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SummarySummarySummarySummary    

Optical fiber based sensors are rapidly gaining popularity. They offer an 

extensive list of advantages including immunity to electromagnetic 

interference, small size, low weight, high sensitivity, multiplexing 

capabilities, etc. and therefore they are increasingly applied in a large 

variety of industrial sectors. An important category of these sensors targets 

the measurement of mechanical quantities such as force, pressure and 

mechanical strain. These mechanical optical fiber sensors typically exploit 

the photoelastic effect to transduce a mechanical quantity into a 

measurable variation of the propagation characteristics of the light guided 

through the fiber. The photoelastic effect is governed by the stress-optic 

law, with the photoelastic constant as the material dependent parameter 

that links the applied mechanical stress to the change of refractive index in 

the material. Accurately predicting the response of optical fiber sensors to 

particular mechanical loads requires accurate knowledge of all the involved 

material parameters. In this PhD dissertation, we focus on the 

characterization of the photoelastic coefficient C of the optical fiber. 

We aim to characterize C by carrying out measurements on the fiber 

itself, instead of relying on the value of C measured using bulk material 

samples, as this allows taking into account the influence of the fabrication 

process of the optical fibers on the value of the photoelastic constant. 

Furthermore, we dare to depart from the common hypothesis that C can be 

considered constant in the fiber cross-section and we therefore also aim to 

measure the value of C as a function of the radial position in the cross-

section of an optical fiber. 

Our approach to achieve these objectives is based on well-known 

photoelastic theory, and in particular on measuring the birefringence in a 

transversely illuminated optical fiber to which we have to apply a pre-

defined axial tensile stress. This provides us with a projection of the stress-

induced birefringence along the fiber diameter.  

To do so we designed a setup to determine stress-induced retardance in 

an optical fiber using a polarizing microscope arrangement. The microscope 

allows achieving the spatial optical resolution of the order of 1 micrometer 

that is required to determine the profile of C across the fiber diameter, 

taking into account the typical dimensions of an optical fiber. 
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In order to recover the radial dependence of the photoelastic coefficient 

from the measured projected retardance, we have to use a mathematical 

transform known as the inverse Abel transform. To calculate this transform 

we have developed two algorithms relying on Fourier theory. We 

extensively tested the performance of both algorithms on a known 

analytical profile, which allowed us to identify the most adequate 

parameter set that returns the most reliable results. We also added noise to 

the analytical profile to mimic inevitable measurement noise, which 

allowed concluding on the robustness of our algorithms when dealing with 

noisy profiles. 

To validate our approach, experimental setup and algorithms, we first 

carried out measurements of the radial profile of C of glass optical fibers 

with different core diameters and different doping profiles. We found 

values for the mean value of C in agreement with results reported in open 

literature. We demonstrated that the photoelastic coefficient of silica fibers 

differs from the photoelastic coefficient of bulk silica. We also evidenced 

that dopants used to modify the refractive index of glass fibers can 

influence the value of C and that making the assumption that C is constant 

across the fiber is not always valid. 

Finally, we also applied our measurement method to characterize the 

photoelastic coefficient of polymer optical fibers (POFs), more specifically 

polymethyl methacrylate (PMMA) based optical fibers. We demonstrated 

that PMMA POFs drawn from different preforms display different profiles 

and different mean values of C. We therefore recommend measuring C for 

each different type of POF. In addition we showed that thermal annealing of 

the polymer fiber preform and of the fiber itself has a beneficial impact in 

view of stabilizing the value of C and of increasing the photoelastic response 

of the optical fiber. 

We hope that this PhD research, and our work on characterizing the 

photoelastic properties of optical fibers in particular, will positively 

contribute to further developments in the fields of specialty optical fiber 

and optical fiber sensor design and applications. 
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Chapter 1.Chapter 1.Chapter 1.Chapter 1. General General General General IntroductionIntroductionIntroductionIntroduction    

1.11.11.11.1 TTTThesishesishesishesis    rationalerationalerationalerationale    

In the early 1970’s, Corning Glass Works created the first single mode glass 

fiber that was able to transmit light with an attenuation below 20 dB/km 

[1].  This development followed the pioneering work of Charles Kao, who 

demonstrated in the 1960s that the high optical loss in optical fibers at that 

time was due to impurities in the silica glass rather than from a problem 

with the technology itself. In 2009 Charles Kao received the Nobel Prize in 

Physics ‘For groundbreaking achievements concerning the transmission of 

light in fibers for optical communications’ [2, 3]. In the meantime, fused 

silica fiber fabrication technology continuously evolved yielding optical 

fibers with extremely low transmission loss in specific wavelength ranges, 

known as optical communication ‘windows’, as illustrated in Figure 1-1. 

Together with the advent and developments in the fields of lasers and 

semiconductor laser diodes, this enabled the development of long-haul 

optical communication systems[4, 5] . 

 

Figure 1-1: Illustration of the evolution of transmission loss in fused silica optical fibers 

and indication of typical optical communication windows [6]. 
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Besides optical communications, optical fiber technology has also 

largely penetrated other fields of applications owing to the development of 

dedicated devices based on such optical fibers. Two examples include 

optical fiber based lasers [11, 12], and optical fiber based sensors [13, 14].  

Application domains as diverse as material processing, medicine and 

healthcare, safety and security, military and aerospace, structural health 

and asset monitoring, oil and gas, etc. have all welcomed optical fibers 

owing to the unique features that they convey to the devices and systems 

made thereof. Whilst telecom and broadband still took topmost positions in 

the fiber optics market with around 55% share by value in 2013, the fastest 

growth rate now also comes from applications addressing oil and gas, 

private data networks, and utilities [15]. A recent market study published in 

September 2016 projected the global fiber optic components market to 

exceed USD 23 billion by 2022 with key findings summarized in Figure 1-3 

[16].  Two of these key findings also point to the growing demand in the 

field of fiber optic sensors and the growing use of specialty fiber. 

 

Figure 1-3: Summary of key findings of the Global Fiber Optic Components Market.[16] 

Owing to the expansion of possible application segments, the development 

of fiber optic fabrication technology has gone much further than the quest 

for obtaining the least attenuating silica fibers or POFs. Developing 

specialty fibers with characteristics adapted to specific applications has 

become a hot topic in research and innovation. In this PhD, we essentially 

target applications requiring optical fiber based sensors (OFS) and as for 

now, we will focus on this theme. 
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Such sensors have been proposed, for example, to measure 

dynamic strain in composite material and to locate cracks in 

engineering structures in order to support structural health 

monitoring applications. They are also used for electric and 

magnetic measurement based on  the Faraday effect [25, 26]. 

4. Wavelength based sensor 

In a wavelength based OFS one relies on the measurement of 

the wavelength of light guided by the optical fiber.  Since the 

measurand is encoded in the wavelength instead of the 

intensity of the optical signal, these sensors do not suffer from 

spurious effects such as optical source intensity variations or 

phase jumps. To modulate the wavelength one typically relies 

on a transducing element fabricated within the optical fiber 

itself, which acts as a wavelength selective mirror or filter. 

Examples of such structures include Fabry-Perot cavities [27] 

or fiber Bragg gratings (FBGs) [28]. A fiber Bragg Grating is a 

periodic modulation of the refractive index in the core of the 

optical fiber that is fabricated with laser-based inscription 

techniques.  Such a structure has the property to reflect only a 

narrow band of wavelengths centered around the so-called 

resonance or Bragg wavelength. The latter shifts when the 

grating experiences external perturbations such as temperature 

changes and strain. This shift is mostly proportional to the 

magnitude of the perturbation [28] and can be 

straightforwardly detected using a spectroscopic device.  

The four categories of optical sensors enumerated above are typically 

used as ‘point sensors’, i.e. they allow evaluating the measurand at one 

specific location [29].  

Optical fibers can also be used as ‘distributed sensors’, which allow 

quantifying a measurand as a function of the position along the fiber length. 

Such sensors typically rely on detecting the amount of light that is scattered 

at each position along the fiber by means of different phenomena such as 

Raman or Brillouin scattering [29].  

The versatility and unique features of optical fiber based sensors makes 

them very attractive for many applications. Their extensive list of 

advantages includes immunity to electromagnetic interference, small size, 
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light weight, high sensitivity, suitability for mass production, robustness 

and long term stability, multiplexing capabilities, etc. [4, 30–32]. This 

caused the field of optical fiber sensors to experience tremendous growth 

over the last two decades, and this trend is likely to continue in the years to 

come, as indicated by various market studies. This is illustrated in Figure 

1-6, which gives a market forecast by Global Market Insights for fiber optic 

sensors up to 2024 and which predicts a compound annual growth rate of 

7.5% from 2016 to 2024 for this market [33]. Both continuous distributed 

systems and point sensors will experience continuous growth in the coming 

years.  

 

 

 

Figure 1-6: Fiber optic sensor market forecast towards 2024. The vertical axis is 

expressed in Million US Dollars [33]. 

Besides temperature sensors, so-called mechanical or dynamometric 

optical fiber sensors cover a major part of this market. These sensors are 

applied to measure mechanical quantities such as force, mechanical strain, 

mechanical stress or pressure. Accurate knowledge of these measurands is 

crucial in many applications. They have to be monitored, for example, for 
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steering a multitude of industrial processes or for following up on the 

health of civil engineering structures (bridges, dams, tunnels, aircrafts, …). 

All of these physical quantities can be measured by the four different OFS 

types described earlier in this section, i.e. intensity-based sensors, 

interferometric sensors, polarimetric sensors and wavelength-based 

sensors [28, 32, 34–36]. The transduction mechanism that is mostly The transduction mechanism that is mostly The transduction mechanism that is mostly The transduction mechanism that is mostly 

exploited to enable such a measurement with either one of these sensoexploited to enable such a measurement with either one of these sensoexploited to enable such a measurement with either one of these sensoexploited to enable such a measurement with either one of these sensor r r r 

types builds on photoelasticity, and this is where we enter the core of this types builds on photoelasticity, and this is where we enter the core of this types builds on photoelasticity, and this is where we enter the core of this types builds on photoelasticity, and this is where we enter the core of this 

PhD research.PhD research.PhD research.PhD research.  

Photoelasticity allows relating the change in the properties of an optical 

signal transmitted through a transparent material with the magnitude of 

the mechanical load applied to said material. It is a well-known 

experimental technique that has been used for many years to study stress 

and strain distributions in a material [37] and that relies on the analysis of 

stress-induced birefringence in a material at wavelengths for which it  is 

transparent. Developing an optical fiber sensor dedicated to the 

measurement of mechanical quantities and relying on the photoelastic 

effect requires a good understanding of how mechanical loads influence the 

material properties of the optical fiber. Before an optical fiber sensor is 

actually tested and produced, the particular fiber sensor structure has to be 

optimized using specialty design and simulation tools, for example finite 

element modelling. Effective use of the latter usually requires accurate 

knowledge of the fiber material parameters. For mechanical sensor 

simulation purposes for instance, the knowledge of the Young Modulus E, 

Poisson coefficient ν, the glass transition temperature TG and the stress-

optic coefficients C1 and C2 are required to achieve reliable and precise 

simulation results [38–42]. The stress-optic coefficients C1 and C2 

(expressed in Pa-1) and the photoelastic coefficient C = C1-C2  define the 

photoelastic properties of the material and play a crucial role in 

understanding and predicting the response of an optical fiber to mechanical 

load, since these parameters link the applied stress to the change of the 

refractive index in the fiber [43]. This PhD work focuses on the photoelastic This PhD work focuses on the photoelastic This PhD work focuses on the photoelastic This PhD work focuses on the photoelastic 

coefficient C of optical fibers.coefficient C of optical fibers.coefficient C of optical fibers.coefficient C of optical fibers. 

Reading the literature on this subject reveals that this material 

parameter is well-known for bulk silica or polymer material. However, the 

fabrication process of the optical fibers, typically involving drawing at 

elevated temperatures as we will discuss further in Chapter 3, can have an 
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impact on the value of this parameter. We conclWe conclWe conclWe conclude that there ude that there ude that there ude that there is is is is missing missing missing missing 

information and knowledge about the value of the photoelastic constant in information and knowledge about the value of the photoelastic constant in information and knowledge about the value of the photoelastic constant in information and knowledge about the value of the photoelastic constant in 

the optical fibers themselves. the optical fibers themselves. the optical fibers themselves. the optical fibers themselves.  

This brings us to the grand objective of our PhD research. We aim to to to to 

characterizecharacterizecharacterizecharacterize    the photoelastic coefficient the photoelastic coefficient the photoelastic coefficient the photoelastic coefficient of optical fiof optical fiof optical fiof optical fibers bers bers bers with sufficient with sufficient with sufficient with sufficient 

accuracyaccuracyaccuracyaccuracy    by carrying out measurements by carrying out measurements by carrying out measurements by carrying out measurements directly on the optical fiber directly on the optical fiber directly on the optical fiber directly on the optical fiber itself itself itself itself 

instead of on bulk material from which the fiber is made, instead of on bulk material from which the fiber is made, instead of on bulk material from which the fiber is made, instead of on bulk material from which the fiber is made, and to investigate and to investigate and to investigate and to investigate 

whetherwhetherwhetherwhether    the value of ththe value of ththe value of ththe value of thisisisis    photoelastic coefficient can be considered constant photoelastic coefficient can be considered constant photoelastic coefficient can be considered constant photoelastic coefficient can be considered constant 

in thin thin thin the crosse crosse crosse cross----section of the optical fiber, or not.section of the optical fiber, or not.section of the optical fiber, or not.section of the optical fiber, or not.  

1.21.21.21.2 Thesis objectives and strategy Thesis objectives and strategy Thesis objectives and strategy Thesis objectives and strategy     

As stated above, our grand objective is to develop a method to 

characterize the photoelastic coefficient C by means of measurements on 

actual optical fiber samples, in such a way that we can also obtain the 

profile of C in the cross-section of the optical fiber. To do so we have to 

build on the principles of photoelasticity, which involve C as the material 

parameter that links the change of the refractive index in the material, and 

more specifically of the birefringence in the material, to externally applied 

mechanical stress. Achieving this objective requires addressing the 

following challenges. 

We first need to build an adequate experimental setupto build an adequate experimental setupto build an adequate experimental setupto build an adequate experimental setup. To do so our 

approach is to look first into methods that have been proposed to measure 

C on bulk material and to investigate how such methods can be adapted to 

measure C directly in optical fiber samples. Considering that we also want 

to retrieve the profile of C across the fiber and that silica optical fibers have 

a typical outer diameter of 125 µm, and a core size that can be a few 

microns only, we should obtain a spatial resolution of the order of 1 µma spatial resolution of the order of 1 µma spatial resolution of the order of 1 µma spatial resolution of the order of 1 µm. This 

essentially implies that our experimental setup should be suitable for 

integration in a microscope architecture. 

The required ability to carry out the measurements on a fiber portion 

submitted to a predefined and well-controlled mechanical load that is 

uniform across its section does not allow carrying out such measurements 

on a fiber tip. We have to rely instead on a transverse illumination of the 

fiber to retrieve the birefringence for a particular mechanical load. 

Considering the cylindrical shape and the axial symmetry of an optical fiber, 
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a birefringence measurement with transverse illumination results in an 

actual projection of that birefringence on a plane. The projected function 

that we obtain should allow us to calculate the radial profile of C. 

Mathematics enables us to do so by means of an inverse integral transform, 

known as the ‘inverse Abel transform’, which allows determining the radial 

distribution of an axi-symmetric function from a projection of that function. 

This brings us to the second challenge, which is to develop an adequate to develop an adequate to develop an adequate to develop an adequate 

algorithm to calculate the inverse algorithm to calculate the inverse algorithm to calculate the inverse algorithm to calculate the inverse integral with sufficient accuracy, such that integral with sufficient accuracy, such that integral with sufficient accuracy, such that integral with sufficient accuracy, such that 

C can be determined within a standard deviation of 10% from the mean C can be determined within a standard deviation of 10% from the mean C can be determined within a standard deviation of 10% from the mean C can be determined within a standard deviation of 10% from the mean 

valuevaluevaluevalue. This should be sufficient to produce radial profiles of the photoelastic 

coefficient and to draw correct conclusions when interpreting the final 

measurement results. The calculation should also be sufficiently robust to 

deal with inevitable measurement noise resulting from imperfections and 

limitations of the measurement setup and procedure.  

The third and final challenge is then to validto validto validto validate our method based on ate our method based on ate our method based on ate our method based on 

measurements on actual optical fibersmeasurements on actual optical fibersmeasurements on actual optical fibersmeasurements on actual optical fibers. We can do so first by comparing the 

values for C that we obtain with results obtained for either bulk material or 

optical fibers, as published in open literature. We can also do this by 

relating the obtained cross-sectional profile of C to our a-priori knowledge 

about the structure of the optical fiber and about the materials from which 

it is made. In this respect, an additional challenge is to extend our method to extend our method to extend our method to extend our method 

from measurements on conventionalfrom measurements on conventionalfrom measurements on conventionalfrom measurements on conventional    silica optical fibers to specialty polymer silica optical fibers to specialty polymer silica optical fibers to specialty polymer silica optical fibers to specialty polymer 

optical fibersoptical fibersoptical fibersoptical fibers and to highlight the differences between both types of fibers 

in the context of potential optical fiber sensor applications.  

1.31.31.31.3 Structure of the dissertationStructure of the dissertationStructure of the dissertationStructure of the dissertation    

The dissertation addresses the different challenges highlighted above 

one by one, and is structured as follows. In Chapter 2 we first give an 

overview of the laws and mechanisms that govern photoelasticity. We focus 

on the photoelastic law and on the concept of birefringence in a material. 

We then briefly explain how birefringence in an optical fiber can be 

exploited to obtain mechanical sensors. We highlight the importance of the 

accurate knowledge of the photoelastic constant in specialty optical fiber 

sensors and the impact of an uncertainty on the value of the photoelastic 

constant on the predicted response of the optical fiber sensor. 
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Chapter 3 starts with a summary of the information found in open 

literature on measurement methods that have been applied to determine 

the photoelastic coefficient in bulk material. We also describe the methods 

proposed to measure C directly on the fibers. We then explain the 

manufacturing process of both silica and polymer fibers to illustrate the 

need to develop an accurate measurement method to determine the 

photoelastic coefficient and its radial dependence across the fiber cross-

section. We end this Chapter with specifying the different challenges we 

face when attempting to measure the radial profile of the photoelastic 

coefficient. 

Chapter 4 first describes the theoretical basis of our approach and then 

turns to the explanation of our measurement setup arranged in  a polarizing 

microscope architecture, which allows measuring the retardance of a 

laterally illuminated fiber to which we apply tensile stress.  We also explain 

the algorithms that we propose to compute the inverse Abel transform of 

the measured retardance. 

Chapter 5 evaluates the inverse Abel transform algorithms and analyses 

the influence of measurement noise on the results. To do so, we start from a 

pre-defined semi-elliptical shape of the projected retardance R(y). We first 

compare the numerical results of the inverse Abel transform of the semi-

ellipse with the analytical expression of the inverse Abel transform of the 

same semi-ellipse. We also study the impact on the result when we add 

noise to the semi-ellipse to mimic measurement noise. Doing so we obtain 

the optimal set of parameters that returns the most effective numerical 

inverse transform. 

In Chapter 6 we discuss our results on the radial profile of the 

photoelastic coefficient in actual silica fibers. We describe the mechanical 

system that we built to apply tensile stress to a fiber sample while placed in 

the microscope arrangement. We explain in detail how we determine the 

retardance profile in one fiber section. We then first determine the mean 

value of the photoelastic coefficient by approximating the retardance with a 

semi-elliptical profile. Finally, we compute the radial profile C(r) without 

any simplifying hypothesis and we compare our results to data that has 

been reported in open literature. 

In Chapter 7 we measure the photoelastic coefficient in polymer fibers. 

We first recall the unique features of polymer fibers when considering 
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potential sensing applications. We also discuss thermal annealing 

treatments of such fibers, as they appear to have a major influence on our 

measurement results. We then determine and discuss the mean value of the 

photoelastic coefficient using the semi-elliptical approximation and the 

radial profile of C without simplifying assumption for a set of pristine and 

annealed fiber samples.   

In the concluding Chapter, we review our main achievements and their 

importance in the context of the design of tailored mechanical fiber sensors. 

We also discuss our views about possible future investigations on the 

photoelastic coefficient of optical fibers. 
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Chapter 2.Chapter 2.Chapter 2.Chapter 2. The photoelastic constant The photoelastic constant The photoelastic constant The photoelastic constant 

and its importance in fiber opticsand its importance in fiber opticsand its importance in fiber opticsand its importance in fiber optics    

Photoelasticity is a basic concept that underpins the principle of operation 
and the transduction mechanism in many mechanical or dynamometric 
optical fiber based sensors. We therefore start with an overview of the basic 
principles of photoelasticity in section 2.1. We define the elasticity of a 
material and we recall the polarization properties of a light wave. We 
proceed with the presentation of the stress-optic law, which governs the 
interaction of polarized light with a transparent material. We end this 
section with the definition of birefringence of a material and the associated 
relative retardance. In section 2.2, we introduce the notion of birefringence 
in a classical optical fiber and in highly birefringent fibers or polarization 
maintaining fibers (PMF). In section 2.3, we give an overview of the sensing 
mechanism of a PMF based polarimetric sensor and the sensing mechanism 
associated with a fiber Bragg grating (FBG) based optical fiber sensor 
(OFS). Such a FBG is a very popular and commercially available sensor 
device that is commonly used to measure mechanical quantities such as 
strain, stress and pressure. It is therefore a good illustration that serves our 
purpose for introducing various sources of birefringence in optical fibers 
that can impact the operation as mechanical sensor. We also introduce such 
sensors fabricated in highly birefringent fibers, polarization maintaining 
fibers and microstructured optical fibers (MOF). The study of these sensors 
allows highlighting the importance of the accurate knowledge of the 
photoelastic constant C of the optical fiber. In the last part of this section, 
we analyze the influence of birefringence on the spectral response of the 
FBG based OFS and we illustrate the principle with a simulated example. 
Section 2.4 analyses the impact of an erroneous value of the photoelastic 
constant on the spectral sensitivity of the sensor subjected to a line load. 
We end Chapter two with a brief illustration of the importance of C to 
perform quality prediction in telecommunication applications. 
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2.12.12.12.1 General principles of photoGeneral principles of photoGeneral principles of photoGeneral principles of photo----elasticityelasticityelasticityelasticity    

Photoelasticity can be defined, in general terms, as an analysis of the 

interaction of a lightwave with a material that experiences a mechanical 

stress or strain distribution [1, 2]. It reveals that non-crystalline materials 

that are optically isotropic in absence of any mechanical stress distribution 

can become optically anisotropic and therefore birefringent when 

experiencing such stress distribution. Photoelasticity can therefore be used 

to study the stress distribution in a material by investigating the 

birefringence properties at wavelengths for which the material is 

transparent. The mechanical stress can be either residual, i.e. an intrinsic 

tension or compression in the material that exists without any external load 

being applied and that can result from the fabrication process of said 

material, or can result from the application of an external load to the 

material. A major result of photoelasticity is that the amount of induced 

birefringence appears to be proportional to the amount of mechanical 

stress. We develop the concepts pertaining to photoelasticity further in the 

subsections below, whilst focusing only on those definitions that are 

important in view of understanding the remaining Chapters of this 

dissertation. 

2.1.12.1.12.1.12.1.1 ElasticityElasticityElasticityElasticity    

Elasticity refers to the property of a material to deform when subjected to 

an external force such that the deformation disappears with the removal of 

the force and the material returns to its original shape and size [1].  

The stress σ due to a resultant internal force δF acting on an elementary 

area δA is defined as 
0

lim
A

F

Aδ

δ
σ

δ→
=  [3]. The components of stress normal to 

the area and in the plane of the area are defined as the normal stress 

components σ and the shear stress components τ, respectively.  In an 

orthogonal axis system x,y and z, there are 3 normal stress components σx, 

σy, σz and 6 values of shear stress τxy, τyx, τxz, τzx, τyz, τzy with: 
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only stresses present are normal stresses. These stress components σ1 and 

σ2 are called the principal stresses and are mutually perpendicular. They 

correspond to the maximum and minimum normal stresses in the two 

dimensional plane. Equation (2.2) gives the relation between the principal 

stresses and the stress components σx and σy. 

