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1. Abstract

Many long-range explosives detectors are available on the market but their
performance is subject to controversy. Very few independent test reports are public and
potential purchasers have little more than hearsay and demonstrations by vendors to
decide whether or not they should acquire these products. This paper proposes a simple
and efficient protocol based on a double-blind test and a statistical analysis to assess
whether these products are worth further investigation. A hypothesis test is defined to
reject detectors that do not reach a required probability of correct claims to be chosen
according to the operational requirements. The paper also presents a procedure that
allows one to define the number of test samples to use in order to ensure that the
hypothesis test will be able to reject a random detector. The approach is tested on a
commercial long-range drugs detector. The detector is shown to be compatible with a
random detector and according to the hypothesis test the detector must be rejected if the
required probability of correct claims is higher than 66%, which will probably be the
case for most applications.

2. Introduction

Remote detection of certain substances can be useful in many activities, such as
security, police work, landmine detection, forensic, etc. Substance to detect can range
from explosives, to metal, drugs, human remains, and many others. Over the decades
many specific detectors have been designed for these purposes. Explosives can be
detected by dogs ([1]) or by Remote Explosive Scent tracing (REST) ([8]) Dogs are also
used to detect drugs. Metal can be detected by metal detectors ([7]) Ground penetrating
radars ([4]) have been used to detect hidden pipes, archaeological remains, or buried
human bodies.

Methods to detect a wide range of substances have been proposed but have
raised scepticism among scientists: for instance dowsing, either by a pendulum or a
divining rod, has been proposed for a long time.

Several companies have recently marketed long-range detectors of a vast range
of substances, usually including explosives and drugs, with an operating mode similar
to divining rods. These detectors raise several questions. First how do they really work?
A study of documentations produced by manufacturers or vendors, and discussions with
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some manufacturers show that manufacturers usually describes the principles of these
tools in a vague or unconvincing manner, if at all. Some manufacturers claim that their
products work on a same principles as divining rods or propose more scientific-looking
principles. Some others may not know themselves how their products work. They may
still study the question, propose some theory (one spoke about ‘new physics’) or even
claim their ignorance.

Explanations proposed by manufacturers include: ‘electrostatic magnetic
attraction’ ([5]) or ‘Magneto-Electrostatic Detection’ ([12]). Sometimes the explanation
is vague and limited to one phrase such as ‘interaction between the detector and the
substance’ or claiming that the principle is ‘similar’ to magnetic resonance imagery
([6]). Some of these explanations contain scientific errors, such as confusion between
the notions of potential, field, and charge. They usually fail to explain how a specific
substance can be detected and not confused with others.

To the authors’ knowledge no scientific study of the working principles of these
tools have produced reasons to explain their performance as claimed by their
manufacturers. For instance, X-rays have shown that some of these devices contain no
electronics. The ideomotor effect has been suggested to explain how operators could
unconsciously influence detection ([10]).

Although there seems to be no scientific explanations for the detector’s claimed
performance, it does not mean that it does not work. We can still determine its
performance scientifically and statistically.

Few tests of these detectors have been made public ([2]). Sometimes tests have
been performed by military organisation and the results are classified. Potential
purchasers are left with little more than hearsay to choose to buy such tools or not.

This paper described a simple protocol to assess the detection performance of long-
range detectors. This protocol can be implemented with very few resources. The
objective is to help determine the performance in terms of detection in optimal
conditions. This may be seen as an entry-test, or a pre-test (or pre-trial) assessment
(PTA) in which a candidate detector can be examined to determine whether there is
merit in committing the necessary resources to full performance tests. This may be
viewed as an opportunity to exclude detectors that are clearly inappropriate. This PTA is
based on a simple trial that can be repeated enough times to get statistically relevant
results. This is different from a more operational test where long preparation is needed
to test a detector in realistic situations, but which does not provide statistically relevant
results. If this PTA is passed, other tests can be performed before purchasing the
detector. Many other factors may influence the final decision: the cost, the weight, the
operational procedure, the accuracy, the range, the sensitivity, the user-friendliness, etc.

3. The test protocol

The objective of the proposed test is to evaluate the ability of a long-range
detector to detect a given substance in ideal conditions. It requires at least three persons:
a trained operator for the detector, a sample carrier and a sample manager to prepare the
samples.

One type of substance is to be used. The type and quantity of the substance is
defined before the test in order to reach optimal detection capability. This choice can be



done in agreement with the manufacturer. A sample of the substance may be used to
calibrate the detector if needed.

The sample is placed in a labelled plastic box.

A similar box holds an inert material. The two boxes with their samples in them
should ideally be almost undistinguishable: same weight, same weight distribution,
same noise when moved, etc. An easy way to prevent any noise or scent is to use a
sealed, airtight box and fix the substance in it so that it cannot move.

