der to obtain the 2-D reflectivity function. Since the signals in the range dimension
are SFCW measurements, this compression can be performed by a simple Inverse Fast
Fourier Transform (IFFT) of each row individually. Several well-known SAR compression
algorithms do exist to perform a compression in the cross-range dimension, for exam-
ple: Time domain algorithms [Ribalta2011], Range-doppler SAR processing algorithms
[de Wit et al.2006] or wavenumber domain focusing algorithms [Bamler1992].

Alternatively, we will use Compressed Sensing to construct the SAR image from the raw
data. The reason for using CS for the SAR compression (in range and cross-range) is that
CS allows us to obtain a correct SAR image from an incomplete measurement, under the
condition that the reflectivity function happens to be sparse. The SAR image is obtained
by solving following minimization equation:

min ‖x‖1 s.t. y = Ax, (3.15)

where y is the incomplete SAR measurement, A is the SAR measurement matrix which
maps the vector x, containing the reflectivity function of the sensed scene, to the SAR
measurement.

The SAR measurement matrix

We will now explain how we build the measurement matrix that models the SAR mea-
surement [Wei et al.2010]. It is clear that a well-modeled measurement matrix A is needed
to obtain a good reconstruction. The matrix A is a complex matrix of size n×N, where N
is the number of pixels composing the SAR image and n is the size of the incomplete SAR
measurement. Each column can thus be attributed to a single pixel of the SAR image and
each row is linked to a single sample of the SAR measurement.

The SAR measurement matrix is column-wise populated with the vectorized sensor re-
sponse to a reflectivity function containing a single reflective component. This means that
we assume that the scene is populated with point targets, which is not the case in reality.
We concentrate now on the column corresponding to the pixel xij. This column contains
thus a synthetic SAR measurement of a scene of dimensions n f (equal to the number of
frequencies) in range and nsp (which corresponds to the number of sensor positions) in
cross-range. This scene is characterised by a reflectivity function equal to zero except in
only one element, corresponding to the position xij (Figure 3.10). This column will thus
contain the synthetically created S11 coefficients obtained for all the combinations of the
fn frequency and the spn sensor positions (3.16). The SAR measurement matrix is thus
populated with measurements of scenes containing a single point target. This has a con-
sequence that the CS reconstruction is performed supposing that the reflectivity function
is the sum of point targets (which is not the case in reality).
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FIGURE 3.10: Schematic representation of the scene sensed to fill the columns of
A corresponding to the pixel xij.
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Phase diagram for SAR measurements.
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FIGURE 3.11: Phase diagram for SAR measurements with SPGL1. The color
scheme depicts the mean relative reconstruction error (blue: reconstruction error

is very small, red: high reconstruction error).

In order to verify if CS is a good candidate for the construction of SAR images from
incomplete measurement data, we perform now a series of experiments of which the re-
sults are summarised in a phase diagram. The phase diagram depicts the mean relative
reconstruction error obtained from 100 reconstructions for each combination of the un-
dersampling ratio δ and the sparsity ratio ρ. In order to perform the simulations, we built
a measurement matrix A, which models a SAR with a -3 dB antenna opening angle of
30 degrees and emitting SFCW signals over a bandwidth ranging from 1 GHz up to 5
GHz. This synthetic sensor was used to perform the measurement of a scene of 200 pix-
els. These created scenes were then measured by applying the measurement matrix and
reconstructed from the incomplete raw data with the algorithm SPGL-1. Finally, the rela-
tive error was obtained by calculating the Euclidean distance between the reconstructed
and the original scene.
From the resulting phase diagram 3.11, we conclude that CS can be applied to construct
SAR images from incomplete data, if the data is sparse.

3.4 Sequential Compressed Sensing

The compressed Sensing theory states that the number of samples can be reduced far
below the lower bound dictated by the Shannon-Nyquist theorem, under certain condi-
tions. This has extensively been proven in numerous applications. Hence, one of the
conditions is that the signal to reconstruct must be sparse or has a sparse representation
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in a known basis. The mandatory number of samples for a correct reconstruction with a
CS reconstruction algorithm is thus, among other things, function of the sparsity or com-
pressibility of the signal to reconstruct. A correct estimation of the sparsity of the signal
prior to the measurement is thus necessary to decide on the number of measurements
to take. But, in the general case, the signal is unknown prior to the measurement. This
makes the estimation of the sparsity difficult and consequently, a correct decision on the
number of samples impossible. A solution to this fundamental deadlock situation, is the
use of cross-validation measurements and was first proposed in [Ward2009]. The results
were obtained through the Johnson-Lindenstrauss lemma [Dasgupta and Gupta2003] for
Gaussian and Bernoulli matrices. The work in [Malioutov et al.2010], treats the case of
Gaussian measurements and computes explicitly all constants, using a χ2 distribution.
We will now apply this strategy and enlarge this theory to Discrete Fourier Transform
(DFT) matrices.

Sequential compressed sensing reconstructs a signal x by sequentially adding samples
and performing a new CS reconstruction of x each time, until an imposed reconstruction
quality is reached. Compressed Sensing decreases the measurement cost to the expense
of an increase in the computation cost. This is even more the case for sequential CS. At
each iteration, the signal is constructed until the result passes a cross validation test. For a
small increment in number samples and for elevated subsampling rates, many successive
reconstructions will be executed, which increases the computation time.

The difficulty for applying this strategy lies in the fact that the ground truth is not avail-
able, since we do not have access to x. We can thus not directly compare the reconstructed
signal to x, in order to estimate when we are happy with the reconstructed signal. In this
section, we will derive a method for calculating an upper bound for the reconstruction
error which is sharp enough to be used as stopping criterion for stopping the sequential
adding of samples.

3.4.1 Derivation of an upper bound for the reconstruction error

Before we start the derivation and explanation of the proposed technique, we want to put
forward that in what follows, we split the complex set of equations y = Ax (where y are
the samples resulting form the DFT measurement, A is the DFT measurement matrix and
x is the sensed signal), as follows:

[
Re(y)
Im(y)

]

=
[

Re(A) −Im(A)
Im(A) Re(A)

] [
Re(x)
Im(x)

]

, (3.17)

and we introduce the following notation:

y = Ax (3.18)

With

y =
[

Re(y)
Im(y)

]

A =
[

Re(A) −Im(A)
Im(A) Re(A)

]

x =
[

Re(x)
Im(x)

]

.
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The bold notation denotes thus the split version of the corresponding vector or matrix.
The reason for this operation is that the approach that we will elaborate is based on the
χ2 Cumulative Distribution Function (CDF). This distribution function is only defined
for real positive numbers and thus, we split the real and imaginary parts of the complex
numbers.

The sequential CS reconstruction starts with a first reconstruction x̂2M obtained from only
a small number of M complex samples. We will now derive a strategy to estimate an
upper bound for the reconstruction error:

δδδ = x̂2M − x. (3.19)

This upper bound will guide us to decide if the reconstruction is successful or if more
samples need to be added in order to guarantee a chosen reconstruction quality. The
upper bound can be estimated by adding a few T new complex samples, also known
as cross-validation measurements, to the set of M samples. The value of the T cross-
validation samples can be predicted by performing a synthetic measurement of the re-
constructed vector x̂2M, by calculating:

ŷ2T = A2T x̂2M, (3.20)

where A2T is populated by 2T selected rows of A and which do not belong to the already
previously selected 2M rows. If the quality of the reconstruction x̂2M is good enough,
we can expect that the predicted measurements ŷ2T are close to the actual measurements
y2T . We will call these differences the deviation errors z2T :

z2T = ŷ2T − y2T . (3.21)

The deviation errors can be rewritten as:

zi = Ai x̂
2M −Aix = Aiδδδ, 1 ≤ i ≤ 2T, (3.22)

with an expectation equal to:

E[zi] =
2N

∑
j=1

E[Ãij]δδδj (3.23)

and a variance:
Var(zi) = δδδTcov(Ã)δδδ, (3.24)

where Ã is obtained by removing the 2M previously selected columns from A. To sim-
plify the problem, we will now replace Ã by the full matrix A (the impact of this decision
is discussed further in this section) and we obtain for the expectation:

E[zi] =
2N

∑
j=1

E[Aij]δδδj =
1
2

(δδδ1 + δδδN+1) (3.25)

and for the variance:

var(zi) =
2N

∑
j=1

1
2

(

1 +
1

2N − 1

)

δδδ2
j −

1
2

(

1 +
1

2N − 1

)(

δδδ2
1 + δδδ2

N+1

)

, (3.26)
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since the cov(A) is equal to:
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(3.27)
with:

– 1
4

(
1 + 1

2N−1

)
on positions (1, 1) and (N + 1, N + 1).

– − 1
4

(
1 + 1

2N−1

)
on positions (N + 1, 1) and (1, N + 1).

We further suppose that we can make following approximations:

1. E[zi] = 0

2. var(zi) = 1
2 ‖δδδ‖

2
2 , if N is large.

We then know that (thanks to the central limit theorem):

∑2T
i=1 z2

i
1
2 ‖δδδ‖

2
2

∼ χ2
2T . (3.28)

From the χ2
2T Cumulative Distribution Function (CDF) we can obtain the largest z∗, for a

small α(0 ≤ α ≤ 1), such that:

P

(
∑2T

i=1 z2
i

1
2 ‖δδδ‖

2
2

≤ z∗
)

≤ α. (3.29)

This equation can be reorganised to obtain an upper bound for ‖δδδ‖2:

P



‖δδδ‖2 ≤

√
2 ∑2T

i=1 z2
i

z∗



 ≥ 1− α. (3.30)

In other words: we can deduce, with a probability equal to 1 − α, an upper bound for the
`2-norm of the reconstruction error from a small number of T cross-validation measure-
ments without having access to the ground truth x.
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3.4.2 Influence of the approximations

During the deduction of the upper bound, we introduced several approximations. With-
out approximations, the expression in Equation (3.28) becomes:

∑2T
i=1

(
zi −∑2N

j=1 E[Ãij]δδδj
)2

δδδTcov(Ã)δδδ
∼ χ2

2T . (3.31)

We will now empirically test the impact of using A instead of Ã and of the approxima-
tions E[zi] = 0 and var[zi] = 1

2 ‖δδδ‖
2
2, by verifying if the expression in (3.28), follows a

χ2
2T distribution. This verification is performed by applying a Kolmogorov-Smirnov (KS)

test [[Lilliefors1967]] which returns a test decision for the null hypothesis that the data
comes from a χ2

2T distribution. We define the outcome equal to 1 if the test rejects the
null hypothesis at the 5% significance level, or 0 otherwise. This test is performed for all
combinations of the signal length N, the number of samples used for the reconstruction
n and the sparsity k of the original signal. The phase diagrams are thus an appropriate
choice for representing the results of these tests.

The empiric tests are conducted as follows:

1. We create a vector x of length N = 512 and with a sparsity k. The positions of the
k non-zero elements are randomly picked and their values come from a standard
normal distribution.

2. We perform a CS reconstruction of x, using SPGL-1, from n = 2M randomly selected
samples.

3. We then randomly select 100 cross-validation samples out of the ensemble of sam-
ples which were not yet used for the CS-reconstruction and calculate the correspond-
ing deviation errors zi.

4. From the deviation errors, we deduce the Probability Density Functions (PDFs) and
the CDFs of:

(a)
(
zi −∑2N

j=1 E[Ãij]δδδj
)2

δδδTcov(Ã)δδδ
(3.32)

(b)
z2

i
1
2 ‖δδδ‖

2
2

. (3.33)

5. The calculated CDFs are submitted to the previously described Kolmogorov-Smirnov
test, which has as outcome the test-decision and the p-value.

6. This test is repeated 30 times for all combinations of the subsampling ratio δ(= n/N)
and the sparsity ratio ρ(= k/n).

The outcome of these tests are depicted in Figure 3.12:

– In (a) we show the test decision of the KS-test on the CDF obtained from (3.32). We
observe that the null-hypothesis is accepted in the large majority of combinations
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of ρ and δ as long as δ is not too large (approximately > 80%). If δ is too large, the
selected cross-validation samples are no longer independent since they are selected
from a fairly small ensemble and consequently (3.32) does no longer pass the KS-
test. We can conclude that (3.32) follows a χ2

2 distribution if δ is not too large (which
is, in general, the case for CS).

– This result is confirmed in (b), where we depict the p-value over 30 independent
tests, with each time a new random vector x and this for all combinations of δ and ρ.

– In (c), we depict the outcome of the KS-tests on the CDFs obtained from (3.33). We
see that the expression in (3.33) does not follow a χ2

2T as soon as δ is larger than
approximately 20%.

– This result is again confirmed in (d) where we show the corresponding mean p-
values over 30 independent executions of the test. As soon as δ increases, the p-value
drops.
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FIGURE 3.12: Phase diagrams depicting the outcome of the KS-test on the null-
hypothesis that the expressions in (3.32) and (3.33) are drawn from a χ2

2T dis-
tribution. In (a) and (b) are respectively the test decisions (1: rejects the null-
hypothesis and 0: accept the null-hypothesis) and the mean p-values (over 30
executions) for (3.32). In (c) and (d) are the test decisions and the p-values for

(3.33).

From these tests, we conclude that the expression in (3.28) does not hold for increasing
values of δ. This is because we supposed that we pick the cross-validation samples out of
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the total ensemble of samples. Whereas, in reality, we chose the cross-validation samples
out of the 2N − 2M samples which were not selected to construct the signal. The more
samples used for the reconstruction (and thus, the larger is δ), the more important be-
comes the difference between Ã and A and thus the higher the impact of the introduced
error. We could thus conclude that the method is only applicable for fairly small subsam-
pling rates. But, before making that conclusion, let us investigate what happens to the
CDF of (3.33) when the subsampling rate increases.

The impact of an increasing subsampling rate on the CDF of the expression in (3.28) is
illustrated through the following test:

1. First, we create a vector x of length N = 256. We choose a subsampling ratio δ = 5%
and a sparsity ratio ρ = 20%. The positions of the non-zero elements in x are picked
randomly and their values are drawn from a standard normal distribution.

2. The original vector x is reconstructed, using the SPGL-1 CS-reconstruction algo-
rithm, from n samples, randomly selected from a DFT-measurement of the vector
x.

3. Subsequently, we randomly select T = 8 cross-validation samples out of the ensem-
ble of samples which were not used for the reconstruction. This selection is repeated
independently 100 times.

4. The resulting 100 deviation errors z2T are then used to estimate the CDFs obtained
from:

(a) ∑8
i=1 (zi−E[zi ])2

δδδTcov(Ã)δδδ
(using Ã and without approximations),

(b) ∑8
i=1 (zi−E[zi ])2

δδδTcov(A)δδδ
(using A and without approximations),

(c) ∑8
i=1 zi

2

1
2 ‖δδδ‖

2
2

(using A and with approximations)

5. This test is repeated with subsampling ratios δ = 25% and δ = 65%.

The CDFs resulting from this experiment, are depicted in Figure (3.13). The blue curve
corresponds to the theoretical χ2

2T distribution for T = 4. The other CDF-curves are ob-
tained from the measured deviation errors. The red curve is obtained when using the
matrix Ã without approximating the expectation and variance of zi. The yellow curves
show the CDFs when replacing Ã by A (without applying the approximations). Whereas
the magenta markers correspond to the CDFs obtained with A and the approximations
on E[zi] and var(zi).

On the graphs in Figure (3.13) we observe:

– The approximations do not have a relevant impact on the PDF or the CDF.

– Secondly, we see the following impact of increasing the subsampling rate when re-
placing Ã with A: The CDFs obtained with A are upper bounded by the CDF ob-
tained with Ã. For increasing subsampling rates the PDFs are shift to the right. This
means that the CDF will decrease for the same value when the subsampling rate
increases if A is used.
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FIGURE 3.13: In (a) the PDFs and in (b) the corresponding CDFs, with in
blue: the PDF/CDF of the theoretical χ2

2T distribution with T = 4. In red: the
PDF/CDF obtained from the expression in (3.32) . In yellow: the PDF/CDF ob-
tained when replacing Ã with A in (3.32). In magenta: the PDF/CDF obtained
when replacing Ã with A in (3.32) and with the approximations on E[zi] and

var(zi).

The impact of the approximations can thus be neglected, whereas using A instead of Ã
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will have the following effect on the estimated upper bound for the reconstruction error:
Because the CDF is lower than the theoretical CDF (which is used to determine the value
z∗), the value of z∗ in the expression of the upper bound (Equation 3.30) will be to small
and thus, the upper bound will increase. In other words, the upper bound obtained in
3.30 is an overestimation of the upper bound for the reconstruction error. We will show
that the upper bound is still sharp enough to be relevant.

3.4.3 An example

We will now empirically evaluate the method for estimating the upper bound as a whole.
First, by way of example, we test the method for the reconstruction of two signals with a
different sparsity ratio, as follows:

1. We create two vectors x1 and x2 of length N = 2000 and k1 = 60 and k2 = 120 non-
zero elements respectively. The positions of the non-zero elements in x1 and x2 are
randomly chosen and their values are drawn from a standard normal distribution.

2. The vectors x1 and x2 are reconstructed, using the SPGL-1 CS reconstruction algo-
rithm, from an increasing number of samples which are randomly selected from the
DFT-measurements of x1 and x2.

3. We then calculate the reconstruction errors ‖δ‖2 (k = 60) and ‖δ ‖2 (k = 120) and
determine the upper bound for the reconstruction errors (using Equation (3.30)) with
T = 20 randomly selected cross-validation samples and α = 0.05.
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FIGURE 3.14: Reconstruction error for increasing sampling rates (in blue: k = 60
and in red: k = 120). The corresponding upper bounds are represented by the

dashed curves.
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The results of this experiment are depicted in Figure 3.14. We observe:

1. The reconstruction error is correctly and neatly bounded by the estimated upper
bound.

2. Although the upper bound is selected with a probability equal to 95%, the upper
bound never drops below the true error. This can be explained by the fact that the
upper bound is overestimating the error because we use A instead of Ã.

3.4.4 Empiric evaluation of the proposed method

We now repeat the same experiment for all possible combinations of the subsampling
ratio δ (= n/N) and the sparsity ratio ρ (= k/n). The results are depicted in the phase
diagrams in Figure 3.15. In (a), we see the true reconstruction errors and in (b) we have
the corresponding estimated upper bounds for the reconstruction error (T = 10 and α =
0.05). In (c) we represent the difference between the reconstruction error and the upper
bounds. We only observe a significant difference in the region where the reconstruction
errors are the highest. In (d), finally, the combinations of the subsampling ratio and the
sparsity ratio where the upperbound is lower than the true error, are indicated in red.
We count only 42 (which is much lower than 5% of the in total 2500 combinations) upper
bounds which happen to be smaller than the corresponding true reconstruction error.
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FIGURE 3.15: (a) Phase diagram with the true reconstruction error. (b) Esti-
mated upper bound for the reconstruction error (using T = 10 cross-validation
measurements and α = 0.05). (c) Difference between the true reconstruction er-
ror and the estimated upper bounds. (d) In red: combinations of ρ and δ where

the upper bound is lower than the true error.

Finally, we repeat the same test 30 times. The phase diagram in Figure 3.16 (a) shows the
mean reconstruction error for all combinations of δ and ρ over the 30 iterations. In (b), we
represent the phase diagram with the mean of the upper bound over the 30 iterations. In
(c) we depict the mean of the difference between the reconstruction error and the upper
bound. In (d), finally, we depict the variance of the difference between the reconstruction
error and the upper bound.
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FIGURE 3.16: (a) Phase diagram with the mean reconstruction error for all com-
binations of ρ and δ over 30 iterations. (b) Phase diagram with the mean of the
upper bounds over the 30 iterations. (c) Phase diagram with the mean of the
difference between the true error and the upper bound. (d) Phase diagram with

the variance of the difference between the true error and the upper bound.