 

2

2

1 2
,

2 2

x y x y

xy

σ σ σ σ
σ σ τ

+ − 
= ± + 

 
  (2.2) 

The principal angle θ is given by: tan 2i =
jklm

nlonm
 

 

Figure 2-2: Principal stresses on an infinitesimal rectangular element under plane stress 

conditions. θ defines the direction of the principal stress. 

The principal stresses and angle θ are illustrated in Figure 2-2. If σx and σy 

correspond with the principal stresses σ1 and σ2, we have τxy = 0. 
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2.1.22.1.22.1.22.1.2 Polarization properties of lightPolarization properties of lightPolarization properties of lightPolarization properties of light    

Light is an electromagnetic (EM) wave. The electrical field vector E  

associated with the light wave vibrates perpendicularly to the propagation 

direction. When the wave is constrained to vibrate in a systematic manner 

in the plane perpendicular to the direction of propagation, the light wave is 

said to be polarized. Let us consider the components of the electrical field 

vector associated to a monochromatic polarized plane wave propagating 

along the z direction in a Cartesian system of axes x, y, z which can be 

written as given in equation (2.3).  

 
0

0

cos( )

cos( )

x x

y y

E E t kz

E E t kz

ω

ω

= − + ∆

= −
  (2.3) 

with E0x and E0y the amplitude of the x and y components of E , 2 /k π λ=  

the wavenumber and ω the angular frequency. The time is measured from 

the instant that the component Ey crosses the x-axis, the initial phase of this 

component is zero and the corresponding phase of Ex at that time is Δ. 

Eliminating ( )t kzω −  from equation (2.3) yields equation (2.4). The latter is 

the equation of an ellipse drawn in the plane perpendicular to the direction 

of propagation by the electrical field vector. The pattern drawn by the 

evolution in time of the electric field vector in this plane allows 

distinguishing between different states of polarization (SOP). 
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2

2 2

0 0 0 0

2 cos sin
y x yx

x y x y

E E EE

E E E E
+ − ∆ = ∆   (2.4) 

From equation (2.4) one realizes indeed that the SOP of a polarized 

wave is described by two parameters: 

- The ratio 
0

0

y

x

E

E
 ; 

- The phase difference Δ between the two components of E  . 

 

We can identify two particular states of polarization: 

- The linear polarization state, i.e. ( )l π∆ = ± ×  ; 
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- The circular polarization state, i.e. when 
0 0x y

E E=  and 

(2 1)
2

l
π

∆ = ± + ×  . 

The parameter l  is a positive integer. Any polarized state in between 

these two cases is referred to as elliptical polarization state. Figure 2-3 

illustrates the linear, circular and elliptical state of polarization. 

 

Figure 2-3: Illustration of the vibration of the components of the electric field vector in a 

plane perpendicular to the direction of propagation of the associated light wave for 

linearly, circularly and elliptically polarized light. [5]  

To mathematically describe the SOP of a light wave, one usually relies 

on either the Stokes or Jones formalisms [6–8]. The Stokes formalism 

allows describing partially polarized light and relies on the use of field 

intensities. The Jones formalism, on the other hand, mathematically 

describes the polarization state of a wave by considering this state as a 

complex two-dimensional vector that contains the polarization dependent 

parameters of the electrical field vector. This formalism allows 

straightforwardly calculating the effect of a series of polarizing linear 

optical elements on the polarization state of an input wave. Since we will 

always consider fully polarized light and since we will have to look at how a 

Linear Circular Elliptical 
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sequence of optical elements influences the SOP, we will proceed by using 

the Jones formalism. Equation (2.5) shows the polarization vector P

associated to the electrical field vector E  : 

 0

0

i

x

y

E e
P

E

∆ 
=  
  

  (2.5) 

The time-dependent term tω  does not contain information about the 

SOP of the wave and hence it is disregarded in this notation. In the Jones 

formalism, an optical element traversed by the light wave such that it 

influences the SOP of the wave can be associated with a 2×2 matrix. The 

Jones matrix linking the input SOP represented by stuv to the output SOP 

represented by stwxy is given in equation (2.6). 

 11 12

21 22

out in

J J
P P

J J

 
=  
 

  (2.6) 

For example, the Jones matrices of a linear polarizer aligned with the y-

axis, of a quarter-wave plate and of a general phase retarder plate are given 

by equations (2.7), (2.8) and (2.9), respectively. 

 
0 0

0 1
LPM

 
=  
 

  (2.7) 

 
/ 4

/4

0

0

i

QWP i

e
M

e

π

π

− 
=  
 

  (2.8) 

 
0

0

x

y

i

PR i

e
M

e

ε

ε

 
=  
  

  (2.9) 

The quarter-wave plate induces a phase retardance of π/2. Such a 

quarter wave plate oriented at 45° with respect to the vertical axis converts 

vertically linearly polarized light into circularly polarized light. In section 

2.1.3.3. we will further clarify the mechanism of a quarter wave plate. 
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2.1.32.1.32.1.32.1.3 Retardance and birefringenceRetardance and birefringenceRetardance and birefringenceRetardance and birefringence    

2.1.3.12.1.3.12.1.3.12.1.3.1 Absolute retardanceAbsolute retardanceAbsolute retardanceAbsolute retardance    

Consider two rays of light representing two light waves, a first (ray1) 

passing through a parallel plate with thickness d and refractive index n1 and 

a second undisturbed ray (ray2), as illustrated in Figure 2-4. The refractive 

index of the surrounding medium is n0. The phase velocity of light in the 

plate is 1 1/v c n=  . It takes a time 1/dt d v=  for the light to traverse the plate. 

Meanwhile and in the same time td ray2 travels a distance 
0 0

1/

d
d v

c n
= ×  .  

 

Figure 2-4: Absolute retardance R of a light ray caused by a parallel plate. 

As a consequence ray1 will lag behind ray2 with an amount that can be 

represented by the distance R given in equation(2.10). That distance R is 

called the absolute retardance of the light caused by the plate. 

 1 0

0

0

n n
R d d d

n

 −
= − =  

 
  (2.10) 

2.1.3.22.1.3.22.1.3.22.1.3.2 BirefringenceBirefringenceBirefringenceBirefringence    

In a birefringent or optically anisotropic material, the refractive index 

experienced by a light wave depends on the polarization and on the 

direction of propagation of said light wave. An extensive treatment of 

birefringent materials can be found for example in [9]. One can show that a 

transverse electromagnetic plane wave can propagate through anisotropic 

n1 

v
1
 

n
0
 

v
0
 

d 
R 

ray1 

ray
0

ray
2
 

ray
0

d0 
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materials, but for propagation in a general direction two distinct allowed 

linear polarizations specified by the direction of propagation can exist for 

the wave. These two allowed polarizations are orthogonal and each of these 

propagates with a different phase velocity. A wave of arbitrary polarization 

entering such an anisotropic material will be decomposed into the two 

linearly polarized components polarized along the allowed directions. To 

determine the allowed orthogonal polarization directions and their 

corresponding refractive indices (and hence phase velocities) for a wave 

propagating in a given direction, one calls upon an ellipsoidal surface 

known as the ‘indicatrix’ or ‘index ellipsoid’ [10].  

The index ellipsoid is a geometrical construction that allows 

determining the refractive index and thus the wave velocity experienced by 

the wave component vibrating along a particular direction for a given 

direction of propagation. If the ellipsoid is aligned with the orthogonal axes 

system x, y and z, the values nx, ny and nz correspond to the principal axis of 

the ellipsoid illustrated in Figure 2-5. In the most general case, the three 

refractive indexes are different. The crystals of that category are named 

biaxial crystals.    

Uniaxial crystals are characterized by nx = ny ≠ nz. We define the 

direction of the symmetry axis, the z-direction, as the optical axis of the 

crystal. The refractive index ellipsoid becomes an ellipsoid of revolution. A 

wave entering a uniaxial crystal is split into 2 waves: the ordinary wave, 

which is linearly polarized perpendicular to the optical axis and 

experiences the refractive index nx and the orthogonally linearly polarized 

extraordinary wave, with refractive index and thus velocity depending on 

the angle between the wave normal and the optical axis. A uniaxial crystal 

can be used to make a quarter wave plate. The plate is cut parallel to the 

optical axis in such a way that the thickness of the plate generates a phase 

difference between the ordinary and extraordinary ray equal to a quarter of 

a wavelength. The axis corresponding to the fastest and the slowest 

components of the quarter wave plate is called, respectively, the fast and 

the slow axis. 

In an optically isotropic material, nx = ny = nz and the index indicatrix is 

a sphere. The polarization of a wave entering such a material will not be 
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altered. Unperturbed and homogeneous silica glass can usually be 

considered to be an isotropic material. 

The birefringence in materials is either natural (e.g. in uniaxial or 

biaxial crystals) or can be induced by the existence of stress in the material. 

In a material with stress-induced birefringence, the principal axes of the 

index ellipsoid coincide with the principal stress axes as illustrated in 

Figure 2-5. The principal indices of refraction n1, n2 and n3 are each a 

function of the three stress-components σ1, σ2 and σ3. 

 

Figure 2-5: The principal axes of the index ellipsoid coincide with the principal stress 

axes. 

The stressstressstressstress----opticopticopticoptic    lawlawlawlaw describes the relation between the three principal 

refractive indices and the three principal stresses (equation (2.11)): 

 

1 0 1 1 2 2 3

2 0 1 2 2 1 3

3 0 1 3 2 1 2

( )

( )

( )

n n C C

n n C C

n n C C

σ σ σ
σ σ σ
σ σ σ

= + + +


= + + +
 = + + +

  (2.11) 

with n0 the index of refraction of the unstressed material. C1 and C2  are the  

so-called stress-optic constants. The stress-optic constants are material 
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dependent. They govern the photoelastic behavior of glass and other 

transparent materials [2, 10].  

If we consider a plate in a two-dimensional or plane stress state, the 

principal stress σ3 equals zero. If polarized light travels through the plate 

along the z-axis, the incident wave splits into two orthogonally linearly 

polarized components oscillating in the yz and xz planes. Because of the 

stress-induced birefringence, each component will experience a different 

refractive index in accordance with the stress-optic law. The relative 

retardance δ between the components emerging from the plate can then be 

given by equation (2.12). 

 

1 2 1 1 2 2 1 2 2 1

1 2 1 2

1 2

( )

( )( )

( )

n d n d C C C C d

C C d

C d

δ σ σ σ σ

σ σ

σ σ

= − = + − −

= − −

= −

  (2.12) 

where d is the thickness of the plate and C=C1-C2 is the photoelastic 

constant used to analyze the photoelastic behavior of transparent material 

[2]. 

Another example that we will use later in this dissertation, is an isotopic 

material with a refractive index n0 submitted to a tensile stress σ3 = σz 

along the z-direction, and with stresses σ1 and σ2 equal to zero. The value of 

the refractive index tensor seen by an incoming wave will change in 

accordance with equation  (2.11). 

 
1 2 0 2 3

3 0 1 3

n n n C

n n C

σ

σ

= = +

= +
  (2.13) 

The spherical indicatrix changes into an ellipsoid of revolution. Since we 

can conclude from (2.13) that n1 = n2 ≠ n3, the direction of the tensile 

stress coincides with the optical axis. Let us now consider a wave travelling 

perpendicularly to that direction, for instance along the x-axis. The wave 

will split in two components due to the stress-induced birefringence caused 

by σ3. One component is linearly polarized along the y direction, whilst the 

second is linearly polarized along the z direction. The relative retardance δ 

between these two components emerging from the material sample with 

thickness d is then expressed by equation(2.14) . 
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 3 2 1 2 3 3( )n d n d C C d C dδ σ σ= − = − =   (2.14) 

We note that the retardance is solely dependent of the applied tensile 

stress and of the thickness of the material sample. 

2.1.3.32.1.3.32.1.3.32.1.3.3 Experimental photoelasticityExperimental photoelasticityExperimental photoelasticityExperimental photoelasticity    

At this stage, we combine the polarization characteristics of light and the 

elastic properties of a transparent material submitted to stress. We have 

explained that polarized light passing through a stress-induced birefringent 

material will be decomposed into two orthogonal linearly polarized 

components experiencing a different refractive index and hence 

propagating at a different phase velocity. The stress-optic law 

(equation(2.11)) gives the relation between the stress in the material and 

the value of the refractive index. 

 Experimental photoelastic stress analysis relies precisely on the 

determination of the birefringence in material specimens using polarized 

light. For example, a circular polariscope arrangement allows accurately 

determining the relative retardance in one specific point of the specimen. It 

can also be used to perform a full field analysis of the sample. Such a 

polariscopic arrangement is illustrated in Figure 2-6. Two linear polarizers, 

a polarizer (P) and an analyzer (A) with perpendicularly oriented 

polarization axes, are placed at the two extremities of the setup. Their 

polarization directions are respectively vertically and horizontally oriented. 

The setup also contains two quarter wave retarders or plates (QWP), with 

crossed axes as well, and oriented at 45° with respect to the polarizer 

transmission axis.  
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The corresponding matrix calculus is given in equation (2.17) 
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  (2.17) 

The intensity of the output vector can be written as in equation (2.18) [12]. 

 
* 2sin

2
out out

I P P
ϕ

= =   (2.18) 

This last equation shows that extinction of light in the polariscope setup 

is obtained when 2sin ( / 2) 0ϕ = and thus when , i.e. when the 

relative retardance δ equals an integer number of wavelengths. 

Consequently, we get extinction when: 

 1 2

2
2 ( )n C d

π
ϕ π σ σ

λ
= = −   (2.19) 

When carrying out a full field measurement of the specimen, the 

extinction creates dark interference fringes called ‘isochromatics’, i.e. loci of 

those points where the relative retardance is an integer multiple of the 

radiated wavelength. These lines coincide with locations where the 

principal stress difference σ1 - σ2 is constant [2, 8]. We illustrate such a full 

field circular polariscope analysis in Figure 2-7. It visualizes the 

isochromatic pattern of a disk under uniaxial tension. Each isochromatic 

fringe corresponds to an order n. The principal stress difference is found by 

counting the fringe order n and applying equation (2.19). We can also see 

from equation (2.19) that the zero-order fringe is wavelength-independent. 

Using a white light source yields colored fringes as for n > 0 extinction does 

not occur for all the wavelengths at the same time. Only the zero-order 

fringe will be dark. Using white light to obtain a colored isochromatic 

pattern is not an accurate method to determine the principal stress 

difference values as it relies on human judgment of colors. However, it 

allows locating the zero-order fringes before illuminating the sample with 

monochromatic light to determine the higher order fringes.  

2nϕ π=
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2.22.22.22.2 Birefringence in optical fibersBirefringence in optical fibersBirefringence in optical fibersBirefringence in optical fibers    

2.2.12.2.12.2.12.2.1 Birefringence in a classic single mBirefringence in a classic single mBirefringence in a classic single mBirefringence in a classic single mode fiberode fiberode fiberode fiber    

In regular single mode optical fibers, only the fundamental core mode LP01 

propagates through the core. The fundamental mode is the combination of 

the two degenerated propagation modes 
11

xHE  and
11

yHE [15]. The total 

electrical field associated to the light wave propagating in the core of the 

optical fiber is the superposition of the two polarization modes called the x 

and y modes. These modes are degenerated only if the optical fiber is 

perfectly circularly symmetric. If the circular symmetry is broken for any 

reason, the fiber core becomes birefringent and both modes will have 

different propagation constants, respectively 
2

y y
n

π
β

λ
=  and 

2
x x

n
π

β
λ

= . 

The birefringence is defined as 
2

x y x y
B n n

λ
β β

π
= − = − . The difference in 

propagation constants results, for example, in the undesired spreading of 

an optical pulse launched in the fiber. Moreover, the polarization of light 

propagating through the fiber can change in an uncontrolled manner due to 

small asymmetries in the fiber due to errors introduced in the fabrication 

process and to external factors such as temperature variations or bend-

induced birefringence.  

The use of polarization-maintaining fibers helps to fix this issue. 

Birefringence is intentionally induced to increase the difference between 

the propagation constants of the two orthogonally polarized modes of 

propagation.  We briefly discuss the principle of operation of polarization 

maintaining fibers (PMF) below. 

2.2.22.2.22.2.22.2.2 Polarization maintaining optical fibers (PMF)Polarization maintaining optical fibers (PMF)Polarization maintaining optical fibers (PMF)Polarization maintaining optical fibers (PMF)    

The total birefringence in the fiber is a combination of material 

birefringence and waveguide birefringence [16, 17]. The waveguide 

birefringence BW is induced when the circular geometry of the fiber is 

broken. By producing an anisotropic refractive index distribution around 

the fiber core, one enhances the waveguide birefringence. In conventional 

optical fibers, this is achieved by using for example an elliptically shaped 
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core, as illustrated in Figure 2-9 (a). The material birefringence BM results 

from an asymmetric transverse stress which produces birefringence 

through elasto-optic refractive index changes in the core [17]. By adding 

doped silica inclusions, symmetrically located at either side of the core and 

having different thermal expansion coefficients, thermal stress is internally 

frozen in the fiber during its cooling down in the production process. The 

fabrication process of the optical fibers will be addressed in Chapter 3.  

 

Figure 2-9: Cross-section of different polarization maintaining fibers; (a) elliptical core 

fiber, (b) Panda fiber, (c) bow-tie fiber and (d) elliptical cladding fiber. The dark zones 

are called ‘inclusions’.[18] 

Typical examples of material birefringent fibers are illustrated in Figure 

2-9 (b) to (d), respectively the panda fiber, bow-tie fiber and elliptical 

cladding fibre that have inclusions of Boron-doped material. The level of 

birefringence achieved with such PMFs is about 5× 10-4 [18]. PMF fibers are 

also called Hi-Bi fibers (Highly Birefringent fibers). Such fibers are used in 

applications where the preservation of the polarization is important, for 

example to connect a laser source to a modulator [19]. 

2.32.32.32.3 PolarimetrPolarimetrPolarimetrPolarimetric and Fiber Bragg grating sensors in a nutshellic and Fiber Bragg grating sensors in a nutshellic and Fiber Bragg grating sensors in a nutshellic and Fiber Bragg grating sensors in a nutshell    

2.3.12.3.12.3.12.3.1 Polarimetric sensorsPolarimetric sensorsPolarimetric sensorsPolarimetric sensors    

PMFs typically exploit the photo-elastic effect for transducing a mechanical 

action into a measurable change of the PMF beat length [20–22]. The beat 

length LB is the fiber length required to create a phase change of 2π. The 

relation between LB and the birefringence B of a PMF is expressed in 

equation (2.20). 

(a)

) 

(b)

) 

(c)

) 

(d)
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  (2.20) 

Consider linearly polarized light is launched into the fiber at 45° with 

respect to the principal polarization directions of the PMF. If the fiber is 

subjected to an external induced stress or strain, the birefringence or the 

beat length will change, leading to a phase shift between the two orthogonal 

components at the exit of the PMF fiber. Consequently, the PMF-based 

sensor is a polarimetric sensor transducing a mechanical quantity such as 

pressure, temperature or tensile stress into a measurable phase-shift 

between the two orthogonal polarized components of the wave vector 

traversing the fiber sensor.  

2.3.22.3.22.3.22.3.2 Fiber Bragg grating sensorsFiber Bragg grating sensorsFiber Bragg grating sensorsFiber Bragg grating sensors    

The sensor principle of FBGs is also based on the photo-elastic effect for 

transducing a mechanical quantity into a change of the so-called Bragg 

wavelength.  

Sensing principle of FBG in classical optical fibers 

A FBG is an all-fiber component that can perform functions such as 

wavelength selective reflection and filtering. An FBG consists of a periodic 

modulation of the refraction index along the fiber core as illustrated in 

Figure 2-10. The distance between the grating planes Λ and the amplitude 

of the modulated refractive index neff are constant. The light guided along 

the core of the optical fiber will be scattered by each grating plane. The 

contributions of the reflected light from each grating plane satisfying the 

Bragg condition will add constructively in the backward direction and will 

form a reflected peak with a specific central wavelength λB defined by the 

grating parameters as described in equation (2.21). The grating acts as a 

mirror for that specific wavelength.  

 2B effnλ = × ×Λ        (2.21) 



 

35 

 

The mass-manufacturability of reliable Bragg gratings along with the 

advantages offered by the optical fibers such as low loss transmission, 

immunity to electromagnetic interference, light weight and small size 

makes FBG technology very attractive for telecommunication and sensing 

applications [21, 23–25]. Note that one FBG in a fiber is classified as a point-

sensor. It is able to quantify a measurand at one specific location, i.e. at the 

location of the FBG along the fiber. Current fabrication processes also allow 

concatenating FBGs at multiple locations along the fiber. Using a different 

period Λ for each FBG allows associating a different Bragg wavelength with 

each sensing point. This is the basis for multiplexing many FBG point 

sensors in one optical fiber and enables quasi-distributed sensor networks 

to cover large areas with a minimum amount of optical fiber leads [26–29]. 

When the grating experiences thermal or mechanical perturbations, the 

effective refractive index changes according to the stress-optic law 

(equation (2.11)) and the period of the grating will be affected by changes 

in strain, stress and temperature in the fiber. As a consequence the Bragg 

condition is modified and the reflected wavelength λB will shift in amounts 

that are proportional (within certain limits) to the physical perturbation. 

Monitoring the Bragg wavelength shift resulting from the strain applied to 

the fiber or from a temperature change allows deriving the magnitude of 

these measurands. Typical sensitivities of λB to longitudinal strain and to 

temperature are of the order of 1 pm/µstrain and 10 pm/°C, respectively, at 

an operation wavelength of 1550 nm [30]. Note that a FBG in a classical 

optical fiber is not able to distinguish between simultaneous temperature 

and strain induced perturbations. The reflected Bragg peak shift returns an 

integrated response to both measurands. 
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Figure 2-10: Illustration of a fiber with a Bragg grating. The period of the grating is Λ, the 

effective refractive index is neff. [31] 

Let us consider a perfectly symmetric single mode fiber with two 

degenerated fundamental modes. A FBG in that fiber will reflect a single 

Bragg wavelength. If the fiber is subjected to pure axial stress, σ1 = σ2 ≠ σ3, 

the two degenerated modes will experience the same wavelength shift ΔλB. 

The 1 and 2-axis refer to the transverse directions in the fiber, the 3-axis 

refer to the axial direction as represented in Figure 2-11. 

 

Figure 2-11: Coordinate system of the optical fiber.  The 1 and 2 axes coincide with the 

transverse directions in the fiber, axis 3 refer to the axial direction. We assume the axis 

x,y and z correspond to the principal stress axis 1, 2 and 3. 
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 2 2
B eff y

n Cλ σ∆ = ×∆ ×Λ = × ×   (2.22) 

Equation (2.22) emphasizes the importance of the photoelastic 

coefficient C when dealing with a FBG sensor. In this specific example the 

knowledge of C allows predicting the amount of splitting of the reflected 

Bragg peak when the fiber sensor is subjected to anisotropic load. 

FBG inscription methods 

High quality FBGs can now be fabricated at relatively low cost. Several 

techniques exist to create a periodic interference pattern in the core of an 

optical fiber. A most common technique for ‘inscribing’ a FBG is to use a 

photosensitive fiber and illuminate it from the side with a pattern of UV-

light to induce a permanent modulation of the refractive index in the core of 

the fiber [24, 31, 33]. The UV-light pattern can be obtained with a phase 

mask technique. This method is very stable and simple as it uses solely one 

optical component, a diffraction grating. The principle of this method is 

illustrated in Figure 2-13. Ultraviolet light that is incident normal to the 

phase is diffracted by the periodic corrugations in the mask. The phase 

mask is designed to suppress the 0 diffracted order such that most of the 

diffracted light is contained into the +1 and -1 diffracted orders. These two 

orders will interfere to give a sinusoidal intensity pattern, which photo-

imprints a corresponding refractive index pattern into the fibre core. The 

optical fiber is placed directly behind the phase mask in the near field of the 

diffracted beams which reduces the sensitivity of the system to mechanical 

vibrations. This FBG fabrication technique is well-suited to mass production 

of gratings since it provides excellent manufacturing repeatability. The 

main disadvantage of this FBG inscription technique is that different masks 

are necessary for writing gratings with different Bragg wavelengths. 
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Figure 2-13: Illustration of the phase mask technique for the inscription of FBGs [31]. 