The operator chooses an optimal position to place the samples in order to ensure
an optimal detection. This is important because some detectors are said to have a
detection range of several hundreds of metres depending on the amount of substance to
detect. If so, unwanted signals may occur in some directions or locations.

A list of trials is prepared beforehand by the sample manager who keeps it
secret. Each list item is numbered and describes what will be presented to the operator
in an opaque container (target substance/inert). An efficient way to produce this list is to
use a random generator to generate a uniformly distributed number between zero and
one for each sample and the substance to detect if this number is larger than a chosen
probability pr. As shown in the next section, for an assessment based on the probability
of correct claim, it is recommended to use pr = 0.5. The number of sample to use is
discussed in the next section.

A typical list would be:

Table 1 Example of list if trials

Container # 1 2 3 4

Substance to
be detected YES NO NO YES

Declaration

For each list item:

— The sample manager secretly places the appropriate plastic box
(substance/inert, according to the list) in an opaque container and puts
the container outside the sample room, without any contact with people
on the test area. The preparation time should be similar whether the
container contains the substance or not. Care should be taken to choose a
container and a handling methodology to ensure that the inert containers
are not contaminated by the substance to detect. This could be defined in
agreement with the manufacturers. If the operator always gets an alarm
because of contamination, the test should be cancelled.

— The sample carrier takes the opaque container and places it at the known,
pre-defined test location.

— The operator operates the detector and, following a clearly defined
procedure, declares if he or she considers that the container contains the
substance or not. He or she may move to several positions but must
provide an answer (yes or no) within a reasonable time decided in
advance. The authors have participated to a test of such a detector where
the operator could not still decide after 40 minutes if there was a




substance or not. This is clearly unacceptable in the proposed test and for
most operational contexts.

— The observer communicates the operator’s claim (substance/inert) to the
sample manager but restricts further communications to the strict
minimum to avoid exchange of information between test site and sample
room.

— The sample manager writes down the operator’s claim.

— The sample carrier brings the container to the door of the sample room
and goes back to the test site

— The sample manager takes the container inside the sample room,
removes the opaque container and checks the box label (substance/inert)
to crosscheck with the list.

The procedure is repeated with the next sample, according to the list.

Once all containers have been tested the results and the contents of the
containers are compared. A copy of the list is provided to the participants.

Before the evaluation the operator does not know how many containers will hold
drugs.

Additional observers, including from the manufacturers, may be present but they
may not circulate between the test-site to the sample room, as contacts between these
two locations must be avoided (even during breaks). Measures should be taken to
reduce preparation or recording errors.

4. Statistical analysis
4.1. Designing the test

The test results may be summarised as follows:

Table 2 Example of presentation of results (a, b, c and d are the number of claims in each

category)
Actual
Substance to detect | Inert
. Substance to detect a b
Claims
Inert C d

The ratio of correct claim is given by (atd)/(at+btctd). The ratio of correct
detection is given by a/(a+c). The false alarm rate is b/(b+d). The ratio of number of
samples with the substance to detect to the total number of samples is
fr=(a+c)/(a+b+ctd).

Choosing fr may have an effect on the probability of correct claims. To assess
this, let the detector under test have a probability pp of detecting a sample containing
the substance to detect (detection probability) and a probability pr4 of having a signal
when the sample does not contain the substance to detect (false alarm rate). Let’s
assume that these two values are constant. Ideally the detection probability should be
close to one and the false alarm rate should be close to zero.



The probability to have a correct claim is therefore:
pec = frop + (1= fr)1-pea) (1)

For an ideal detector, this probability is equal to 1.

Let’s consider a random detector that produces a random alarm with a
probability p, regardless of whether the container contains the substance to or not. Then
its detection probability and its false alarm rate are both equal to py.

Introducing this in (1) yields:

p=po2pr -1)+1-pr (2)

For this probability to be independent of p, the substance to detect should be
presented to the operator with a ratio of 0.5 and the probability of correct claim then
equals 0.5, which is then a reference against which to compare the ratio of correct claim
for any detector. We therefore recommend using fr=05. Note that the method

proposed in the previous section easily allows fixing pr. This is, however, expected to
have little influence, especially for large a number of samples.

4.2. Confidence intervals

The ratios defined above are samples of random variables. There are only
estimations of the underlying probabilities. In order to better assess these probabilities,
confidence intervals should be used.