All of the experiments on synthetic data, up till now, illustrate that the proposed method
allows to estimate an usable upper bound for the reconstruction error.

3.4.5 Number of cross-validation measurements and the upper bound
probability

We will now evaluate the impact of the number of cross-validation measurements and
the choice of the confidence parameter α on the upper bound for the reconstruction error
‖δ‖2. For these experiments, we neglect the fact that we use the var(A) instead of var(Ã)
to estimate the upper bound. We know that the upper bound is overestimated by doing
so. We perform again a set of synthetic measurements of a vector of length N = 200 and
with k = 30 nonzero elements. The reconstruction at the first iteration of the sequential
CS approach is obtained from only 6 randomly picked samples. At each subsequent iter-
ation we add 6 new samples to the set of already selected samples. At each iteration we
plot (Figure 3.17): (1) the actual measured error (the solid blue curve), and (2) the calcu-
lated error bound (dashed curves), obtained from a different number of cross-validation
measurements T = 2, 3, 6, 8, 10 and 20 with 1-α = 0.9. We can conclude from the obtained
results that, as can be expected, the estimated error bounds become sharper when the
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number of cross-validation samples increases. Nevertheless, we already obtain a useful
upper bound from a very small number of cross-validation samples.
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FIGURE 3.17: (a) The measured true error δ (solid blue curve) and the estimated
bounds for an increasing number of measurements using a different number of

cross validation measurements (T). (b) Zoom of figure (a).
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In Figure 3.18 (a) we depict the χ2
2T CDFs for increasing numbers of independent cross-

validation measurements T, which corresponds to increasing the degrees of freedom of
the χ2 distribution. We see, indeed, that for larger values of T, z∗ is obtained at larger val-

ues of z for the same chosen value for α. Consequently, the estimated bound
√

2 ∑T
i=1 z(i)2

z∗

decreases and becomes thus a sharper upper bound for ‖δ‖2. The obtained z∗ for α = 0.1
(which were used to calculate the upper bounds depicted in Figure 3.17) are encircled in
red.
Figure 3.18 (b) shows the reconstruction error and the estimated error bounds from a
fixed number of samples equal to 80, for increasing numbers of cross-validation samples
and for different values of α. We observe that the error bounds rapidly decrease towards
the actual error. We further observe that the error bounds decrease for increasing values
of α. We can conclude from these experiments that the number of cross-validation mea-
surements can be kept below 5% of the number of the signal length, even for low values
of α.
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FIGURE 3.18: (a) CDF’s of the χ2
T distribution function for increasing T and the

z∗ for α = 0.1 are encircled in red. (b) True measured error, the estimated error
and the estimated error bounds obtained with the z∗ from (a) with α = 0.1, 0.01,

0.05 and 0.2.
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3.5 Preconditioning methods

3.5.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) of a real or complex matrix M ∈ Cm×n corre-
sponds to the following factorization:

M = UΣV∗, (3.34)

with U ∈ Cm×m and V ∈ Cn×n unitary matrices whose columns are the left-singular vec-
tors and right-singular vectors respectively. Σ ∈ Cm×n is a rectangular diagonal matrix
with the singular values of M on the diagonal entries σi. V∗ denotes the conjugate trans-
pose of V.
In the frame of this work, the SVD of a matrix can be applied in three distinct ways:

(1) SVD used as a data-adaptive sparsity basis:
The work in [Hong et al.2011] proposes to use the SVD as a sparsifying basis for MRI
imaging. The proposed method works as follows: From the subsampled measurements a
first approximation (I1) is calculated through the inverse Fourier transform. This op-
eration results in an aliased version of the object image. Subsequently an SVD of I1
(3.34), with the singular values on the diagonal of Σ1 arranged in non-increasing order:
diag(σ11, σ12, ..., σ1r, ..., 0), can be approximated by abandoning the smallest singular val-
ues (u1i and v1i are the corresponding vectors of U and V):

I1 ≈ Ik
1 =

k

∑
i=1

σ1iu1iv
T
1i, k ≤ r. (3.35)

The corresponding matrices U1 and V1 are the initial estimates for the sparsifying trans-
form [Hong et al.2011]:

Ψ1(x) = U1xV∗1 (3.36)

A new and better approximation of the object MRI image I2 is then obtained using a
CS reconstruction algorithm together with the sparsifying transform (3.36). An updated
version of U and V can be deduced from the reconstructed Image I2 which allows to cal-
culate again a better estimation of I and so on. Due to the adaptive character of the data,
this approach will sparsify a broader range of images than predefined transforms.

(2) Truncated SVD of the measurement matrix:
By truncating the SVD decomposition of the measurement matrix A, a much slimmer
measurement matrix can be obtained and used together with a CS algorithm to recon-
struct the original signal. Applying a SVD in this way provides advantages in terms of
computational time while maintaining the quality of the full scene reconstruction. The
critical step in this procedure is the truncation or the choice of the number of singular val-
ues to keep. The idea was proposed and tested in [Zhang et al.2015] for a down-looking
linear array 3-D SAR.

(3) Clutter suppression:
In common signal processing applications, the SVD decomposition is used to obtain a
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compressed signal where the dominant singular values are kept and the smallest singu-
lar values are considered to be noise and thus neglected. For some applications how-
ever the opposite is true: the information of interest is hidden in the smaller eigen-
values and is masked by a stronger signal. Clutter can be a performance limiting fac-
tor in radar applications as is the case for Ground-Penetrating Radars (GPR) [Gunati-
laka and Baertlein2000] applied for the detection of near-surface targets including anti-
personnel mines and Through-the-Wall Radar Imaging (TWI) [Tivive et al.2014, Tivive
et al.2011b, Bouzerdoum and Tivive2015]. For both applications, the strong clutter com-
ing from the surface or the wall is supposed to be contained within the first eigenvalue(s)
of the SVD of the raw data. By eliminating these eigenvalues from the SVD, the strong
clutter signal is suppressed.

3.5.2 Principal Component Analysis

Principal Component Analysis (PCA) is a widely used statistical tool for data pattern de-
tection and dimensionality reduction. It is an orthogonal transformation, deduced from
a representative training set, to transform a set of samples of correlated variables into a
set of linear uncorrelated variables which are the principal components. Suppose the ma-
trix M ∈ CN×n which columns are populated by n training vectors. After subtracting of
the mean value from each training vector, we calculate the covariance matrix of M. The
eigenvectors of the covariance matrix provide us with information about the patterns in
the data and are used to populate the orthogonal transformation matrix. The significance
of the components is determined by the corresponding eigenvalues. The PCA trans-
formation matrix can thus be limited to those components corresponding to the largest
eigenvectors.

(1) PCA used as a sparsity basis:
PCA can be used as a sparsifying transform for the CS reconstruction of SAR images
[Wang et al.2012, Pourkamali-Anaraki and Becker2017]. This approach was recently
tested and evaluated on real SAR Ground Penetrating Radar (GPR) data in [Cristofani
et al.2018]. The technique can be summarized as follows:
The minimization problem (2.10) is converted to:

min
x
‖x‖1 s.t.

∥
∥Ãx− ỹ

∥
∥

2 ≤ ε, (3.37)

where Ã = T∗A A and ỹ = T∗Ay. The transformation matrix TA is obtained through the
PCA of the training set of possible returns which is described by the matrix A and is lim-
ited to the largest corresponding eigenvalues.

(2) Robust Principal Component Analysis:
Robust Principal Component Analysis (RPCA) is a different approach for integrating
PCA into the CS reconstruction problem. The method was distinctly proposed by Candès
et al. in [Candès et al.2011] and by Chandrasekaran et al. in [Chandrasekaran et al.2011]
and solves the following separation problem: Suppose that the matrix M can be decom-
posed as:

M = L0 + S0, (3.38)
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with L0 a low rank matrix and S0 a sparse matrix, can we recover recover both low-
rank and sparse components from a incomplete set of samples? The work in [Candès
et al.2011] proofs that this can be done under rather weak assumptions, by solving the
following Principal Component Pursuit problem:

min
L,S
‖L‖∗ + λ ‖S‖1 s.t. L + S = M. (3.39)

With λ a regularization parameter and where ‖L‖∗ denotes the nuclear norm of L:

‖L‖∗ := ∑
i

σi(L), (3.40)

with σi the singular values of L. The work in [Candès et al.2011] demonstrates that 1/
√

n
is a good choice for the regularization parameter λ. This method allows thus to recover
the low-rank matrix L0 from an undersampled set of measurements corrupted by S0
which happens to be sparse. The technique has been applied for the detection of objects
in a cluttered background for video surveillance, for face recognition [Candès et al.2011],
for moving target detection [Cao et al.2016] and for radar Moving Target Indication [Yang
et al.2015].

3.6 Compressed Sensing with Side Information

3.6.1 Homogeneous Side Information

The Shannon-Nyquist sampling theorem fixes the lower bound for the number of sam-
ples needed for a correct reconstruction of a signal. This bound can only further be low-
ered if additional information on the signal is known prior to the measurement. The
cornerstone of Compressed Sensing is the prior supposition that the signal will be sparse
or has a sparse representation in a known basis. As seen before, this knowledge can help
to drastically decrease the sampling rate. In many applications, sparseness is not the only
prior knowledge available. In this section we explore how to add prior knowledge under
the form of a similar signal, also known as Side Information (SI), in the reconstruction of
a sparse signal. We will test and compare three strategies to add the SI:

– Coherent background subtraction [Cevher et al.2008] is a well-known and effective
way to insert the SI into the reconstruction algorithm. This approach was success-
fully used for example for the reconstruction of MR images [Trzasko et al.2009] and
in through-the-wall radar imaging [Martone et al.2010]. Consider the vector x ∈ CN

to be the unknown vector we want to reconstruct from a subsampled measurement
y ∈ CN . Suppose further that z ∈ CN is a signal with a high degree of similarity
compared to x and which was antecedently obtained from a full measurement Az.
The coherent background subtraction technique reconstructs the difference between
the signals x and z, which can be supposed to be sparser than the signal x itself, if
the signals are highly similar. Coherent background subtraction neglects thus the
sparsity of x and concentrates on minimizing the number of non-zero elements of
the foreground (x− z). The reconstruction can be obtained after coherently subtract-
ing the measurements Az from the samples of the measurement y. The solution is
obtained by solving the following minimization problem:

min ‖x− z‖1 s.t. ‖A(x− z)− (y− Az)‖2 ≤ ε (3.41)
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– `1`n-Minimization is a different approach for adding the SI z into the minimization
equation and integrates the prior information alongside the sparsity assumption into
the CS algorithm [Mota et al.2017, Mota et al.2015]. Here, we want thus to minimize
the weighted sum of the `1-norm of x and the difference between x and z:

min{‖x‖1 + βg(x− z)} s.t. ‖Ax− y‖2 ≤ ε, (3.42)

where g(·) is a function measuring the similarity between x and z and β (> 0)
is a trade-off factor between the sparsity of x and the similarity between x and
z. In [Mota et al.2014], two common choices for g(.) are compared and evalu-
ated: the `2-norm (resulting in `1`2 -minimization) and the `1-norm (resulting in
`1`1-minimization). The authors prove that the `1`1 approach outperforms the `1`2-
minimization and that the sharpest undersampling bound is obtained for β = 1:

min{‖x‖1 + ‖x− z‖1} s.t. ‖Ax− y‖2 ≤ ε (3.43)

– The `1`1-minimization technique can easily be extrapolated towards a CS recon-
struction problem with multiple SI. The minimization problem (3.43) becomes:

min
x
{

1
2
‖Ax− y‖2

2 + λ
J

∑
j=0

∥
∥x− zj

∥
∥

1
}, (3.44)

where J SIs are added to the CS minimization problem and where z0 = 0 and where
λ denotes the Lagrange multiplier [Bertsekas2014]. This simple approach attributes
the same importance to each of the SIs, regardless of the difference in similarity
or quality. SI of poor quality will thereby corrupt a correct reconstruction of the
signal x. Alternatively, the work in [Van Luong et al.2016] presents an approach
which attributes weights at two different levels to the SIs: (1) inter-SI weights β j ≥ 0
between the different SIs and (2) intra-SI weights wji, among the different elements
inside a single SI. Equation (3.44), becomes:

min
x
{

1
2
‖Ax− y‖2

2 + λ
J

∑
j=0

β j
∥
∥Wj(x− zj)

∥
∥

1
}, (3.45)

where Wj ≥ 0 is a diagonal matrix belonging to the SI zj and whose diagonal ele-
ments (wj1, wj2,...,wjn) are populated with the intra-SI weights of zj. When choosing
β j = 1 and Wj = I (where I is the unit matrix), the minimization problem (3.45) is
reduced to the non-weighted problem (3.44). The weights β j will valorize the global
impact of the SIs processing a high degree of similarity compared to x and suppress
the impact of poor quality SI. The weights Wji, on the other hand, regulate the rela-
tive impact of the different elements inside a single SI zj. In [Van Luong et al.2016],
a Reconstruction Algorithm with Multiple SI using Adaptive weights (RAMSIA)
that solves the minimization problem (3.45), is presented. RAMSIA is based on the
Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [Beck and Teboulle2009],
to which the iterative computation of the weights is added. Each iteration contains
two steps for obtaining the weights: (1) Wj is computed, given x and β j, by optimiz-
ing:

argmin
wji

{λβ j

n

∑
i=0

wji
∣
∣xi − zji

∣
∣}, (3.46)
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where zji is an element of zj at index i. (2) Considering x and Wj fixed, we compute
β j, by calculating:

argmin
β j

{λ
J

∑
j=0

β j
∥
∥Wj(x− zj)

∥
∥
`1
}. (3.47)

Finally, we compute x(k), the solution for (3.45) at iteration k given the obtained Wj
and β j. We refer the reader to [Van Luong et al.2016] for the pseudo code of the
RAMSIA algorithm.

We will now test and evaluate the performance of the common CS reconstruction without
SI, the coherent background subtraction technique and the approach combining CS with
the weighted SI (RAMSIA) on simulated data. The synthetic experiments are performed
using a SAR measurement matrix with similar parameters as the sensor that will be used
for the Non-Destructive Tests (NDT) in chapter 4. This measurement matrix is further
used to reconstruct the sensed random k-sparse (k = 10) vectors of length N = 200.
The reconstruction quality is measured as the Euclidean distance between the original
vector x and its reconstructed version, for a sampling rate starting at 2% and increasing
up to 60% (with a step of 2%). To avoid dependency of the selected samples, the tests are
executed 32 times using a new pseudo-random sampling scheme for each execution of
the test. The depicted results are the mean reconstruction errors over the 32 executions of
the test together with the 95% symmetric confidence intervals. (The confidence interval
of n instances of variable x is thus: [x̄− t∗ σ√

n
, x̄− t∗ σ√

n
], with x̄ the mean, σ the standard

deviation and t∗ is obtained from the Student’s t distribution.)
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(a)

(b)

FIGURE 3.19: Mean reconstruction error and confidence intervals for increas-
ing subsampling rates obtained with CS, CS with background subtraction and

RAMSIA. (a) kx ≤ kz and (b) kx ≥ kz.

Figures 3.19 (a) and (b), both depict the mean reconstruction error obtained after the re-
construction using a common CS basis pursuit algorithm (SPGL1) (the blue curve), using
SI with the coherent background subtraction technique (the red curve) and using the
RAMSIA algorithm (the yellow curve). In (a), we first create the ground truth vector x
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with kx = 10 nonzero elements. Subsequently, we create the SI z by replacing 10 random
elements of x with random nonzero values. This means that the number of nonzero el-
ements in x (kx) is lower or equal to the number of non-zero elements in z (kz). In (b)
we create the inverse case where kx ≥ kz. From this experiment, we can firstly easily
conclude that both the coherent background subtraction approach and the RAMSIA al-
gorithm are much more robust against subsampling compared to the common CS basis
pursuit reconstruction. We further note that in (a), where kx is smaller or equal than kz,
the RAMSIA algorithm reaches a mean reconstruction error close to zero at a lower sub-
sampling rate compared to the coherent background subtraction approach. We observe
the inverse behavior in (b), where kx is greater or equal than kz. The difference in recon-
struction performance between these two reconstruction approaches in (a) and (b) can be
attributed to the fact that both techniques minimize the `1-norm of the difference between
the two vectors, whereas only the algorithm with the weighted SI minimizes the `1-norm
of x and will thus be affected by its sparsity.
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FIGURE 3.20: Mean reconstruction error for increasing subsampling rates ob-
tained with CS (the blue curve), CS with coherent background subtraction (the
red curve) and RAMSIA (the yellow curve) using a single SI with different qual-

ity levels (change rates: 10%, 15%, 20%, 25%, 30% and 99%).
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We will now evaluate the robustness of the three CS reconstruction approaches against
poor quality SI. These tests are relevant since we assume a high degree of similarity be-
tween the SI and the signal to reconstruct prior to the measurement. In the general case
one is not able to accurately estimate this similarity since the signal to reconstruct is un-
known. We start again by creating a random ground truth vector x with kx = 10. We then
create six SI vectors z with different change rates (ratio of random elements of x which
are changed to a random nonzero value) equal to 10%, 15%, 20%, 25%, 30% and 99%. The
vector x is again reconstructed using three CS reconstruction approaches: (1) a common
CS basis pursuit algorithm (in blue), (2) CS combined with coherent background subtrac-
tion (the red curve) and (3) the RAMSIA (the yellow curve). Figure 3.20 depicts the mean
reconstruction error over 32 executions of this experiment for increasing subsampling
rates and using the six different SIs separately.
We firstly can conclude that the RAMSIA algorithm outperforms the two other approaches
in each of the tests. The coherent background subtraction approach has a positive impact
on the reconstruction performance up to a change rate equal to 20%. For higher change
rates, we see that adding the SI using the coherent background subtraction approach dete-
riorates the reconstruction quality. The RAMSIA algorithm on the other hand, continues
to improve the robustness against subsampling by filtering out the relevant information,
hidden inside the SI and by neglecting the components of z possessing a low degree of
similarity with x. Even for the extreme case where we change 99% of the elements of
x to construct the SI z, RAMSIA does not have a negative impact on the reconstruction
performance. The poor quality parts of the SI can not pollute the reconstruction thanks
to the excellent performance of the intra-SI weights wi.

We will now add multiple SIs with varying quality and evaluate the robustness of the
coherent background subtraction technique and the RAMSIA algorithm. For these ex-
periments, x has a length of 200 and contains 20 nonzero elements. Three different SIs are
used for the reconstruction of x:

– SI1: A single SI with a change rate equal to 5% compared to x.

– SI2: Two SIs, with change rates equal to 5% for both SIs.

– SI3: Two SIs, with change rates equal to 5% and 20%.