For applications where multiplexed FBGs are needed at different Bragg 

wavelengths, the interferometric FBG inscription technique is more 

suitable, as it allows tuning the Bragg wavelength by modifying the angle 

between the two interfering UV light beams [21].  Several other inscription 

techniques exist to inscribe FBGs in optical fibres. We refer to [34] for an 

overview. 

2.3.32.3.32.3.32.3.3 FBG sensors in hFBG sensors in hFBG sensors in hFBG sensors in highly birefringent fibersighly birefringent fibersighly birefringent fibersighly birefringent fibers    

The total initial birefringence in a conventional highly birefringent fiber 

such as the PMF described in section 2.2.2, is the phase-modal birefringence 

Bm0 defined as the difference between the initial effective refraction indices 

nx0 and ny0, according to equation (2.23), with β the propagation constant 

and λ the wavelength of the light.  

 0 0 0
2

m x y x yB n n
λ

β β
π

= − = −   (2.23) 

Since the fiber is highly birefringent, unpolarized light that is launched 

into the fiber yields two Bragg peaks, λB1 and λB2, one for each orthogonally 

polarized mode propagating in the fiber as illustrated in Figure 2-14.  
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Subtracting the second expression from the first one yields equation 

(2.26): 

 
0 0 0

0

( ) ( )m x y x y x y m x y

m m s

B n n n n C B C

B B B

σ σ σ σ= − = − + − = + −

= +
  (2.26) 

We designate BS as the stress-induced birefringence. The variation of 

the modal birefringence will affect the Bragg peak separation ΔλB0. This 

clearly shows how the sensing mechanism of FBG based sensors in 

birefringent optical fibers relies on the principle of photoelasticity, with the 

photoelastic constant C as unique material dependent parameter. 

2.3.42.3.42.3.42.3.4 Microstructured Optical Fibers (MOF)Microstructured Optical Fibers (MOF)Microstructured Optical Fibers (MOF)Microstructured Optical Fibers (MOF)    

Another type of specialty fiber has emerged in the last two decades, i.e. the 

microstructured optical fibers (MOFs) or photonic crystal fibers (PCFs). 

They offer an interesting alternative to conventional optical fibers in the 

scope of specific applications [36–40]. A MOF is an optical fiber with an air 

hole structure that is running along the entire length of the waveguide. We 

distinguish two main classes of MOFs: the index guiding fibers and the 

bandgap guiding fibers. The index guiding principle is similar to that of the 

conventional fibers. The core region has a higher refractive index than the 

surrounding cladding region as the presence of air holes lower the average 

refractive index. In photonic bandgap fibers the light guidance is achieved 

by the presence of a two-dimensional photonic bandgap that confines the 

light in the low-index or hollow core. Figure 2-15 shows an example of both 

classes of MOFs. 
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Figure 2-15: Illustration of MOFs with a hexagonal lattice: (a) index-guiding 

microstructured optical fiber and (b) bandgap guiding hollow core microstructured 

optical fiber [39]. 

The ability to control the number of air holes, to choose their diameter 

and their arrangement in the fiber cross-section opens the possibility to 

design MOFs with a wide range of properties that cannot be obtained with 

conventional optical fibres [12]. The development of MOF technology is 

driven by the opportunity to obtain fiber structures tailored to specific 

applications. 

The introduction of asymmetries in the air hole arrangement of a MOF, 

for example by departing from the hexagonal lattice or by enlarging some 

air holes, introduces controlled birefringence. An example is the highly 

birefringent ‘butterfly’ MOF, depicted in Figure 2-16, which was designed 

by the B-PHOT research group at Vrije Universiteit Brussel (VUB) [41, 42]. 

The fiber and the shape of the microstructure were designed such that a 

FBG based sensor fabricated with that fiber features a high sensitivity of the 

Bragg peak separation to hydrostatic pressure and to transverse strain, 

whilst at the same time being minimally sensitive to temperature changes. 

The two reflected Bragg peaks respond in an opposite way to hydrostatic 

pressure and transverse load. 

(a)

) 

(b)
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The average sensitivity of the simulated FBG MOF to a perpendicular 

line load equals 150 pm/(N/mm). This sensitivity is close to the values 

reported for conventional birefringent fibers [18]. Note that the butterfly 

MOF presented in [46–48] is almost four times more sensitive (-370 

pm/(N/mm)). 

 

Figure 2-18: Birefringence Bm evolution for an increasing vertical line-load. The initial 

phase-modal birefringence of the MOF is 0,0023. The simulated sensitivity of the MOF to 

perpendicular line load equals 150 pm/(N/mm).  

2.42.42.42.4 Impact of the photoelastic constant on a FBG based sensor Impact of the photoelastic constant on a FBG based sensor Impact of the photoelastic constant on a FBG based sensor Impact of the photoelastic constant on a FBG based sensor 

responseresponseresponseresponse    

We have learnt from the previous sections that the photoelastic 

coefficient is an important material parameter of the optical fiber as it 

impacts the transduction mechanisms in polarization based optical fiber 

sensors and in FBG based sensors.  
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When designing dedicated mechanical optical fiber sensors or when 

predicting the response of such sensors that exploit photoelasticity, one 

should therefore have accurate knowledge of the value of the photoelastic 

constant. To illustrate the impact of the uncertainty on the value of C, we 

have simulated the variation of the birefringence Bm in the MOF sensor 

discussed in section 2.3.4 as a function of the uncertainty on C [49]. The 

birefringent MOF has a phase-modal birefringence Bm0 of 2.3×10-3. We 

apply a vertical line load of 15 N/mm to the grating and we compute the 

resulting change of the birefringence Bm using the finite element analysis 

software COMSOL Multiphysics [45]. The results of the simulation are 

shown in Figure 2-19. The central point of the graph corresponds to the 

nominal value of Cnom = −3.52×10-12 Pa-1 measured on bulk silica taken 

from [50]. That value is still commonly used for simulating silica optical 

fibers.  

 
Figure 2-19: Variation of the total birefringence Bm for a maximal error of ±15% on C1 

and C2, with C = C1 – C2. The applied vertical line load is 15 N/mm.  

We then change the value of C by modifying the values of C1 and C2 with 

±15% from their nominal values and we calculated Bm for the same applied 

transverse line load of 15 N/mm.  We conclude from Figure 2-19 that an 

uncertainty on the knowledge of the stress-optic parameters leads to an 
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uncertainty of a similar amplitude on the simulated deviation of the 

birefringence and hence that the uncertainty on C may lead to significant 

deviations between calculated and measured responses of a fiber Bragg 

grating exposed to mechanical load.  Note that the initial birefringence Bm0 

is not dependent on the variation of C as it is a constant term in the 

expression of the total birefringence Bm. This explains that the variation of 

Bm has a smaller amplitude than the error on C. Considering solely the term 

of the stress-induced birefringence, the deviation on BS has the same 

amplitude as the error on C. 

To further illustrate the impact of the uncertainty on C, we simulate the 

birefringence in the same fiber for an increasing vertical line load for 

different values of C. The results are presented in Figure 2-20. 

 

Figure 2-20: Evolution of the birefringence Bm for an increasing value of the vertical line-

load for 3 values of C.  

We can clearly see the impact of an error on the photoelastic constant 

on the total birefringence predicted by the simulations. Simulating with an 

erroneous value of the photoelastic constant C leads to an error in the 

predicted sensitivity of the FBG sensor. In our example, the sensitivity 

varies from 133 pm/(N/mm) to 180 pm/(N/mm). The use of an erroneous 
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value of C thus generates a mismatch between the simulated - and therefore 

expected - response of the sensor and the effective response and sensitivity 

of the manufactured fiber sensor fabricated based on the simulated design. 

This stresses the importance of the ability to measure the photoelastic 

coefficient of an optical fiber with adequate accuracy. 

2.52.52.52.5 Impact of Impact of Impact of Impact of the photoelastic constant on applications in the photoelastic constant on applications in the photoelastic constant on applications in the photoelastic constant on applications in 

telecommutelecommutelecommutelecommunicationsnicationsnicationsnications    

To end this Chapter and with the only aim to extend a little on the scope of 

this research, we  shortly discuss how the accurate knowledge of C is not 

only crucial for the development of tailored sensing applications, but can 

also be important for optical fiber telecommunications. 

In the telecommunication area, the increasing need for a high 

performance network requires fibers that minimally degrade signal 

transmission. Effects including  chromatic dispersion (CD), polarization-

dependent-loss (PDL), polarization-mode dispersion (PMD), and fiber non-

linearities should be avoided [51].  

The random varying asymmetries in the fiber core along the fiber length 

induce some unwanted birefringence that results in PMD. A perfect single 

mode fiber guides only one mode at a defined optical wavelength. This 

fundamental mode consists of two degenerated polarization states. 

However, the imperfections of a real fiber cause the optical light to split 

between the two orthogonal polarization states of the fiber. Each 

polarization component travels at a different speed and creates a 

differential group delay (DGD), which results in pulse spreading and hence 

limits the data transmission rate. The mean or expected value of the DGD is 

defined as the PMD. The impact on the telecommunication system 

performance of the PMD is not negligible, especially in older fiber networks. 

For each binary symbol ‘0’ or ‘1’, a light pulse is sent within the timeslot TB 

of the binary symbol. The PMD induced delay stretches the duration of each 

individual pulse. Distortion arises when the tail of the leading pulse 

overlaps with the leading edge of the next pulse, provoking inter symbol 

interference (ISI). As a result the optical receiver may not always be able to 

decide whether it sees a ‘1’ or a ‘0’. At a low data rate (~2,5Gbit/s) the bit 
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period TB is long compared  to the added delay of PMD and distortion does 

not occur. However, as the demand for increasing data rates is a reality, the 

bit period is drastically shortened to obtain data rates well above 40 

Gbits/s. In that case, the PMD becomes an issue. ITU standards (e.g. G691 

and G657 [52, 53]) now define requirements for a fiber system  to enable 

multi-vendor compatibility. For instance, the maximum DGD of an entire 

optical path should not exceed DGDmax, defined as 30% of the bit period TB.  

So let us illustrate the influence of optical fiber material parameters on the 

determination of the differential group delay (DGD) caused by a non-

circular core of the fiber. A non-circular core results in undesired 

birefringent effects: first in a geometrical birefringence inducing a 

DGDGEOMETRICAL solely function of the waveguide parameters [54], and 

second in the appearance of non-symmetrical stress-fields that will induce 

stress birefringence and hence a DGDSTRESS. The latter is function of the 

material parameters of the optical fiber [55, 56] as described in equation 

(2.29).  

 ( )
2(1 )

STRESS p

T
DGD E C G W

c

ε α
υ

∆ ∆
= − × × ×

−
  (2.29) 

The parameters of equation (2.29) are defined as follow: 

- ε : ellipticity of the core, 

- c : speed of light in vacuum, 

- Δα: difference between the thermal expansion 

coefficients of respectively the core and the cladding of 

the fiber, 

- ΔT: difference between the high softening temperature 

of the doped core and the room temperature, 

- ν: Poisson coefficient,  

- E: Young modulus, 

- C: photoelastic constant  

- G(Wp): a function of the waveguide parameters (core 

and cladding diameter, refractive index, ellipticity, 

wavelength) 
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Predicting whether the DGD remains within the specified and severe 

limits defined by international optical communication specifications 

therefore also calls for accurate knowledge of C.  

2.62.62.62.6 SummarySummarySummarySummary    

In this introductory Chapter we have introduced the basic principles of 

photoelasticity. We have provided an overview of how elasticity of a 

material is linked with the polarization properties of a light wave traversing 

the material. Next, we explained the birefringence in classical optical fibers 

and polarization maintaining fibers. The latter are highly birefringent and 

are convenient in polarimetric sensing applications where they act as 

transducers for mechanical quantities based on the photoelastic effect. 

Afterwards we presented another sensing mechanism exploiting the 

photoelastic effect with the inscription of FBG in the optical fibers. The 

sensing mechanism is based on the periodic change of the refraction index 

over a given distance in the optical fiber. The wavelength satisfying the 

Bragg condition is reflected by the grating. Due to external mechanical 

perturbations, the effective refractive index in the fiber changes according 

the stress-optic law and eventually the grating period changes as well. As a 

consequence the Bragg condition is modified and the reflected Bragg 

wavelength will shift.  

To proceed with specialty fiber based sensors, we introduced the 

concept of a FBG in a polarization maintaining fiber yielding two reflected 

Bragg peaks as a consequence of the highly birefringent nature of the PMF. 

The sensing mechanism is based on the relative variation of the two 

reflected peaks resulting from additional stress-induced birefringence in 

the PMF fiber under external mechanical loads. We also introduced sensors 

fabricated in highly birefringent microstructured optical fibers. For all 

those cases we have shown that photoelasticity plays a crucial role in the 

transduction mechanism and that accurate knowledge of the material 

parameters, and of the photoelastic coefficient in particular, is required if 

we want to correctly predict the response of the optical fiber sensor to 

mechanical load.  
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In a last section we briefly illustrated that accurate knowledge of C is 

also important for optical fiber telecommunication applications. 

In Chapter 3 we will give an overview of the measurement techniques 

to determine C in bulk silica and in polymer material and further comment 

on the necessity to measure this value preferably directly on the fiber.  
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Chapter 3.Chapter 3.Chapter 3.Chapter 3. Measurement of the Measurement of the Measurement of the Measurement of the 

photoelastic constant C: photoelastic constant C: photoelastic constant C: photoelastic constant C: sssstatetatetatetate----ofofofof----the the the the 

art and challengesart and challengesart and challengesart and challenges    

The values of the photoelastic constant C of silica glass optical fibers that 
can be found in literature are mostly consistent. However, many 
publications dealing with silica optical fiber sensors still use the value of C 
measured on bulk silica [1]. For polymer optical fibers, the situation is 
different. The values of C that have been reported for polymethyl 
methacrylate (PMMA), which is the most common material used to 
fabricate polymer optical fibers,  are very dissimilar. Altogether, this calls 
for the need to develop an accurate measurement method to determine C of 
the optical fiber on the fiber itself. In the first section of this Chapter, we 
describe measurement methods that are mostly used to determine C in bulk 
material. The second section gives an overview of the methods proposed in 
the literature to measure C directly on the optical fibers themselves. In the 
third section, we first summarize the fabrication technologies typically used 
to fabricate silica and polymer optical fibers. Considering these 
manufacturing processes, we conclude on the need, not only to develop an 
accurate measurement method to determine C, but also to determine the 
radial dependence of C across the fiber section. We close this Chapter by 
summarizing the specific challenges associated with the measurement of 
the radial profile of the photoelastic constant. 

3.13.13.13.1 Measurement of C in bulk materialMeasurement of C in bulk materialMeasurement of C in bulk materialMeasurement of C in bulk material    

3.1.13.1.13.1.13.1.1 C in bulk C in bulk C in bulk C in bulk ssssilicailicailicailica    

Several techniques have been developed to measure the individual stress-

optic coefficients or the photoelastic coefficient. A first and well-known 

method is based on interferometric measurements [1–3]. A cube-shaped 
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silica sample is placed in one arm of a Mach-Zehnder interferometer as 

illustrated in Figure 3-1. The crystal under test is immersed in index 

matching liquid to avoid scattering of light at the edges of the silica cube. 

The laser illuminates the cube with monochromatic light that is linearly 

polarized along either the x or y direction depending on the setting of the 

polarizer. 

 
Figure 3-1: Basic Mach-Zehnder interferometer setup for measuring the photoelastic 

coefficient of silica. The laser beam is linearly polarized in the x or y direction by means 

of the polarizer. Beamsplitter 1 (BS1) divides the light into two beams, totally reflected 

by the mirrors M1 and M2. BS2 recombines the two beams. The interference fringes are 

visualized on the screen.  

The incident polarized light beam is divided into two beams at the first 

beam splitter (BS1). Afterwards, each beam is totally reflected by mirrors 

M1 and M2. The two light beams will recombine after the second 

beamsplitter BS2 and produce an interference fringe pattern on the screen. 

The silica cube is loaded with a uniformly distributed vertical load Fy. The 

load induces uniaxial stress σy = Fy/a2 in the sample, with a the length of 

the silica cube edge. In that particular case the expression of the stress-

optic law becomes ((3.1)): 
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Due to the stress-induced birefringence, the two orthogonal linear 

polarizations of light allowed to travel through the cube will experience a 

different refractive index and will therefore travel different optical path 
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lengths. The difference in optical path length is referred to as the 

retardance as described in Chapter 2. Equation (3.2) expresses the 

retardance for both linear polarization directions along x and y, and the 

ensuing phase-shift of the light beam. λ is the wavelength of the incident 

light. 
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  (3.2) 

Measuring the interference fringe shift between the pattern measured 

with the unloaded sample and the pattern obtained with the loaded sample 

for both directions of linear polarization therefore allows determining the 

individual stress-optic coefficients C1 and C2. This has  resulted in a value of 

C = -3,52×10-12 Pa-1 for bulk fused silica measured at a wavelength of 644 

nm [1] in 1959, which is still used as a reference value in many publications, 

essentially because the results are considered to feature a low uncertainty 

of 2%. That reference value is, for example, used by Bertholds et al. [4] to 

validate their method to measure transverse stress with an optical fiber 

Bragg grating based sensor. We refer to section 2.2 of Chapter 2 explaining 

the operation of fiber Bragg grating sensors. The authors of  [5–7], for 

example, rely on that reference value to validate the simulated response of 

a highly birefringent microstructured optical fiber (see section 2.3) 

designed to be sensitive to pressure or transverse mechanical load. The 

authors of [1, 8] also comment on the wavelength dependence of C. The 

value of C decreases slightly with increasing wavelength, similarly to the 

refractive index wavelength dispersion [9, 10]. Note that in this PhD thesis, 

we do not analyze the wavelength dependence of C, but in principle, our 

method can be applied to measure C at any wavelength for which the 

sample is transparent. 

Other techniques to analyze the optical properties of photoelastic 

materials have been proposed in literature. One method relies on the 

measurement of the optical path differences between two plane waves to 

measure the stress-induced birefringence [11–13]. Others exploit the 
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caustic effect [14, 15], i.e. the analysis of the path change dictated by the 

stress field of a specimen illuminated by a monochromatic light beam. The 

reflected or transmitted rays generate a bright curve on a reference screen, 

the so-called ‘caustic’. The analysis of the caustics yields information on the 

stress conditions and on the birefringence in the specimen. Other methods 

rely on birefringence analysis with circular polariscopic arrangements [16–

20]. The analysis of the evolution of the isochromatic patterns allows 

studying the birefringence of transparent material. 

3.1.23.1.23.1.23.1.2 C in polymer materialC in polymer materialC in polymer materialC in polymer material    

The measurement techniques described in the previous section can be 

applied to all kinds of transparent material, and therefore also to 

transparent polymer specimens. In contrast to the case of silica, only a few 

references exist that report about the measurement of C. In addition, the 

value of C appears to vary considerably. For example, the values of C 

measured on bulk and thin film polymethyl methacrylate (PMMA) range 

from -1.08×10-10 Pa-1 to 5.3×10-12 Pa-1 [21–26]. Information about the 

wavelength dependence of C in polymer material is also available in [27]. 

There can be several reasons for the large spread in reported values of C in 

polymers. In [25] the authors demonstrate that PMMA can have a negative, 

zero or positive birefringence. The sign and the value of the photoelastic 

constant depend on the presence and on concentration of dopants in the 

polymer. They also demonstrate that the photoelastic constant depends on 

the orientational birefringence caused by the orientation of the polymer 

chains in the cured polymer sample. Furthermore and by carefully selecting 

the copolymers and their concentration, they are able to achieve a polymer 

with a photoelastic constant C almost equal to 0 Pa-1[22].  

3.23.23.23.2 Techniques proposed to determine C Techniques proposed to determine C Techniques proposed to determine C Techniques proposed to determine C ofofofof    optical fibersoptical fibersoptical fibersoptical fibers    

We can distinguish between two approaches that have been followed to 

measure the photoelastic coefficient directly on an optical fiber. A first 

category of methods analyses the light guided through the fiber. The effect 

of an applied stress (either twist-induced stress or stress resulting from 

elongation of the fiber) is then analyzed by means of a polarimetric or 

interferometric measurement. A first of such methods has determined the 
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are necessary to calculate C based on the measurement results. Our setup 

and measurement principle are discussed in detail in Chapter 4. 

3.33.33.33.3 Overview of the production process ofOverview of the production process ofOverview of the production process ofOverview of the production process of    optical fibersoptical fibersoptical fibersoptical fibers    

The measurement techniques described in section 3.2 essentially rely 

on the hypothesis that C is constant throughout the optical fiber’s cross-

section. Due to the particular fabrication process of optical fibers, making 

such an assumption is not necessarily correct [2]. Fabricating a fiber 

involves several steps that could potentially alter the value and the radial 

distribution of the photoelastic constant. To illustrate this we briefly 

address the most common fabrication processes for glass optical fibers and 

polymer fibers.  

3.3.13.3.13.3.13.3.1 Production of glass optical fibersProduction of glass optical fibersProduction of glass optical fibersProduction of glass optical fibers    

Fabricating optical fibers involves fabricating a preform that contains 

doping elements to form a core and cladding structure and thermal drawing 

of the fiber from this preform [33].  

Doping of glass is essentially required to control the refractive index of 

the glass, but may also be needed, for example, to provide for the required 

gain medium when fabricating optical fiber lasers. Various vapor deposition 

techniques allow the fabrication of preforms with very low impurity levels 

and controlled doping levels [34]. The most common dopant used to 

increase the refractive index of the fiber core is germanium. Fluorine, on the 

other hand reduces, the refractive index of silica and can be added to the 

cladding to allow the use of pure silica cores. Typically, the refractive index 

difference between the core and cladding is  0.36%. Once the preform is 

manufactured, the glass fiber is drawn from this preform using a high-

temperature furnace in a tower setup [35, 36]. The main elements of the 

drawing tower are illustrated in Figure 3-3. During the drawing, the 

preform is heated to an optimum temperature, typically 1900°C to melt the 

silica glass. The fiber is pulled and wound around the winding drum. During 

the draw, the temperature of the preform has to be very stable to ensure a 

uniform draw tension. For the same drawing tension, higher speeds are 

obtained with an increase of the temperature of the furnace. The 

consequence is a change of the frozen-in thermal stress distribution that 
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will induce undesired birefringence in the fiber. The drawing parameters 

(temperature, drawing tension) have a direct influence on the quality of the 

optical fibers and thus have to be chosen properly to avoid dispersion 

induced by birefringence in the fiber [37]. The draw speed (mostly between 

10 and 20 meters per second) depends on the desired final fiber diameter. 

The cladding diameter of glass optical fibers is typically 125 µm. 

 

Figure 3-3: Illustration of a drawing tower. The preform is heated in the furnace. The 

diameter monitor allows fine-tuning the drawing speed to achieve the desired fiber 

diameter. A protective coating layer is applied as the fiber passes through the coating 

cup. The curing oven allows to harden the coating around the fiber. Before the fiber is 

wound  around the drum, its diameter is monitored again [38].  

To conclude, one can understand that an optical fiber consisting of a 

core and cladding structure that are essentially made from different 

materials, which have different coefficients of thermal expansion leading to 

the existence of a residual stress profile, and which are also different from 

typical bulk pure silica material, may feature a value of C that is not 

constant across the section of the fiber and that is likely different from bulk 

pure silica. In addition, optical fibers are sometimes post-processed to 

enable them to operate as a sensor, for example by means of inscribing a 
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fiber Bragg grating, which could potentially locally alter the value of C as 

well. 

3.3.23.3.23.3.23.3.2 Production of polymer optical fibersProduction of polymer optical fibersProduction of polymer optical fibersProduction of polymer optical fibers    

POFs are usually made from polymethyl methacrylate (PMMA), 

polystyrene (PS) or polycarbonate (PC). More recently other polymers such 

as TOPAS® or CYTOP® have been used as well [39]. We give a short 

overview of the main differences in characteristics between the polymer 

fibers and their silica counterparts. Most plastic fibers are large core step-

index fibers. The core diameter varies from 85 µm to more than 3mm. This 

large diameter compared to silica fibers makes them much easier to handle. 