With the assumption on the detection presented in 4.1, consider a number of
correct claims of nq- out of x trials. We want a confidence interval for the probability of

correct claim characterised by a value a as follows.. We choose as lower bound of the
interval the probability of correct claim of detector such that the probability to obtain a
number of correct claims lower than n-- is (1- a )/2 and the upper bound of the interval

the probability of correct claim of a detector such that the probability to obtain a number
of correct claims larger than nq- is (1- a )/2. The interval is then the Clopper-Pearson

100(1- o )%-confidence interval.
The lower and upper bounds of the confidence interval for the probability of
detection can be computed as follows ([11], [3]).

P = UlF(Ul,Uz,a/Z)

L vy +01F(vq,05,0/2)
_ U3F(U3,U4,1—a/2)

u v +03F(v5,04,1 - /2)

with 01 = Zﬂcc, Uy = 2(7[ —Ncc + 1)

€)

with U3 = 2(Tlcc + 1), Uy = 2(7’1 - Tlcc)

where P; is the lower bound of the confidence interval for the probability of
detection, Py is the upper bound of the confidence interval for the probability of
detection, and F(f,g, 4) is the A-quantile of the F-distribution with f and g degrees of
freedom.

The above equations are undetermined for n-- equal to zero or n. If there is no

correct claims (. = 0) then the following bounds are:



P =0 4)

P, =1-4a
If all claims are correct (- =n ) then the following bounds are:

P, =4a ®)
P, =1

For the confidence interval of the probability of detection, the same formula hold
by changing n by a+c and nc- by a. For the confidence interval of the false alarm rate,

change n by b+d and nq- by b.

A first method to analyse the results is therefore to see if the frequency 0.5
belongs to the 95%-confidence intervals. If it does, it means that the assumption of a
random detector is compatible with the data. This does not mean, however, that the
detector works randomly. For instance, if few trials are made, the 95%-confidence
interval will be very large and may contain the frequency 0.5, how good the detector
may be. It is therefore important to make enough trials to reduce the size of the
confidence interval. This can be further quantified by use of a test hypothesis as
described in the next section.

4.3. Hypothesis test

With a statistic test, it is impossible to prove that a detector performs as a
random detector. As explained above it is possible to say that its performances are
compatible with those of a random detector. In practice, however, a detector is only
appropriate if it has a certain level of performance that should be determined according
to the intended usage. The performance may be quantified with a number of indicators
such as the probability of detection, the probability of false alarms or the probability of
correct claims. In this paper we will only consider the probability of correct claims and
we will define a hypothesis test that can be used to reject a detector if the detector has
not the required probability of correct claims. Hypothesis test based on probability of
detection and probability of false alarm may also be useful for a number of applications.
This will be the subject of further research. Note, however, that it makes no sense to
consider probability of detection or probability of false alarm alone. The requirement
should always be on a combination of both. Indeed, claiming detection for each sample
leads to 100% detection.

The proposed hypothesis test is based on two hypotheses. Hy: “The detector has
a probability of correct claim larger or equal to p&” and H;: “The detector has a

probability of correct claim smaller than pZ ”. The two hypotheses are contradictory

and the detector should be rejected if hypothesis H; is retained.

Here again, it is impossible to prove that H; or Hy is true but the objective of the
hypothesis test is to reject the detector only if Hy is unlikely to be true. In other words,
doubt benefits to the detector and the test is design to ensure that an inappropriate
detector is rejected.



This is quantified by the power of the test 1-f with [ the probability that an
appropriate detector is rejected by the test (false negative rate).

The test is then performed by rejecting Hy (rejecting the detector) if n- <nZin
where nqc is the number of correct claims and »Z" is a threshold computed to ensure

that an appropriate detector would be rejected with only a small probability .
We first consider the probability that the detector has a probability of correct
claims pcc if there are n-- correct claims.

_ P(”CC|PCC )P(Pcc)
P(Pcc|ﬂcc ) = W (6)

We consider a uniform distribution for pcc. The probability that a detector with a
probability of correct claim pcc gives n. correct answers in n trials is given by the
binomial model:

- 7
P(”CClpCC):CZlCCPCCHCC (1-pec) e )
The probability that a detector that provides n-- correct claims out of n has a

probability of being correct smaller than pZ" is:

e
I pec”e (1= pec J'ec da
P(Pcc = Pcmcin|”cc): 1 0 = B(Pglcin}”cc +1,n—-ncc+ 1) (8)

.[PCC”CC (1-pec)"ee dpec
0

where B is the incomplete beta function ([9]).