For the coherent background subtraction approach, the background is obtained by cal-
culating the mean of the different SIs. The results of these experiments are depicted in
Figures 3.21 (a) and (b). For the coherent background subtraction approach in Figure 3.21
(a), we observe first of all, that adding SI1 and SI2 has the same positive impact on the
reconstruction performance. The curves obtained for SI1 and SI2 are perfectly identical.
Whereas, the enhanced performance is reduced for SI3 by adding SI with a lower degree
of similarity. In (b) we observe that for SI1 (the red curve) the reconstruction performance
is enhanced by adding SI1 compared to the common CS reconstruction without SI (the
blue curve). When adding a second SI with the same change rate, the reconstruction
performance is even further increased (which was not the case for the background sub-
traction approach). Finally, for SI3, we see that the reconstruction performance is better,
even compared to adding SI1. The RAMSIA algorithm, firstly, favors the impact of the
high quality SI with the inter-SI weights β j and secondly filters the relevant information
out from the poor quality SI thanks to the intra-SI weights wji. We can conclude from
these experiments that the RAMSIA algorithm is immune for poor quality SI, which is
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not the case for the coherent background subtraction approach. Adding SI by using the
RAMSIA algorithm can only have a positive impact, and should thus be added for the
reconstruction of x, regardless of the SI quality.

(a)

(b)

FIGURE 3.21: Mean reconstruction error and confidence intervals for increas-
ing subsampling rates obtained with (a) CS (the blue curve) and CS with back-
ground subtraction and (b) CS (the blue curve) and RAMSIA for multiple SIs
with varying change rates. (SI1) J = 1 (change rate 5%); (SI2) J = 2 (change rates

= 5% and 5%); (SI3) J = 2 (change rates = 5% and 20%).
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3.6.2 Heterogeneous Side Information

In the previous section we evaluated a technique based on a weighted n-`1 minimiza-
tion approach for adding SI into the CS minimization. A high similarity between the
SI and the actual signal to reconstruct is a key requirement to improve the robustness
against subsampling. In other words, the SI must be obtained through a measurement
performed with the same equipment under the exact same conditions of a very similar
signal. In this section we will introduce and evaluate a strategy for adding heteroge-
neous SI. That is SI obtained from a measurement of a similar signal but with a different
sensor or under different conditions. The explained methodology is based on the work
presented in [Deligiannis et al.2017]. In that paper, the authors develop a source separa-
tion technique to separate an X-ray scan of the double-sided painted Ghent Altarpiece, by
using photographs as heterogeneous SI. The strategy can be subdivided into two parts:
First, a coupled dictionary learning method is developed. Second, the image separation
is performed using the coupled dictionaries learned during the first part.

Coupled dictionary learning

Suppose the measurements y and x obtained with two different sensors:

y = Ψcz

x = Φcz + Φv,
(3.48)

where z is the signal with common components measured by the two sensors and v is the
signal with the innovation components. The components of v contain the underlaying in-
formation that is only measured by one of the two modalities. Ψc and Φc are the coupled
dictionaries describing the linear measurement using the two measurement modalities
of the information z sensed by both sensors. The matrix Φ describes the linear measure-
ment of the innovation vector v. The three dictionaries can be learned through a training
process, by solving following minimization problem:

min
Φc ,Z,Ψc ,V

1
2
‖Y−ΨcZ‖2

F +
1
2
‖X −ΦcZ−ΦV‖2

F,

s.t. ‖zt‖0 ≤ sz, ‖vt‖0 ≤ sv, ∀t = 1, ..., T.
(3.49)

with ‖M‖F the Frobenius norm of the matrix M ∈ Cm×n, defined as:

‖M‖F =

√√
√
√

m

∑
i=1

n

∑
j=1

∣
∣aij
∣
∣2. (3.50)

The T columns of the matrices Y ∈ CN×T and X ∈ CN×T in (3.49) are populated with T
corresponding training measurements of length N using both modalities. The minimiza-
tion problem (3.49) searches a solution for the three dictionaries Ψc, Φc and Φ using the
training measurements, while assuring a minimum sparsity smaller than or equal to sz
and sv for the vectors populating respectively the matrices Z ∈ CN×T and V ∈ CN×T .
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The work in [Deligiannis et al.2017] proposes an algorithm for solving the minimization
problem in (3.49). Each iteration k in the algorithm is subdivided in two steps: (1) A
sparse coding step solving the following t parallel problems with fixed dictionaries:

(zk+1
t , vk+1

t ) = min
zt ,vt

1
2

∥
∥
∥
∥
∥

[
yt
vt

]

−

[
Ψck

0

Φck
Φk

] [
zt
vt

]∥∥
∥
∥
∥

2

F

,

s.t. ‖zt‖0 ≤ sz and ‖vt‖0 ≤ sv.

(3.51)

These minimizations problems are solved, using a Modified version of the Orthogonal
Matching Pursuit (MOMP) algorithm. (2) A dictionary update step, solving following
problems with fixed matrices Z and V:

min
Ψc

1
2

∥
∥
∥Y−ΨcZk+1

∥
∥
∥

2

F
and,

min
Φc ,Φ

1
2

∥
∥
∥
∥X −

[
ΦcΦ

]
[

Zk+1

Vk+1

]∥∥
∥
∥

2

F
.

(3.52)

Let us now evaluate this approach on synthetic data:

1. First, we choose two measurement modalities: (1) One modality described by a
Fourier measurement matrix Ψc and, (2) one measurement modality defined by ran-
dom Gaussian matrices Φc and Φ.

2. We then create T vectors z and v with respectively sz and sv randomly chosen nonzero
components.

3. The T signals z and v are then synthetically measured using the expressions in (3.48).
The resulting measurements yt and xt, with t = 1, ..., T, form the columns of the
matrices X and Y and will serve as the training data for the next step.

4. The training data, obtained in the previous step, are used to solve the minimization
problem in (3.49), giving us the learned coupled dictionaries Ψc, Φc and Φ and the
sparse matrices Z and V. We note that the dictionaries Ψc, Φc and Φ and the sparse
matrices Z and V, do not need to be the same as Ψ

c
, Φ

c
, Φ, Z and V , to have

successfully learned coupled dictionaries.

5. In a first approach for evaluating the performance of the coupled dictionary learn-
ing, we follow the methodology used in [Aharon et al.2006] and [Deligiannis et al.2017],
by calculating the dictionary identifiability (further in this the section the dictionar-
ies will be evaluated after using them for performing the CS reconstruction with
heterogeneous SI). The dictionary identifiability is calculated for each of the three
dictionaries separately and is equal to the ratio of successful recovered columns. A
column i of the learned dictionary Γi is considered to be successfully recovered if its
distance compared with the closest column in the initial dictionary Γj is smaller than
0.01. The distances between the columns are calculated as (|·| denotes the absolute
value):

1−
∣
∣
∣Γ

T
j Γi

∣
∣
∣ (3.53)
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FIGURE 3.22: Dictionary identifiability of the coupled dictionaries Ψc, Φc and Φ
learned from an increasing number of training measurements.

Figure 3.22 depicts the mean dictionary identifiability obtained over 64 independent cou-
pled dictionary learning experiments for an increasing number of training measurements.
The training measurements are obtained from simulated measurements of signals of
length N = 100 and with sparsity rates sz = 5 and sv = 3. The initial dictionary Ψ

c
is a

Fourier matrix, Φ
c

and Φ are chosen to be random Gaussian matrices. We observe that
an identifiability very close to 1 is obtained with around 800 training measurements for
Ψc and Φc. On the other hand, the dictionary Φ is learned more slowly and needs thus
more training measurements.

CS with heterogeneous SI

Once the coupled dictionaries Ψc, Φc and Φ are learned, they can be used to reconstruct a
signal with heterogeneous SI. Suppose that the coupled dictionaries are known and that
a signal has been sensed using a first measurement modality, resulting in a measurement
x. Suppose further, that a new measurement has to be performed using a different mea-
surement modality. Thanks to the coupled dictionaries, the signal can be reconstructed
from far fewer samples (measurements y) with a CS algorithm, by solving following min-
imization problem:

min
z,v

∥
∥
∥
∥

[
z
v

]∥∥
∥
∥

1
s.t.

[
y
x

]

=
[

Ψc 0
Φc Φ

] [
z
v

]

(3.54)

This approach is evaluated on synthetic data by using following methodology:

1. First we create the vectors z and v with respectively sz and sv nonzero elements.
These two vectors will be the ground truth for the evaluation of this approach.
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2. Next, we synthetically measure the signals z and v by applying the initial measure-
ment matrices Ψc, Φc and Φ, resulting in measurements y and x.

3. Then, we randomly subsample the measurement y at a subsampling rate n/N.

4. Using the learned coupled dictionaries Ψc, Φc and Φ, we construct the vectors z and
v, from the subsampled measurement y and the hetero-SI measurement x.

5. Finally, we reconstruct the full measurement y = ŷ and the original vector z = ẑ. The

reconstruction is evaluated by calculating the relative reconstruction error: ‖z−ẑ‖2
‖z‖2

.
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FIGURE 3.23: Reconstruction error for increasing subsampling rates when re-
constructing the original signal with CS without SI (dashed line) and with

hetero-SI (full line) for different values of sv.
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FIGURE 3.24: Reconstruction error for increasing subsampling rates when re-
constructing the original signal with CS without SI (dashed line) and with

hetero-SI (full line) for different values of sz.

Figures 3.23 and 3.24 depict the results obtained from the experiments following the de-
scribed methodology. The initial measurement matrix Ψ

c
is again a Fourier matrix, Φ

c

and Φ are chosen to be random Gaussian matrices. The dictionaries are learned from
2000 learning measurements. Figure 3.23 shows the reconstruction error when recon-
structing a signal of length N = 100 and sparsity sz = 10. The dashed plot is obtained
when reconstructing the signal (with sz = 10) using CS without SI, whereas the full lines
correspond to the mean reconstruction errors over 100 executions when adding hetero-
geneous SI. The experiment is repeated for different values for sv. We see that CS with
heterogeneous SI clearly outperforms the CS reconstruction without SI as long as sv stays
below 40. For sv equal to 50, we measure an increased reconstruction error between the
subsampling rates equal to 0.28 and 0.50 for CS with heterogeneous SI when compared
to CS without SI.

Figure 3.24 depicts the results obtained using the same dictionaries and same reconstruc-
tion methodology as for Figure 3.23, but this time sv is chosen equal to 10 and we evaluate
the mean reconstruction error for different values of sz. Compared to the results obtained
without SI, the approach using heterogeneous SI largely performs better for all values of
sz.

The mean reconstruction errors obtained after subsequently combining the coupled dic-
tionary learning and the CS reconstruction with heterogeneous SI are depicted in Figure
3.25. First the coupled dictionaries are learned using a different number of learning mea-
surement T = 500, 750, 1000, 1250 and 1500. Then, a subsampled Fourier measurement
of a random signal of length N = 100 (with 10 nonzero elements) is performed. From
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this subsampled measurement, we reconstruct the original signal using the SI obtained
from a random Gaussian measurement (sv = 10) and the learned coupled dictionaries.
Finally, we calculate the relative reconstruction error and we repeat this experiment 64
times in order to obtain a mean reconstruction error. From this experiment we can con-
clude: (1) The reconstruction is extremely robust and almost immune for subsampling.
(2) The number of training measurements has an important impact on the reconstruction
quality over all subsampling rates. This experiment gives a first idea on the order of
magnitude for the number of training experiments needed.
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FIGURE 3.25: Reconstruction error for increasing subsampling rates when re-
constructing the original signal with CS without SI (dashed line) and with
hetero-SI (full line) using the learned dictionaries from different numbers of

training measurements (T).

CS with heterogeneous SI for change detection

Until now, we assumed that the sensed signal did not change between the two hetero-
geneous measurements. In other words, the sensing modality described by Φc and Φ
measures respectively z and v, whereas the modality described by Ψc measures exactly
the same z. We will now suppose that the original signal changes between the two het-
erogeneous measurements by a adding a vector δ, with sδ nonzero elements, to z in the
set of measurement equations:

y = Ψc(z + δ)

x = Φcz + Φv.
(3.55)

This problem can occur with Non-Destructive Testing (NDT) measurements, where one
tries to detect anomalies inside an object. Suppose for example that a critical part was
tested using a first measurement methodology and later on, when a hidden defect ap-
pears, by a second methodology. The proposed approach will allow us to detect the
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anomaly that is present in the second reconstructed signal using the heterogeneous side
information from the first measurement. This can be achieved by solving following min-
imization problem:

min
z,v,δ

∥
∥
∥
∥
∥
∥




z
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δ





∥
∥
∥
∥
∥
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 . (3.56)
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FIGURE 3.26: Reconstruction error for increasing subsampling rates when re-
constructing the difference between two heterogeneous measurements using CS

with heterogeneous SI.

Figure 3.26 shows the mean reconstruction error for reconstructing the signal δ, contain-
ing the change between the two heterogeneous measurements. For this experiment we
first learn the coupled dictionaries from 2000 training measurements using a Fourier mea-
surement matrix on the one hand and a random Gaussian matrix on the other hand. Us-
ing these dictionaries, we solve the minimization problem (3.56) from: (1) a measurement
y, subsampled with increasing subsampled rates (horizontal axis), of a vector z of length
100 with 10 nonzero elements to which we add the vector δ with different numbers of
nonzero elements (5, 10, 20 and 30) and (2) a heterogeneous measurement of z and inno-
vation vector v (sv = 10). The results depicted in Figure 3.26 proof firstly that this allows
to perform change detection using heterogeneous SI and, second, the vector δ, describing
the change, can be reconstructed from a subsampled measurement.

3.7 Conclusions

We started this chapter by evaluating if Compressed Sensing is a good candidate for the
reconstruction of signals from subsampled SFCW or SAR measurements. The obtained
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results, represented under the form of phase diagrams, showed that CS allows to take
far fewer samples than predicted by the Shannon-Nyquist theorem. The minimum num-
ber of samples needed is unknown before the start of the measurement, since the lower
bound depends on the unknown sparsity of the signal to reconstruct. In Section 4, we
deduced and tested a method to estimate the needed number of samples without having
access to the ground truth for SFCW measurements. We further showed that this estima-
tion can be obtained from a small number of cross-validation measurements. In section
5, we explained how the signal processing tools SVD and RPCA can be applied to further
improve the reconstruction performance when using CS. In section 6 we compared and
evaluated different techniques for adding homogeneous SI to the CS minimization prob-
lem. The CS with multiple weighted SI was the best in all the tests. Finally, we explored
a way to add heterogeneous SI and showed how to perform change detection using het-
erogeneous SI. In the next chapters, some of these techniques will be evaluated on real
data.
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Chapter 4

Non-Destructive Testing of
polymer 3D-printed objects

4.1 Introduction

Additive manufacturing (AM) also known as 3D-printing, builds objects by joining ma-
terials one layer at a time, usually building them from the bottom up, leaving little to
no waste [Hausman and Horne2014]. This revolutionary technique was developed back
in the early 1980s and commercialized in the late 1980s [Hassen and Kirka2018]. Since
then, the additive manufacturing market is exponentially growing. In 2016 the AM in-
dustry, consisting of all AM products and services, exceeded $6.1 billion and is predicted
to reach $26.2 billion by 2022 [Wohlers et al.2016]. The interest for this manufacturing
approach can be explained by its many advantages compared to traditional methods
[Campbell et al.2011]: (1) Increased part complexity: the freedom to design parts is nearly
unrestricted, allowing complex shapes and geometries that can be very difficult or even
impossible to realize by the traditional methods such as molding, turning, milling and
drilling. (2) Digital design and manufacturing: AM is a computer-controlled process
which requires a low level of operator expertise and interactions. The physical part is
created directly from a standardized digital file (.STL). (3) Instant production on a global
scale: the digital file can be sent to any printer on the globe, or even in space, that can
manufacture any product. (4) Waste reduction: In contrast to traditional subtractive man-
ufacturing processes, such as machining, only the material needed for the part is used in
production. There is virtually no waste. The 3D-printing technology can be subdivided
into three categories based on the printed material:

1. Polymer materials. These can be preformed materials in powder, filament or sheet
form. Alternatively, the material can be a photo sensitive resin [Stansbury and Ida-
cavage2016].

2. Metals. Common materials used are stainless steels, aluminium, nickel, cobalt-
chrome and titanium alloys [Yang et al.2017].

3. Other materials such as ceramics, concrete, etc [Trombetta et al.2017, Gosselin et al.2016].

Polymers are the most used material (85%) compared to metals (14%) and other materials
(1%) [Wohlers et al.2016]. In this chapter we will only concentrate on 3D printed parts
from polymer materials.
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The additive manufacturing process of a part starts with a computer-aided design (CAD)
model. This model is than sliced into layers which are printed by the AM system. The
different printing approaches are:

1. Selective Laser Sintering (SLS): The feedstock for this type of AM system are thermo-
plastics such as polyamide (PA) and polycaprolactone (PCL) in powder form [Has-
sen and Kirka2018]. The first 2D slice is fabricated by fusing the powder using a laser
beam after that the powder was spread on a platform. The next slices are formed
by repeating this process while the platform is moving downwards in between the
printing of each slice. This type of 3D printers can fabricate objects with complex
geometries with high stiffness and strength properties. Due to the high cost, these
machines are only used for the production of small volumes and high quality parts,
as for aerospace prototyping applications [Wang et al.2017].

2. Stereolithography is performed by using a similar printing strategy. In this case, the
feedstock material is a photopolymer, acrylate or epoxy-based resin which hardens
when exposed to an ultraviolet laser beam. The feedstock materials for this type of
AM machines are limited and expensive but they allow to create parts with high
resolutions [Hassen and Kirka2018, Hull1986].

3. Fused Deposition Modelling (FDM) is the most widely, and cost-effective 3D method-
ology. It can be used with a wide range of polymers in a filament form, such as:
polylactide (PLA), Acrylonitrile Butadiene Styrene (ABS), nylon 6 (PA6), nylon 66
(PA66), polycarbonate (PC) and polyetherimide (PEI). The filament is deposed on
the existing layers by a heated nozzle which follows a predefined path. These sys-
tems have a limited speed and scale but are also low cost [Love et al.2015].

4. Extrusion Deposition or Big Area Additive Manufacturing (BAAM) is a more recent
system. This type of AM printing machines use a similar technique as FDM but uses
pallets as a feedstock material, which speeds up the printing process at the cost of a
poor surface quality [Hassen et al.2016].

The quality of the manufactured part does not only depend on the quality of the feedstock
material or the printing technique. The quality of the printed objects can vary between
different AM machines and even between objects manufactured by the same system. De-
fects, and printing flaws are common in AM. The bounding between the different layers
is created by the entanglement of the polymer chains. In order to make this bounding
possible the previous deposed layer must locally remelt. Two important parameters af-
fecting the quality during the printing process are thus the deposition temperature and
the layer time. A maladaptation of one or both of these parameters to the part to be
printed can cause different defects. This is illustrated in Figure 4.1, where three different
defects are depicted. These defects were detected in objects printed at CISS department
of the Royal Military Academy with a Stratasys SST 768 3D printer using ABS filament as
feedstock material. In Figure 4.1 (a), we see a delamination. A delamination can be pro-
voked by a long layer time. If the time interval between the deposition of two successive
layers is too large, the previous deposited layer can cool down below the glass transi-
tion temperature, defined as the temperature at which the transition accurs from viscous
liquid into an amorphous solid [Forrest et al.1996]. This results in a weak bond at the
interface between the two layers and the two layers may delaminate [Hassen et al.2016].
In Figure 4.1 (b), we see a crack. Micro-cracks can appear across the part and originate
from the residual stress caused by the large temperature gradients over the printed part.
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Figure 4.1 (c) depicts an example of distortion or warpage. The heating and cooling in
the FDM process causes residual stress which can provoke a deformation of the part. In
this example, a rectangle massive block (width = 5 cm ) was printed and one of the sides
of the block came out curved, with a deformation of more than 0.35 cm.