The major drawback is the high attenuation of the polymer fibers compared 

to the silica fibers. Each polymer comes with its own advantages and 

drawbacks [40, 41]. For telecommunication applications, PMMA POFs offer 

a relatively low loss in visible and near-infrared regions, which makes them 

the most common POFs on the market.  The most commercially available 

POF is a PMMA based large-core step-index POF, with a minimal 

attenuation of 70 dB/km at a wavelength of 500nm. The attenuation is 

much higher in the 1300 nm and 1550 nm windows, corresponding to the 

most widely used telecommunication windows of silica fibers. Fluorinated 

graded index plastic fibers allow to operate also in these transmission 

windows, but these fibers are relatively expensive and less commercially 

available. 

The two main techniques used for making polymer fibers are the 

thermal drawing process and the extrusion process. Drawing the fiber from 

the preform relies on the same principle as for the silica fibers. However, 

obtaining a transparent and homogenous polymer preform is not 

straightforward. After polymerization, several temperature treatments are 

necessary to purify the polymer from the remaining volatiles used to 

initiate the polymerization and to eliminate bubbles from the preform [39]. 

Afterwards the preform is placed a few days in a 95°C oven to relieve the 

stresses present in the polymer. This process is called the thermal 

‘annealing’ process. Once the preform is ready, it is heated up to 240°C in 

the furnace of the drawing tower. The main advantage of the drawing 

process is its flexibility and the high quality of the produced fibers. The 
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In the batch extrusion process the monomer and reactor vessels are 

sealed to avoid external contamination. One obtains a closed system that 

ensures the material remains clean during the fabrication process. 

However, for the batch extrusion process the amount of fiber that can be 

drawn is limited by the size of the reactor chamber. This process is typically 

used in laboratories or in pilot-plants. Most large-core step-index 

commercially available POFs are produced with the continuous extrusion 

technique.  

To conclude, and similarly to the case of the silica fibers, the production 

processes of POFs may lead to values of C that differ from that of bulk 

material and that are not uniform over the POF cross-section. The problem 

may even be exacerbated in POFs considering the multitude of different 

materials available, the variety of pre-processing and conditioning methods 

used, the alignment of polymer chains during fiber drawing leading to an 

intrinsic form of structural anisotropy, and the peculiar characteristics of 

polymers themselves, including their visco-elastic properties and their 

peculiar response to thermal treatments. Furthermore, POFs also feature 

very different photosensitivity properties than doped glass fibers, which 

may also affect how their structure and therefore C is altered following 

exposure to UV light for the fabrication of Bragg gratings in such fibers. 

3.43.43.43.4 Challenges towards the determination of CChallenges towards the determination of CChallenges towards the determination of CChallenges towards the determination of C    

 The previous paragraphs have illustrated that the manufacturing 

process of both silica end polymer fibers, and sensors made thereof, 

involves several production steps that can potentially alter the value of the 

stress-optic constant in comparison with bulk material. The transformation 

of the material from solid to liquid and back to solid implies large 

temperature variations. Drawing the fiber can potentially add a random 

residual stress distribution generating birefringence in the fiber if this 

operation is not executed carefully. In [42], for example, C has been 

measured in PMMA fibers and its value has been found to depend both on 

the drawing conditions and on the annealing of the fiber. The values 

obtained are between 1.5×10-12 Pa-1 and 4.5×10-12 Pa-1. This may point at 

the necessity to measure C for every different type of POF. The addition of 

dopants also influences the material characteristics and conveys different 
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properties to the core and cladding of the fibers. Therefore, the value of C 

should not only be measured accurately on the fiber directly, but 

knowledge of its distribution in the fiber cross-section is equally important 

in order to allow for accurate predictions of the response of an optical fiber 

sensor to mechanical load. 

This thesis therefore focuses on the two following objectives.  

The first objective is to obtain a setup that enables a reliable 

measurement of the photoelastic coefficient directly on the optical fiber. 

The method we implement relies on the theory of photoelasticity. We aim 

to determine the retardance in a laterally illuminated fiber as described in 

section 3.2. The fiber is installed in a polarimetric setup and the retardance 

is measured according to the Sénarmont compensation method that we will 

describe extensively in Chapter 4.  

The second objective is to enable the measurement of the radial 

distribution of C in the cross-section of the optical fiber. To do so we have to 

build the setup mentioned above in a polarizing microscope arrangement to 

achieve the optical resolution required to obtain micron-level spatial 

resolution for the radial profile C(r).  

Achieving these objectives requires us to tackle a number of specific 

challenges. 

First, as photoelasticity requires the retardance to be measured for a 

known applied axial tensile stress, we have to take care when designing the 

mechanism to apply the tensile stress to the optical fiber under test, more 

specifically to exclude any radial dependence of the tensile stress in the 

fiber. 

Second, since the fiber experiencing tensile stress is laterally 

illuminated, we will obtain a projection of the stress-induced retardance 

along the fiber diameter, without immediate information linking the 

retardance to a specific position along the fiber radius. To recover that 

information we need to use a mathematical integral transform known as 

the ‘inverse Abel transform’, which allows calculating the radial distribution 

of an axisymmetric function given the projection of that function. In our 

specific case, the projection of that function is the measured retardance. We 
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will demonstrate in Chapter 4 that the inverse Abel transform of the 

retardance is proportional to the applied tensile stress σz multiplied by the 

radial profile of the photoelastic coefficient C(r). The challenge is then to 

develop the most suitable algorithm to calculate the inverse Abel transform 

such that we achieve the most reliable results. The result should be 

obtained with a sufficient spatial resolution to determine a correct average 

profile of the photoelastic coefficient C(r). In addition, the algorithm should 

be able to cope with unavoidable measurement noise. As we will describe, 

this noise may contribute in significant amounts to the uncertainty with 

which C(r) can be determined. 

The third challenge we face is to validate our measurement method by 

measuring C and C(r) using actual fiber samples. This requires first finding 

the appropriate parameters that enable correctly calculating the inverse 

Abel transform and carrying out the measurements and calculations for 

different types of silica optical fibers with different core diameters, and 

second comparing these results with values for the photoelastic coefficient 

that have been published in literature. If these values are consistent then 

we will be able to claim that we achieve reliable results and that our 

method is validated.  

Once the technique is validated, the fourth challenge is to adapt and 

extend our measurement and calculation technique to polymer optical 

fibers.  This implies selecting adequate candidate POFs and adapting the 

tensile loads enabling the measurements to appropriate levels. 

Furthermore, and in order to highlight the peculiar properties of POFs 

compared to their silica counterparts when considering their use in optical 

fiber sensing, we will have to conduct a study of the effect of thermal 

treatments on the value of the photoelastic constants of POF. 

3.53.53.53.5 Summary and Summary and Summary and Summary and ConclusionConclusionConclusionConclusion    

In this Chapter we shortly reviewed the measurement techniques that 

have been applied to determine the photoelastic coefficient C in bulk silica 

and polymer material. The majority of these techniques rely on an 

interferometric measurement setup that allows determining the stress-

induced retardance and from there the photoelastic coefficient in 
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transparent material. The methods proposed in literature to determine the 

mean value of C directly in optical fibers essentially rely also on 

interferometric measurement principles using polarized light that is either 

launched and guided in the optical fiber, or that transversely illuminates the 

fiber. Whilst the literature proposes methods to determine the residual 

stress distribution in optical fibers, so far no method has been described in 

literature to measure the radial profile of the photoelastic constant C(r) 

across a transverse section of the fiber.  

The ability to measure this radial profile C(r) is nevertheless important. 

Looking briefly into the fabrication methods for both glass and polymer 

optical fibers, we have illustrated that it is not only important to determine 

the photoelastic coeffcient directly on the optical fibers instead of using 

bulk materials, but that it is also not straightforward to assume this 

photoelastic coefficient to be constant across the fiber. 

To enable the measurement of the radial profile C(r), we propose to 

transversely illuminate the optical fiber in a polariscopic arrangement. The 

implementation of this arrangement under a microscope should allow us to 

achieve sufficient spatial optical resolution of the order of a few microns. 

This setup  can then be used to measure the retardance of the light 

travelling through the fiber when the latter experiences uniform tensile 

stress and from there calculate C(r), as well as the mean value of C. On the 

way to do so, we have to tackle the following specific challenges:  

- to design and build a setup to measure the radial profile of the 

photoelastic coeffcient C(r) directly onto the optical fibers 

providing for sufficient optical resolution while exposing the fiber 

to a controlled and uniform axial stress state;  

- to extract C(r) from the measured retardance profile by means of 

the inverse Abel transform and to develop adequate algorithms 

enabling the calculation of this transform with sufficient robustness 

against the influence of unavoidable measurement noise; 

- to validate our method by determining C(r) in actual fiber samples 

and comparing results with what is available in literature. 

- to extend the method to polymer optical fibers and investigate the 

differences, if any, with silica optical fibers. 
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The next Chapters describe in detail how we tackled each of these 

challenges. 
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Chapter 4.Chapter 4.Chapter 4.Chapter 4. Method for determining Method for determining Method for determining Method for determining 

the radial profile of the photoelastic the radial profile of the photoelastic the radial profile of the photoelastic the radial profile of the photoelastic 

coefficient in optical fiberscoefficient in optical fiberscoefficient in optical fiberscoefficient in optical fibers    

In this Chapter1 we describe the theoretical bases of the method that we 
have developed to characterize the photoelastic constant directly on the 
optical fiber. We first demonstrate that measuring the retardance profile of 
the laterally illuminated fiber as a function of applied mechanical load 
allows deriving the photoelastic coefficient. In section 4.2 we present the 
measurement setup to obtain the retardance profile of the optical fiber. 
Section 4.3 presents the algorithms that we have elaborated to compute the 
inverse Abel transform of the retardance R(y). 

4.14.14.14.1 Theoretical developmentTheoretical developmentTheoretical developmentTheoretical development    

In Chapter 2 we introduced the stress-optic law which gives the relation 

between the stress distribution in a fiber section and the refractive index in 

that section. The photoelastic coefficient is the material parameter that 

relates refractive index and stress distribution. The measurement method is 

based on [1], which describes how the radial distribution of the refractive 

index profile can be determined by measuring the phase shift of light 

traversing the fiber. The fiber, immersed in an index matching liquid, is 

transversely illuminated with a vertically (linearly) polarized plane wave 

with a wave vector that is parallel to the x-axis (see Figure 4-1). Since we 

immerse the fiber in index matching fluid during the measurement, the 

direction of the wave vector does not change at the boundaries of the 

optical fiber. Due to the stress-induced birefringence of the fiber, the 

                                                               

1 The results presented in this Chapter have been partly published in [26, 29, 30] 
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electric field vector of the associated electromagnetic wave splits into two 

orthogonal linearly polarized components along the directions of the 

principal stress axes, i.e. in the y and z direction [2, 3]. Note that if we 

assume the fiber to be axisymmetric and considering its cylindrical 

structure, we can state that the principal axes of stress coincide with the 

cylindrical coordinates of the fiber with unit vectors ur, uθ, uz. 

 

Figure 4-1: Illustration of a transversely illuminated optical fiber (left) and of the 

resulting retardance profile R(y) (right). b is the radius of the fiber, σr, σθ and σz are 

respectively the radial, angular and axial principal axes of stress. The z-axis is taken 

along the fiber length with a direction entering the page.  

When exiting the fiber, these components have experienced a different 

phase-shift and consequently one can observe a retardance R. If σy, σz are 

the stress components in the y and z directions, and if one assumes that the 

ray trajectory is always parallel to the x-axis, the expression of the 

retardance becomes equation (4.1) according to equation (2.11) from 

Chapter 2: 
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with d the distance travelled by the ray traversing the fiber. The 

distance d, and therefore also R, vary along the y-coordinate, i.e. R = R(y). 

The retardance along the y-axis is expressed as equation (4.2) [4]. 
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 In [5] the authors demonstrate that the second term of equation (4.2) 

vanishes in long axisymmetric cylinders as a result of the boundary 

conditions and of the equilibrium in the material in the y direction and 

therefore equation (4.2) becomes: 
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Equation (4.3) can be rewritten in cylindrical coordinates to yield 

equation (4.4): 
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The last expression has the form of the forward Abel transform [6]. The 

radial distribution of the stress can hence be obtained by using the inverse 

Abel transform of (4.4): 
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The forward Abel transform allows computing the projection of an 

axially symmetric radial function onto a plane. The inverse Abel transform 

can then be used to calculate the axisymmetric radial function from a 

projection of that function. For instance, in microscopy some stereology 

models make use of the Abel inversion to acquire 2D structural information 

from one dimensional measurements [7, 8]. Transforming equation (4.5) in 
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equation (4.6) shows that C is the regression coefficient linking the axial 

load σz(r) and the inverse Abel integral of the retardance R(y). 
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Knowledge of the axial load σz(r) and of the corresponding measured 

retardance R(y) therefore allows determining the radial profile of the 

photoelastic coefficient C. 

In the following sections of this Chapter we describe the method that 

we propose to measure the retardance R(y) directly on the fiber. We then 

introduce the algorithms that we have developed to compute the inverse 

Abel transform of the retardance R(y). 

4.24.24.24.2     Retardance measurementRetardance measurementRetardance measurementRetardance measurement    

4.2.14.2.14.2.14.2.1 Sénarmont compensation methodSénarmont compensation methodSénarmont compensation methodSénarmont compensation method    

In the previous section we have shown that the first step towards the 

determination of the photoelastic coefficient is the measurement of the 

retardance profile of a transversely illuminated optical fiber. Several 

methods are available to measure the retardance, such as for example the 

Brace-Köhler compensator or the Two Waveplate Compensation (TWC) 

method [9, 10]. Both methods are very accurate, but they can only be 

applied when measuring small retardance values unless the sample can be 

rotated, which is difficult to implement in our case since we want to apply 

tensile stress to the fiber.  We therefore rather opted for the Sénarmont 

compensation method to determine the retardance of the fiber  [11–13].  

The Sénarmont compensation method relies on the circular polariscope 

measurement setup, but with one quarter-wave plate only inserted 

between the sample and the analyzer [3, 11].  The arrangement of the 

optical elements is illustrated in Figure 4-2. The optical fiber sample is 

placed with its optical axis at 45° with respect to the polarization direction 

of the polarizer. Initially, the polarizer and analyzer are crossed. A quarter-

wave plate parallel with the polarizer is positioned between the sample and 
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the analyzer. The method consists of finding a minimum of intensity by 

rotating the analyzer in order to determine the sample retardance [14, 15]. 

 

 

 

Figure 4-2: Illustration of a basic optical element arrangement for the Sénarmont 

compensation setup. The orientation of the polarization axes of the elements are 

mentioned in the figure. 

Polariser, 90° 

Fiber , 45° 

Retardance δ 

Quarter wave plate, 

90° 

Fast axis 

Analyser ,  

0°-δ/2 

light  

source 

camera 

Slow axis 



 

84 

 

 

Figure 4-3: The axes system associated with the Sénarmont compensation method. The 

principal axes of stress of the sample, u1and u2, (Unit Under Test, UUT) are oriented at 

an angle of 45° with respect to the polarizer and quarter-wave plate orientation. 

Initially, the analyser is perpendicular to the polarizer direction. 

Figure 4-3 shows the axes system associated with each optical element 

of the setup. The polarization directions of the polarizer and analyzer are 

respectively y and x. The quarter-wave plate is parallel with the polarizer. 

The principal stress-directions of the optical fiber u1 and u2, which coincide 

with the optical axis direction uz and the radial direction ur of the fiber 

section, are aligned at an angle of 45° from the x-axis. The sample produces 

a phase retardation of δ. Initially the polarization direction of the analyzer 

is perpendicularly to the polarizer. We utilize Jones calculus to determine 

the polarization direction and the intensity of the light at the exit of the 

setup [3, 12, 16, 17], as seen by the analyzer. The Jones vector jjjjA is 

calculated in the axes system of the analyzer, after passing through the 

optical system (equation (4.7)): 
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σ

2
, 45° 

  

Analyser, δ/2 

δ/2 x 

y 

u1 u2 
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  (4.8) 

The sequence of the matrices of equation (4.7) is given by the order of 

the optical elements illustrated in Figure 4-2. The right-most vector of (4.7) 

corresponds to vertically polarized light passing through the polarizer. The 

latter ensures that light is perfectly vertically (linearly) polarized before 

entering the sample. Note that the light entering the system must not be 

polarized since the polarizer takes care of this. The second matrix of 

equation (4.7) shows that the sample transforms the linearly polarized 

input light into elliptically polarized output light. The quarter-wave plate 

transforms the elliptical polarized light back to linear polarized light. 

Calculating equation (4.7) yields equation(4.8). The linear polarization 

direction has rotated with δ/2 radians compared to the original vertically 

polarization direction. To determine the angle δ/2, the analyzer should be 

rotated perpendicularly to that direction to obtain extinction of the light 

behind the analyzer. The retardance R associated to the measured phase 

retardance δ is then determined using equation (4.9). 

 
2

R
λ δ

π

×
=   (4.9) 

In conclusion, the Sénarmont compensation method allows determining 

the retardance R of the sample for monochromatic light with a wavelength 

λ.  
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4.2.24.2.24.2.24.2.2 FullFullFullFull----fielfielfielfield Retardance measurementd Retardance measurementd Retardance measurementd Retardance measurement    

The Sénarmont compensation arrangement in a classical optical setup using 

a single photodetector placed behind the analyzer allows determining the 

retardance at a single location defined by the width of the illuminating 

beam. To achieve a full-field view of the retardance of a transversally 

illuminated fiber we extended this principle by using a polarization 

microscope. The setup with the microscope arrangement is illustrated in 

Figure 4-4. A red filter is used to obtain monochromatic light with a 

wavelength of 633 nm. The bandwidth of the filter is 26 nm. The fiber is 

oriented at 0°, the polarizer and λ/4 plate are aligned at 45° relative to the 

fiber. The analyzer is initially set at 135°. We apply a predefined axial load 

to the fiber using an external loading system to change the relative 

retardance. The orientation of the linearly polarized light at the output of 

the λ/4 plate changes.  

 

Figure 4-4: Polarization microscope set-up to measure the full-field retardance profile 

using the Sénarmont compensation method. To obtain a controlled tensile stress, a 

predefined axial load is applied to the fiber using an external loading system.  
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The analyzer is then rotated perpendicularly to that direction, which 

results in the extinction of the light at the output of the analyzer. Due to the 

high spatial resolution of the microscope, extinction is not obtained for each 

pixel at the same orientation of the analyzer. The angular range of rotation 

of the analyzer θAtot is chosen to achieve extinction for every pixel in the 

field of view of the microscope. A CCD camera records an image for each 

position of the analyzer θA in that range. For each pixel the recorded 

intensity is plotted as a function of θA. A polynomial fit is performed on the 

intensity profile to determine the minimal intensity and the corresponding 

analyzer angle θAmin. The retardance in the pixel under consideration is 

determined with equation (4.10) with θAmin in degrees. Figure 4-5 

illustrates the determination of θAmin for one pixel in the field of view. 

 min( )
180

AR y
θ

λ=   (4.10) 

The uncertainty on the measurement of R(y) depends first on the 

spatial resolution of the measurement along the y-axis.  We used objective 

lenses with 40x and 20x magnifications and numerical apertures of 0.90 

and 0.50 respectively, resulting in spatial resolutions of 0.43 µm and 0.77 

µm. After magnification, the projected size of one spot on the camera is 

respectively 17.2 µm and 15.4 µm. The Nyquist criterion requires that the 

sampling interval is at least twice the highest spatial frequency of the 

specimen to preserve the spatial resolution in the resulting digital image, 

i.e. at least two pixels to cover one spot [18]. Considering the 6.7 µm 

pixelsize of the CCD camera (Axiocam MR, 1.3 MPixel resolution), we 

conclude that our spatial resolution equals the resolving power of the 

microscope. There is no spatial aliasing introduced by the CCD camera and 

the spatial resolution of the recorded images remains unchanged. This is 

sufficient to obtain radial profiles with a micron-level spatial resolution 

taking into account the typical dimensions of the optical fibers. Second, the 

uncertainty on R(y) is also influenced by the Sénarmont compensation 

measurement technique. According to [16] the typical error of the 

retardance measured with the Sénarmont compensation method is 0.5 nm. 

From the analysis of the standard deviation of the retardance we measure, 

we estimate that our measurement uncertainty has the same order of 

magnitude.  
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4.34.34.34.3 Inverse Abel transform algorithmsInverse Abel transform algorithmsInverse Abel transform algorithmsInverse Abel transform algorithms    

Knowing the retardance R(y), we now have to calculate the inverse Abel 

transform as given by equation (4.6). This transformation is not trivial. The 

need to numerically differentiate typically noisy R(y) data leads to large 

errors in the calculation of the inverse transform data and hence to errors 

in the determination of C. Literature proposes several algorithms, based on 

different principles. For example, [19] uses an iterative method based on 

deconvolution techniques; [8, 20] present recursive methods based on a 

linear, space-variant state-variable model of the Abel transform; whilst [1, 

21–24] all rely on an algorithm based on Fourier theory. Based on the 

analysis of a series of algorithms, i.e. numerical integration, iterative 

method and integration with the algorithms proposed by [22] and  [24], we 

decided to use the Fourier based [24] algorithm to compute the inverse 

Abel transform. The Fourier based algorithm is suited to handle profiles 

with many data-points; it also implicitly employs a low-pass filter.  

Additionally,  studies comparing several methods mostly recommend using 

a Fourier based algorithm to compute the inverse Abel transform [21–23]. 

With this in mind we have developed two algorithms referred to as ‘algo 1’ 

and ‘algo 2’, described in the following subsections. 
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4.3.14.3.14.3.14.3.1 Original inverse Abel transform algorithmOriginal inverse Abel transform algorithmOriginal inverse Abel transform algorithmOriginal inverse Abel transform algorithm    

Our first algorithm ‘algo 1’ is based on the decomposition in Fourier series 

of the measured retardance R(y) [25, 26]. This requires the following three 

assumptions to be valid: 

- R(y) should be continuous; 

- R(y) should be symmetric around y = 0; 

- R(y) should be zero outside the interval [-b,b] with b the 

radius of the optical fiber. 

If the optical fiber under test is axisymmetric and shows no abrupt 

transitions in the refractive index, then the three hypotheses are valid for 

the retardance profile R(y). This would not be the case, for example, for 

hollow-core fibers or for MOFs that show huge discontinuities of the 

refractive index at the transitions between the air-holes and the 

core/cladding material and hence R(y) cannot be considered continuous at 

the transitions in these particular fibers. In classical step-index fibers, the 

discontinuity between the core and cladding interface depends on the 

refractive index difference. This difference is usually rather small (typically 

0.1 % – 1.1 %) and should have no major impact. Nevertheless, one should 

be careful when interpreting measurement results at these locations. We 

conclude that for classical step-index fibers, the assumptions can be 

considered fulfilled. In that case R(y) can be written as a cosine expansion: 

 0

1

( ) cos( )F k

k

k y
R y a a

b

π∞

=

= +∑   (4.11) 

ak is the kth Fourier coefficient of the Fourier series and b is the radius of the 

fiber. We determine the Fourier coefficients using equation (4.12). 

 

0

0

0

1
( )

2
( )cos( )

b

b

k

a R y dy
b

k
a R y y dy

b b

π

=

=

∫

∫
  (4.12) 

  The derivative of (4.11) leads to: 
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π π∞

=
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Substituting expression (4.13) in (4.5) yields equation (4.14). 
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1
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2
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k
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b

π
σ ρ

∞
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where we define

2

1
2

1

2 2 2 2

0

2
( ) ( ) sin( )k

t

g t k t dt

ρ

ρ ρ π ρ
π

−
−

=

= + × +∫  as basic 

functions, ρ=  r/b is the normalized radius and  
2 2y

t
b

ρ−
=  . The basic 

functions ( )kg ρ  are independent of the measured data. The incorporation 

of the basic functions is very convenient. The computation of these 

functions is time-consuming, but they have only to be computed once since 

they are valid for all measurements. 

4.3.24.3.24.3.24.3.2 Adapted inverse Abel transform algorithmAdapted inverse Abel transform algorithmAdapted inverse Abel transform algorithmAdapted inverse Abel transform algorithm    

The inverse Abel transform requires the integration of the derivative of 

R(y), which implies that measurement noise on R(y) significantly impacts 

the final result. As we will show in Section 7, the measured retardance 

profiles for POFs are noisier compared to those measured with silica fibers. 