Then the detector can be rejected with a confidence 1-f if
B(pgngn;ncc +1,n-ncc +1)>1—ﬂ. A value of 0.05 can be chosen for B. If a detector is not
rejected, it does not necessarily means that there is a large confidence in its probability
of correct claim being larger than pZ", because this depends on the number of trials in

the test.
4.4. Determination of the number of trials

In this section we discuss how the number of test samples should be chosen if
we suspect a random detector and we want to have good chances to reject it with the
hypothesis test presented in the previous section. That is, we want to reject the detector
(with a given confidence, say 95%) if its probability of correct claim is lower than a
threshold p&, which is chosen according to operational considerations. Obviously the
higher p&in is, the less measurements are needed to reject a random detector.
Equation (8) can be used to compute the number of trials required to be just able to
reject a random detector with a given p&" and a given confidence but this requires the

ratio of correct claims to be known.



This ratio is not known before the test, it is a random variable. The number of
correct claims follows a binomial distribution. The most likely value is

=7 ©)

Using this value, the limit p%" can be computed as a function of n (Fig. 1, curve

with crosses). Using »¥' may be dangerous, because the number of correct claims

obtained for a given test will be higher than »* with a probability of 0.5. If ncc > ni
and 7 is chosen according to Equation (8) with »X the hypothesis test will not reject a
random detector. A more conservative approach is to compute 7 using nqc o5 defined by

(Fig. 1, curve with circles):

P(”CC <ncc,95 ) =0.95 (1 0)

With such a choice, there is a probability of 0.95 that the number of correct
claims obtained is smaller than n-c o5 and, for all these cases, a random detector will be

rejected with the chosen number of tests. As an example, on sees (Fig. 1) that if
p&in — 0.7, the number of tests required if »X is used is 20 and the more conservative

number of tests obtained using nqc o5 18 60.
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Fig. 1 Thresholds of probability of correct claim that can be used to reject a detector with
a 95% confidence, as a function of the number of trials; See text for details (the curve is
not smooth due to integer computation)

5. Example

We have used the proposed protocol to test a commercial long-range detector.
This detector is equipped with cards designed to detect specific substances. The detector
works with special cards for the detection of specific substance. Since only cards for
drugs was available, the test involved only drugs samples.

Sixty-six samples were presented to an operator. The samples were either a box
of seven grams to ten grams of cannabis (26 times out of 66) or a box of small pieces of



paper (40 times out of 66). For each sample the operator gave a clear and unambiguous
claim.
The results are summarised in the following table.

Table 3 Results of a double-blind test of ADE 651

Reality
Drugs No drugs Total
. Drugs 10 14 24
Claims No drugs 16 26 42
Total 26 40 66

We can see that 55% of the claims were correct (36 out 66), 38% of the samples
containing drugs were detected (10 out of 24) and 35% of the samples that did not
contained drugs were mislabelled as drugs (14 out of 40).

The 95%-confidence interval of the probability of correct claim is (42%—67%),
for the detection probability is (20%—-59%) and for the false alarm rate (21%—52%).

It appears that the assumption of a random detector is compatible with the data.

Suppose now that we want to reject the detector if its probability of correct claim
is lower than, say, 0.7. Then by using, p&" =0.7, n = 66 and ncc = 36 in Equation (8),

we obtain
p(pcc < p;’;“ci“|ncc)= 0.9964 = 1-0.0036 (11)

This indicates that the probability to make an error when rejecting this detector
15 0.0036 (or 0.36%).

On the other hand, with f = 0.05, the detector must be rejected if the lowest
acceptable probability of correct claim is

Prcncin = Bfl(l—,B;nCC +1,n—ncc +1)=0.64

(12)

where B is the inverse incomplete beta function.
6. Conclusions

This test protocol presented here focuses on performance on the detector in
optimal conditions and serves only to make a first rejection. A hypothesis test has been
defined to reject detectors that do not reach a required probability of correct claims, a
probability to be chosen according to the operational requirements. We also presented a
procedure that allows one to define the number of test samples to use in order to ensure
that the hypothesis test will be able to reject a random detector. The approach is tested
on a commercial long-range drugs detector. The detector is shown to be compatible with
a random detector and according to the hypothesis test the detector must be rejected if
the required probability of correct claims is higher than 66%, which will probably be the
case for most applications.
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A SIMPLE PROTOCOL FOR A DOUBLE-BLIND TEST ON AN
EXPLOSIVES/DRUGS LONG-RANGE DETECTOR

Summary in English

Many long-range explosives detectors are available on the market but their performance
is subject to controversy. Very few independent test reports are public and potential purchasers
have little more than hearsay and demonstrations by vendors to decide whether or not they
should acquire these products. This paper proposes a simple and efficient protocol based on a
double-blind test and a statistical analysis to assess how good these products are at detecting
explosives, drugs or other substances. This development is based on lessons learned of actual
tests performed on such detectors

This protocol was used to test a commercial long-range detector. The detector was
shown to be compatible with a random detector and the hypothesis test showed that the detector
could be rejected (with a 95% confidence) if the requirement was to reject detectors whose
probability of correct claims were lower than 0.64.