(a) (b)

(c)

FIGURE 4.1: Examples of defects in 3D printed parts obtained with a single FDM
machine.

The machine-to-machine as well as the day-to-day variability in quality of AM produced
parts is one of the biggest challenges slowing down the transition from producing pro-
totypes to the production of critical parts [Slotwinski2014, Everton et al.2016]. This is
for certain the case in medical [du Plessis et al.2016], aeronautical [Seifi et al.2016], space
[Waller et al.2015] and military applications. The NASA reports this lack of assurance
of quality as one of the major obstacles for the acceptance of AM manufactured parts.
More precisely, adequate non destructive evaluation processes are a universal need dur-
ing process optimization, real-time process monitoring, finished part qualification and
certification or in situ health monitoring [Waller et al.2015]. The today available NDT
techniques for the quality control of additive manufactured parts are:

1. X-ray computed tomography is a method of forming three dimensional representa-
tions of an object by taking many x-ray images around an axis of rotation and using
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algorithms to reconstruct a 3D model [Thompson et al.2016]. This NDT technique
is the most frequent used technique for the Non-Destructive Evaluation (NDE) of
AM parts due to its virtually unlimited in depth detection of anomalies. The main
drawbacks of this NDT technique compared to other measurement techniques are
[Thompson et al.2016, Lopez et al.2018]: (1) The measurements are time consuming
and therefore not suitable for online evaluation during the production of the part.
(2) The size of the area under test is limited. (3) This method is based on ionizing
radiation which involves the need for health protective measures. (4) The systems
are relatively costly.

2. Ultrasonic testing is a non-destructive evaluation technique which is broadly ap-
plied. Conventional pulse-echo systems can examine material properties including
the microstructure and discontinuities in depth [Koester et al.2018, Rieder et al.2014].
However, this technique is not suited for high temperature inspection (typically >
300◦C). Moreover, this technology is not applicable to objects with rough surfaces or
surfaces which are not locally planar, since it needs direct contact with the surface
[Hassen et al.2016]. In general, extra machining, smoothing or polishing is needed
in order to make ultrasonic testing possible. Laser ultrasonic testing offers a solution
to these restrictions. These NDE systems direct a laser pulse on the surface of the
part. The surface is locally heated which induces an ultrasonic pulse that propagates
through the sample under test. A separate laser receiver detects the displacement of
the surface caused by the backscattered pulse [Everton et al.2015].

3. Traditional IR thermography heats the part under test by a flash or quartz lamp. The
induced heat flow is blocked by subsurface defects such as cracks or delaminations,
causing a change in the transient heat flow response which can be observed with a
IR sensor [Lu and Wong2018]. Infrared thermography is also well suited for the in-
situ online monitoring during the layer by layer production of the part [Rodriguez
et al.2015, Ding et al.2017].

4. Other NDT techniques include penetrant testing which is limited to surface testing
and eddy current testing which is limited to conductivity materials [Lopez et al.2018].

Most 3D printing machines are open loop systems. An object is first completely manu-
factured and only after the production process a quality control is performed approving
or rejecting the part. After production, measurement times are preferably kept as low as
possible in order to reduce the down time due to the non destructive evaluation. Future
NDT approaches for the quality control on 3D printed parts must preferably be integrated
in a closed loop system. This implies that the NDT technique must be applicable during
the manufacturing process in order to detect defects and make the adequate adaptations
in time. In order to have a closed loop system, the system must be able to perform mea-
surements at an equivalent rate compared to the printing speed (typical printing speeds
are between 40 mm/s up to 150 mm/s). As well for open loop as for closed loop systems,
the measurement time must be reduced to a minimum. Compressed Sensing can help
to speed up the NDT measurement speed by lowering the number of required samples.
Applying CS on ultrasound and X-ray tomographic imaging has extensively been cov-
ered in literature over the past years [Liebgott et al.2013, Schiffner and Schmitz2011, Yu
and Wang2009, Xu et al.2012]. CS in combination with one of these imaging techniques
is mostly applied in the field of medical imaging. In [Wagner et al.2012] for example, CS
allows a nearly eight-fold reduction in sample-rate for cardiac ultrasound imaging.
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In this chapter we explore a different NDT technique, based on mm-wave sensing [Ahmed
et al.2012, Kharkovsky and Zoughi2007, Blitz2012, Kharkovsky et al.2006], applied on
additive manufactured polymer objects. The proposed approach exploits the good pen-
etration characteristics of microwaves through polymer materials. This characteristic en-
ables the in-depth imaging of the inner structure of the sample. Moreover, in contrast to
the NDT techniques based on X-rays, the radiation is non-ionizing and thus unharmful.
Compared to traditional ultrasonic testing, the presented approach operates from a stand
off distance and can image objects with complex geometries or rough surfaces. The pro-
posed microwave imaging approach needs to perform many measurements over a large
bandwidth in order to produce high resolution images in the cross-track dimension. Each
of these measurement must be executed at many sensor positions (in a SAR configura-
tion) or object positions (in an ISAR configuration). Compressed Sensing techniques can
be applied in order to obtain the same image quality from far fewer measurements. Re-
cently, Helander et al. published a paper on mm-wave NDT of composite panels using
CS [Helander et al.2017]. The work in this paper proposes to use CS for reducing the
measurement time and improving the dynamic range. The proposed methodology starts
with a source separation algorithm to separate the reflections originating from the de-
fects from the rest of the backscattered signal. The separation is based on a Singular
Value Decomposition (SVD). After the source separation, they use Compressed Sensing
to reconstruct a mm-wave image of the defects. The technique was successfully tested on
an industrially manufactured composite test panel.

The remainder of this chapter is structured as follows. In Section 2, we describe the mm-
wave sensor, the setup and the measurements performed on a 3-D printed test object.
The raw data obtained from these experiments will be exploited to evaluate different ap-
proaches for applying CS in the further sections of this chapter. In Section 3, we evaluate
different approaches for applying CS on NDT ISAR data. We first compare the robustness
against subsampling of a traditional ISAR reconstruction method with a Compressive
Sensing reconstruction. We further evaluate the use of the 2-D DCT transform used as a
sparsifying transform. If sparsity is not the only prior knowledge available, the comple-
mentary information, named Side Information (SI), can be added to enhance the recon-
struction performance. We compare three different approaches for adding SI: (1) coherent
background subtraction, (2) `1`1-minimization and (3) weighted `1`1-minimization. We
end the section with the evaluation of CS with multiple weighted SI, using the real NDT
data. The chapter ends with the conclusions obtained through the described experiments.
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4.2 NDT experiment

In order to evaluate the applicability of CS for mm-wave NDT of polymer objects, a test
set-up was built. The experiments were performed at the Department of Electronics and
Informatics (ETRO) of the Vrije Universiteit Brussel (VUB). The sensor used for generat-
ing and acquiring the signals is based on a Millimeter Vector Network Analyzer (MVNA)
from the company ABmm. The MVNA was connected to a single antenna: ABmm WR
15. The sensor generates Stepped Frequency Continuous Wave (SFCW) signals and mea-
sures the reflection parameter S11:

S11( fp) :=
SRx( fp)
SE( fp)

, (4.1)

where SRx( fp) is the received signal at frequency fp and SE( fp) is the emitted signal at
the same frequency fp. The total transmitted bandwidth is limited by the bandwidth of
the antenna. The most important parameters of the sensor are enlisted in table 4.1.

Sensor parameter Value

Starting frequency f0 45 GHz
Bandwidth 30 GHz
Frequency step ∆ f 810.8 MHz
Scanning distance 0.30 m
Number of cross-range measurements 30
Number of frequencies 37
Aperture angle θ (-3 dB) 15◦

TABLE 4.1

Figure 4.2 shows a schematic representation of the setup. The object under test is placed
on a moving stage, 30 cm in front of the antenna. The moving stage is performing a hor-
izontal displacement over 30 cm. During the horizontal displacement the moving stage
stops 30 times. At each equidistant stop, a measurement is performed with the MVNA
at 37 frequencies over a total bandwidth ranging from 45 GHz up to 75 GHz. Thanks to
the horizontal displacement of the object under test, an ISAR image of a horizontal slice
through the object can be constructed. The range resolution obtained with this sensor is
defined by the total emitted bandwidth and is equal to:

∆rra =
c

2B
, (4.2)

where c is the propagation speed of the electromagnetic waves through the medium with
permeability µ and permittivity ε:

c =
c0√
µε

. (4.3)

The range resolution in vacuum will thus be equal to 5 mm. The objects under test are
built from Actylonitrile Butadiene Styrene (ABS) polymer which has a dielectric constant
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around 3. Within the object under test the range resolution will thus be around 2.9 mm.
Higher resolutions can be achieved by using larger bandwidths.

Figure 4.3 (a) shows a picture taken at the start of one of the experiments. The object
under test is a block printed from ABS polymer material with dimensions: 18 cm × 10 cm
× 5 cm (Figure 4.3 (b)). In total four separate measurements are performed consecutively:

– One measurement of the massive ABS block without synthetically created defects.
This measurement will later in this chapter be used as Side Information (SI 1).

– Two measurements with one defect and with two defects respectively. The defects
were created by drilling vertical holes with a radius of 5 mm through the massive
block. SI 1 is the measurement of the block with one defect and SI 2 with two defects.

– One measurement of the ABS block with three holes (Figure 4.3 (b)). The raw data
of this measurement will be undersampled and the mm-wave image of this object
will be reconstructed using different CS reconstruction techniques.

FIGURE 4.2: Scheme of the measurement setup for the ISAR NDT experiments.
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(a)

10cm

5cm

18cm

(b)

FIGURE 4.3: (a) picture taken during a NDT measurement of the test object. (b)
schematic representation of the test object with the three defects.

Figure 4.4 depicts the mm-wave images obtained from the ISAR measurements of the
four objects under test. The four experiments are performed under similar conditions.
The images are obtained from a CS reconstruction of the fully sampled ISAR data. These
experiments allow clearly to image the front and backside of the object under test and to
detect the different defects.
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FIGURE 4.4: mm-wave ISAR images (horizontal cut) of the test object in (a)
without defects, in (b) with 1 defect, in (c) with 2 defects and in (d) with 3 defects.
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4.3 CS reconstruction

One of the key requirements for a NDT technique is the need for a small measurement
time. Small measurement times will on the one hand reduce the off-duty time of a 3D
printed part during a (recurrent) inspection or on the other hand, the measurement can
be performed online during the production of the part. A reduction of the measurement
time can be achieved by reducing the number of samples to be taken. In this section
we evaluate the robustness against random undersampling of the raw data of the ISAR
measurements obtained from the previous described experiments.

4.3.1 CS reconstruction versus traditional SAR reconstruction

Compressive Sensing is based on the assumption that the signal to reconstruct is sparse.
The sparser the signal, the fewer samples needed to obtain a correct reconstruction of the
signal. Figure 4.5 (a) depicts a histogram of the normalized pixel values of the mm-wave
image of the ABS block with three defects. We observe that most of the pixels have a value
close to zero. Instead of reconstructing the image directly, we can opt for reconstructing a
sparsified transform of the image. Figure 4.5 (b) shows the histogram of the 2-D Discrete
Cosine transform of the mm-wave image with the three defects. The DCT transformed
signal has indeed more elements with a value close to zero: 310 pixels have a normalized
value within the interval 0 - 0.01, whereas the original image has only 52 pixels with a
normalized value in the same interval.

Figure 4.7 depicts the images obtained with:

1. A common range Doppler algorithm (left column) [Ozdemir2012]. These images
are obtained in two steps: (1) A range compression: obtained by performing an
IFFT of the raw data in the range dimension and (2) A cross-range compression:
the range compressed data is therefore transformed to the range-Doppler domain
and a range cell migration correction is performed before removing the cross-range
chirp. Finally, the image is obtained after performing an IFFT in the cross-range
dimension. We can clearly see that the range Doppler algorithm is not robust against
subsampling. The obtained image is already deteriorated at a subsampling rate of
90% and at 70% the defects are drowned in the reconstruction noise.

2. A common CS reconstruction algorithm (middle column). The reconstruction is
much more robust against subsampling. At a subsampling rate of 50%, it becomes
difficult to detect the defects and at a subsampling rate of 40% the image is too much
deteriorated to perform an evaluation of the object under test.

3. A common CS algorithm used to reconstruct the 2-D DCT transformed mm-wave
image. The results are visually comparable to those obtained without sparsifying
transform. The images look a bit blurred when compared to the images of the mid-
dle column.

Figure 4.8 shows a numerical evaluation of the reconstruction performance of the three
approaches for increasing subsampling rates together with the symmetric 95% confidence
intervals. For each subsampling rate, starting at a subsampling rate of 0.02 up to 1 the
raw data are randomly subsampled before reconstructing the mm-wave image, using the
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three different approaches. This test was repeated 100 times with each time a new inde-
pendent random sampling of the raw data. The full curves in Figure 4.8 show the mean
reconstruction error which was calculated as the distance between the reconstructed sig-
nal from the subsampled raw data and the signal obtained from the fully sampled data.
The dashed lines indicate the standard deviation from the mean reconstruction error. We
deduce following conclusions from this experiment:

– The reconstruction quality starts to deteriorate immediately when reducing the num-
ber of samples when applying a traditional (I)SAR reconstruction algorithm.

– As expected from the visual evaluation, the CS reconstruction is much more robust
against subsampling.

– When using the 2-D DCT transform, we observe first a better reconstruction perfor-
mance below a subsampling rate of 0.52 compared to the CS reconstruction without
sparsifying transform. Between subsampling rates equal to 0.52 and 0.9, using the
DCT does have a negative impact on the reconstruction performance.
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(a)

(b)

FIGURE 4.5: Histograms of the normalized pixel values. (a) Histogram of the
ISAR image to reconstruct. (b) Histogram of the DCT of the ISAR image to

reconstruct.
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FIGURE 4.7: reconstruction for different subsampling rates. Left column: im-
ages obtained with traditional SAR algorithm, middle column: results obtained

with CS and right column: results obtained with CS and the DCT transform.

FIGURE 4.8: Mean reconstruction error and confidence intervals for increasing
subsampling rates obtained with a standard SAR algorithm, with a CS algorithm
(SPGL1) and with a CS algorithm with a DCT transform. The dashed curves are

the corresponding standard deviations.

4.3.2 CS with side information

We will now reconstruct the NDT image with three defects exploiting side information.
The side information that will be used for these experiments are the measurements of the
samples without defects, with one defect and with two defects. We reconstruct the sam-
ple with three defects using three different strategies: (1) CS with Coherent background
Subtraction (BS), (2) `1`1-minimization and (3) CS with weighted Side Information (SI).
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CS with Coherent background subtraction

Instead of reconstructing the SAR image of the sample with three defects, we reconstruct
the difference between the SAR image of the sample under test and the SAR image ob-
tained from a prior measurement of a similar object. The basic idea is that the difference
will be sparser than the actual image. This hypothesis is true if the prior SAR image
shares a high degree of similarity with the SAR image to reconstruct.

The experiment is performed as follows: First, the fully sampled data of the measurement
of the sample with three defects is randomly subsampled. Second, the corresponding
elements from the raw data of the SI is subtracted from these samples. Subsequently
the SAR image of the difference between the two SAR images is reconstructed using a
CS algorithm. Finally the SAR image of the samples with three defects is obtained by
adding the SAR image of the SI to the reconstructed difference image. We performed this
experiment for an increasing number of samples, starting at a subsampling rate (n/N)
equal to 0.02 up to 1. The experiment was repeated 100 times for each subsampling rate
with each time a new random sampling of the raw data. The results in Figure 4.9 show
the mean distance over the 100 experiments between the reconstructed SAR image from
the subsampled raw data and the SAR image obtained from the fully sampled data. This
experiment was repeated with three different SI’s:

– SI 1: the sample without defects (Figure 4.4 (a)): The `2-norm of the difference be-
tween SI 1 and the SAR image to reconstruct is equal to 0.0805. We observe a clear
improvement of the reconstruction quality over all the subsampling rates. A mean
reconstruction error below 0.2 is achieved with a subsampling rate of 60% with CS
without the use of SI, whereas this result is obtained with only 38% of the samples
using the background subtraction approach with SI1.

– SI 2: the sample with one defect (Figure 4.4 (b)): The `2-norm of the difference be-
tween SI 2 and the SAR image to reconstruct is equal to 0.1071. Surprisingly, SI 2
shares a decreased similarity with the SAR image to reconstruct compared to SI 1.
This reduced SI quality results in a decreased reconstruction performance. Com-
pared to the mean reconstruction error obtained without CS we can identify two
zones: (1) below a subsampling rate of 40%, the BS with SI2 performs better than the
reconstruction without SI whereas (2) for subsampling rates between 40% and 100%
the SI deteriorates the reconstruction performance using the BS approach.

– SI 3: the sample with two defects (Figure 4.4 (c)): The `2-norm of the difference
between SI 3 and the SAR image to reconstruct is equal to 0.2408. The similarity for
SI 3 is thus even further decreased compared to SI 1 and SI 2. The reconstruction
error with SI 2 is larger than the reconstruction error without SI. Adding SI of this
quality deteriorates the reconstruction quality over all the subsampling rates.
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FIGURE 4.9: Mean reconstruction error for increasing subsampling rates ob-
tained from the CS SAR image reconstruction with coherent background sub-

traction without SI, with SI 1, SI 2 and SI 3.

Coherent background subtraction can have a positive impact on the reconstruction qual-
ity by enhancing the robustness against subsampling. We also conclude from this experi-
ment that the similarity between the SI and the SAR image to reconstruct must be high in
order to obtain a better reconstruction performance. The coherent background subtrac-
tion reveals to be very sensitive to poor quality SI.

`1`1 −minimization

With this approach, the sum of the `1-norm of the SAR image with the `1-norm of the dif-
ference between the SAR image to construct and the SAR image of the SI, is minimized. In
contrast to the coherent background subtraction approach, the sparsity of the difference
between the SAR image to reconstruct and the SI is promoted during the reconstruction
in stead of reconstructing the difference. Figure 4.10 depicts the mean reconstruction er-
rors for increasing subsampling rates. The experiment is again performed with the same
three SI’s:

– SI 1: The `1`1-minimization using SI 1 as side information has a clear positive im-
pact on the reconstruction quality over all subsampling rates. We measure a slight
improvement compared to the coherent background subtraction approach: a mean
reconstruction error equal to 0.2 is obtained with only 34% of the samples instead of
38%.

– SI 2: The same trend can be observed when using the SI 2. Again, the reconstruction
performance is improved over all subsampling rates compared to the CS reconstruc-
tion without SI. Due to the decreased similarity, the positive impact of adding the SI
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in the minimization is reduced. Compared to the coherent background subtraction
approach, we note a clear reconstruction improvement.

– SI 3: We observe a deterioration of the reconstruction performance for subsampling
rates between 34% and 100%. The negative impact is less important compared to the
results obtained with the coherent background subtraction technique.

FIGURE 4.10: Mean reconstruction error for increasing subsampling rates ob-
tained from the CS SAR image reconstruction with `1`1-minimization without

SI, with SI 1, SI 2 and SI 3.

From this experiment we can conclude that the `1`1-minimization approach is less sen-
sitive for poor quality SI compared to the coherent background reconstruction. This re-
duced sensitivity does not impact the positive improvement of adding high quality SI to
the CS reconstruction. If the similarity between the SI and the SAR image to reconstruct
decreases too much, the poor quality SI can have a negative impact on the reconstruction
compared to the CS reconstruction without SI.