This leads to an increased variance in the calculated radial profiles of the 

photoelastic coefficient, which prompted us to modify the approach to 

compute the inverse Abel transform. We labeled our new algorithm with 

‘Algo 2’. It still relies on Fourier theory, but the product ( )z C rσ ×  is 

expanded in Fourier series instead of the measured retardance, as inspired 

by [21]. The forward Abel transform of ( )z C rσ × results in the measured 

retardance. The expression of the forward Abel transform is given by 

equation (4.4). The main advantage of the forward Abel transform is that it 
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does not require the integration of a derivative. Furthermore, ‘Algo 2’ 

should converge faster as there is a constant term in the Fourier expansion 

of ( )z C rσ × . In ’Algo 1’ we expand the retardance R(y). The inverse Abel 

transform of R(y) requires differentiating R(y). Consequently, the constant 

term disappears and more Fourier coefficients are required to allow ‘Algo 1’ 

to converge. We thus expect a better and more robust behaviour of ‘Algo 2’ 

when dealing with noisy data. The expansion of ( )z C rσ ×  is shown in 

equation (4.15). 

 [ ] 0

1

( ) cos( )z kF
k

r
C r a a k

b
σ π

∞

=

× = +∑   (4.15) 

with ak the kth coefficient of the Fourier expansion. To obtain the 

computed retardance RF(y) from the product [C(r)×σz]F we have to 

calculate the forward Abel transform of the latter. The analytical expression 

of the forward Abel transform is given by equation (4.16) 

 [ ]
2 2

( ) 2 ( )

b

z F

y

r
R y C r dr

r y
σ= ×

−
∫   (4.16) 

Substituting (4.15) in equation (4.16) yields the final expression of the 

retardance, which can be written as expression (4.17) 

 

2 21 1

2 2

0

10 0

( ) cos( )F k

k

R y b a dt b a k t dt

ρ ρ

π ρ
− −∞

=

= × + × +∑∫ ∫   (4.17) 

where ρ=y/b  is the normalized radius and  
2 2r y

t
b

−
= . Here also we 

isolated basic functions that are independent of the measured optical fiber 

and we calculate numerically the corresponding values that can be stored 

on the computer in the form of a matrix (equation (4.18)): 
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  (4.18) 

To compute the amplitude of the k Fourier coefficients ak we apply the 

least square criterion [27] and we evaluate the expression given in equation  

 [ ]
2

1

( ) ( )
N

F i i

i

R y R y Min
=

− =∑   (4.19) 

Once we have determined the Fourier coefficients ak, their insertion in 

(4.15) allows us to determine C(r)×σz and therefore also the radial profile 

of the photoelastic coefficient. 

In Chapter 5 we will carry out an in-depth analysis of both algorithms 

with the aim to evaluate and validate their effectiveness. To do so we will 

use pre-defined refractive index profiles, as has been commonly used by 

other authors to check the validity of inverse Abel transform algorithms [1, 

24, 28].  

4.44.44.44.4 SummarySummarySummarySummary    

In this Chapter we have discussed our method to measure the retardance 

profile of a laterally illuminated optical fiber and to compute the inverse 

Abel transform. 

To measure the retardance we rely on the Sénarmont compensation 

method and to obtain a full-field view of the retardance R(y) we use a 

polarizing microscope that offers sufficient spatial optical resolution.  

To determine the inverse Abel transform of the measured retardance 

profile we propose two algorithms, both relying on Fourier theory. The first 

algorithm, ‘algo 1’, expands R(y) in Fourier series and afterwards we 

compute the inverse Abel transform of the expansion. The second 

algorithm, ‘algo 2’, on the other hand, starts from the expansion of the 
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desired profile in Fourier series and then computes the forward Abel 

transform. The obtained function is subsequently compared to the 

measured retardance based on the least squares criterion.   

In the next Chapter, we will analyze the behavior of our two inverse 

Abel transform algorithms in more details and we will discuss the influence 

of measurement noise on the expected result. We will investigate if – as we 

would expect – ‘algo 2’ is more robust than ‘algo 1’ when dealing with noisy 

measured R(y) profiles. 
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Chapter 5.Chapter 5.Chapter 5.Chapter 5. TTTThe inverse Abel transform he inverse Abel transform he inverse Abel transform he inverse Abel transform 

algorithmsalgorithmsalgorithmsalgorithms    ––––    evaluation of the evaluation of the evaluation of the evaluation of the 

effectivity and of the influence effectivity and of the influence effectivity and of the influence effectivity and of the influence of of of of 

measurement noisemeasurement noisemeasurement noisemeasurement noise    

For a perfectly cylindrical and homogeneous optical fiber, with axial stress 
and photoelastic constant that are constant across the fiber, and in case we 
would not have to deal with measurement artifacts or noise, the shape of 
the measured retardance R(y) would resemble a perfect semi-ellipse. To 
assess the effectivity of our inverse Abel transform algorithms, we therefore 
investigate how the algorithms that we have introduced in the previous 
Chapter behave along with the various parameters involved when applied 
to such a semi-ellipse2. In section 5.1 we compare the numerical results of 
the inverse Abel transform with the analytical expression of the inverse 
transform of the semi-ellipse. In section 5.2 we add noise to the ellipse so as 
to mimic measurement noise. This allows determining the optimal set of 
parameters that returns the most effective inverse transform. We will then 
use this set of parameters in the following Chapters in order to carry out the 
inverse Abel transform on the actual measurement data. 

5.15.15.15.1 Evaluation of the inverse Abel transform algorithmsEvaluation of the inverse Abel transform algorithmsEvaluation of the inverse Abel transform algorithmsEvaluation of the inverse Abel transform algorithms    

Prior to applying the inversion algorithms directly on measured retardance 

profiles R(y), we test it first on a predefined R(y) with a well-known 

                                                               

2 The results presented in this chapter have been partly published in [6, 12, 13] 

 



 

100 

 

analytical expression. This approach allows us to analyze the behavior and 

effectivity of both algorithms that we have developed and described in 

Chapter 4, i.e. ‘algo 1’ and ‘algo 2’. Assuming the axial stress to be 

homogeneously distributed across the fiber and that the photoelastic 

coefficient is constant, C(r) is a rectangular function with C(r) equal to C for 

r ∈ [-b,b]  and equal to zero outside these boundaries, with b the radius of 

the fiber. In that particular case, the expression 4.4 from Chapter 4 

describing the retardance R(y) as a function of the axial stress becomes: 

 
2

22 2
( ) 2 2 1

b

z z

y

rdr x
R y C C b

yr y
σ σ= × = × −

−
∫   (5.1) 

Consequently, the forward Abel transform C×σz yields R(y), which has the 

shape of half an ellipse or ‘semi-ellipse’ E(y) that is described in general 

with equation (5.2). 

 
2

2
( ) ( ) 1

y
R y E y A

B
≈ = −   (5.2) 

The similarity between R(y) and E(y) is illustrated with Figure 5-1, 

where R(y) is the measurement of the retardance R(y) in a fiber cross-

section. A and B are respectively the semi-short and the semi-long axis of 

the ellipse.  The numerical value of A is taken equal to the value of the 

retardance at y=0: (0) 2zA R C bσ= = × . In the example shown in Figure 5-1, 

A equals -44.985 nm. B is the radius of the fiber and in our example B = b = 

62.5 µm. 

The analytical expression of the inverse Abel transform of (5.2) is a 

constant value as shown in equation (5.3). 
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∫   (5.3) 
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Figure 5-1: Similarity between the elliptical shape E(y) and the retardance R(y) in one 

fiber section. The numerical values of the semi-short and semi-long axes of E(y) are, 

respectively: A = -max(abs(Ry)) and B = b, the radius of the fiber.  

Using equation (5.3) we easily calculate the analytical inverse Abel 

transform of E(y) and obtain -3,59×10-4 . This analytical value will serve as 

reference to evaluate the numerical result of the inverse Abel transform of 

E(y) that should be constant along the length of the semi-long axis, in the 

interval [-b,b], and zero outside that boundary.  In the remainder of the 

manuscript, we will use the definitions enumerated hereafter: 

- 
1

( )
2

A
F r

B
= −= −= −= −  is the analytical expression of the inverse Abel 

transform of E(y); 

- FFFFIAT1IAT1IAT1IAT1(r)(r)(r)(r) is the inverse Abel transform of E(y) obtained with ‘algo 1’, 

i.e. equation 4.14 from Chapter 4; 

- FFFFIAT2IAT2IAT2IAT2(r)(r)(r)(r) is the inverse Abel transform of E(y) obtained with ‘algo 2’, 

i.e. equation 4.17 and 4.18 from Chapter 4;  

- NNNN is the amount of pixels needed to cover the fiber diameter equal 

to 2×b, it equals the number of data-points of the retardance R(y); 

- PPPP is the number of radial points of the reconstructed inverse Abel 

transforms FIAT1(r). For ‘algo 2’ we have to compare E(y) with the 

forward Abel transform of the expected result FIAT2(r) to obtain the 
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Fourier coefficients ak of the Fourier expansion of the latest. This 

implies that for the second algorithm the number of radial points P 

should equal the amount of data-points N. Thus P is not a parameter 

in the case of ‘algo 2’. 

- kkkk is the amount of Fourier coefficients taken into consideration; 

- dt dt dt dt is the integration step. 

We use the Matlab [1] environment to program both algorithms and 

study their effectivity. The half ellipse E(y) is constructed with the same 

amount of points N as the measured retardance. In this evaluation of the 

inverse Abel algorithm, we do not yet add noise to E(y). To compute the 

inverse Abel transform of E(y), three parameters have to be fixed. These 

are: 

- the number of Fourier coefficients k; 

- the amount of radial points P ; 

- the integration step dt in equations (4.14) and (4.17) given in the 

previous Chapter.  

Matlab proposes two numerical methods to compute a definite integral, the 

‘quad’ and the ‘trapz’ commands. We evaluate these integration methods 

with ‘algo 1’ since it is the first algorithm that we have implemented. 

The ‘quad’ command does not give us the possibility to control the 

integration step dt. The results using this integration method are not 

satisfactory; FIAT1(r) contains a large amount of numerical artefacts. On the 

contrary, the ‘trapz’ command allows choosing our own integration step dt. 

According to [2] the ‘quad’ function provides less accurate results as that 

function approximates the integral using the quadrature method, i.e. it 

breaks the area down into rectangles. The ‘trapz’ function approximates the 

area with trapezoids. The implementation of the algorithm using the ‘trapz’ 

function leads to smoother results, i.e. with less numerical artefacts. This 

should allow for a better visualization of the eventual transitions in the 

radial profile of C(r). To illustrate the differences, Figure 5-2 compares FIAT1 

obtained with the ‘trapz’ and the ‘quad’ functions.  

Our simulations show that if dt is at least 150 times smaller than the 

radial point spacing, variations on dt do not longer influence the results. 

Based on these conclusions the integration step dt for the ‘trapz’ command 
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to compute FIAT1(r) of Figure 5-2 is chosen to be 150 times smaller than the 

radial point spacing, the number of radial points P being fixed at 300 and 

the amount of Fourier coefficients k taken equal to 100. This prompted us 

to use the ‘trapz’ function to compute the definite integrals in ‘algo 1’ and in 

‘algo 2’. 

 

Figure 5-2: The analytical inverse Abel transform F(r) is compared to the numerical 

result FIAT1(r). FIAT1(r) is alternatively computed with the numerical methods ‘trapz’ and 

‘quad’ to work out the definite integral. P = 300, k = 100.  

We computed the inverse transform of E(y) for a wide range of 

coefficients k and radial points P, the latest solely for ‘algo 1’. We then 

calculated the root-mean-square (RMS) error between the numerical 

results FIAT1(r) and FIAT2(r) on one hand and the constant value of the 

analytical inverse transform F(r) on the other hand. As the inverse Abel 

transform of E(y) is a step function, we predict that a large number of 

Fourier coefficients are required to obtain a result close to the theoretical 

step function.  
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It appears that the amount of radial points P taken into consideration 

for ‘algo 1’ has a small impact only on the mean RMS error. Figure 5-3 

compares the evolution of the RMS error of the inverse Abel transform as a 

function of k for both algorithms.  

 

Figure 5-3: RMS error between the numerical results and the analytical expression of 

the inverse Abel transform of E(y). The RMS error is computed for an increasing amount 

k of Fourier coefficients ak  in the Fourier expansion. The numerical results are 

respectively obtained with ‘algo 1’ and ‘algo 2’.  

From these results we conclude that the second algorithm ‘algo 2’ 

converges faster than ‘algo 1’.  

To obtain a profile FIAT1(r) close to the theoretical shape F(r), numerous 

Fourier coefficients need to be considered to achieve a small RMS error, 

whilst the radial profile of FIAT2 will already be close to the ideal profile with 

a single Fourier coefficient. 
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Figure 5-4 and Figure 5-5 represent the inverse Abel transform of the 

E(y) for k1 = 20 and k2 = 200 computed with ‘algo 1’ and ‘algo 2’, 

respectively FIAT1 and FIAT2. They illustrate the impact of the number of 

Fourier coefficients k on the final shape of the inverse Abel transform and 

the faster convergence of the second algorithm. The results are compared 

with the analytical expression F(r) of the inverse Abel transform of E(y). 

These graphs also show that the presence of the constant term a0 allows 

FIAT2 to converge faster towards the analytical expression.  

The RMS-error of FIAT1 and FIAT2 increases at the edges and in the center 

of the transform, i.e. at the edges and in the center of the core of the fiber. 

That phenomenon cannot be avoided; these numerical artefacts are 

inherent to the inverse Abel transform [3–5]. It is illustrated in Figure 5-4 

and Figure 5-5 where FIAT1 and FIAT2 both exhibit a more oscillatory profile 

at the edges, i.e. around r = 0 µm  and r = 62.5 µm. To conclude, the Fourier 

based algorithms give very satisfactory results on the noiseless elliptical 

shape E(y), provided P and especially k are carefully chosen [6, 7]. 
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Figure 5-4: The analytical inverse Abel transform F(r) of the ellipse without added noise 

is compared to the numerical results FIAT1(r) and FIAT2(r). For ‘algo 1’  and ‘algo 2’ the 

amount of radial points P are 300 and 470, respectively. The number of Fourier 

coefficients k1 is 20 for each algorithm  

 
Figure 5-5: The analytical inverse Abel transform F(r) of the ellipse without added noise 

is compared to the numerical results FIAT1(r) and FIAT2(r). For ‘algo 1’  and ‘algo 2’ the 

amounts of radial points P are 300 and 470, respectively. The number of Fourier 

coefficients k2 is 200 for each algorithm. The inset shows a magnified portion at the edge 

of the ellipse, r = [55µm;62,5µm].  
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5.25.25.25.2 Influence of noise on the inverse Abel transform algorithmsInfluence of noise on the inverse Abel transform algorithmsInfluence of noise on the inverse Abel transform algorithmsInfluence of noise on the inverse Abel transform algorithms    

To continue our evaluation of the inverse Abel transform algorithms, we 

add Gaussian noise to E(y). This noise is meant to mimic actual 

measurement noise.  

To do so we took three values for the standard deviation of the Gaussian 

noise, respectively fixed to σ1 = 0.1×10-9, σ2 = 0.5×10-9 and σ3 = 1×10-9. 

These figures correspond to actual standard deviation levels computed 

from retardance profiles that we have measured. We pay particular 

attention to the influence of the parameters k and P on the results. k is 

chosen in the interval [20-200] and P in the interval [120-600], the latter 

only for ‘algo 1’. For ‘algo 2’ P should equal N as we have explained 

previously. The analysis of the behavior of the inverse Abel transform on 

the noisy profile is performed in several steps.  

5.2.15.2.15.2.15.2.1 Inverse Abel transform of the noisy profilesInverse Abel transform of the noisy profilesInverse Abel transform of the noisy profilesInverse Abel transform of the noisy profiles    

The first step consists in computing the inverse transform for each noise-

level and for each value of the couple (k, P). The operation is repeated 

several times to enable calculating a mean value. This operation is 

straightforward but time and memory consuming. Figure 5-6 shows 

examples of the inverse transform of E(y) for two values of k. To compute 

the inverse Abel transform we have fixed the amount of Fourier coefficients 

to k1 = 10 and k2 = 50. The variance of the Gaussian noise added to the E(y) 

in that particular case was σ2 = 0.5×10-9. The profiles are in line with our 

conclusion of the previous section, i.e. ‘Algo 2’ returns a profile close to the 

analytical profile for the small amount of Fourier coefficients k1 whilst ‘Algo 

1’ requires a larger amount of Fourier coefficients to get close to the shape 

of the analytical inverse Abel transform F(r). This goes at the expense of 

having a very noisy profile. We can conclude, a priori, that ‘algo 2’ 

converges faster towards the theoretical profile than ‘algo 1’. We will 

demonstrate later that the faster convergence of ‘algo 2’ is an essential 

characteristic when dealing with noisy profiles. 
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 (a)       (b) 

Figure 5-6: The inverse Abel transform of the noisy ellipse for k1 = 10 (a) and k2 = 50 

(b) computed with ‘Algo 1’ and ‘Algo 2’. The standard deviation of the Gaussian noise on 

the signal is σ2 = 0.5×10-9. The results are compared to the analytical value of the 

inverse transform of E(y).  

5.2.25.2.25.2.25.2.2 Calculation of the RMS errorCalculation of the RMS errorCalculation of the RMS errorCalculation of the RMS error    

 

Minimal mean RMS calculation for ‘algo 1’ 

In a second step we compute the RMS error between the analytical inverse 

Abel transform and the computed inverse transform of the ellipse for each 

data-point of the whole set of simulation results. We then calculate the 

average RMS error on every data-point for the same set of simulation 

parameters (same σ, k and P). Subsequently we obtain the mean RMS error 

over the P radial points for each set of parameters (σ, k, P). The inverse 

Abel transform produces large overshoots at the fiber boundaries. To 

minimize their influence on the mean RMS error, we also analyze the 

average in the interval r = [0, b/2] with b the radius of the fiber.  

In order to analyze the influence of P and k on the RMS error, we 

consider the minimal error as a function of P and k respectively. The results 

are shown in Figure 5-7. The first graph depicts the minimal error as a 

function of the number of radial points P. The small peaks at 157, 235 and 

469 correspond to N/3, N/2 and N. The interpolation of the original noisy 

ellipse of N data-points to obtain P radial points filters out noise. Care has to 

-80 -60 -40 -20 0 20 40 60 80

-6

-5

-4

-3

-2

-1

0
x 10

-4

r [µm]

In
v
e

rs
e

 A
b

e
l T

ra
n

s
fo

rm

 

 

F
IAT1

F
IAT2

Analytical

-80 -60 -40 -20 0 20 40 60 80

-6

-5

-4

-3

-2

-1

0
x 10

-4

r [µm]

In
v
e

rs
e

 A
b

e
l T

ra
n

s
fo

rm

 

 

F
IAT1

F
IAT2

Analytical



 

109 

 

be taken not to lose too much information with this operation. As expected, 

the RMS error increases with the variance of the original signal. On the 

other hand, the choice of P has no significant influence on the RMS error. 

The bottom graph of Figure 5-7 shows the evolution of the minimal error as 

a function of the chosen amount k of Fourier coefficients. The analysis of the 

evolution of the minimal error reveals that the choice of k is crucial. For an 

increasing variance on E(y), k has to be reduced in order to avoid additional 

errors due to the inverse transform algorithm. However, when the variance 

of the original signal is sufficiently small, a larger value of k yields more 

accurate results.  

On the other hand, it makes no sense to take into account more than 80 

Fourier coefficients, since a larger value does not decrease the minimal 

error, whilst the computation time increases with k. Additionally, a high 

value of k generates oscillations with a period inversely proportional to k 

(Figure 5-6). 

 

Figure 5-7: Minimum error as a function of the number of radial points P (top) and as a 

function of the chosen amount of Fourier coefficients k (bottom). The mean error is 

taken over the interval r = [0, b/2]. 
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Mean RMS error calculation for ‘algo 2’ 

The set of parameters we consider for the second algorithm is (σ,k). Here 

also we determine the mean RMS error for each level of the standard 

deviation as a function of k. Results are plotted and compared to ‘algo 1’ in 

Figure 5-7, i.e. the evolution of the mean RMS error as a function of the 

chosen amount k of Fourier coefficients. The issue is no longer to find the 

minimal error, as now we fix the number of radial points to P = 300 for 

‘algo 1’ and P = N for ‘algo 2’.   

 

Figure 5-8: RMS error between the analytical value of the inverse Abel transform of the 

ellipse and the computed Abel transform of the noisy ellipse as a function of the amount 

of Fourier coefficients k respectively for ‘algo 1’ and ‘algo 2’. The standard deviation of 

the Gaussian noise added to the signal: σ1 = 0.1 10-9 for the upper graph;  

σ2 = 0.5 10-9  for the central graph and σ3 = 1 10-9 for the bottom graph. 
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For a small value of the standard deviation of the noisy ellipse, we 

demonstrate that a high number of Fourier components leads to a better 

result. But when the standard deviation of the measured signal increases, 

the influence of the noise on the inverse Abel transform becomes dominant.  

Increasing the number of Fourier coefficients adds substantial 

oscillations to the resulting profile. Taking a small amount of Fourier 

coefficients acts as a low-pass filter as it filters out the high-frequency 

oscillations. We tried to reduce the RMS error by applying filtering and 

smoothing algorithms. However, these methods barely have an effect on the 

RMS error, since the appropriate choice of k already acts as a low-pass filter 

[8–11]. 

Figure 5-8 evidences that ‘Algo 2’ is more robust than ‘Algo 1’ for 

computing inverse Abel transforms of profiles with a high variance. A 

minimal error of 12% with ‘Algo 1’ requires about 40 coefficients, whilst 

‘Algo 2’ achieves much lower errors with a small value of k. For an 

increasing amount of Fourier coefficients both algorithms tend to behave in 

the same manner with an increasing RMS error. 

Calculation of the parameter sets 

To conclude, for ‘algo 1’ we computed the minimal RMS error for a 

complete set of simulation parameters and we found the corresponding 

couple (k, P) for 3 different noise levels. For ‘algo 2’ the amount of radial 

points is fixed, and consequently we computed the mean RMS error for the 

simulation parameter k. The results are summarized in Table 1 for both 

algorithms. These are mean values since they are computed for the mean 

RMS errors of several simulations. The ideal values for a specific profile can 

be slightly different, but will be in the range of the values obtained here. 

From the evolution of the minimal error profile, we recommend to choose a 

small k value, as the minimal error increases substantially for higher k 

values. In the case of ‘algo 1’, the k values given in Table 5-1 are the 

maximum values that we recommend. 
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Variance 0.1×10-9 0.5×10-9 1×10-9 

    k P k P k P 

‘Algo 1’       
min RMS (mean for r ∈   [0,b]) 100 216 55 126 45 282 

min RMS (mean for r ∈   [0,b/2]) 74 128 41 152 31 349 

min RMS (mean for r ∈   [0,b/4]) 72 122 37 206 29 486 

‘Algo 2’       

min RMS (mean for r ∈   [0,b/2])    1 470 2 470 2 470 

Table 5-1: (k,P) combinations for minimal RMS error on the inverse Abel transform. The 

parameter P has no influence on the RMS error for ‘algo 2’ as it is fixed (P = N). 

We recall that the analytical expression of E(y) is a constant function 

and since in ‘Algo 2’ the constant term of the Fourier expansion a0 is taken 

into account in contrast with ‘algo 1’, only a few Fourier coefficients are 

needed as shown  in Table 5-1. Considering the core/cladding structure of 

the optical fiber, the retardance will not always be identical to an elliptical 

shape. An insufficient amount of Fourier coefficients could filter out crucial 

information from the retardance profile and the corresponding inverse Abel 

transform. 

5.35.35.35.3 SummarySummarySummarySummary    

The goal of this Chapter was to analyse the effectiveness of our inverse Abel 

transform algorithms ‘algo 1’ and ‘algo 2’ required to compute the inverse 

of the retardance in order to recover the photoelastic constant from 

retardance measurements. Under the hypotheses that our optical fiber is a 

perfectly uniform cylinder with constant C and with axial stress uniformly 

distributed over its cross-section, the measured retardance R(y) can be 

substituted with the shape of a semi-ellipse E(y). The inverse Abel 

transform of E(y) is a constant that is solely function of the half-long and 

half-short axes of E(y). 

First, we evaluated both numerical inversion algorithms applied to E(y) 

without added noise. We defined the set of parameters that should be 

considered to obtain the best possible inverse transform, i.e.: 

- k, the amount of Fourier coefficients considered in the numerical 

inverse transform;  
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- dt, the integration step; 

- P, the number of radial points, but only for ‘algo 1’, since for ‘algo 2’ 

P=N.   

We compared the results of the numerical transforms FIAT1 and FIAT2 

respectively with the constant analytical transform profile F(r) by 

computing the mean RMS error between the numerical and analytical 

profiles. From our simulation results, we conclude that if the integration 

step dt equals to or is smaller than 150 times the radial point spacing, it has 

no influence on the RMS error. The choice of P has close to no impact on the 

RMS error, but the choice of k is crucial. For ‘algo 1’ a high value of k is 

required to minimize the RMS error, whilst with ‘algo 2’ a minimum error is 

already achieved with a few Fourier coefficients. The main reason is the 

absence of the constant term a0 of the Fourier expansion in the numerical 

expression of FIAT1(r), which is not the case for FIAT2 where the term a0 

remains. 

We then added Gaussian noise to E(y) to evaluate the robustness of the 

algorithms when dealing with noisy measured profiles. We chose three 

levels for the standard deviation corresponding to actual variance values of 

measured retardance profiles R(y). We evaluate the RMS error for the 

whole set of parameters (σ, k, P). Although P has limited impact on the RMS 

error, it should not equal N nor a fraction of N to achieve some noise-

filtering effect through the interpolation mechanism. Again the choice of k is 

crucial to achieve a minimal RMS error. ‘Algo 2’ is more robust than ‘algo 1’ 

when dealing with noisy profiles as it requires a small amount of k to 

converge. Both algorithms tend to behave in the same manner with an 

increasing RMS error for an increasing number of k. 

We close by emphasizing that the results discussed above are 

essentially valid for the inverse Abel transform of half an ellipse. 

Considering the fabrication methods, and the core/cladding transitions in 

an actual optical fibre, R(y) is not necessarily shaped as a semi-ellipse. 

Therefore considering an insufficient amount of Fourier coefficients could 

inadvertently filter out information from actually measured retardance 

profiles. 
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Chapter 6.Chapter 6.Chapter 6.Chapter 6. Radial profileRadial profileRadial profileRadial profile    of the of the of the of the 

photoelastic coefficient inphotoelastic coefficient inphotoelastic coefficient inphotoelastic coefficient in    glass glass glass glass 

optical optical optical optical fibersfibersfibersfibers    

In this Chapter3, we build on the tools that we have described in the 
previous Chapters and we report on our actual experimental results of the 
measurement of the radial profile of the photoelastic coefficient C(r) in 
silica optical fibers. In the first section, we summarize the characteristics of 
the optical fibers under test. The experimental mechanical system used to 
axially stress the fiber under a polarizing microscope is explained in section 
6.2. Sections 6.3 and 6.4 deal with the actual measurements and with our 
approach to determine the analyzer angle giving the minimum intensity in 
one pixel of the fiber’s image as well as the resulting retardance profiles of 
the fibers. In section 6.5 we first compute the mean photoelastic constant 
by approximating the measured retardance profile with a semi-elliptical 
profile. We compute the radial profile of the photoelastic coefficient without 
any approximation in section 6.6. We summarize our most important 
findings and we conclude this Chapter in section 6.7. 

6.16.16.16.1 Characteristics of the Characteristics of the Characteristics of the Characteristics of the glass opticalglass opticalglass opticalglass optical    fibersfibersfibersfibers    under testunder testunder testunder test    

Several publications have reported on the measurement of the photoelastic 

coefficient of glass optical fibers [1–3]. In the first publication, the authors 

measured the photoelastic coefficient on a Ge-doped silica fiber and 

analyzed the wavelength dependence of C. They obtain a value of C equal to 

−3.3×10-12 Pa-1 at a wavelength of 1064 nm. This is slightly lower than the 

                                                               

3  The results presented in this Chapter have been partly published in [15–18] 
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value measured on bulk silica.  Note that the authors did not mention the 

mean error value associated to that measured value.  In [2] the authors 

determine C in pure fused silica fiber samples and obtain values of C equal 

to −3.19×10-12 Pa-1 at a wavelength of 514 nm. Bertholds et al. [3] obtained 

C=−3.65×10-12 Pa-1 at a wavelength of 633 nm. Both authors of [2,3] report 

a measurement error of 5%. 

As discussed in the previous Chapters, we have developed our own 

approach to determine the photoelastic coefficient of optical fibers and its 

radial profile across the fiber. We can now validate our method and the 

related algorithms ‘algo 1’ and ‘algo 2’ using actual measurement data and 

comparing our results to those available in literature. 

We have experimented with commercially available step index singlemode 

and multimode silica glass fibers with increasing core diameter. The main 

characteristics of those fibers are summarized in Table 6-1. All the fibers 

were purchased from the company Thorlabs [4]. The doped fiber portions, 

i.e. a Ge-doped core in fiber 1 and an F-doped cladding in fiber 2 and 3 to 

respectively increase the refractive index in the core and lower it in the 

cladding [5], allow us to investigate whether the doping influences the 

radial profile of C(r), or not.  

 

FiberFiberFiberFiber TypeTypeTypeType GuidanceGuidanceGuidanceGuidance ddddcorecorecorecore ddddcladdingcladdingcladdingcladding nnnncorecorecorecore nnnncladdingcladdingcladdingcladding 

1 Ge-doped Silica 

core 

Singlemode 9 µm 125 µm 1,462 1,458 

2 F-doped depressed 

cladding 

Multimode 50 µm 125 µm 1,457 1,440* 

3 F-doped depressed 

cladding 

Multimode 105 µm 125 µm 1,457 1,440 

 
*Only Only Only Only the refractive index of the depressed portion of the cladding is mentionedthe refractive index of the depressed portion of the cladding is mentionedthe refractive index of the depressed portion of the cladding is mentionedthe refractive index of the depressed portion of the cladding is mentioned 

Table 6-1: Main characteristics of the optical fibers used to measure the retardance and 

to determine the radial profile of the photoelastic coefficient [4]. 

 

Before the fibers were placed under the polarizing microscope 

described in Chapter 4, they were stripped over 15 mm before being 

immersed in an index matching liquid. The stripped part was carefully 
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cleaned with alcohol to remove any dust or residual coating particles that 

would alter the quality of the image.  About 300 µm of the stripped part 

appears in the field of view (FOV) of the microscope. Considering the outer 

diameter of the silica fibers, the 150 µm thickness of the cover glasses on 

which the fiber rests and the thickness of about 50 µm of the index 

matching liquid layer above the fiber, we chose to use the 40X objective for 

the measurements on the silica fibers. This objective has a 410 µm working 

distance, which allows for accommodating the total thickness of about 

375 µm whilst providing for the largest magnification. The first microscope 

images recorded with fiber 2 indicate a mismatch between the index 

matching liquid (IML) and the fiber. Reference [6] indicates that the core of 

fiber 2 is surrounded with a fluorine-doped cladding and a measurement of 

the refractive index of this fiber given in [7, 8] indeed shows that this fiber 

has a depressed inner cladding surrounded by an undoped outer cladding. 

The use of an IML equal to the refractive index of the core solved the 

problem. 

6.26.26.26.2 Controlled tensile stress systemControlled tensile stress systemControlled tensile stress systemControlled tensile stress system    

As explained in Chapter 4, the photoelastic coefficient is the regression 

coefficient linking the axial stress σz to the according inverse Abel 

transform of the measured retardance R(y). We designed a simple system 

to apply a pre-defined tensile stress to the fiber while fixed in the 

microscope arrangement.  

 

Figure 6-1: Scheme of the loading system for applying a pre-defined tensile stress to the 

optical fiber under test. 

fiber 
d1 

d
2
 

  

   

A 
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The principle of our loading system is illustrated in Figure 6-1. The fiber is 

fixed at one end whilst the other is clamped in a pulley that rotates about a 

frictionless axis. The fiber is submitted to external axial tensile stress by 

adding weights to a balance fixed to the pulley at location A, as also shown 

in Figure 6-1. The weights induce a vertical force 
2F  and a horizontal 

tensile force 
1F  respectively at a distance d2 = 6.15 cm and d1 = 10 cm 

from the center of the wheel. The relations between the weights w, the 

magnitudes of the forces 
1F  and 

2F  and the tensile stress σz are given in 

equation (6.1). 

 

2

2 2
1

1

1

2z

F w g

F d
F

d

F

b
σ

π

= ×

×
=

=
×

  (6.1) 

where g  is the gravitational acceleration and b the radius of the fiber. 

The fiber ends are fixed at a considerable distance, about 20 cm, from the 

measurement point to ensure a uniform distribution of the tensile stress 

across the fiber. We assume that the fibers are homogeneous along their 

length and that variations of the displacement along the fiber can be 

neglected. According to the manufacturer, the core/cladding concentricity 

error is below 1 µm [9]. We therefore also assume that we will obtain 

identical retardance profiles for each longitudinal portion of the fiber.  A 

photograph of the complete setup is shown in Figure 6-2.  



 

 

Figure 

The tensile stress we apply to the fi

MPa. The interval is chosen in such a way that, on one hand, we have a 

measurable stress

range, and on the other hand, we avoid fiber breakage.  

6.36.36.36.3 Calculation of the minimum Calculation of the minimum Calculation of the minimum Calculation of the minimum 

Once the 

apply the Sénarmont compensation principle to measure the full field 

retardance as described in 

every 2° rotation of t

shows an image of a fiber 

position of the analyser

shows the image with the same angle of the analyser but without fiber

an image of the background.

Figure 6-2: Optical fiber placed in the polarizing microscope arrangement

The tensile stress we apply to the fi

MPa. The interval is chosen in such a way that, on one hand, we have a 

measurable stress-induced birefringence with an acceptable dynamic 

and on the other hand, we avoid fiber breakage.  

Calculation of the minimum Calculation of the minimum Calculation of the minimum Calculation of the minimum 

he optical fiber 

apply the Sénarmont compensation principle to measure the full field 

retardance as described in 

every 2° rotation of t

shows an image of a fiber 

position of the analyser

he image with the same angle of the analyser but without fiber

an image of the background.

Pulley 

: Optical fiber placed in the polarizing microscope arrangement

external axial loading system. 

The tensile stress we apply to the fi

MPa. The interval is chosen in such a way that, on one hand, we have a 

induced birefringence with an acceptable dynamic 

and on the other hand, we avoid fiber breakage.  

Calculation of the minimum Calculation of the minimum Calculation of the minimum Calculation of the minimum 

fiber has been placed in the setup described above

apply the Sénarmont compensation principle to measure the full field 

retardance as described in Chapter

every 2° rotation of the analyser in the angular range θ

shows an image of a fiber taken with

position of the analyser giving enough contrast in the image

he image with the same angle of the analyser but without fiber

an image of the background. 

Optical fiber
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: Optical fiber placed in the polarizing microscope arrangement

external axial loading system. 

The tensile stress we apply to the fibers increases from 60 MPa to 185 

MPa. The interval is chosen in such a way that, on one hand, we have a 

induced birefringence with an acceptable dynamic 

and on the other hand, we avoid fiber breakage.  

Calculation of the minimum Calculation of the minimum Calculation of the minimum Calculation of the minimum intensity intensity intensity intensity 

placed in the setup described above

apply the Sénarmont compensation principle to measure the full field 

Chapter 4. For the glass fibers a picture is taken 

he analyser in the angular range θ

taken with the CCD camera for a specific angular 

giving enough contrast in the image

he image with the same angle of the analyser but without fiber

Optical fiber 

: Optical fiber placed in the polarizing microscope arrangement

external axial loading system.  

bers increases from 60 MPa to 185 

MPa. The interval is chosen in such a way that, on one hand, we have a 

induced birefringence with an acceptable dynamic 

and on the other hand, we avoid fiber breakage.   

intensity intensity intensity intensity     

placed in the setup described above

apply the Sénarmont compensation principle to measure the full field 

4. For the glass fibers a picture is taken 

he analyser in the angular range θ

the CCD camera for a specific angular 

giving enough contrast in the image

he image with the same angle of the analyser but without fiber

Microscope

Red filter (633 nm)

: Optical fiber placed in the polarizing microscope arrangement with the 

bers increases from 60 MPa to 185 

MPa. The interval is chosen in such a way that, on one hand, we have a 

induced birefringence with an acceptable dynamic 

 

placed in the setup described above, w

apply the Sénarmont compensation principle to measure the full field 

4. For the glass fibers a picture is taken 

he analyser in the angular range θATot. Figure 

the CCD camera for a specific angular 

giving enough contrast in the image. Figure 

he image with the same angle of the analyser but without fiber

Microscope 

Red filter (633 nm)

 

with the 

bers increases from 60 MPa to 185 

MPa. The interval is chosen in such a way that, on one hand, we have a 

induced birefringence with an acceptable dynamic 

, we can 

apply the Sénarmont compensation principle to measure the full field 

4. For the glass fibers a picture is taken 

Figure 6-3(a) 

the CCD camera for a specific angular 

Figure 6-3(b) 

he image with the same angle of the analyser but without fiber, i.e. 

Red filter (633 nm) 
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Figure 6-3: CCD image of the polarizing microscope for a specific angular setting of the 

analyser. (a) Image with the fiber in the measurement setup. (b) Image of the 

background.  

Examining Figure 6-3 we can make two observations: 

The fiber does not fill the entire image. 

We want to avoid wasting computation time on pixels that are not 

part of the fiber image. It does not make sense to determine the 

retardance in these pixels. To address this issue we programmed an 

‘Edge Detection Algorithm’ that locates the upper and lower 

boundaries of the fiber in the image. This allows determining the 

analyser angle θAmin corresponding to the minimum intensity only 

for those camera pixels that image the fiber. 

 

The background intensity is not homogenous. 

For every pixel in the background image in Figure 6-3(b) extinction 

occurs for a different analyser angle θAmin as explained in Chapter 4.. 

Therefore we also determine the full-field retardance profile of the 

polarizing microscope without fiber sample, using the same 

measurement method as described in Chapter 4. By doing so we 

(a) (b) 
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obtain the retardance of the background and we can correct for 

this. 

When we have gathered the collection of the fiber images in the range θATot, 

we apply a polynomial fit of the measured intensities to determine the 

minimum intensity in an accurate manner. Effective fitting requires 

determining the degree of the polynomial fit L and the number of measured 

data points taken into consideration. We determined the polynomial fit 

according to Akaike’s information criterion [10, 11], and we took L = 4. 

Increasing the axial stress increases the retardance in the fiber and the 

angular range of the analyser θATot has to be adapted accordingly to obtain 

extinction for every pixel. In our measurement method the same range is 

used for every pixel; this means that we obtain asymmetric intensity 

profiles for some pixels in the field of view, which causes the polynomial fit 

to be inaccurate.  

 

Figure 6-4: Polynomial fitting of the measured intensity profile for one pixel. The left 

graph is the result of the polynomial fit for all the datapoints in the range of the analyzer 

θAtot . The graph on the right side represents the polynomial fit for 13 datapoints around 

the measured minimum. The polynomial fit degree L is 4.  

To cope with this problem we considered 2/3 of the whole amount of 

collected datapoints around the measured minimum intensity for the 
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measurements of R(y) and we determined the polynomial fit using only 

these datapoints [12]. The fraction 2/3 gives us the lowest variance of the 

minimum intensity computed with the five independent intensity 

measurements. The estimated value of θAmin becomes more accurate as 

illustrated in Figure 6-4. Once we have determined the analyser angle θAmin 

that corresponds to the minimum intensity in each pixel under 

consideration, we proceed to the next step, i.e. determining the full-field 

retardance.  

6.46.46.46.4 Calculation of the retardanceCalculation of the retardanceCalculation of the retardanceCalculation of the retardance    

To obtain the retardance profile, we have to apply equation (4.9). We recall 

this expression here for the sake of clarity (equation (6.2)). 

 min( )
180

AR y
θ

λ=   (6.2) 

Note that each measurement is repeated five times and hence the resulting 

retardance profile is the average of the five measurements. The standard 

deviation of the retardance measurement is below 1 nm. The combination 

of the polynomial fit and the average of five measurements leads to 

measurements with reduced variance. This allows dealing with 

measurement noise. Averaging over more measurements does not decrease 

the variance of R(y). Finally, the retardance of the background (see 

previous section) is then subtracted from that result to obtain the final 

retardance profile of the fiber. The pictures in the left column of Figure 6-5 

(a) to (c) depicts the retardance map measured for the three fibers under 

test for a tensile stress of 115 MPa for fiber 1 and 105 MPa for fibers 2 and 

3. The maximum retardance is, respectively, -48.10 nm, -48.29 nm and -

52.05 nm. These values correspond approximatively to 1/13-th of the 

wavelength (λ = 633 nm), which agrees well with values found in the 

literature for a tensile stress of the same magnitude [13]. 
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Figure 6-5: Left column: retardance maps measured for the 3 fibers under test for one 

value of the tensile stress. The scale is in meters. Right column: retardance across the 

fiber for increasing axial stress. Each profile is computed as an average of five 

independent measurements. (a) R(y) measured on fiber 1, (b) R(y) measured on fiber 2, 

(c) R(y) measured on fiber 3.   

Fiber length [µm]

F
ib

e
r 

s
e

c
ti
o

n
 [
µ

m
]

 

 

0.5 1 1.5 2

-60

-40

-20

0

20

40

60
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

x 10
-8

-80 -60 -40 -20 0 20 40 60 80
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

σz
 = 69 MPa

σz
 = 91 MPa

σz
 = 115 MPa

σz
 = 137 MPa

σz
 = 161 MPa

σz
 = 184 MPa

r [µm]

R
e
ta

rd
a
n

c
e

 [
n

m
]

Fiber length [µm]

F
ib

e
r 

s
e
c
ti
o

n
 [
µ
m

]

 

 

0.5 1 1.5 2

-60

-40

-20

0

20

40

60

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

x 10
-8

-80 -60 -40 -20 0 20 40 60 80
-80

-70

-60

-50

-40

-30

-20

-10

0

10

σz
 = 63 MPa

σz
 = 84 MPa

σz
 = 105 MPa

σz
 = 126 MPa

σz
 = 147 MPa

σz
 = 169 MPa

r [µm]

R
e

ta
rd

a
n

c
e

 [
n

m
]

Fiber length [µm]

F
ib

e
r 

s
e
c
ti
o

n
 [
µ
m

]

 

 

0.5 1 1.5 2

-60

-40

-20

0

20

40

60
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

x 10
-8

-80 -60 -40 -20 0 20 40 60 80
-80

-70

-60

-50

-40

-30

-20

-10

0

10

σz
 = 63 MPa

σz
 = 84 MPa

σz
 = 105 MPa

σz
 = 126 MPa

σz
 = 147 MPa

σz
 = 169 MPa

r [µm]

R
e
ta

rd
a
n

c
e

 [
n

m
]

(a) 

(b) 

(c) 



 

126 

 

The graphs in the right column of Figure 6-5 show the retardance 

profiles for increasing tensile stress in respectively fiber 1, fiber 2 and fiber 

3. The shapes of R(y) measured in fiber 1 and fiber 3 are close to a semi-

ellipse. This is obviously not the case for the retardance profile of fiber 2. 

The particular shape of the retardance profile confirms that fiber 2 is a dual 

clad fiber with depressed inner cladding as we mentioned in section 6.1.  

The difference in refractive index between core and cladding for glass 

fibers 2 and 3 is four times larger compared to fiber 1. This increases the 

refraction at the boundaries between the two materials and increases the 

noise on the measured retardance R(y). The average standard deviation of 

the retardance measurements is small for fiber 1 (σ1 < 0.5 nm).  For fiber 2 

and fiber 3, σ2 and σ3 are slightly higher (0.5 nm < σ2,3 <1 nm) as a 

consequence of the sharper core/cladding transitions. These values will 

allow us to make a correct choice of the parameters involved in the inverse 

transform algorithm according to the analysis done in Chapter 5. Now that 

we have measured the retardance profiles in the fibers, we are able to 

determine the radial profile of the photoelastic coefficient C(r). 

6.56.56.56.5 Determination of the mean photoelastic coefficient Determination of the mean photoelastic coefficient Determination of the mean photoelastic coefficient Determination of the mean photoelastic coefficient     

We compare two methods for determining the photoelastic coefficient C. 

First, we estimate the mean photoelastic constant by relying on the 

simplifying hypothesis that the retardance can be approximated with an 

elliptical shape. The second method, which we will describe in section 6.6, 

determines the radial distribution of the photoelastic constant from the 

actual measured shape of the retardance without any simplification. 

To find the mean value of the photoelastic constant we can approximate 

the retardance with a semi-ellipse E(y) as described in Chapter 5. Since the 

inverse Abel transform of E(y) is a constant, as given by equation (5.2), the 

relation between the axial stress and the retardance becomes (equation 

(6.3)) : 

 
1 max( ( ( )))

2
z

abs R y
C

b
σ × = −   (6.3) 
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where b is the fiber radius, R(y) the measured retardance and σz the 

axial stress. C is the regression coefficient that has to be determined. Note 

that as a consequence of the particular index profile of fiber 2, the 

retardance profile over the entire cross-section is not elliptical and hence 

the elliptical approximation cannot be applied to that particular fiber. The 

graphs of the product z Cσ ×  as a function of the applied stress for fiber 1 

and fiber 3 are drawn in Figure 6-6.  

Using the elliptical approximation we obtain C values of -3.71×10-12 Pa-1 

and -3.74×10-12 Pa-1 for the silica glass fibers 1 and 3.  These values are 

slightly larger in magnitude than the value measured on bulk fused silica (C 

= -3.52×10-12 Pa-1 ± 2%) determined in [14]. Our finding is  in agreement 

with the conclusions of [1, 3], i.e. that the absolute value of the photoelastic 

constant of optical fiber glass is larger than that of bulk silica.  

 

Figure 6-6: . σz×C + K0 as a function of the axial stress. The regression coefficient is the 

photoelastic constant C. K0 is the residual birefringence. The values of C are indicated in 

the graph along the respective linear fit. The coefficients of determination of the linear 

regression for fiber 1 and fiber 3 are respectively r2 = 0.999 and r2 = 0.970. 
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We can also determine the residual birefringence K0 in the fiber. It is 

given by the intersection of the fitted line σz × C with the y-axis in the graph 

of Figure 6-6. K0 is smaller than 1×10-5. This is of the same order of 

magnitude as the maximum deviation between the fitted curve and the 

measurement points. For regular single mode fibers, this value is typically 

lower. In [12], for example, the authors measured a value of 2.7×10-7 on a 

commercially available single mode fiber. Such low birefringence value 

means that the associated retardance is very small as well.  We mentioned 

in Chapter 4 that we opted for the Sénarmont compensation method for 

measuring the retardance and that other methods such as Brace-Köhler or 

two waveplate compensation would be more adequate for accurately 

measuring small retardance values. The obtained residual birefringence of 

1×10-5 illustrates this and we can conclude indeed that our measurement 

method is not convenient to measure very small retardance values. We can 

nevertheless estimate the impact of the uncertainty on small retardance 

values and on K0 in particular. To do so we carry out the same linear 

regression but now by considering one fixed additional point at K0 = 

2.7×10-7 for σz = 0 MPa. The linear regression yields C = −3.77×10-12 Pa-1 

in Fiber 1 instead of the original value of −3.71×10-12 Pa-1, which means a 

deviation of about 6%, which is acceptable. We can therefore still conclude 

that our measurement method is sufficiently reliable to determine the 

photoelastic coefficient in silica optical fibers. 