CS with Weighted side information

Adding SI as a background image for coherent background subtraction or by using the
`1`1-minimization approach can improve the reconstruction quality if the SI shares a high
degree of similarity with the image to reconstruct. On the other hand, if the difference
between the SAR image to reconstruct and the SI is too important, adding SI with one
of these two approaches can have a negative impact on the reconstruction performance.
The RAMSIA algorithm, explained in paragraph 3.6.1, offers a solution to prevent a de-
terioration of the reconstruction performance by poor quality SI. The side information is
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added during the reconstruction of the SAR image from the undersampled raw data and
the reconstruction is obtained by solving the following minimization problem:

min
x
{

1
2
‖Ax− y‖2

2 + λ
J

∑
j=0

β j
∥
∥Wj(x− zj)

∥
∥

1
}, (4.4)

where x is the mm-wave image to be reconstructed, y the undersampled SAR measure-
ment, zj are the SI’s and z0 is equal to 0. The impact of the SI during the minimization is
regulated by two weighting parameters: β j and Wj.

β j are inter-SI weights. The RAMSIA algorithm allocates an inter SI-weight to the `1-
norm of x: β0 and to the `1-norm of the difference between x and the J SI’s: β1...J . The
higher the weight attributed to the SI, the higher the impact of the SI in the minimization
of the equation (4.4). The sum of all inter-SI weights is equal to 1. Figure 4.11 depicts
the evolution of the inter-SI weights obtained with RAMSIA for increasing subsampling
rates. The figure shows the weight for the reconstruction with a single SI. The test was
performed with each of the three SI’s separately. At very low subsampling rates, the
weights vary severely. The weights start to stabilize from a subsampling around 30%.
The inter-SI weight attributed to the SI 1 is relatively high and evolves finally towards a
value equal to 0.6456. This means that the sparsity of the difference between x and the SI
1 has a larger impact on the minimization of equation (4.4) than the sparsity of the SAR
image to reconstruct itself (β0 = 0.3544). The inter-SI weight for SI 2 evolves towards a
value equal to 0.5212 and towards 0.3508 for SI 3 . The order of the values of the inter-SI
weights is in concordance with the quality of the SI estimated by calculating the distance
between x and the SI’s (table 4.2).
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FIGURE 4.11: inter SI weigths β1 using a single SI (SI 1, SI 2 or SI 3), for increas-
ing subsampling rates.
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SI 1 SI 2 SI 3

‖x− SI‖2 0.0805 0.1071 0.2408

β0 0.3544 0.4788 0.6492

βSI 0.6456 0.5212 0.3508

TABLE 4.2

The quality of the SI does not only vary between the multiple SI’s but can also change
inside a single SI. This variation of similarity inside (intra) the SI’s is countered with the
intra-SI weights. Wj ≥ 0 is a diagonal weighting matrix attributed to the SI zj and whose
diagonal elements (wj1, wj2, ..., wjn) are populated with the weights allocated to the dif-
ferent elements of zj. The weights are iteratively obtained by the RAMSIA algorithm.
Elements differing much from the corresponding element of the SI will receive lower
weights. On the other hand, elements with values close to the value of the corresponding
element of the SI will get a higher weight.

The influence on the reconstruction performance of the intra-SI weights is evaluated in
Figures 4.12 and 4.13. Figure 4.12 (a) and 4.13 (a) depicts the difference in absolute value
between the 810 elements (horizontal axis) of the SAR image to reconstruct and the ele-
ments of the SI’s SI 1 and SI 3 respectively. We note that the images share a high degree
of similarity since the graph is close to zero except for some peaks. When comparing SI
1 and SI 3, we observe that the peaks are much higher for SI 3. Figures 4.12 (b) and 4.13
(b) show the intra-SI weights attributed to the 810 elements of SI 1 and SI 3 respectively
without subsampling. We observe that the graphs follow closely the inverse trends of the
graphs in (a). Figures 4.12 (c) and 4.13 (c), finally show the intra-SI weights obtained with
RAMSIA for a subsampling rate equal to 30%. Even at low subsampling rates the weights
continue to follow the inverse trend of the difference in (a). This method of attributing
weights to the different elements of the SI is thus robust against subsampling.
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FIGURE 4.12: (a) Absolute value of the difference between the SAR image to
reconstruct and the SI 1 over all the elements of the SAR image. (b) The intra
SI weights obtained with RAMSIA for a subsampling rate equal to 90%. (c)The
intra SI weights (SI = SI 1) obtained with RAMSIA for a subsampling rate equal

to 30%.
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FIGURE 4.13: (a) Absolute value of the difference between the SAR image to
reconstruct and the SI 3 over all the elements of the SAR image. (b) The intra
SI weights obtained with RAMSIA for a subsampling rate equal to 90%. (c)The
intra SI weights (SI = SI 3) obtained with RAMSIA for a subsampling rate equal

to 30%.

Figure 4.14 depicts the mean reconstruction error for a subsampling rate equal to 0.02 and
increasing with a stepsize of 0.02 (horizontal axis) obtained with the RAMSIA algorithm
with a single SI. The experiment was performed 100 times for each of the subsampling
rates and with each of the three SI’s separately. Using SI 1 and SI 2, we obtain a very
similar result as with the `1`1-approach. For example, a mean reconstruction error equal
to 0.2 is obtained at a subsampling rate of 0.32 with the RAMSIA approach using SI 1
whereas we obtained this result at a subsampling rate of 0.34 with the `1`1-minimization
technique using the same SI. Comparing the results obtained with RAMSIA and the other
two techniques for SI 3, we observe that the mean reconstruction error does not pass the
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reconstruction error for the CS reconstruction without SI. This was not the case for the co-
herent background subtraction or the `1`1-minimization approach. Thanks to the weight-
ing mechanisms, the reconstruction performance can not deteriorate when adding SI into
the RAMSIA reconstruction. In other words: it is not necessary to estimate the quality of
the SI in order to decide if the SI can be added into the CS reconstruction. Adding poor
quality SI will be neglected thanks to the inter-SI weights. Moreover, the RAMSIA algo-
rithm will take the similar parts of the SI in consideration for the reconstruction, while
neglecting the elements of the SI which differ too much, thanks to the intra-SI weights.

FIGURE 4.14: Mean reconstruction error for increasing subsampling rates ob-
tained with the CS SAR image reconstruction with weighted SI: without SI, with

SI 1, SI 2 and SI 3.
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4.3.3 CS with multiple homogeneous weighted SI

In this section, multiple SI’s will be exploited for the reconstruction of the subsampled
SAR image. We compare three different approaches. A visual comparison of the recon-
structed SAR images of the test object with three defects, for subsampling rates equal to:
60%, 40%, 30% and 20%, is depicted in Figure 4.15:

1. Coherent background subtraction (figures in the left column of Figure 4.15). In this
case, each of the elements of the background is equal to the mean value obtained
from the corresponding elements of the different SI’s. If we compare the obtained
images to those obtained with CS without SI (the middle column in Figure 4.7), we
do not see a big improvement. At a sampling rate of 60% the defects are still clearly
visible, whereas at a subsampling rate of 40% this is not the case anymore.

2. `1`1 minimization (figures in the middle column of Figure 4.15). A single SI is ob-
tained by taking the mean value of each element over the different SI’s. The re-
construction quality for lower subsampling rates is slightly better than the quality
obtained with coherent background subtraction or without using SI.

3. CS with multiple weighted SI (figures in the right column of Figure 4.15). The
SAR images obtained with weighted SI are clearly of a higher quality then the ones
obtained with coherent background subtraction or `1`1-minimization. In contrast
to the previous approaches, the CS with mutiple weighted SI technique allows to
clearly detect the defects at a subsampling rate of 40% and even at 30% the defects
are still visible. The detection of the defects starts to become difficult at a subsam-
pling rate around 20%.

The same conclusions can be deduced from the graphs in Figure 4.16, where the mean re-
construction error, over 100 executions, is depicted for increasing subsampling rates. We
observe that the mean reconstruction error using the background subtraction approach is
even worse than the reconstruction without SI for subsampling rates above 52%. At lower
subsampling rates, below 40%, the coherent background subtraction approach performs
better than the CS reconstruction without SI. But, the defects are no longer visible at those
low subsampling rates. The `1`1-reconstruction technique performs better than the coher-
ent background subtraction or the CS reconstruction without SI up to a subsampling rate
equal to 72%. At subsampling rates between 70% and 90% both `1`1-minimization and
the CS reconstruction without SI perform evenly. Further, we clearly see that the RAM-
SIA algorithm outperforms all the other tested approaches over all subsampling rates.

The good reconstruction performance of the RAMSIA algorithm can be explained by the
excellent impact of the weights. Figure 4.17 depicts the variation of the inter-SI weights
β, where β0 corresponds to the weight attributed to the `1-norm of the SAR image to re-
construct and β1, β2 and β3 are the weights allocated to SI 1, SI 2 and SI 3 respectively. At
subsampling rates below 20% the weights vary, but for subsampling rates above 30% the
weights vary only smoothly. We further observe that the weight β3 stays very low over
for all subsampling rates. Indeed SI 3 is the poorest SI and thus will almost be neglected
by the RAMSIA algorithm. Whereas SI 1, the SI which shares the highest similarity with
the image to reconstruct, has the largest impact in the minimization equation (4.4).
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FIGURE 4.15: Reconstructed SAR images obtained with coherent background
subtraction (left column), `1`1-minimization (middle column) and RAMSIA

(right column) for subsampling rates equal to 60%, 40%, 30% and 20%.
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FIGURE 4.16: Mean reconstruction error for increasing subsampling rates ob-
tained with coherent background subtraction, `1`1-minimization and RAMSIA

using the three SIs .
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FIGURE 4.17: inter SI weights β j for increasing subsampling rates obtained with
the RAMSIA algorithm.
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4.4 Conclusions

This chapter started with a small introduction on additive manufacturing and explained
the need for adequate NDT techniques. In this chapter we proposed a mm-wave imaging
technique and tested this technique on a 3-D printed object with artificially created de-
fects. One of the drawbacks of this approach is the long measurement time and the high
data volumes created during the measurement. This is a major issue, since the measure-
ment speed is of high importance in NDT applications.

We demonstrated on the real data that Compressed Sensing allows to create high quality
mm-wave images from severely subsampled raw data. We further tested the use of a 2-D
DCT sparsifying transform. We observed that the augmented sparsity by the 2-D DCT
did not have a positive impact on the reconstruction performance.

Often, sparsity is not the only prior knowledge that can be used to reduce the number
of measurements. For the production of parts by additive manufacturing, a blueprint of
the object to print does exist. From this blueprint a prediction can be made of the mea-
sured signal during the non-destructive evaluation of the part. Or, if multiple parts are
produced, the mm-wave images should be identical except for printing errors or defects.
Finally, in recurrent inspections, a measurement taken at a previous moment in time does
exist. This supplementary information, known as Side Information can be exploited dur-
ing the mm-wave image construction from the subsampled raw data. In this chapter we
evaluated three approaches to add the SI: (1) coherent background subtraction, (2) `1`1-
minimization and (3) CS with weighted SI. The three techniques were tested using real
data SI of different quality. From these tests, we can conclude:

1. All three approaches allow to decrease the sampling rate if the SI is highly similar to
the image to reconstruct.

2. Background subtraction is the most sensitive approach for the quality of the SI. Both
the background subtraction approach and the `1`1-minimization technique can have
a negative impact if used with poor quality SI. This is not the case for CS with
weighted SI.

3. When having multiple SIs with varying qualities, the CS approach using inter-SI and
intra-SI weights will take advantage of the similarities while neglecting poor quality
SI. This approach clearly outperforms the other techniques.

We can conclude that mm-wave imaging allows the Non-Destructive in-depth imaging
of additive manufactured parts, using non-ionizing radiation in a stand-off setup. The
high number of measurements can be reduced using a CS algorithm for the construction
of the mm-wave images from the subsampled raw data. If SI is available, the SI can be
exploited using a CS reconstruction with multiple weighted SI algorithm. The advantage
of this approach over common techniques is that the quality of the SI does not need to be
estimated in order to decide if the SI can be added without negative impact on the image
quality. The algorithm autonomously neglects poor quality SI and exploits high quality
SI at two levels: (1) between the multiple SI’s and (2) between the elements of a single
SI. The results obtained using as well the synthetic data as the real data, illustrate the
important increase of the reconstruction quality compared to the common approaches.
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Chapter 5

Through-the-Wall Imaging

5.1 Introduction

Through-the-Wall Radar Imaging is a research domain which gained a lot of interest
over the last decennia, both within the scientific research community and the industry.
This technology, which is in full development, is of interest for police, defense forces
[Borek2005], fire and rescue personnel and first responders. Its primary goal is the de-
tection, classification and tracking of humans and moving objects behind man made and
visually opaque structures [Amin2017]. Recently, this type of radars has been used in
Nepal, where four man, trapped under bricks, mud and debris after an earthquake, were
found and rescued [Jet Propulsion Laboratory2015]. In a military and law enforcement
context, this type of sensors is used in hostile rescue missions or to provide the soldier
with situational awareness information before breaching a building in an urban environ-
ment [Farwell et al.2008]. Though the vast amount of research performed in this domain,
many issues remain open and technical improvements are still needed in order to make
this a mature and fully operational technology [Nkwari et al.2017]. In the remainder of
this introduction we will first give a brief overview of the related research projects and
main results in this area of research and subsequently we will discuss the state of the art
of commercially available TWI sensors.

5.1.1 State of the art research on Through-the-Wall Imaging

We will now give an overview of the main research topics, prototypes of TWI sensors
and results obtained on TWI published by various research institutes. We will confine
our overview to the imaging of scenes hidden behind a wall and populated by humans.
We will thus not treat the research performed on interior structure reconstruction [Ertin
and Moses2009, Subotic et al.2008], where the aim is to build a blueprint of a building nor
on vital body sign detection [Farwell et al.2008, Wang and Fathy2012] which focuses on
the detection of heartbeat, respiration and movement.

The first results of TWI radars emerged in the late 1990s and grew from the field of
Ground Penetrating Radars (GPR) [Amin and Ahmad2014]. The microwave region seemed
to be the best suited part of the EM spectrum to accomplish the tasks of a TWI sensor due
to the excellent penetration properties through man made structures [Frazier1997]. 2-D
images, visualizing a horizontal slice through the illuminated room, were obtained with
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sensors using ultrawideband pulses or Stepped Frequency Continuous Wave (SFCW)
radars, combined with a large (synthetic) antenna array [Barrie2004, Thanh et al.2008].
Imaging of a scene behind a wall, assuming free space propagation revealed to be a naive
approach since the interaction with the wall severely impacts the further propagation of
the EM waves. Shadowing, attenuation, multipath, reflection, refraction, diffraction and
dispersion effects must be taken into account in order to obtain high quality and reliable
images [Amin and Ahmad2014]. We will now give an overview of the solutions proposed
in the TWI radar literature. Table [5.1] summarizes the characteristics of the encountered
TWI radar prototypes used in a research context.

Wall modelling

From the parameters describing the characteristics of the wall, such as the dimensions
of the wall (length en thickness) and dielectric constant, the wall reflections can be mod-
eled and subtracted from the received raw data. The work in [Dehmollaian and Sara-
bandi2008] presents a method for estimating the wall parameters from the first wave
reflections. The drawback of this method is the need for a calibration step which must
be performed under exactly the same conditions as the actual measurement. The work in
[Leigsnering et al.2014] develops an analytical model for the received signal considering
wall reverberation, multipath and signal attenuation.

Wall mitigation techniques

Wall mitigation techniques are developed to suppress the wall clutter dominating the
radar image and are based on following assumptions: (1) the Round Trip Time (RTT) be-
tween the wall and the radar antenna is invariant over the antenna elements or antenna
scanning positions in the case of a SAR, (2) the wall is homogeneous and large compared
to the beam width of the antenna and (3) The wall is planar and causes specular reflec-
tions towards the radar antenna.
The work in [Yoon and Amin2009] applies spatial filters for mitigating the front wall re-
flection by removing the spatial zero-frequency and low-frequency components which
are supposed to be caused by the wall reflections. Two filters are implemented, a Mov-
ing Average filter (MA) and a notch filter, and their performances are evaluated on real
SFCW data. Both filters are reported to suppress the wall clutter significantly and thereby
increase the Target-to-Clutter Ratio (TCR).

A different approach for removing the strong reflections of the front wall is proposed
in [Tivive et al.2011a], by performing a eigen-analysis of the raw data through a singu-
lar value decomposition. Due to its strength, the wall reflections are generally present
in the dominant singular vectors and their presence can be removed by projecting the
measurements on the wall orthogonal subspace. This approach is further improved by
the authors in [Tivive and Bouzerdoum2013] by suppressing the remaining wall clutter
residual. Unfortunately, this technique was only tested on simulated data.
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Multipath

Besides generating strong clutter, the walls are also at the origin of false positive detec-
tions. False targets, often referred to as ghosts, make their appearance on through-the-
wall images and originate from multipath reflections between walls and targets. The
work in [Ahmad2008], proposes an approach for determining if a target is real or must be
neglected. The method requires radar images obtained from different locations along two
sides of the room. The final image is then obtained through an RCS-based direct thresh-
olding scheme for the fusion of the two images. [Leigsnering et al.2014] subdivides the
multipath propagation into four categories:

1. Interior wall multipath: indirect paths originating form the reflection on one or more
walls.

2. Floor and ceiling multipath: originating from secondary reflections on the floor or
ceiling.

3. Wall ringing multipath: originating from multiple reflections within the front wall.

4. Interaction multipath: originating from target-to-target interaction.

and develops a model for the interior and wall ringing path for a scene with a single wall.
The work in [Setlur et al.2011] and [Ma et al.2018] proposes a theoretical model for the
interior wall multipath propagation in a room delimited by 4 perpendicular walls. This
model is not only utilised to designate and mitigate the false targets, but also associates
each ghost to its corresponding true target. The ghost signal is then mapped back to its
true target which enhances the signal to clutter ratio of the target. Recently, a novel ap-
proach for ghost suppression and which is also immune to errors in the wall model was
presented in [Guo et al.2018] and is based on array rotations. This method exploits the
fact that the target location is independent of the array configuration while this is not the
case for the location of the ghosts. Thanks to the array rotation, multiple images are gen-
erated and a ghost-free image is then obtained through incoherent multiplication fusion.

Compressed Sensing

The idea of applying Compressed Sensing on TWI measurements was first launched by
Yoon and Amin in [Yoon and Amin2008] and was motivated by the observation that
(I)SAR and TWI measurements require large bandwidth signals to be collected over a
considerable amount of time or amount of antenna locations, resulting in a large num-
ber of data samples. Reducing the number of samples and at the same time obtaining
images with the same image quality as obtained for fully sampled measurements, would
thus reduce the measurement time. This reduction is important in TWI if only a short
time window is available for performing the measurements or when the targets need to
be stationary in order to avoid smearing and blurring. This work proves the potential
of applying CS through a series of synthetic measurements but also stipulates that the
technique was at that time not mature. The most important obstacle for CS to be effective
for TWI is the fact that the image is not sparse, even if the number of targets is sparse,
due to the wall effects described earlier in this introduction.
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Subsequent to this first publication, the application of CS to TWI was further investi-
gated in [Ahmad and Amin2012] and [Ahmad and Amin2013], where the sparsity of the
image to reconstruct was obtained by using a change detection approach. The data used
as measurement is obtained by the coherent subtraction of two measurements taken at
a different moment in time. The work in [Leigsnering et al.2011] utilizes a 2D Discrete
Wavelet Transform (DWT) as sparsifying bases. The `1−norm of the DWT of the scene is
minimized instead of imposing the sparsity of the through-the-wall image.

The work in [Lagunas et al.2012b] investigates if the wall clutter mitigation techniques
maintain their performance when the measurements are undersampled and the image is
reconstructed with a CS algorithm. In particular, the authors test how the SVD based and
spatial filtering wall mitigation techniques perform. They report that those techniques do
not lose in performance. However, it should be noted that the samples were taken uni-
formly over the bandwidth. Later in this chapter, we will prove that random sampling
outperforms a uniform sampling strategy for radar imaging. If the frequencies are ran-
domly chosen over the bandwidth, the above mentioned assumptions which forms the
basis of the wall clutter mitigation no longer holds. The authors in [Ahmad et al.2013, Ah-
mad et al.2015] come to the same observation and propose a discrete prolate spheroidal
sequence based wall clutter rejection scheme, which allows to capture the energy of the
wall returns at each antenna position. This signal is then subtracted from the randomly
sampled data in order to obtain an image of the targets [Ahmad et al.2013, Zhu and
Wakin2015].

5.1.2 Commercial Through-the-Wall Imaging sensors

Multiple Commercial Of-The-Shelf (COTS) through-the-wall radar systems are available
these days. An overview of the recent and today available systems are enlisted together
with their specifications and output in tables 5.2 and 5.3. Some of them have been devel-
oped through a collaboration between a governmental organisation and a private com-
pany. This is the case for the Akela Standoff Through-wall Imaging Radar (ASTIR) which
was developed by the company AKALA in close collaboration with the american Na-
tional Institute of Justice. The image in table 5.2 shows the result of a measurement of
a standing person walking inside a building. The system is capable of detecting station-
ary targets. Other systems, like the Prism 200, the ReTWis 5 and the Xaver 100 can only
detect moving targets. The ReTWis 5 can perform the detection and measure the posi-
tion in range and bearing of a human target by detecting the small Doppler frequency
originating from the respiratory movements of the thorax. The Israeli company Camero,
producer of the Xaver 100, developed recently two more advanced systems: the Xaver
400 and Xaver 800, both capable of detecting moving targets and plotting them together
with stationary targets, like for example walls.

The most important characteristics shared by the different commercial of-the-shelf through-
the-wall radars are:

1. The commercial systems are small and lightweight and do not use large antenna
arrays or do not perform a scan along the wall. This illustrates that in order to be
operational relevant, the system must be operable without the need to access every
position along the wall and without long scanning times.
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2. The commercial systems use small bandwidths (except for the Xaver which uses
frequencies going up to 10 GHz).

3. The commercial systems deliver range and detection information but do not deliver
high-resolution radar images.

4. The commercial sensors are used to detect human targets or the movement of human
targets.

We can thus conclude that there is a large gap between the TWI radar prototypes used in
a research context and the recent commercial of-the-shelf through-the-wall radars. The
research prototypes try to deliver high quality and high resolution images of metallic
reflectors whereas the COTS systems deliver more rudimental images with range and
detection information. The commercially available systems on the other hand are smaller
(no large antennas or long scanning paths) and also uses small bandwidths.

Compressed Sensing can help to bridge this gap by reducing the number of samples
and or number of antenna elements or antenna positions for a scanning sensor on the
one hand and on the other hand delivering high-resolution images. But, to make the
detection of human targets possible through most type of walls, CS will have to work in
concert with efficient wall clutter and multipath mitigation techniques.



5.1. Introduction 97
T

A
B

L
E

5.
2:

O
v

er
v

ie
w

of
co

m
m

er
ci

al
of

-t
h

e-
sh

el
f

T
W

I
ra

d
ar

s

P
ro

d
u

ct
R

ad
ar

ty
p

e/
w

av
ef

or
m

fr
eq

u
en

cy
w

al
ls

ta
rg

et
s

ou
tp

u
t

A
ST

IR
SF

C
W

2.
9-

3.
6

G
H

z
co

n
cr

et
e

w
al

ls
st

at
io

n
ar

y
an

d
m

ov
in

g
h

u
m

an
ta

rg
et

s

R
eT

W
is

5
SF

C
W

1.
9-

3.
6

G
H

z
al

lb
u

il
d

in
g

m
at

er
i-

al
s

d
et

ec
ti

on
of

re
sp

ir
at

or
y

m
ov

em
en

ts
of

h
u

m
an

s

P
ri

sm
20

0
FM

C
W

1.
7-

2.
2

G
H

z
al

lt
yp

es
of

w
al

ls
d

et
ec

ti
on

of
m

ov
in

g
ob

-
je

ct
s/

h
u

m
an

s

X
av

er
10

0
P

u
ls

e
3-

10
G

H
z

al
lt

yp
es

of
w

al
ls

d
et

ec
ti

on
of

m
ov

in
g

h
u

-
m

an
s



98 Chapter 5. Through-the-Wall Imaging

T
A

B
L

E
5.3:

O
v

erv
iew

of
com

m
ercialof-th

e-sh
elf

T
W

I
rad

ars
-

con
tin

u
ed

P
rod

u
ct

R
ad

artyp
e/

w
aveform

freq
u

en
cy

w
alls

targets
ou

tp
u

t

X
av

er
400

P
u

lse
2.9-3.6

G
H

z
alltyp

es
of

w
alls

d
etects

m
ov

in
g

h
u

m
an

s
an

d
d

isp
lays

static
objects

targets

X
av

er
800

FM
C

W
3-10

G
H

z
alltyp

es
of

w
alls

d
etects

m
ov

in
g

h
u

m
an

s
an

d
d

isp
lays

static
objects

targets



5.2. Through-the-Wall radar experiments 99

5.2 Through-the-Wall radar experiments

In order to close the gap between the commercially available systems and the prototypes
used in a research context, we will perform a series of experiments using Compressed
Sensing on real TWI measurements. The ultimate goal is to reduce the number of samples
that need to be taken in order to obtain a more practical system while preserving the
image resolution, by reducing the measurement time. The real data is obtained through a
series of tests using a TWI radar prototype that we built using a Vector Network Analyser
(VNA). We start this section with a description of the prototype assembled for performing
the TWI experiments, the choice of the parameters of our system and an explanation of
the measurement strategy. We then describe the measurement setups, walls and scenes
we built during our TWI radar measurement campaign and this section ends with the
images obtained from these measurements through the application of a standard SAR
compression algorithm.

5.2.1 Through-the-Wall radar prototype

Description

1

23

4 5

(a)

(b)

FIGURE 5.1: (a) A picture of the through-the-wall system setup with (1) the
motorized board, (2) the VNA, (3) the power source, (4) the horn antenna and
(5) the computer. (b) A screenshot of one of the windows of the user interface of

the Labview program.



100 Chapter 5. Through-the-Wall Imaging

A through-the-wall SAR system was set up in the CISS department at the Royal Military
Academy, for the experiments described and studied in this chapter. The self-built system
is composed of:

– One motorized board and a rail

– One power source for the motorized board

– One Vector Network Analyzer (VNA): Rhode&Schwarz ZVA24

– One horn antenna: Schwarzbeck BBHA 9120

– One personal computer running Labview

Both the VNA and the motorized board are connected to the computer (via a GPIB and
USB port respectively). We wrote a program with a graphical user interface (Figure 5.1
(b)) in Labview with following functionalities:

1. Input of the settings for the VNA:

– start and stop frequencies and the number of equispaced frequencies within the
chosen bandwidth

– choice of the S-parameter: VNA port for the Input/Output
– power
– time gate: on/off, start and stop time
– time gate type, type of filter, time gate shape and sideband suppression

2. Input of the parameters for the displacement of the motorized board:

– velocity
– total length of the displacement
– number of measurement points

3. Launch the sequence for the SAR measurement and synchronize the displacements
of the board and the measurements taken by the VNA.

4. Saving the raw data of all the measurements performed by the VNA over the whole
scan.

The measurements are performed adhering to a stop and go method: the moving plat-
form executes the displacement commanded by the Labview program along the rail and
stops at a measurement position. Subsequently the VNA performs a measurement which
is stored and the platform moves to the next sensor position to perform a next measure-
ment. We have chosen to measure the S11-parameter since this allows to use a single
antenna for transmitting and receiving:

S11( fp) :=
SRx( fp)
SE( fp)

[dB], (5.1)

where SRx( fp) and SE( fp) are the complex amplitudes of the received signal and the
emitted signal at frequency fp respectively. This choice has the advantage, compared to
measuring the S21-parameter, that we avoid misalignment problems and the crosstalk be-
tween the receiving and transmitting antennas.

The antenna is positioned with the smallest dimension horizontally. This choice is moti-
vated by the fact that we want to obtain the largest opening angle in the plane we want to
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image. Each point in the scene will thus be illuminated over a maximum number of po-
sitions. This way, we synthetically create the largest possible antenna and obtain a better
resolution in the cross-range dimension.

TWI radar parameters

TWI radar parameter Value

Starting frequency f0 1 GHz
Bandwidth 4 GHz
Frequency step ∆ f 34.188 MHz
Scanning distance 4 m
Number of cross-range measurements 80
Number of frequencies 118
Aperture angle θ (-3 dB) at 3 GHz 40◦

Range resolution 0.038 m
Cross-range resolution 0.078 m

TABLE 5.4

An overview of the parameters of the TWI SAR prototype is given in table 5.4. The choice
of the utilized frequency band was made after measuring the transmission characteristics
of the two types of material used to build the walls for the experiments. For this test, two
antennas are placed facing each other, separated by 2 m and are connected to ports one
and two of the VNA. We then measure the S12 transmission coefficient over the whole
bandwidth of the antennas for three different configurations: (1) free space between the
two antennas, (2) a wall of aerated concrete blocks placed perpendicular and in the mid-
dle of the two antennas and (3) a wall of hollow concrete blocks in between the two
antennas. Figure 5.2 shows the outcome of these experiments. We observe first of all
that the transmission coefficient decreases for increasing frequencies for the three experi-
ments. This trend is most noticeable when the walls are in between the two antennas and
we measure a serious reduction of the transmission through the blocks for frequencies
above 5 GHz. This trend explains why most TWI radars operate at frequencies between
500 MHz and 5 GHz. We also observe a strong reduction of the transmission properties
for the hollow concrete blocks between 2 and 3 GHz. This negative transmission peak
disappeared whenever we changed the orientation of the hollow concrete blocks. This
peak originates thus from the geometric properties of the blocks. After the evaluation of
these experiments, we decided to perform the measurements between 1 GHz and 5 GHz.

The bandwidth of 4 GHz defines the resolution in the range dimension, which is equal
to 3.75 cm. If we choose the size of the range bins equal to this resolution, i.e. we do not
apply any oversampling, we need 118 range bins to cover a range equal to 4.425 m. If we
want the linear set of equations, describing the measurements, to have a single solution
for the reflectivity coefficient of each range bin, the number of samples needs to be equal
to 118. We will thus select 118 equispaced frequencies over the bandwidth of 4 GHz. This
explains the frequency step equal to 34.188 MHz.
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The SAR TWI system scans the scene by performing a displacement in the cross-range
dimension parallel to the wall over a total distance of 4 m. The cross-range resolution is
calculated by:

∆rcross−range =
c

2 f sin(θ)
(5.2)

and varies between 15.06 cm (for f = 1 GHz and θ = 95◦) and 3.92 cm (for f = 5 GHz and
θ = 50◦). We approximate the obtained resolution in cross-range direction from the center
frequency: 7.78 cm (for f = 3 GHz and θ = 40◦). We decided to take measurements every
5 cm in order not to lose information along the cross-range dimension.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Frequency [GHz]

-80

-70

-60

-50

-40

-30

-20

-10

S
21

[d
B

]

empty
aerated concrete
hollow concrete

FIGURE 5.2: Transmission coefficient S21 in [dB] for free space, with an aerated
concrete wall and with a hollow concrete wall between the two antennas.
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5.2.2 Measurement setup

(a)

39 cm 14 cm

19 cm

(b)

FIGURE 5.3: (a) Aerated concrete block and (b) Hollow concrete block used to
build the walls for the TWI experiments.

We performed a series of tests with the TWI SAR prototype on scenes with self built walls.
Two types of materials, used frequently for building external walls, were used : (1) Aer-
ated concrete blocks (Figure 5.3 (a); depth: 15 cm, width: 60 cm and height: 25 cm) and
(2) Hollow concrete blocks (Figure 5.3 (b); depth: 14 cm, width: 30 cm and height: 18 cm).
The rooms built for the experiments are delimited by two walls parallel to the scanning
track of the sensor. These walls were built by piling the described blocks without the use
of mortar. This allowed us first to build, demolish and rebuild the walls with the same
blocks and second we did not need to wait until the mortar dries before performing mea-
surements. The rooms did not have walls in the across track dimension.

During the experiments the sensor was moving on a track parallel to the front wall and
at a distance of 1 m. The walls are 4 m long and 1.5 m high. The back wall is at a distance
of 3m from the front wall and parallel to the front wall. Figure 5.4 shows a photograph
taken during one of the experiments. The sensed scene consists of a room with the pres-
ence of three human targets standing at different distances from the front wall. The data
from this experiment will be used in the remainder of this chapter.
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FIGURE 5.4: Example of an experiment with the TWI radar system.
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5.2.3 Classic Synthetic Aperture Radar
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FIGURE 5.5: Images obtained with a Range Doppler SAR compression algo-
rithm of three scenes together with a schematic representation of the scenes.

TWI experiments of three different scenes will be used in the next sections. Figure 5.5 de-
picts the SAR compressed images after applying a common Range Doppler compression
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algorithm [Bamler1992] together with a schematic representation of the three scenes:

1. The first scene consists of an empty room delimited by two walls. This measurement
will be used as background for performing coherent background subtraction.

2. A scene populated by three human targets standing at three different distances (30
cm, 1 m and 2 m) from the front wall. This experiment will be used throughout the
remainder of this chapter.

3. A smaller scene of 2 m by 2.45 m with a single wall and a single human target at a
distance of 1 m behind the wall. This smaller scene will be used for evaluating the
performance of the wall mitigation techniques.

5.3 Compressed Sensing reconstruction

5.3.1 Through-the-Wall radar measurement matrix

The TWI radar measurement matrix is a SAR measurement matrix and is created as
follows. For each resolution cell within the sensed scene, we create a raw data matrix
populated by synthetic measurements of scenes where all resolution cells but one are
characterised by a reflection coefficient equal to zero. These raw data matrices are then
vectorised and form the columns of the measurement matrix. The number of columns
corresponds thus to the number of resolution cells within the scene. The quality of the
measurement matrix, which highly impacts the performance of the CS reconstruction,
depends completely on the veracity of the synthetic measurements within the measure-
ment matrix.

In chapter 3, each of the synthetic measurements performed for populating the measure-
ment matrix, are obtained through a propagation model assuming free space conditions.
The signal, after homodyne demodulation, coming from the reflection on a target (at po-
sition x), characterised by reflection coefficients al and received at sensor position (p),
corresponds to:

sx
p =

L

∑
l=1

al exp

{

−j2π fl
2R(x, p)

c

}

, (5.3)

where l is one of the L discrete frequencies emitted by the SFCW sensor and R(x, p) is the
euclidean distance between the antenna and the target. As explained in the introduction
of this chapter, the free space propagation model is an inaccurate model once the signal
reaches a wall. Figure 5.6 shows different unique round-trip paths between the sensor
and a target [Leigsnering et al.2014]. In this section we will derive a more accurate model
for the Round Trip Time (RTT) for EM waves passing through walls. The proposed model
will take into account wall reverberations, transmission delays and attenuation but we
will ignore interior wall and interaction multipath.
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FIGURE 5.6: Round trip paths with maximum 1 reverberation and 1 multipath
reflection.
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FIGURE 5.7: Schematic representation of the EM signal path through a wall.

Two wall parameters are supposed to be known for the derivation of the model:

1. εr: the relative permittivity (= ε/ε0)

2. d: the thickness of the wall
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First, an error on the location of the targets will be induced if not taking into account
(1) the decreased velocity of the EM wave when propagating through the wall and (2)
the refraction of the EM wave when the wave enters the front wall. Second, multiple
reflections inside the wall (between the front and the back of the wall) will lead to the
apparition of copies of the wall and or targets, known as wall ringing. Both phenomena
will now be added to the model for the received reflections after propagation through a
homogeneous, one layered wall.

The distance ∆x in Figure 5.7 is equal to:

∆x = (∆z− d) tan(θair) + d(1 + 2iw) tan(θwall), (5.4)

where iw is the number of internal reflections within the wall. The relationship between
the angles θair and θwall is given by Snell’s law:

sin(θair)
sin(θwall)

=
√

εr. (5.5)

The nonlinear system of equations formed by the equations (5.4) and (5.5) can be solved
using the Newton method. The one way propagation time becomes [Leigsnering et al.2014]:

τ/2 =
∆z− d

c cos (θair)
+
√

εrd(1 + 2iw)
c cos (θwall)

, (5.6)

where for iw = 0, we obtain the direct path.

Wall transmission coefficients

While propagating through the wall a considerable part of the signal will be absorbed
and only a fraction will be transmitted. In [Abdeladi2015], the corresponding normalized
transmission coefficients are deduced. The transmission coefficient for the direct path is
equal to 1 and the coefficients for iw > 0 are equal to:

σ =
2 cos (θair)

cos (θair) +
√

εr cos (θwall)
2
√

εr cos (θwall)
cos (θair) +

√
εr cos (θwall)

(
− cos (θair) +

√
εr cos (θwall)

cos (θair) +
√

εr cos(θwall)

)2iw

.

(5.7)
The transmission coefficients for iw > 2, tend towards zero and we will thus neglect the
reflections after more than two reverberations inside the wall.

Antenna pattern

Antenna diagrams are defined in the case of TEM (Transverse Electromagnetic Mode)
propagation, which means that the electric and magnetic fields are perpendicular and
transverse to the direction of propagation of the EM wave. The area where this occurs is
called the far field or Fraunhofer area. A sufficient condition for the minimum distance
to the antenna is:

R ≥
2D2

λ
(5.8)
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The distance is obtained at 1 GHz and is equal to 0.95 m.

The dimensions of the synthetic aperture created by the SAR system depend on the ra-
diation pattern of the antenna. The larger the illuminated area, the larger the synthetic
aperture and the better the cross-range resolution. The antenna pattern can be charac-
terised by the -3 dB opening angle and we can consider to have a constant radiation
within this whole angle and no radiation outside this -3 dB angle. This simple strategy
for modelling the Antenna radiation pattern is naive, knowing that:

1. The -3 dB opening angle varies over the emitted bandwidth. We read for example in
the technical specifications of the antenna an opening angle of 52.9◦ at 2 GHz and a
much smaller angle of 32.4◦ at 4 GHz.