6.66.66.66.6 Determination of the radial distribution of the photoelastic Determination of the radial distribution of the photoelastic Determination of the radial distribution of the photoelastic Determination of the radial distribution of the photoelastic 

coefficient C(r)coefficient C(r)coefficient C(r)coefficient C(r)    

In this section, we determine the radial profile C(r) without any 

simplification. To do so we compute the inverse Abel transform of each 

measured retardance profile corresponding to a specific tensile stress. We 

apply ‘Algo 1’ and ‘Algo 2’ described in previous Chapters to determine the 

inverse Abel transform of the retardance profiles. This allows obtaining the 

relationship ( ) ( )zf r C rσ= × . Calculating the linear regression of ( )f r for 

every point along the radius r finally yields the radial distribution of the 

photoelastic constant C(r). 
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We recall that we have to determine the parameter k for our calculations. 

As we have explained in Chapter 5, the shape of the retardance does not 

match exactly with that of a semi-ellipse. It is obviously not the case at all 

for fiber 2 (see Figure 6-5). We therefore have to analyse and compare the 

profiles obtained for several values of k and decide which value of k gives 

us the best and most reliable result. 

To do so we implemented a process to support an objective decision on 

the best value for k. First we choose an interval of k around the best value of 

k as determined in our evaluation of the inverse Abel transform algorithms 

in Chapter 5. Based on the standard deviation of the retardance profiles and 

the simulation results on noisy profiles from Chapter 5, we decide to limit 

our analysis for k in the interval k ∈ [1,50]. For each value of k in that 

interval we compute the radial profile Ck(r) with ‘algo 1’ and ‘algo 2’. A 

visual analysis of the profiles Ck(r) leads us to the conclusion that C(r) can 

be considered constant in the undoped silica portions of the fibers. 

Therefore we compute the mean standard deviation of Ck(r) in these 

portions.  

Figure 6-7 shows the mean standard deviation σ1(C(r)), σ2(C(r)) and 

σ3(C(r)) as a function of the parameter k for the three fibers in the undoped 

silica portions of the fibers according to the method mentioned above. 

When evaluating the algorithms on the noisy ellipse, ‘algo 1’ requires a 

higher amount of Fourier coefficients to converge, which is in line with our 

conclusions of Chapter 5. Also, the standard deviation does no longer 

increase at higher values of k. These results agree with those for the noisy 

ellipse. We do not select blindly that value of k that minimizes the standard 

deviation of Figure 6-7. Additionally we analyse the shape of C(r) in a small 

interval of k around that value minimizing the standard deviation to find 

the amount of Fourier coefficients that decrease the presence of 

mathematical artefacts in the profile. 
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Figure 6-7: Standard deviation σ1(C(r)), σ2(C(r)) and σ3(C(r)) computed for Ck(r) in the 

undoped silica portions of respectively fiber 1, fiber 2 and fiber 3 for k ∊ [1,50]. Ck(r) is 

computed with both ‘algo 1’ and ‘algo 2’.  
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Fiber 1 
The shape of R(y) is very close to a semi-ellipse. The evolution of the 

standard deviation σ1(C(r)) is very similar to that obtained with the noisy 

ellipse for both algorithms. We therefore chose k in accordance with the 

results of Chapter 5 on the noisy ellipse, i.e. around 30 for ‘algo 1’ and small, 

i.e. 10 for ‘algo 2’ 

Fiber 2 

R(y) is not elliptical. We take the parameter k in the interval 

corresponding to a stable portion of the evolution of σ2(C(r)) for both 

algorithms, i.e. k ∈ [20,45]. With these rather high amounts of Fourier 

coefficients we make sure not to filter out potential abrupt changes of C(r). 

Furthermore, we choose the value of k from that interval that minimizes the 

variance in the portions of fiber 2 made of the same material, i.e. in the 

undoped silica portions. 

Fiber 3 

R(y) follows an elliptical profile except at the extremities. Based on a 

similar reasoning as for fiber 2, we first choose k ∈ [15,35]. Next we also 

determine the value of k in that interval that minimizes the variance in the 

undoped silica portion of the fiber. 

The reasoning above enables us to fix the final values of the parameter k to 

compute the inverse Abel transform with ‘algo 1’ and ‘algo 2’ respectively. 

The values of k used in the remainder of this Chapter for the three silica 

fibers are given in Table 6-2. 

 

 Fiber 1Fiber 1Fiber 1Fiber 1 Fiber 2Fiber 2Fiber 2Fiber 2 Fiber 3Fiber 3Fiber 3Fiber 3 

‘algo 1’‘algo 1’‘algo 1’‘algo 1’    30 40 30 

‘algo 2’‘algo 2’‘algo 2’‘algo 2’    10 20 25 

Table 6-2: The number of Fourier coefficients k considered to compute the inverse Abel 

transform with respectively ‘algo 1’ and ‘algo 2’. 
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The result of the inverse Abel transform of R(y) for increasing tensile 

load is depicted in Figure 6-8 for the three silica fibers. The graphs in the 

left column are the result obtained with ‘algo 1’ while the graphs to the 

right depict the results achieved with ‘algo 2’. The absolute value of the 

product σz×C(r) increases with the load. As one could expect and due to 

numerical artefacts, the inverse Abel transform produces overshoots in the 

center of the fiber (r < 7 µm) and hence one should disregard the results in 

that area. The difference in refractive index between core and cladding for 

glass fibers 2 and 3 is four times larger compared to fiber 1 (cfr Table 6-1). 

This increases the scattering at the boundaries between the two materials 

and increases the noise on the measured retardance R(y). As a consequence 

the inverse Abel transform profiles of fiber 2 and fiber 3 exhibit increasing 

perturbations at these locations. 

At this point we can work out the linear regression of the inverse Abel 

transform of the retardance, ( ) ( )zf r C rσ= × . As the regression coefficient 

is the photoelastic constant, we finally obtain the radial distribution of the 

photoelastic constant C(r). Figure 6-9 shows the radial profiles of the 

photoelastic constant for the three different glass optical fibers. The 

standard deviation of the retardance measured for fiber 1 is small, below 1 

nm. We obtain similar radial profiles of the photoelastic coefficients of the 

fiber and these results confirm that both algorithms behave equivalently for 

profiles with a low noise level. 
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Figure 6-8: Radial distribution of the product σz×C(r) in a portion of the fibers as a 

function of increasing load. Left column: σz×C(r) computed with ‘algo 1’. Right column:  

σz×C(r)  computed with ‘algo 2’. (a) σz×C(r) in fiber 1; (b) σz×C(r) in fiber 2, (c) 

σz×C(r) in fiber 3  
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Figure 6-9: Radial distribution of the photoelastic constant C(r) in one fiber section. The 

profiles are respectively computed with ‘algo 1’ and ‘algo 2’. (a) C(r) in fiber 1, (b) C(r) 

in fiber 2 and (c) C(r) in fiber 3. The values of k used are mentioned in the graphs as 

well.  
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In agreement with the conclusions of Chapter 5, the first algorithm 

requires a higher number of Fourier coefficients k to achieve a correct 

profile at the expense of increasing the impact of the measurement noise, 

which is inherent to the Fourier algorithm. For the second algorithm less 

Fourier coefficients are needed to achieve a reliable and stable result. The 

Ge-doped core of fiber 1 does not influence the profile of C(r) and we can 

conclude from Figure 6-9 (a) that C(r) can be considered constant 

throughout the cross-section of this fiber. On the other hand, Figure 6-9 (b) 

and (c) evidence that the value of C(r) in the fluorine-doped cladding 

portion differs significantly from the value of C(r) in the undoped core of 

fiber 2 and 3 and from the outer cladding of fiber 2. 

We also compute the average value of C(r) in the stable parts of the 

radial profiles and we obtain respectively -3.73×10-12 Pa-1, -3.75×10-12 Pa-1 

and -3.80×10-12 Pa-1 for glass fiber 1 and for the undoped portions of fibers 

2 and 3. The error on C equals approximatively 5%. These figures are 

comparable with the mean values of the photoelastic constant that we have 

determined with the elliptical approximation. However, the mean value of 

C(r) equals -2.75×10-12 Pa-1 in the fluorinated trenches of the cladding.  

To the best of our knowledge this is the first demonstration that one To the best of our knowledge this is the first demonstration that one To the best of our knowledge this is the first demonstration that one To the best of our knowledge this is the first demonstration that one 

cannot assume the photoelastic coefficient to be constant throughout the cannot assume the photoelastic coefficient to be constant throughout the cannot assume the photoelastic coefficient to be constant throughout the cannot assume the photoelastic coefficient to be constant throughout the 

fiber section for certain types of fibers. fiber section for certain types of fibers. fiber section for certain types of fibers. fiber section for certain types of fibers.     

Our results show that the fluorine doping decreases the absolute value 

of C with about 27% compared to pure silica or Ge-doped silica glass fibers. 

Table 6-3 summarizes the values we obtain for the photoelastic coefficients 

with both methods.  

With respect to the radial distribution of C(r), we conclude that the 

photoelastic coefficient can be considered constant throughout the fiber 

section for silica fibers that only include a Ge-doped core. The absolute 

value of the average of C(r) computed in these parts confirms our findings 

with the elliptical approximation, i.e. the photoelastic coefficient in silica 

fibers is slightly higher than in bulk silica.  
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 Fiber 1Fiber 1Fiber 1Fiber 1 Fiber 2Fiber 2Fiber 2Fiber 2    Fiber 3Fiber 3Fiber 3Fiber 3    

    (Ge) Si Undoped 
Si 

Fluorinated 
Si 

Undoped 
Si 

Fluorinated 
Si 

Elliptical 

approximation 

[×10-12 MPa-1] 

-3.71 - - -3.74 - 

Average C(r) 

[×10-12 MPa-1] 
-3.83 -3.75 -2.75 -3.80 -2.75 

Table 6-3: Summary of the results for the photoelastic constant measured on the three 

silica fibers. Comparison of the values obtained with the elliptical approximation and the 

average values in the stable parts of the radial profile C(r). 

 

On the contrary, the hypothesis that C(r) is constant throughout the 

fiber section does not hold in silica glass fibers containing a fluorine-doped 

depressed cladding.  

6.76.76.76.7 Summary and conclusionSummary and conclusionSummary and conclusionSummary and conclusion    

The goal of this Chapter was to validate our measurement method and our 

algorithms to determine the radial profile of the photoelastic coefficient 

based on actual measurements on glass optical fibers. We measured three 

commercially available fibers with increasing core diameter. 

First, we described the mechanical system used to apply tensile stress 

to the fiber under test in the polarizing microscope arrangement. We 

measured the retardance with the Sénarmont compensation technique for 

increasing tensile stress. To accurately determine the analyzer angle that 

corresponds to the minimum intensity in a particular pixel of the fiber 

image we have to use a polynomial fit of the intensity profiles. 

Second, we determined the value of the photoelastic coefficient using 

two methods. Using an elliptical approximation of the retardance profile for 

fiber 1 and fiber 3 we found a mean value of C to be respectively  -3.71×10-

12 Pa-1 and -3.74×10-12 Pa-1, close to the values found in the literature. We 

also determined the radial distribution of C(r) in the fibers using both 

algorithms. The mean value of C determined with the elliptical 

approximation and the average value of C(r) in the stable parts of the 
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profiles are equivalent. This essentially validates our technique and 

confirms that the absolute value of C is larger in an optical fiber than in bulk 

silica. For silica glass fibers the mean value of C computed for the three 

fibers under test equals -3.78×10-12 Pa-1 in the undoped and Ge-doped 

portions of the cross-sections. The average value of C in the fluorine-doped 

part of the cladding region is 27% smaller. 

Therefore and with respect to the radial distribution of C(r), we 

conclude that the photoelastic coefficient can be considered constant 

throughout the fiber section for silica fibers that only include a Ge-doped 

core. This is no longer the case in silica glass fibers containing a fluorine-

doped depressed cladding. We can most likely extend this conclusion to 

other optical fibers that possess more complex doping profiles. 
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Chapter 7.Chapter 7.Chapter 7.Chapter 7. Photoelastic coefficient in Photoelastic coefficient in Photoelastic coefficient in Photoelastic coefficient in 

polymer polymer polymer polymer optical optical optical optical fibersfibersfibersfibers    

Following the measurements on silica fibers dealt with in the previous 
chapter, we now turn to the characterization of the photoelastic coefficient 
in polymer optical fibers (POFs). The fibers under test are essentially 
composed of polymethyl methacrylate (PMMA).  We characterized five 
POFs that have been produced using a regular fiber drawing process and 
one POF fabricated using an extrusion process. The first section recalls 
some of the peculiarities of POFs in view of their potential application in 
optical fiber based sensors. It also summarizes the main characteristics of 
the fibers that we have experimented with. We also pay particular attention 
to the thermal annealing treatment that the fibers have received, as this 
appears to have a major influence on our measurements. In section 7.2 we 
present the results of the retardance measurement on the polymer fibers. 
Section 7.3 deals with the mean value of the photoelastic coefficient C that 
we have computed using the elliptical approximation. We also analyze the 
impact of the annealing process on C. Finally we look into the radial profile 
of the photoelastic coefficient in both pristine and annealed fiber samples in 
section 7.4. We summarize and conclude on our findings in section 7.5. 

7.17.17.17.1 Characteristics of the polymer fibers under testCharacteristics of the polymer fibers under testCharacteristics of the polymer fibers under testCharacteristics of the polymer fibers under test    

7.1.17.1.17.1.17.1.1 Particular aspects of polymer optical fiber sensorsParticular aspects of polymer optical fiber sensorsParticular aspects of polymer optical fiber sensorsParticular aspects of polymer optical fiber sensors    

Polymer optical fiber based sensors have emerged in the last decade [1]. 

In addition to the regular advantages of silica optical fiber based sensors, 

POF sensors provide for a higher elastic strain limit and better fracture 

toughness, they are more flexible and they can also be made biocompatible. 

As polymer fibers are more flexible and mechanically compliant, they are 

more adequate for monitoring deformations in flexible material compared 
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to silica fibers [2]. Furthermore, polymers are organic materials and hence 

their composition can be modified with different organic chemistry 

techniques to provide sensitivities to specific chemical or biological agents 

[1, 3]. For example, in [4], the authors have proposed multi-antibody 

biosensing with TOPAS® [5] microstructured polymer optical fibers 

(MPOF). 

Given the long list of advantages, the development of specialty POF 

based sensors has become a hot research topic. However, working with 

polymers instead of glass also brings additional challenges. They respond in 

a different manner to thermal treatments compared to their glass 

counterparts, they display visco-elastic behavior and they have other 

photosensitivity characteristics than glass, which makes the fabrication of 

stable fiber Bragg gratings in such fibers less straightforward than in silica 

fibers. Furthermore, slight changes in polymer composition and differences 

in starting material can lead to optical fibers with different characteristics 

[6, 7]. When dealing with mechanical sensors, this can lead to a major 

challenge for the design of specialty polymer fiber sensors, i.e.  the lack of 

accurate knowledge of the fiber material parameters and the dependence of 

these parameters on the thermal treatment history of the fibers. This also 

pertains to the photoelastic constant, which is the material parameter on 

which we focus in this thesis.  

To set the scene we take a look at values of the photoelastic constant of 

polymethyl methacrylate (PMMA), which is the most popular base material 

to fabricate POF. These values have been measured, for example, using 

PMMA plates and thin films [8, 9]. Reported values of C measured on bulk 

and thin film polymethyl methacrylate (PMMA) range from -1.08×10-10 Pa-1 

to 5.3×10-12 Pa-1. In [10] the authors demonstrate that the photoelastic 

constant in PMMA also depends on the presence and concentration of 

dopants in the polymer. In [11]  C has been measured in PMMA fibers and 

its value has been found to depend on the drawing conditions of the fiber. 

The values obtained are between 1.5 and 4.5×10-12 Pa-1. Note that the 

authors did not mention the measurement error. These values are disparate 

and it is difficult to propose one single value that would appear appropriate 

for precise design purposes. Moreover, the initial birefringence of standard 

step-index POFs is also found to be dependent on the drawing process and 
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the dopants included in the primary polymer material [12–15]. These 

points add to the necessity to measure C for every different type of POF.  

7.1.27.1.27.1.27.1.2 Description of the tested polymer fibersDescription of the tested polymer fibersDescription of the tested polymer fibersDescription of the tested polymer fibers    

The essential characteristics of the POFs that we have characterized are 

summarized in Table 7-1. All POFs were made, for the largest part, from 

PMMA.  

 

    Fiber 1Fiber 1Fiber 1Fiber 1    Fiber 2Fiber 2Fiber 2Fiber 2    Fiber 3Fiber 3Fiber 3Fiber 3    Fiber 4Fiber 4Fiber 4Fiber 4    Fiber 5Fiber 5Fiber 5Fiber 5    Fiber 6Fiber 6Fiber 6Fiber 6    
Diameter 

[µm] 
250 110 133 260 110 210 

Draw  

Tension DT 
NA << 1N << 1N <<1N * 

0,5 < 

DT < 1N 

Draw ratio 

[mm/mm] 
NA 16/0,11 16/0,133 16/0,26 * 11/0,21 

* The draw tension and draw ratio for fiber 5 have not been communicated by the manufacturer. 

Table 7-1: Main characteristics of the PMMA optical fibers used to measure the 

retardance and to determine the radial profile of the photoelastic coefficient. NA means 

Not Applicable. 

Fiber 1 is a multimode fiber fabricated with an extrusion process. This 

large-core fiber is surrounded with a fluorinated cladding. The 

core/cladding dimension of fiber 1 is 245/250 µm. Fibers 2 to 6 are single 

mode PMMA fibers manufactured with a thermal drawing process. The 

fibers labeled Fiber 2 to Fiber 4 are three similar single mode step-index 

polymer optical fibers, drawn in the same facility with similar drawing 

conditions [16–18]. The draw tension for all 3 fibers was below 1N. The 

core and cladding dimensions of the fibers are respectively 10µm/110µm, 

10µm/133µm and 12µm/260µm. The core of these fibers is composed of 

poly-ethyl methacrylate and poly-benzyl methacrylate (PEMA/PBzMA)  

[19], while the cladding is made of poly-methyl methacrylate (PMMA). 

Variations in drawing conditions can for example lead to core/cladding 

ratio differences resulting from fluctuating fluid dynamic responses of the 

two polymers (PMMA and PEMA/PBzMA), yet the largest part of the fiber 

consists of PMMA considering the small dimensions of the core.  Fiber 2 and 

Fiber 3 are fabricated from the same preform, whilst fiber 4 was obtained 
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from a second preform. The preforms were obtained following thermal 

curing of the polymer. For the first preform the temperature was increased 

from 45°C to 75°C within 4 days. The second preform was obtained after 

heating from 36°C to 88°C within 4.5 days until solidification. The preforms 

were then heat-drawn into optical fibers at respectively 220°C and 225°C.  

The fiber labeled Fiber 5 has a PMMA core doped with 5% polystyrene, 

and a cladding composed of pure PMMA [20, 21]. The core/cladding 

dimensions of Fiber 5 is 9µm/110µm. Fiber 6 also has a PMMA cladding and 

a core composed of PMMA doped with 2,4,6-trichlorophenil methacrylate. 

The preform of Fiber 6 was annealed for 2 weeks at 80°C before the fiber 

was heat-drawn at 290°C with a draw tension below 1N. The core/cladding 

dimensions of this fiber is 4µm/210µm. 

7.1.37.1.37.1.37.1.3 Annealing the fibersAnnealing the fibersAnnealing the fibersAnnealing the fibers    

The drawn optical polymer fibers can be considered structurally 

anisotropic because of the fiber drawing process. The drawing tension 

induces an axial stress which preferentially aligns the long polymer chains 

along the fiber axis [3, 22]. Annealing allows the molecules to relax back 

towards a more isotropic configuration. Consequently, annealing is 

considered to mitigate the anisotropic effect in PMMA optical fibers and to 

relieve the frozen-in stresses created by the drawing process of the optical 

fiber [23, 24]. Moreover, several authors show that the annealing treatment 

of PMMA optical fibers enhances their sensing performances. The linear 

range of the POFFBG sensors is extended and more stable. Additionally, the 

operation range without hysteresis is expanded and their tensile properties 

are enhanced [25–27].  

These results motivated us to measure the impact of an annealing 

process on the photoelastic coefficient profile in the POFs. We first 

determine both the mean value of C and C(r) for the pristine samples, i.e. 

the unannealed samples. We then anneal the samples for 8 hours at 

respectively 40°C, 60°C and 80°C and we determine the mean value of C and 

C(r) following each annealing step. 40°C and 60°C are chosen to evaluate 

the influence of low annealing temperatures on the C(r) profile in the 

PMMA POFs. From the publications cited in section 7.1.2 it appears that 

generally the fibers are annealed at 80°C. Annealing at higher temperatures 
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destroys the fibers irreversibly. PMMA based POFs are well known to be 

sensitive to humidity [28–30]. Whilst we could not control the history in 

terms of exposure to environmental temperature and humidity changes 

between their fabrication and arrival in our laboratories, we emphasize that 

in between the annealing steps we carried out in our labs, all fiber samples 

were stored and measured in a controlled cleanroom with the same 

temperature (20°C) and relative humidity (50%) and therefore in the same 

environmental conditions. We note upfront that to ensure that the fibers 

were uniform along their length, we have carried out measurements on 

several fiber portions taken from a single fiber length. We obtained similar 

results in terms of value of C, which confirms the axial uniformity of the 

measured fibers. 

7.27.27.27.2 Determination of the retardanceDetermination of the retardanceDetermination of the retardanceDetermination of the retardance    

We use the same tensile loading system described in chapter 6 to apply 

tensile stress to the POF samples for determining the retardance. The axial 

stress σz ranges from 10 MPa to 60 MPa. These values are much smaller 

compared to the tensile stress applied to the silica optical fibers (cfr section 

6.2). The purpose was to avoid exceeding the elastic limit of the fiber. 

Exceeding that limit would bring permanent deformation in the fiber.  We 

now configured the polarizing microscope with the 20X objective, instead of 

the 40X objective used for glass fibers, for two main reasons. First, the 

working distance of 410 µm with the 40X objective is too short to allow 

measuring Fiber 1, Fiber 4 and Fiber 6. The working distance of the 20X 

objective is 2 mm [31], and it allows measuring all the fibers without any 

problem. Second, the measurements of the polymer fibers are time 

consuming, as each fiber has to be measured again after each annealing 

process. The fiber-end is clamped in the tensile loading system setup. This 

action weakens the extremities of the fibers. We aimed to reduce the 

duration of each measurement set to avoid the fiber ends to break, as this 

would force us to carry out the whole measurement set again with a new 

piece of fiber, whilst we only had a few samples of Fibers 2, 3, 4 and 6. With 

the 20X objective, an exposure time of 750 µs is sufficient to acquire images 

with adequate intensities within the whole angular range of the analyzer 

θAtot. With the 40X objective, an exposure time of at least 4s is necessary to 



 

146 

 

record an exploitable set of intensity images in the range θAtot. This 

considerably lengthens the measurement time and increases the risk of 

fiber breakage in each measurement set.  

The process and calculations to determine the retardance in the POFs 

are identical to what is described in chapter 6 for the silica fibers. Since we 

measure with a new objective, we first determined the background 

retardance of the polarizing microscope with this new objective but without 

sample. As explained in the previous chapter, the retardance of the 

background will be subtracted from the retardance measured on the POFs 

to obtain the final retardance. Figure 7-1 (a) to (f) compares the retardance 

obtained with identical tensile stress for the pristine fiber samples and after 

each annealing step. This evidences the impact of the annealing process on 

the retardance profile.  

The graphs show that the maximum retardance decreases with the 

annealing temperature for identical tensile stress, indicating a reduction of 

the birefringence in the fiber.  Table 7-2 summarizes the maximum 

measured retardance for the unannealed fibers and the fibers annealed at 

80°C in fractions of the wavelength λ = 633 nm.  