2. The radiated power over the different angles within the opening angle is not con-
stant.

In order to obtain an accurate model for the behavior of the antenna, we performed a
series of antenna measurements for measuring the antenna diagram. The antenna dia-
grams were obtained at the LEMA-laboratory for 201 frequencies over the total utilized
bandwidth during the TWI experiments (1 to 5 GHz) and for angles ranging from -70◦

to +70◦. The normalized antenna diagrams obtained from these experiments at 1 GHz, 2
GHz, 3 GHz, 4 GHz and 5 GHz are depicted in Figure (5.8). We observe indeed an im-
portant change of the radiation pattern within the opening angle and over the different
frequencies. We used a linear interpolation between two measured values for angles or
frequencies for the antenna gain which we integrate in the equation (5.9).
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FIGURE 5.8: Antenna diagrams at 1 GHz to 5 GHz.
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Received signal model

After adding the propagation model of the signals through the wall, the transmission co-
efficients and the antenna diagram to the received signal model, equation (5.3), becomes:

sx
p =

2

∑
iw=0

L

∑
l=1

c2
AE(l, x, p)σ(iw, εr, x, p) exp {−j2π fl RTT(iw, εr, d, x, p)}, (5.9)

where cAE is the normalized antenna gain at frequency l, σ is the normalized wall trans-
mission coefficient calculated from (5.7) and the τ is obtained from (5.6).

5.3.2 Compressed sensing reconstruction

We now reconstruct the TWI SAR image obtained for the scene 5.5 (d), using a Com-
pressed Sensing algorithm. We do not exploit the structure in the sparsity. One can easily
observe that the non-sparse components in the images are clustered. This additional
structure could be exploited by using CS for block sparse signals [Eldar et al.2010]. The
measurement matrix A is obtained using the signal model described by equation (5.9).
The CS algorithm used is l1qc-logbarrier from the package `1-magic, a log-barrier algo-
rithm for second-order cone programs. The results obtained using a decreasing number
of randomly selected frequencies, is shown in Figure 5.9. We observe visually that the
image quality rapidly decreases for decreasing subsampling rates. With 70% of the origi-
nal number of samples, the targets are already drown in the noise. We remark that when
the subsampling rates decrease, the almost constant background clutter level around the
targets becomes salt and pepper noise with very dark and very light pixels.
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FIGURE 5.9: CS reconstruction (using `1-magic) for undersampling rates rang-
ing from 100% down to 50%.
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Evaluation of the reconstruction performance

We now want to quantify the image reconstruction performance of the CS reconstruction
for varying subsampling rates. Popular metrics used for this task are:

1. The probability of detection for a fixed false alarm rate. CA-CFAR algorithms have
been applied in [Khamlichi et al.2012, Debes et al.2010, Sun et al.2014] for this pur-
pose. We implemented a CA-CFAR algorithm as follows: First, we select the pixel
with the maximum value of each target. Second, we determine the size of the guard
zone which will not be used to calculate the detection threshold. Finally we choose
the dimensions of the zone with training cells which will be used to determine the
detection threshold, supposing Gaussian noise:

Threshold = NT(P−1/NT
f a − 1)Pn (5.10)

with NT the number of training cells, Pf a is the probability of false alarm and Pn is the
average pixel values over the training cells. When performing this test on the scene
reconstructed with 100% of the samples, the three targets are not detected, even for
low probabilities of false alarm. The hypothesis of Gaussian noise is probably not
valid.

2. Target to Clutter Ratio. TCR was used as a metric for the evaluation of TWI in [Lim
and Nam2014, Narayanan et al.2017, Lagunas et al.2012a] and is calculated as:

TCR = 20 log10

(
max(k,l)∈At

|b(k, l)|
1

Nc
∑(k,l)∈Ac

|b(k, l)|

)

, (5.11)

with At the target area, Ac the clutter area, Nc the number of elements within the
clutter area and b(k, l) the pixel value in element (k, l).
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FIGURE 5.10: SAR image of the scene with framed in red: the target areas and
in blue: the clutter areas.

Figure 5.10 shows the chosen target areas (within the red rectangle) and clutter ar-
eas(within the blue rectangle). The corresponding TCRs are listed in table 5.5 to-
gether with the maximum value within the target area and the mean of the clutter
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TABLE 5.5: TCR for the three targets.

Target 1 Target 2 Target 3
100% 50% 100% 50% 100% 50%

TCR [dB] 6.90 10.85 9.62 13.97 7.37 18.39

Max(At) 4.8E-3 4.9E-3 4.4E-3 4.0E-3 2.7E-3 5.3E-3

Mean(Ac) 2.1E-3 1.4E-3 1.5E-3 7.9E-4 1.1E-3 6.4E-4

area. Although, it is visually unequivocally clear that the targets are no longer visi-
ble at a subsampling rate of 50%, the TCR at 50% is higher than the TCR obtained at
100% for the three targets. We observe that the targets disappear in the spiky clut-
ter, which explains the high maximum in the target area and the low mean value in
the clutter area. For our case, the TCR can thus not be used as a reliable metric to
measure the reconstruction performance.

3. Peak Signal-to-Noise Ratio (PSNR) was used as a metric for evaluating CS applied
on TWI in [Gaikwad and Shevada2013] and [Mohsin Riaz and Ghafoor2012]. The
reference image used to calculate the PSNR is the image obtained with 100% of the
samples and serves as a pseudo-truth. Figure 5.11 shows the mean PSNR of 32
reconstructions of the scene with three human targets obtained with an increasing
number of samples going from 5% of samples up to 90% of samples. We notice that
the PSNR strongly decreases between 65% an 75%, which corresponds with what
we observe visually in Figure 5.9.
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FIGURE 5.11: PSNR of the CS reconstructed TWI measurement as a function of
the subsampling ratio
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5.3.3 Sampling strategies

The results presented in the previous subsection are obtained when applying a random
selection of frequency samples over all the emitted frequencies and all the sensor posi-
tions. When applied in a real environment, some operational constraints like the access-
ability of the sensor positions, the availability of frequencies due to for example jamming
or authorizations, can dictate a different subsampling strategy. We will now evaluate
the impact of the sampling scheme on the reconstruction performance. We consider 4
sampling schemes:

1. Random frequency sampling in range and cross-range dimension (Figure 5.12 (a)).

2. Random sensor position sampling. The raw data contains the full received signal
sampled at the Nyquist rate from a random number of sensor positions (Figure 5.12
(b)).

3. Random frequency sampling which is fixed over the different sensor positions. At
each position, the reflectivity of the scene is measured at the same random frequen-
cies (Figure 5.12 (c)).

4. A combination of sampling strategies (1) and (2) (Figure 5.12 (d)).
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FIGURE 5.12: Sampling strategies

The performance of the CS reconstruction of the TWI scene with the three human targets,
applying the four sampling strategies is measured as the PSNR and is depicted in Figure
5.13. The best result is obtained when adopting a random frequency sampling strategy
in range and in cross-range dimensions. The worst result is obtained for using the same
frequencies over all the sensor positions.
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FIGURE 5.13: PSNR of the CS reconstructed TWI obtained with four different
sampling strategies.

5.3.4 Sparsifying bases

The mediocre results obtained with the CS reconstruction of the TWI scene for decreas-
ing subsampling rates can be ascribed to the fact that the TWI is not sparse. We will
explore different solutions to circumvent this problem. A general solution for using CS
for reconstructing non-sparse signals is the application of a sparsifying transform on the
signal to reconstruct. Instead of reconstructing the non-sparse signal, we reconstruct the
sparse transformation of that signal. After the CS reconstruction, the signal is obtained
by applying the inverse transform.

We evaluate the use of two different sparsifying transforms:

1. The Daubechies-1 wavelet transform or Haar wavelet.

2. The Discrete Cosine Transform (DCT).

If we reconstruct the transformed signal, the measurement matrix needs to be right mul-
tiplied with the inverse transform. Instead of creating the transformation matrices ex-
plicitly, we use the Matlab function ’handles’ for creating implicit matrices, which are
accepted as inputs by the `1-magic package. This way, we are able to use the Matlab
transformation functions and do not have to write transform and inverse transform ma-
trices.

Figure 5.14 depicts the histograms of the normalized pixel values of (a) the original TWI
scene, (b) the wavelet transform and (c) the DCT transform of the same scene. We see
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that the sparsity (the number of almost zero valued pixels) is increased for the wavelet
transform and is even more increased after applying the DCT transform.

(a) (b)

(c)

FIGURE 5.14: Histograms of the normalized pixel values of (a) the original TWI
scene, (b) the wavelet transform of the scene and (c) the DCT of the scene.
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FIGURE 5.16: CS reconstruction, left column: without transform, middle col-
umn: using a wavelet transform and right column: using the DCT.

Figure 5.16 depicts the resulting images obtained without the use of a sparsifying trans-
form (left column), by applying the wavelet transform (middle column) and by using
the DCT (right column), for a subsampling rate equal to 80% and decreasing down to
30%. We observe that the targets remain visible for a subsampling rate of 60% in the case
of the wavelet transform and start to fade away only around 30% when applying the
DCT sparsifying transform. These conclusions are confirmed in Figure 5.17, showing the
PSNR for increasing subsampling rates. Whereas the PSNR starts to decrease drastically
for subsampling rates beneath 75% when not applying a sparsifying transform, the PSNR
stays almost constant down to subsampling rates equal to 60% for the wavelet transform.
When applying a DCT, the PSNR remains higher down to a subsampling rate of 25%.
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FIGURE 5.17: PSNR for increasing subsampling rates without using a sparsify-
ing transform, with the wavelet transform and with the DCT.
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5.3.5 Wall mitigation techniques

If the following assumptions can be considered to be true: (1) The front wall is parallel to
the scanning path, (2) The front wall is large compared to the dimensions of the scene, (3)
The front wall is homogeneous and the front wall reflections dominate the rest of the re-
flected signal, several techniques can be utilized in order to suppress the wall reflections
and thereby mitigate the wall clutter. We will now evaluate four different techniques:
(1) Coherent background subtraction, (2) the Moving Average filter (MA); (3) Singular
Value Decomposition (SVD) and (4) Robust Principal Component analysis (RPCA). We
will evaluate these techniques when reconstructing the fully sampled data and we will
also evaluate the robustness of the techniques against subsampling. The performance
will be evaluated by calculating the Target to Clutter Ratio (TCR). The TCR reveals to
be a good metric for the wall mitigation techniques when using the fully sampled data,
which is not the case for subsampled data as explained before. We will be evaluate the
resulting image visually when applying a random subsampling of the raw data.

The data used for evaluating the wall mitigation techniques are the real TWI measure-
ments of the scene containing a single wall and a single target at a distance of 1 m behind
the wall (Figure 5.5 (c)). Figure 5.18 shows the reconstructed images of this scene for
sampling rates equal to 100%, 80%, 70% and 60% without using one of the mitigation
techniques. We see again that the target starts to vanish for subsampling rates below
80%.
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FIGURE 5.18: Reconstruction of the TWI scene with a single target for subsam-
pling rates equal to 100%, 80%, 70% and 60%.

(1) Coherent background subtraction:

Coherent background subtraction is a very simple but effective approach to suppress the
wall clutter. Its biggest drawback is the need for a measurement performed at a different
moment in time (when the target was not at the same spot in the scene) but under the
exact same measurement conditions. The background measurement used for this experi-
ment was performed right after the actual measurement of a room left completely empty.
The background measurement is than coherently subtracted from the measurement of
the scene with the target. The CS reconstruction is applied on the measurement after the
subtraction. The obtained image contains thus only the impact of adding the target.
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When comparing the images obtained from the fully sampled data, the TCR increases
from 5.73 dB for the original image towards 32.93 dB after applying coherent background
subtraction. We also observe that the technique is very robust against subsampling. At a
subsampling rate as low as 10%, the target remains clearly visible (Figure 5.19).

1 1.5 2 2.5
range [m]

0

0.5

1

1.5

2

cr
os

s-
ra

ng
e 

[m
]

100%

1 1.5 2 2.5
range [m]

0

0.5

1

1.5

2

cr
os

s-
ra

ng
e 

[m
]

50%

1 1.5 2 2.5
range [m]

0

0.5

1

1.5

2

cr
os

s-
ra

ng
e 

[m
]

25%

1 1.5 2 2.5
range [m]

0

0.5

1

1.5

2

cr
os

s-
ra

ng
e 

[m
]

10%

FIGURE 5.19: CS Reconstruction with coherent background subtraction for sam-
pling rates equal to 100%, 50%, 25% and 10%.
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(2) Moving average filter:
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FIGURE 5.20: Reconstruction of the TWI scene with a single target, after ap-
plying a moving average filter on the raw data, for subsampling rates equal to

100%, 60%, 50% and 40%.

The total signal received by the radar at the scanning position p can be decomposed into
two signals received after the reflection on the wall or on a target:

s(p, t) = sw(t− RRTwall) + st(t− RTTtarget), (5.12)

where sw is the signal, described by equation (5.9), reflected by the front wall in the direc-
tion of the sensor and received after the Round Trip Time (RTTwall) between the sensor
and the wall and st is the signal, described by equation (5.9) and received after reflection
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on a target. Under the previous made hypothesis, the reflection coming from the wall can
be supposed to be invariant over the different sensor positions and can thus be filtered
out by using a moving average filter, which is a simple non-causal Finite Impulse Re-
sponse (FIR) filter, used here to filter out the components with a spatial frequency equal
to zero.
The signal at frequency fq and at sensor position p, after applying the MA filter is:

zMA(p, fq) = z(p, fq)− z̄( f q), (5.13)

where:

z̄( fq) =
∑N

m=1 z(m, fq)
N

, (5.14)

if taking the whole scanning path into consideration. The work in [Amin and Ahmad2014]
demonstrates that this corresponds to removing the spatial frequency component κ = 0.
Taking the discrete Fourier transform ZMA(κ, fq) of (5.13):

ZMA(κ, fq) =
N

∑
m=1

(
z(m, fq)− z̄( fq)

)
exp{−j2πκm/N}, (5.15)

we obtain that:

ZMA(κ, fq) =
{

Z(κ, fq) if κ 6= 0
0 if κ = 0

(5.16)

The images in Figure 5.20 show the results obtained after applying a MA filter on the
raw data for subsampling rates equal to 100%, 60%, 50% and 40%. At a subsampling rate
equal to 100% we measure an increase of the TCR from 5.73 dB to 24.89 dB thanks to the
application of a moving average filter. We further observe that the target is not longer
visible for sampling rates below 60% despite the sparsity of the image after applying a
MA filter. This can be explained by the random sampling of the frequencies over the
cross-range dimension. By selecting different frequencies over the sensor positions, the
invariant characteristic in the cross-range dimension starts to disappear.
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(3) Singular value decomposition:
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FIGURE 5.21: Reconstruction of the TWI scene with a single target using SVD
for subsampling rates equal to 100%, 80%, 70% and 60%.

Singular Value Decomposition is a common technique used in signal processing to sup-
press the noise by performing a SVD of the data and subsequently retain only the dom-
inant singular values. We will now apply SVD in the opposite way, by eliminating the
dominant singular value(s) we try to remove the high clutter originating from the front
wall reflection which is considered to be the strongest reflection.

Figure 5.21 depicts the obtained images after applying an SVD on the raw measurement
data and eliminating the most dominant singular value. When removing also the second
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most dominant singular value, the target immediately disappears. The TCR obtained
from the 100% sampled measurement is equal to 26.69 dB. But, the reconstruction perfor-
mance rapidly decreases for decreasing subsampling rates.

(4) Robust Principal Component Analysis:
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FIGURE 5.22: RPCA reconstruction of the TWI measurement with on the left:
the background and on the right: the foreground with the target.

In contrast to the previously discussed wall mitigation approaches, where a mitigation
technique is applied on the raw data followed by a regular CS reconstruction, the Robust
Principal Component Analysis (RPCA) performs both at the same time. The application
of RPCA results in two images: (1) a low rank background image and (2) a sparse fore-
ground image. Figure 5.22 shows the obtained foreground and background images after
applying RPCA on the fully sampled measurement. In contrary to other wall suppression
techniques, we exploit the invariance in the image instead of in the measurement along
the across-range dimension which implies that this technique is more robust to subsam-
pling compared to the other wall mitigation approaches.

Figure 5.23 shows the reconstructed images using RPCA. We observe that the target re-
mains clearly visible down to a subsampling rate equal to 30%. The TCR of the fore-
ground image obtained using 100% of the original number of samples is equal to 52.65
dB.
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FIGURE 5.23: Reconstruction of the small scene with a single target using RPCA
obtained using 100%, 40%, 30% and 20% of the original number of samples.

Target to Clutter Ratio

SAR BS MA SVD RPCA

5.73 dB 32.93 dB 24.89 dB 26.69 dB 52.65 dB
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5.4 Range profile reconstruction

In the previous sections of this chapter on TWI, we performed a complete SAR measure-
ment and from the sub-Nyquist random sampled measurement we reconstructed the
through the wall image using a CS algorithm. We will now apply a different approach
to obtain the final image. First, we perform a measurement at each sensor position, sub-
sequently we reconstruct the range compressed profile from the subsampled measure-
ment at each position separately, using a CS reconstruction algorithm. Once we obtain
all the range compressed profiles over all the sensor positions we reconstruct the fully
compressed SAR image by applying a Range-Doppler cross-range compression (Figure
5.24).

Random	sampling

Subsampled SAR	
measurement

TWI	image

SAR	measurement

CS	SAR	reconstruction

Range	profile	
m
easurem

ent

Range	profile	
m
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Range	profile	
m
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ent

…

Subsampled
measurement

Subsampled
measurement

Subsampled
measurement…

Range	
profile

Range	
profile … Range	

profile

TWI	image

Random	sampling

CS	DFT
reconstruction

Cross-range
compression

FIGURE 5.24: flowcharts of TWI CS approaches. On the left: CS SAR image
reconstruction using a SAR measurement matrix. On the right: TWI obtained
after a CS reconstruction of range profiles, using a DFT measurement matrix,

and cross-range compression.

Our interest for studying this way of applying CS on TWI is motivated by following
reflections:

1. The high similarity between the range profiles should be exploited during the SAR
measurement phase. Once we have one range profile, this should be used to recon-
struct the next one. With this approach we can mix the measurement phase and the
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reconstruction phase which allows to use the reconstructed information during the
remaining part of the SAR measurement.

2. The range profile reconstruction approach will allow to tailor the subsampling rate
to the specific signal measured at that position and can thus vary along the scanning
path.

3. Since the CS reconstruction is performed separately at each sensor position, we can
select the same frequencies without compromising the final result. This can solve
the problem described in subsection 5.3.3, when for example some frequencies are
not allowed to use or are jammed.

5.4.1 Single range profile reconstruction

We will start with the range profile reconstruction obtained at a single sensor position.
To do this, we concentrate on the range profile measured at sensor position 42, which
corresponds to the sensor location at 2.10 m in the cross-range dimension and is right
in front of the second human target. Figure 5.25 (a) shows the range compressed scene.
The selected range position 42 is framed in red and the corresponding range profile is
depicted in (b).
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FIGURE 5.25: (a) Range compressed TWI with range range profile nr 42 framed
with the red rectangle. (b) Plot of the range profile at position 42.

Figure 5.26 (a) shows the CS reconstruction of the selected range profile using 70%, 80%,
90% and 100% of the samples. The mean reconstruction error, calculated as the `2-norm
between the range profile obtained with 100% of the samples and the subsampled version
is shown in Figure 5.26 (b). For each subsampling rate we performed 256 times a random
sampling and reconstruction. We see an almost linear increase of the mean error for a
decreasing subsampling rate.
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FIGURE 5.26: (a) CS reconstruction of range profile 42 using 100%, 90%, 80%
and 70% of the original raw data. (b) Mean reconstruction error for increasing

subsampling rates.

The same trend can be seen in Figure 5.27, were we depict the mean PSNR of the image
obtained after CS SAR reconstruction (the blue curve) and the mean PSNR of the image
obtained after range profile reconstruction and cross-range compression. Whereas the
PSNR for the CS SAR reconstruction remains almost constant down to a subsampling
rate of 75%, the PSNR of the reconstruction by the range profile CS approach immediately
starts to drop.
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FIGURE 5.27: PSNR for the CS SAR image reconstruction (in blue) and the TWI
obtained from the CS range profile reconstruction (in red) for increasing sub-

sampling rates.

5.4.2 Side information

The mediocre results for the CS range profile reconstruction approach are explained by
the fact that the range profiles are not sparse at all as can be seen in Figure 5.25. On the
other hand we see a high similarity between the range profiles over the entire scanning
distance of the sensor. We will now exploit this similarity by adding the previously mea-
sured range profiles as side information into the CS reconstruction. First we will do this
by using a single range profile as side information and the reconstruction will be per-
formed using an `1-`1 minimization approach. Figure 5.28 (a) depicts the range profiles
at sensor position 1 and position 42. We notice the similarity between the two profiles
except for the zone where the reflections from the second target are received. As can be
expected, the mean reconstruction error of the `1-`1 approach is thus much lower (Figure
5.28) when SI (the range profile at sensor position 1) (red curve) is added, compared to
the mean error for the reconstruction without SI (blue curve).
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FIGURE 5.28: (a) Range profiles at sensor postions 1 (red curve) and 42 (blue
curve). (b) Mean reconstruction error for the CS reconstruction of range profile

42 without SI (blue curve) and with SI (red curve).

5.4.3 Multiple weighted side information

The more relevant information that can be added during the CS reconstruction, the higher
the robustness against subsampling. This means that not only a single range profile
should be added as SI, but all the range profiles obtained at previous scanning positions
should be exploited. Increasing the number of SIs also increases the risk of adding poor
quality SI which can jeopardize the CS reconstruction. The RAMSIA algorithm faces this
threat by granting inter and intra weights to the SIs. First: only those parts of the range
profiles sharing a high degree of similarity with the range profile to reconstruct will be
taken into account and second: the range profiles which are considered to be high quality
SI will be granted more importance while the poor quality SI profiles will be neglected
during the reconstruction.

Figure 5.29 (a) depicts the difference between the range profiles at scanning position 42
and position 1. This difference is much more sparse than the range profiles itself. In (b)
we see the corresponding intra SI weights attributed automatically by the RAMSIA algo-
rithm. We observe the inverse trend between the two curves. RAMSIA attributes high
weights to those parts of range profile 1 where the difference with the range profile to re-
construct is minimal, whereas the elements with a poor similarity, for example the front
wall reflection and the reflection of the second target (at a range distance of 2.25 m) will
be suppressed.

Figure 5.30 illustrates the working of the inter-SI weights for the reconstruction of the
range profile at the sensor position 78 (at 3.9 m from the starting position of the sensor).
The graph in (a) depicts the difference (horizontal axis), calculated as the euclidean dis-
tance, between the range profile at sensor position 78 and all the previous range positions
(vertical axis). The inter SI weights attributed by the RAMSIA algorithm to each of the
range profiles used as SI is shown in (b). We observe again an inverse trend between the
two graphs.
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FIGURE 5.29: (a) Resulting range profile after subtracting the range profile at po-
sition 1 from the range profile at position 42. (b) Corresponding intra SI weights

attributed by the RAMSIA algorithm.
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FIGURE 5.30: (a) Euclidean distance between the range profile at position 78
and all the previous range profiles. (b) attributed inter SI weights to the range

profiles for the reconstruction of range profile 78.

The reconstruction of all the range profiles using RAMSIA allows to populate an ensem-
ble of SIs which grows each time a new range profile is reconstructed while being almost
immune against poor quality reconstructions. Figure 5.31 shows the resulting images for
subsampling rates equal to 50%, 40%, 30% and 20%. We see that below 40% the targets
start to vanish and at a subsampling rate of 20% the reconstruction quality is too low to
detect any target.
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FIGURE 5.31: Resulting images after the reconstruction of the range profiles
with RAMSIA for subsampling rates equal to 50%, 40%, 30% and 20%.

Figure 5.32 shows the reconstruction error (expressed in dB) for the reconstruction of each
range profile along the scanning path (horizontal axis) as a function of the subsampling
rate (vertical axis). In (a) we see the reconstruction error when the range profiles are
reconstructed without SI and we observe that the error increases as soon as the number
of samples start to decrease. In (b) we have the reconstruction errors obtained for the
`1-`1 CS reconstruction. Finally the best results, by far, are obtained in (c) when applying
multiple weighted CS reconstruction.
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FIGURE 5.32: Reconstruction error [dB] of the range profiles over all sensor po-
sitions (vertical axis) for increasing subsampling rates (vertical axis). (a) without

SI (b) `1`1-reconstruction and (c) RAMSIA.
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5.5 Sequential Compressed Sensing

Lots of research has been published on how to decrease the subsampling bound as much
as possible. At the end of the day, this bound is a function of the sparsity of the signal to
be reconstructed which, for most applications, is unknown prior to the measurement. In
other words, we first need a measurement taken at the Nyquist rate in order to estimate
the number of samples that are needed. A solution to this key problem is sequential
compressed sensing and we will now evaluate the use of sequential compressed sensing
combined with the CS reconstruction using multiple weighted side information for the
reconstruction of TWI range profiles.

sensor	position q

cross-validation
samplessamples	

reconstructed
range	profile

range	profile	q

cross-
validation

range	profile	q-1range	profile	1 …

RAMSIA	

add i	samples	

SI	

… range	profile	p

TWI	SAR	image

cross-range	compression

FIGURE 5.33: Flowchart explaining the approach combining multiple weighted
side information and sequential compressed sensing.

The flowchart in Figure 5.33 gives an overview of our approach at a single scanning posi-
tion during the total SAR measurement. We notice that the proposed technique mixes the
measurement phase and CS reconstruction phase. The CS reconstruction performed at a
sensor position q will impact the measurements taken at the subsequent sensor positions
by influencing the number of measurements that will be taken.
At scanning position q the approach starts by taking a small number of initial samples
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i and a small number t of extra samples which will serve as cross-validation measure-
ments. Using the set of i samples, we reconstruct the range profile sensed from this posi-
tion adding the range profiles obtained at all the previous scanning positions as weighted
side information. The reconstructed range profile is then evaluated by using the cross-
validation measurements. If the reconstruction does not pass the validation test, i new
samples are added to the set of samples. This loop is repeated until the reconstructed
range profile passes the validation test.

The validation test estimates an upper error bound for the reconstruction error. A good
estimation of the error bound is thus necessary in order to avoid heavy oversampling
or undersampling. Figure 5.33 depicts the true error (in blue) and the estimated error
bounds (in red) for the reconstruction of all the range profiles of the measurement of the
scene with the three human targets. In (a) we see the errors for the range profile recon-
struction without the use of SI and in (b) we have the errors for the reconstruction using
multiple weighted SI. In both cases the estimated bounds closely follow the actual error.
These results were obtained by using 8 cross-validation samples. Figure 5.35 depicts the
true errors and the corresponding estimated bounds for all range profiles reconstructed
with the presented approach.

By combining the CS reconstruction of the range profiles using the other profiles as
weighted SI with the sequential approach, we are able to build a sensor which decides
autonomously on the number of samples that are taken in order to ensure a chosen re-
construction quality. The results depicted in Figure 5.36 show the reconstructed range
profiles in (a) and the final obtained image after cross-range compression in (b). The only
input to give is the desired reconstruction quality, which we chose arbitrarily equal to -
30dB, the probability with which the quality will not drop below -30 dB, in our test equal
to 95% and the number of cross-validation measurements, which we chose to be equal
to 8. We have shown in chapter 3 (figure 3.18) that 8 cross-validation measurements are
sufficient when choosing α = 0.05. The algorithm automatically adds and weights the
previous range profiles and adapts the number of samples at each position to assure the
requested reconstruction quality. The number of samples taken at each sensor position
are depicted in Figure 5.34. In order to obtain a maximum reconstruction error of -30 dB,
79.1% of the total number of samples are needed if no SI is used. By using weighted SI
and allowing the number of samples to vary during the SAR measurement the number
of samples can drop to 37.4%. When combining RAMSIA and using the sequential ap-
proach a reconstruction error of maximum -30 dB for each sensor position is guaranteed
with a probability of 95% for a subsampling rate equal to 42.8%.
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FIGURE 5.34: True error (in blue) and estimated error (in red) for in (a) using
sequential CS without SI and in (b) using sequential CS with weighted SI.
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FIGURE 5.35: (a) True error [dB] and (b) the estimated error bounds [dB] for the
reconstruction of all the range profiles along the scanning path for increasing

subsampling rates.
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FIGURE 5.36: (a) the reconstructed range profiles and (b) the reconstructed TWI
SAR image by combining RAMSIA and sequential CS.

5.6 Conclusions

This chapter started with a literature study and compared the state of the art research in
TWI with the commercial-of-the-shelf TWI sensors. A large gap exists between those sen-
sors. Research prototypes deliver good quality images of the scenes behind the wall but
require high bandwidths, large antenna arrays or scanning paths, whereas the commer-
cial systems are small and fast but deliver only low quality images. Compressed sensing
can help to close the gap, by reducing the number of samples, the number of scanning
positions and the measurement time.

A TWI SAR prototype was built in order to perform experiments and acquire real TWI
radar data. The system was used to image scenes behind a single layered wall populated
with multiple static human targets. The resulting SAR images are contaminated with
wall clutter making the detection of the targets difficult. Moreover, the obtained images
are not sparse and thus sensitive to subsampling when applying a CS reconstruction ap-
proach. Two possible solutions were tested. (1) We utilized a discrete wavelet transform
and a DCT as sparsifying bases and (2) we tested four wall mitigation techniques (co-
herent background subtraction, moving average filter, singular value decomposition and
robust principal component analysis). We obtained good results by applying the DCT as
a sparsifying basis. All of the four tested wall mitigation approaches increase the TCR but
only the background subtraction and RPCA approach are robust against subsampling.

We explored an alternative approach for applying CS by reconstructing the range profiles
instead of reconstructing directly the image. The strategy allows to add the previous
reconstructed range profiles as weighted side information. We further tested a sequential
CS approach. By combining multiple weighted CS and sequential CS we were able to
conceive and test a sensor which automatically determines the number of samples to
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take while performing the measurement and at the same time uses that part of the SAR
measurement which has already been executed to lower the number of measurements.
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Chapter 6

Conclusions

In the final chapter of this dissertation, we summarize the most important results of each
chapter individually. We further draw the general conclusions on our study on applying
Compressed Sensing on in-depth microwave imaging. We will end this chapter with a
series of ideas for future work.

6.1 Conclusions of the different chapters

Chapter 2: Compressed Sensing

Chapter 2 started with a concise overview of the CS theory. The basic idea of CS is to
lower the subsampling bound, dictated by the Shannon-Nyquist theorem, by exploiting
the prior knowledge that the sensed signal is sparse in some domain. The given theo-
retical results on CS showed that CS can decrease the sampling bound drastically if the
measurement modality satisfies some property. Unfortunately, these properties are diffi-
cult to verify or lead to suboptimal bounds. On the other hand, effective algorithms for
reconstructing sparse signals are well known. In this chapter, we explored two families of
algorithms: Basis Pursuit algorithms and (2) Matching Pursuit algorithms. We compared
several algorithms (which are used in the later chapters of this dissertation) from both
families in terms of running time, uniformity and robustness against subsampling. The
COSAMP algorithm revealed to be fast compared to the Basis Pursuit algorithms and
uniform compared to OMP. The Basis Pursuit algorithms, on the other hand, are robust
against subsampling and are also uniform.

Chapter 3: Compressed Sensing applied on SFCW and SAR measurements

In chapter 3, we concentrated on using CS on Stepped-Frequency Continuous Wave
(SFCW) measurements and on Synthetic Aperture Radar (SAR) measurements. Through
a series of synthetic measurements, we demonstrated that CS allows to significantly de-
crease the number of samples while preserving the quality of the reconstructed signal.
The new lower bound is a function of the a priori unknown sparsity of the sensed signal.
The lower bound on the number of samples is thus unknown prior to the measurement.
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We demonstrated that we can estimate a sharp bound on the reconstruction error by us-
ing only a small number of cross-validation samples. This technique can be used as a
stopping criterion in a configuration where we sequentially add samples without having
access to the ground truth.
In this chapter, we further introduced different techniques which can be combined with
CS to further lower the CS sampling bound: the Singular Value Decomposition and the
Principal Component Analysis.
We ended chapter 3 with a study on adding Side Information (SI) to the CS minimization
problem. We first compared different approaches to add homogeneous SI. The RAMSIA
algorithm, which adds weights to the SI, revealed to outperform the other approaches,
such as the coherent background subtraction. We further explored a way to add homoge-
neous SI. The proposed approach consists of two steps: (1) a coupled dictionary learning
step and (2) a CS reconstruction step using the heterogeneous SI. We showed that the
technique allows to perform change detection from heavily subsampled measurements
by exploiting the information coming from a different sensor.
The discussed techniques in this chapter are further used and evaluated on the real data
in chapters 4 and 5 of this dissertation.

Chapter 4: Non-Destructive testing of polymer 3-D printed objects

In chapter 4, we evaluated the applicability of CS and CS with SI on real SAR data. The
first application is the Non-Destructive Evaluation (NDE) of 3-D printed parts using a
mm-wave sensor. The chapter starts with a general introduction on 3-D printing and an
overview of the pros and cons of different existing NDE technologies. To obtain the real
NDE data which we used throughout chapter 4, we used a mm-wave sensor based on
a MNVA. This technique has the advantage that it uses non-ionising radiation and that
the measurements are performed in a stand-off setup. In order to obtain an image with
an acceptable resolution, a large bandwidth is needed, combined with a large (synthetic)
antenna. The measurements process is thus time consuming and produces a vast amount
of raw data. In this chapter, we showed that CS can help to reduce the large amount of
samples through a series of experiments on a 3-D printed object with synthetically cre-
ated defects. We further compared three different techniques to add homogeneous SI to
the CS reconstruction: (1) Background subtraction, (2) `1`1-minimization and (3) CS with
weighted SI. Over all the tests performed on the real NDT data, the best results were
obtained by applying CS with multiple weighted SI. The introduced defects are clearly
visible on the image obtained with RAMSIA using only 30% of the samples.

Chapter 5: Through-the-Wall Imaging

We started chapter 5 with a literature study of the research TWI prototypes and the com-
mercially available TWI sensors. The comparison revealed that , on the one hand, the
research prototypes deliver high resolution images but need large antenna arrays or syn-
thetically created large antennas and emits wideband signals. The operational sensors,
on the other hand, are lightweight and easy to deploy but do not deliver high quality
images. In this chapter, we explored if it is possible to combine the best of both worlds,
by using Compressed Sensing techniques. To do so, we built a TWI sensor prototype and
performed a series of TWI measurements.
The first tests we performed using CS did not deliver hopeful results: only a decrease of
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30% of the original number of samples was possible. This is due to the fact that the image
is corrupted by the effects of the wall and is not sparse. A first solution to this problem
is the use of a sparsifying transform. By reconstructing the Discrete Cosine Transform
of the image, the subsampling rate can be lowered down to 25%. We also evaluated dif-
ferent existing techniques for mitigating the front wall clutter in combination with CS:
(1) Coherent background subtraction, (2) Moving average filter, (3) Singular Value De-
composition (SVD) and (4) Robust Principal Component Analysis (RPCA). The different
techniques decrease the Target-to-Clutter Ratio (TCR) but only the background subtrac-
tion and RPCA approaches are robust against subsampling.
We ended the chapter by testing a novel approach. Instead of reconstructing the SAR TWI
image at the end of the measurement phase, we reconstructed the current range profile
before moving the sensor to the next scanning position. The already measured range
profiles are added as weighted SI to the reconstruction of the range profile. We combined
this approach with a Sequential CS approach. This resulted in a TWI sensor which adapts
autonomously the number of samples along the scanning path without having access to
the ground truth and assures to deliver an image with a chosen reconstruction quality.
This implies that the operator no longer has to guess the sparsity of the scene in order
to decide on the number of samples. This new approach was tested on the real data and
allows a decrease of the number of samples down to 42.8%.

6.2 Final conclusion

At the end of this work we can conclude that CS is a good candidate for lowering the
number of samples for sensors performing mm-wave SAR measurements. This technique
can be combined with other signal processing techniques to further lower the sampling
bound. We have extensively shown that adding weighted Side Information to the CS
reconstruction can optimise the working of the sensor. The techniques were successfully
tested using real measurements in the domains of Non-Destructive Evaluation of 3-D
printed objects and Through-the-Wall Imaging. I strongly believe that these results bring
the mm-wave sensors closer to an operational level in these domains.

6.3 Future work

We will now formulate a series of hints and ideas for future work.

– Future work on mm-wave NDT of 3-D printed objects:

1. In chapter 4, we performed a series of experiments on a simple test object with
synthetically created defects. The NDT results should be validated with exper-
iments on objects with a more complex geometry and containing real defects.
These results should then be compared with the results obtained from NDT
measurements on the same objects with different NDT techniques.

2. The most important drawback of mm-wave imaging used as a NDT technique
is the mediocre resolution of the images when compared to X-ray imaging. In
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order to improve the resolution, the center frequency should increase and the
total emitted bandwidth should be enlarged.

3. In section 3.6.2, we analyzed a technique to add heterogeneous SI to the CS
reconstruction of a mm-wave SAR measurement. The results obtained on syn-
thetic data were promising. Because of the high number of learning measure-
ments required to obtain the coupled dictionaries, it was not feasible to per-
form enough real tests with two different sensors within the framework of this
project. Testing this approach on real NDE data by combining two different
measurement modalities (for example: X-ray and mm-wave measurements) is
definitely a promising and interesting challenge.

– Future work on SAR Through-the-Wall Imaging:

1. In section 5.3.4, two different sparsifying transforms were tested: the DCT trans-
form and the Haar wavelet. This study can be enlarged by evaluating other
transforms which can lead to even sparser representations of the TWI image.
Alternatively, a dictionary can be learned from the TWI measurements. This
dictionary can even further be optimized after each measurement.

2. In chapter 5, the already reconstructed range profiles are added as weighted SI
to the CS reconstruction of the current range profile. Alternatively, the Com-
pressive Online Robust Principal Component Analysis (CORPCA) algorithm
[Van Luong et al.2017] could be used. This approach performs an online sep-
aration of the sparse foreground and the low-rank background using the results
obtained at the previous scanning positions. This technique should improve the
Target-to-Clutter Ratio (TCR) and at the same time being robust against sub-
sampling. Unfortunately, we were not able (yet) to combine this technique with
sequential CS.

– Future work on CS for other applications:
CS applied to SFCW or SAR measurements using heterogeneous SI could be a solu-
tion in other applications where the transmission of the raw data is costly or where
the data of different sensors could be combined. For example:

1. For the transmission of SAR data which are acquired on board of an airborne
platform or a satellite. In most cases, reliable visual images of the scene are
available (e.g.: Google Earth) and can be used as heterogeneous SI. Exploiting
the heterogeneous SI, could drastically reduce the data volumes that need to be
transmitted since most of the transmitted information is already known.

2. Another possible application of coupled dictionary learning can be found in the
automotive industry. The data obtained by one sensor can serve to reduce the
acquisition time or to fill in the gapped data acquired by a different sensor.
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