 

FiberFiberFiberFiber    

Max(R(y)) without annealingMax(R(y)) without annealingMax(R(y)) without annealingMax(R(y)) without annealing    

(fraction of (fraction of (fraction of (fraction of λλλλ))))    

Max(R(y)) annealing at 80°CMax(R(y)) annealing at 80°CMax(R(y)) annealing at 80°CMax(R(y)) annealing at 80°C    

(fraction of (fraction of (fraction of (fraction of λλλλ))))    

1 0.36 × λ 0.19 × λ 

2 0.048 × λ 0.044 × λ 

3 0.25 × λ 0.17 × λ 

4 0.27 × λ 0.17 × λ 

5 0.17 × λ 0.07 × λ 

6 0.09 × λ 0.055 × λ 

Table 7-2: Maximum value of R(y) of the measured retardance profile on the pristine 

fibers and after annealing at 80°C for an identical tensile stress σz. 
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Figure 7-1: Retardance R(y) across the fiber section for increasing annealing 

temperature with constant tensile stress σz . (a) Fiber 1 with σz = 24 MPa, (b) Fiber 2 

with σz = 13,4 MPa, (c) Fiber 3 with σz = 11,7 MPa, the inset shows the portion R(y) ∈ 

[1.7×10-7;1.8×10-7] (d) Fiber 4 with σz = 10,4 MPa. The inset shows the portion R(y) ∈ 

[1.65×10-7;1.75×10-7], (e) Fiber 5 with σz = 24 MPa, (f) Fiber 6 with σz = 18 MPa 
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In addition to decreasing the retardance, annealing also appears to 

smoothen the shape of the retardance profile, except for the extruded 

multimode Fiber 1. Fiber 1 did not support the annealing process at 80°C, 

as every annealed sample was damaged. The quality of the fiber degraded 

and the axial symmetry disappeared. 

The first sample of Fiber 3 degraded after the first annealing process. 

The shape of the retardance profile did not allow us to draw any conclusion. 

Therefore, we show the results of the second sample. We did not anneal this 

fiber at 40°C and 60°C to avoid destroying our last sample of Fiber 3 before 

annealing at 80°C.  

From the measured retardance profiles, we are now able to determine 

the mean value of the photoelastic coefficient and the radial distribution 

C(r) and to further analyse the impact of the annealing process on C. 

7.37.37.37.3 Determination of the meanDetermination of the meanDetermination of the meanDetermination of the mean    photoelastic coefficientphotoelastic coefficientphotoelastic coefficientphotoelastic coefficient    

As described in Chapter 6, we first approximate the measured retardance 

profiles with an elliptical shape to determine the mean value of the 

photoelastic coefficient. For the sake of clarity, we recall the relation 

between the axial tensile stress and the measured retardance in the specific 

case of the elliptical shape approximation (equation (7.1)): 

 
1 max( ( ( )))

2
z

abs R y
C

b
σ × = −   (7.1) 

where b is the fiber radius, R(y) the measured retardance and σz the 

axial stress. C is the regression coefficient that has to be determined. The 

graphs of the products σz ×C are shown in Figure 7-2 (a) to (f). As we also 

did for the silica fibers in chapter 6, we determine the residual 

birefringence K0 given by the intersection of the fitted line with the y-axis. 

Table 7-3 summarizes the values of C and the constant K0 that we obtained 

with the six fibers for increasing annealing temperature.  
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    AnnealingAnnealingAnnealingAnnealing    

TempTempTempTemperatureeratureeratureerature    

Fiber 1Fiber 1Fiber 1Fiber 1    Fiber 2Fiber 2Fiber 2Fiber 2    Fiber 3Fiber 3Fiber 3Fiber 3    Fiber 4Fiber 4Fiber 4Fiber 4    Fiber 5Fiber 5Fiber 5Fiber 5    Fiber 6Fiber 6Fiber 6Fiber 6    

C 

[×10-12 

Pa-1] 

No 5.40 0.047 -0.93 0.75 -0.15 3.85 

40°C 
3.49 0.089 - 0.37 

-

0.124 
4.08 

60°C 
4.66 0.218 - 1.11 

-

0.099 
3.83 

80°C - 1.230 1.50 1.43 1.540 3.94 

K0 

[×10-4] 

No 1.51 11 11 6.0 10 2.3 

40°C 1.12 11 - 6.1 9 2.3 

60°C 0.75 10 - 5.8 8 2.3 

80°C - 7.4 7.2 4.8 6 2.1 

Table 7-3: Measured mean photoelastic coefficient C and residual birefringence K0 

measured on POFs at different annealing temperatures. 

Note that for the measurements on the POFs the maximum error 

between the fitted curve and the measurement points is below 1x10-5, 

which is approximatively the same magnitude as for the measurements on 

the silica fibers. Consequently, we can assume that the maximum deviation 

on K0 also equals 1×10-5. This corresponds to a maximum error of 10% on 

the values of K0 in Table 7-3. We conclude that these values give us a 

reliable image of the evolution of the residual birefringence in the POFs 

when they are subjected to an annealing treatment. 

Extruded Fiber 1 

Analyzing the result on the extruded Fiber 1, annealing does not impact 

the value of C but reduces the residual birefringence K0 with 50% after 

annealing the fiber at 60°C. The annealing steps do not affect the mean 

value of the photoelastic coefficient and it remains approximatively equal to 

4.0×10-12 Pa-1. The results are not shown after annealing at 80°C. Since the 

fiber was damaged after that process, we could not measure any reliable 

retardance profile and consequently we were not able to calculate the 

photoelastic constant from R(y).  
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Figure 7-2: σz×C + K0 as a function of the axial stress for increasing annealing 

temperature. The regression coefficient is the mean photoelastic constant C. K0 is the 

residual birefringence. The coefficients of determination of each regression are 

mentioned in the graphs. (a) σz×C + K0 in Fiber 1, (b) σz×C + K0 in Fiber 2, (c) σz×C + 

K0 in Fiber 3, (d) σz×C + K0 in Fiber 4, (e) σz×C + K0 in Fiber 5, (f) σz×C + K0 in Fiber 6. 
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Drawn Fibers 2 to 6 

Here again, only the results without annealing and with annealing at 

80°C are shown for Fiber 3 due to the unsatisfactory measurement results 

on the first sample. The constant K0 clearly decreases with increasing 

annealing temperatures, indicating the decrease of the residual 

birefringence and hence of the residual stress in these samples. K0 in the 

samples annealed at 80°C is consistently lowered by 36% for Fiber 2, Fiber 

3 and fiber 5, and by 17% for Fiber 4, compared to the pristine samples. 

On the other hand, the annealing process increases the value of the 

mean photoelastic constant. After annealing at 80°C, the mean value of C 

tends to reach comparable values between 1.2×10-12 Pa-1 to 1.6×10-12 Pa-1 

for the three fibers manufactured in the same facility (Fibers 2, 3, 4), as well 

as for the commercially available Fiber 5. In Fiber 6, which was made from a 

preform that has been annealed for 2 weeks at 80°C prior to drawing, the 

decrease of K0 is less pronounced (7.7%) The mean value of C, which equals 

3.9×10-12Pa-1, remains almost constant, regardless of the subsequent 

annealing steps.  

7.47.47.47.4 Determination of the radial distribution of the photoelastic Determination of the radial distribution of the photoelastic Determination of the radial distribution of the photoelastic Determination of the radial distribution of the photoelastic 

coefficient C(r)coefficient C(r)coefficient C(r)coefficient C(r)    

We have shown in chapters 5 and 6 that the two algorithms that we use to 

compute the inverse Abel transform are fully equivalent, with that 

difference that ‘algo 2’ converges faster than ‘algo 1’. Therefore, we only 

apply ‘algo 2’ to compute the inverse Abel transform of the retardance to 

obtain the radial profile of the photoelastic coefficient in the POFs.  

The radial profile C(r) of the pristine fiber samples and these of the 

samples annealed at 40°C and 60°C are comparable. After annealing at 80°C 

however, the effect of the higher temperature is clearly visible. Therefore 

and for the sake of clarity we only compare the C(r) profiles before 

annealing and after annealing at 80°C in Figure 7-3. We summarize the 

average value of C(r) computed in the stable parts in Table 7-4. 
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    TempTempTempTemp    Fiber 1Fiber 1Fiber 1Fiber 1    Fiber 2Fiber 2Fiber 2Fiber 2    Fiber 3Fiber 3Fiber 3Fiber 3    Fiber 4Fiber 4Fiber 4Fiber 4    Fiber 5Fiber 5Fiber 5Fiber 5    Fiber 6Fiber 6Fiber 6Fiber 6    
C 

[×10-12 

Pa-1] 

No 5.52 0.003 0.10 0.60 0.07 4.10 

80°C - 1.33 1.53 1.69 1.83 3.88 

Table 7-4: Average value of C(r) computed in the POFs under test without annealing and 

after annealing at 80°C for 8 hours. 

Extruded Fiber 1 

As we mentioned before, the radial profile C(r) of Fiber 1 cannot be 

determined after the annealing process as its quality degrades with the 

annealing process at a temperature of 80°C. From the graph in Figure 7-3 

(a) one can conclude that C(r) is constant throughout the fiber section The 

average value of C(r) equals 5.52×10-12Pa-1, which agrees with the mean 

value of C determined according the elliptical approximation in section  7.3. 

Drawn Fibers 2 to 6 

1.1.1.1. Fibers 2 to Fiber 5Fibers 2 to Fiber 5Fibers 2 to Fiber 5Fibers 2 to Fiber 5    

The fluctuations of the retardance measurements of fiber 3 and 4 

without annealing are slightly higher than in fiber 2. This is 

illustrated in the insets of the graphs in Figure 7-1 (c) and (d). The 

retardance profiles of Fiber 3 and 4 are magnified in a portion 

around the maximum value of R(y) with a scale corresponding to 

the scale of the retardance profile of Fiber 2.  These fluctuations 

have a direct impact on the calculation and result of the inverse 

Abel transform of the retardance.  Our results nevertheless clearly 

show the effect of annealing the POFs at a higher temperature. The 

variance decreases in the 3 fibers, which explains a smoother and 

more constant C(r) profile throughout the fiber cross-section.  
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Figure 7-3: Comparison of the radial distribution of the photoelastic coefficient C(r) of 

the POFs under test without annealing and with 8 hours annealing at 80°C in (a) Fiber 1, 

(b) Fiber 2, (c) Fiber 3, (d) Fiber 4, (e) Fiber 5 and (f) Fiber 6. 
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Despite Fiber 5 has been drawn in another independent facility, the 

measurement results show the same tendency with respect to the 

evolution of the photoelastic coefficient after the annealing process 

at 80°C. The shape of C(r) is smoother, indicating a more isotropic 

behaviour of the fiber, and tends towards the same average value of 

C(r) of 1.2 × 10-12 Pa-1 as shown in Table 7-4. Note that the 

overshoot at r = 0, i.e. in the center of the fibers, stems from a 

numerical artefact of the inverse Abel transform.  

The height of the overshoot depends on the amount of Fourier 

coefficients considered in the expansion of the inverse Abel 

transform, as we explained in details in chapter 5, and cannot be 

related to an actual property of the optical fiber. 

2.2.2.2. Fiber 6Fiber 6Fiber 6Fiber 6    

As shown in the graph of Figure 7-3 (f), the radial profile of C(r) is 

very stable and its profile is not modified following annealing at 

80°C. Annealing has no impact on the average value of C(r) that 

equals 3.9 × 10-12 Pa-1. Annealing the preform prior to drawing 

appears to increase the mean value of the drawn fiber and to reduce 

significantly the residual stress K0, which is five times smaller 

compared to the other drawn fibers. On the other hand the higher 

value of C implies a higher sensitivity of the fiber to stress-induced 

birefringence. This means that the more the unstressed PMMA fiber 

is isotropic, the more the stress-induced birefringence is important 

when the fiber is loaded. 

7.57.57.57.5 Summary and conclusionSummary and conclusionSummary and conclusionSummary and conclusion    

The aim of this chapter was to measure C(r) in polymer optical fibers and to 

look into the stability of the photoelastic constant following thermal 

annealing of the fibers. We characterised one large-core extruded POF and 

five heat-drawn single mode POFs, of which one has been fabricated from a 

preform that was thermally annealed prior to drawing.  

First, we exposed our motivation to measure the photoelastic coefficient 

before and after annealing the fiber samples. Annealing has an impact on 

the retardance profile measured with an identical tensile stress. In all the 

POFs the retardance decreases, indicating a lower residual stress level in 
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the annealed fiber samples. Annealing also smoothens the retardance 

profiles of the drawn POFs, which also indicates a more isotropic nature of 

the fibers. 

Second, we determined the mean photoelastic coefficient of the POFs 

using the elliptical approximation. C equals 5.4×10-12 Pa-1 in the extruded 

fiber, far above the value measured on the heat-drawn fibers with exception 

of the fiber drawn from a pre-annealed preform. The mean value of C in the 

latter equals 3.8×10-12 Pa-1. Annealing the other heat-drawn POFs for 8 

hours at 80°C considerably decreases the value of the residual birefringence 

K0 from 17% to 36% on one hand and increases the photoelastic coefficient 

towards comparable values around 1.2×10-12 Pa-1. Note that this may 

explain the findings reported in [28], i.e. the higher sensitivity to stress and 

strain, but a lower cross-sensitivity to strain and temperature of an 

annealed POF. Post-annealing the fiber fabricated from the pre-annealed 

preform slightly reduces the birefringence, but has no significant impact on 

the mean value of the photoelastic coefficient. 

Third, we determined the radial profile of the photoelastic constant. We 

can conclude from our results that C(r) in the extruded fiber can be 

considered constant over the fiber section. The average value of C(r) agrees 

with the mean value obtained with the elliptical approximation. With 

exception of the fiber fabricated from the pre-annealed preform, C(r) 

fluctuates significantly in the unannealed drawn fiber samples. Moreover, 

its average value is very small, indicating a lower response of the stress-

induced birefringence to the applied load. Annealing the fibers for 8 hours 

at 80°C has definitively a positive effect on C(r). The profile is more regular 

and constant. The average value of C(r) in all these fibers reaches 

approximatively 1.2×10-12 Pa-1, in agreement with the mean value of C. The 

annealing process has no impact on the photoelastic coefficient profile of 

the fiber fabricated from the pre-annealed preform. The radial distribution 

and the average value of C(r) remain similar compared to the results of the 

unannealed sample.  

We conclude that for drawn PMMA POFs the annealing process of the 

fiber samples is recommended as it decreases the residual birefringence on 

one hand, and increases C on the other hand, while making C(r) more 

uniform across the fiber. Pre-annealing the preform prior to the drawing 
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process considerably increases the value of C and decreases the anisotropic 

effects in the PMMA POF. With respect to the profile evolution of C(r) we 

can conclude that C is constant throughout the fiber section in all the PMMA 

POFs that we have characterised.  

While the order of magnitude of the photoelastic coefficient in silica 

optical fibers is comparable with the value measured in bulk silica and we 

measured the same value in different glass fibers, the comparison of C in 

bulk polymer material and POF is not relevant. Also the value of C in PMMA 

POFs depends on the annealing history of the fiber. Our results point out 

that, in contrast to glass fibers, C cannot be approximated by any ‘standard’ 

value and that it has to be measured for every POF. 
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Chapter 8.Chapter 8.Chapter 8.Chapter 8. Summary and conclusionsSummary and conclusionsSummary and conclusionsSummary and conclusions    

The transduction mechanism exploited in many mechanical optical fiber 

sensors uses the principles of photoelasticity, which relate an applied 

mechanical load to stress-induced birefringence in a transparent material. 

The photoelastic coefficient is the material parameter that characterizes the 

amount of birefringence created by a given mechanical load. The design of 

specialty fibers tailored to specific sensor applications requires conducting 

simulations of the anticipated sensor behavior prior to manufacturing the 

fibers and sensors made thereof. This calls for accurate knowledge of the 

material parameters involved, and of the photoelastic constant C in 

particular. This coefficient C has already been extensively documented for 

bulk materials, including glass and polymers, from which the optical fibers 

can be fabricated. However, the particular fabrication of optical fibers and 

optical fiber sensors involves processing these materials, which is likely to 

modify the value of C compared to its value in bulk material. Therefore, this 

photoelastic coefficient, as any other refractive property, should preferably 

be measured directly on the fiber. Furthermore, the particular structure of 

an optical fiber may lead to variations of the value of C in its cross-section, 

and therefore one should also consider the profile C(r) in the fiber cross-

section. 

This triggered the definition of the grand objective of this PhD, i.e. to 

develop a method that allows measuring the photoelastic coefficient C and 

its radial profile directly on both glass and polymer optical fibers.  To 

address this objective, we had to tackle the following challenges; 

• to build an experimental setup that allows accurately measuring 

stress-induced birefringence in an optical fiber submitted to a 

controlled mechanical load, in such a way that the value of C can be 

subsequently determined with micron-level spatial resolution in 

the fiber cross-section; 
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• to develop effective algorithms that allow calculating the value of C 

relating the local birefringence values to the applied mechanical 

load, based on the measured data, with sufficient accuracy, i.e. with 

a standard deviation value below 10% of the mean value ; 

 

• to validate our method and to apply it to photoelastic coefficient 

characterizations of both silica and polymer fibers. 

8.18.18.18.1 Summary of the results and contrSummary of the results and contrSummary of the results and contrSummary of the results and contributionsibutionsibutionsibutions    

The first main achievement of this thesis is the development of the 

theoretical basis that supports our measurement method to enable 

determining the radial profile of the photoelastic coefficient of the optical 

fibers directly on the optical fiber, both for silica and polymer fibers. Our 

method exploits the stress-induced birefringence in the fibers. First, we 

showed how the stress-induced projected retardance of a laterally 

illuminated optical fiber can be used to derive the radial profile of the 

photoelastic coefficient using an adequate inversion algorithm, known as 

the inverse Abel transform. We demonstrate that a linear regression in each 

point along the fiber radius of the inverse Abel transform of the retardance 

measured for increasing known tensile stress yields the radial distribution 

of the photoelastic coefficient of the optical fiber. To the best of our 

knowledge, it is the first time that a full-field measurement approach is 

developed to determine the photoelastic coefficient of an optical fiber with 

sub-micron spatial resolution. 

The second achievement of our work is the translation of our 

measurement model into an exploitable measurement setup, which returns 

measurement data that can be processed using adequate algorithms for 

computing the inverse Abel transform. The actual measurements rely on 

the Sénarmont compensation method to characterize the retardance in the 

laterally illuminated fiber. We developed two algorithms based on Fourier 

theory to compute the numerical inverse Abel transform of the measured 

retardance. We tested these algorithms on a known analytical profile to 

demonstrate their effectiveness and their robustness when dealing with 

noisy measurement data. This analysis also allowed identifying the optimal 

set of computational parameters that returns the most effective inverse 
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Abel transform. Our original contribution is the implementation and 

detailed analysis of the two Fourier based algorithms to compute the 

inverse Abel transform. The algorithms and related results can easily be 

extended to perform the integral inversion of other projected functions, e.g. 

to compute accurately the residual birefringence in an optical fiber. 

The application of our measurement method to determine the radial 

profile of the photoelastic coefficient in glass fibers forms our third main 

achievement. We demonstrated that C is slightly higher in silica glass fibers 

compared to their bulk silica counterpart. This confirms measurement 

results published in literature. Our measurement results also revealed that 

C can be considered constant in the cross-section of undoped and in the Ge-

doped portions of silica fibers. We measured a mean value of C = -3.78×10-

12 Pa-1 in these portions of the fibers. However, the value of the photoelastic 

coefficient changes in fluorinated portions of the glass fibers. The mean 

value in these locations was 27% lower in absolute value. This is a major 

achievement of our research work in the sense that we are able to 

demonstrate that the photoelastic coefficient of an optical fiber is not 

always constant over the fiber cross-section and consequently we 

evidenced the added value to measure the radial profile of C of the optical 

fiber. The results on the silica fibers validate our technique, which was a 

pre-requisite before experimenting with polymer optical fibers. 

This brings us to the fourth and last main achievement of our PhD 

research. We have shown that the value of C for bulk polymethyl 

methacrylate (PMMA) and for optical fibers made from such material 

greatly differs. Furthermore, we have shown that the value of C differs from 

one PMMA fiber to another. It is the first time, again to the best of our 

knowledge, that the radial profile of the photoelastic coefficient in polymer 

optical fiber is determined. We have also evidenced that the thermal history 

of the polymer fibers has a crucial impact on the value of the photoelastic 

coefficient and thus on the sensing sensitivity of the polymer fibers. For an 

extruded polymer optical fiber, annealing - in the same conditions as heat-

drawn fibers - deteriorates the fiber samples and therefore does not appear 

to have any beneficial effect. However, an optical fiber heat-drawn from a 

preform which received a specific annealing treatment prior to drawing 

exhibits less residual birefringence, whilst the sensitivity of the fiber to 
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stress-induced birefringence was significantly higher. The mean value of C 

equals 3.8×10-12 Pa-1, which is more than ten times higher compared to 

other heat-drawn fibers with no specific annealing treatment of the 

preform. We have also evidenced that annealing the latter fibers for 8 hours 

at 80°C has a beneficial effect on C(r). The average value of C(r) in all fibers 

increases and reaches comparable values around 1.2×10-12 Pa-1. 

Additionally, the residual birefringence decreases and the profile C(r) gets 

smoother. These findings do not only show that the photoelastic coefficient 

should be measured for every different polymer optical fiber, but may also 

explain the reports in open literature on modified sensitivities of polymer 

optical fiber based sensors following thermal treatment. We can therefore 

also recommend annealing of drawn polymer fibers prior to their use as 

mechanical optical sensors.   

8.28.28.28.2 PerspectivesPerspectivesPerspectivesPerspectives    

The method that we have developed enables characterizing the photoelastic 

coefficients in a wide variety of regular glass and polymer optical fibers and 

therefore allows working with the correct value of these coefficients in view 

of designing tailored optical fiber sensors. Several challenges however 

remain in order to further increase the accuracy with which the 

photoelastic properties of optical fibers can be assessed. 

First, there is room for improving the experimental setup to determine 

the retardance, essentially to allow for a higher measurement throughput 

and to increase the accuracy of the measured retardance. This could be 

tackled as follows: 

- by installing a motorized analyzer synchronized with an automatic 

frame-grabber. Currently the analyzer is rotated manually and a 

mouse-click is necessary to take a picture after each rotation of the 

analyzer. An automated system would accelerate the measurements 

and most likely improve the accuracy. 

 

- By installing a tensile stress-system with easy and solid fiber end 

fixations, together with a computer-controlled system to axially 

stress the fiber. 
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Second, the results that we have achieved with silica fibers demonstrate 

that the value of C depends on the usage of dopants in the fiber structure. 

Therefore, extending our analysis to a systematic study of the influence of 

the dopant type and concentration on the value of the photoelastic 

coefficient would be beneficial. Characterizing fibers with well-known 

specific doping profiles would allow further optimizing our measurement 

method. This may hypothetically also lead to the development of specialty 

optical fibers with a tailored mean value or radial profile of C. Another 

extension of our analysis that would be interesting to address is the study 

of the wavelength dependence of C. 

Third, our results on polymer optical fibers point to the need to conduct 

a more extended investigation of the impact of annealing or other post-

processing of such fibers. For instance, for fibers drawn from a preform 

with no special thermal pre-treatment, we could examine if annealing for 

periods longer than 8 hours increases the measured value of the 

photoelastic coefficient of these fibers. It would allow concluding more 

firmly on whether C and thus the sensitivity of polymer fiber based sensors 

converges towards a stable value after a given annealing time. This should 

also be extended to optical fibers drawn from doped PMMA or from other 

polymers. Furthermore, it would be of great interest to combine the 

measurements with organic chemistry analyses of the fiber samples to 

relate the observed changes in C to the structure of the polymers. Finally, 

we could also conduct our analysis on polymer fiber samples exposed to UV 

light in order to assess the influence of fiber Bragg grating inscription on 

the photoelastic coefficient. 

Finally, we look forward to confronting our measurement results with 

actually simulated and characterized responses of fiber sensors made from 

both silica and PMMA fibers. An interesting exercise would consist, for 

example, in looking at responses of PMMA fiber based sensors made from 

an optical fiber drawn from the same preform that have been exposed to 

different annealing treatments. From our measurements, we expect that 

annealing will enhance the sensitivity of the fiber sensors, which would 

confirm that the value of the photoelastic coefficient increases in annealed 

PMMA fibers.  
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8.38.38.38.3 Final statementFinal statementFinal statementFinal statement    

We developed a method that enables the characterization of the 

photoelastic coefficient of any type of optical fiber, provided the fiber is 

axisymmetric. This photoelastic coefficient is an important quantity that 

impacts the operation of many optical fiber based sensors. We therefore 

hope that our characterization work of the photoelastic properties of 

optical fibers will positively contribute to further developments in the fields 

of specialty optical fiber and optical fiber sensor design and applications.  
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