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Abstract

We present here a method to use remote sensing and GIS
to help the task of area reduction in mine action.

The goal is to synthesize all relevant information in the-
matic maps, called danger maps, that can be used as basis
for area reduction. The information presented in the maps
can be extracted from the remote sensing data, coming from
the Mine Action Centre Mine Information System (MIS) or
be added after discussion with experts.

The blind tests performed on mine-suspected areas in
Croatia have shown that the method had a reduction rate
0of 26% and an error rate of 0.1%.

1. Introduction

One of the activity in mine action is the general mine
action assessment consisting in continually gathering, eval-
uating, analyzing and making available sufficient informa-
tion to assist and update the strategic planning of a national
mine action programme [5]. This is usually done by sending
teams to collect the needed information.

Several ways to use airborne data to help this process
have already been explored [7][6][4].

This article presents the approach and the first evaluation
done in mine-suspected areas in Croatia of a method using
remote sensing data to help determining where areas that are
not mined are. The approach is presented is fig 1. This work
has been performed in the scope of the European project
SMART [9][8] by TRASYS, Renaissance ASBL (RMA),
ULB-IGEAT, DLR, ENST, Zeppelin, CROMAC, RST and
IXL.

This method has the following characteristics:

o the priority is to help find areas that are not mined
rather than areas that are mined

e there is no detection of individual mines, but detection
of clues to the presence or absence of mines or mine-
fields
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Figure 1. SMART functional description

e confidence maps are given in order to improve the in-
terpretation of the danger maps

e results have been evaluated by blind tests

2. Collecting the data

We organised a flight campaign in Croatia in August
2001 to collect the airborne data. Data were collected on
three mine-suspected test-sites in different regions: a fer-
tile valley surrounded by hills (Glinska poljana), a very flat,



Indicators of
mine absence

Indicators of mine presence

Cultivated Trenches and man-made embank-
land ments
Asphalted Bunkers
roads
Infrastructural objects that are in
use
Concealed paths to trenches or
bunkers

Shores of rivers

River banks, shallow rivers or
creek, suitable for crossing

Bridges  (included  destroyed
bridges)

Tracks that are no longer in use
Agricultural areas that are no longer
in use

Crossroads, especially crossings of
main roads with tracks no longer in
use

Irrigation/drainage channels

Edges of forests

Power supply poles

Soft edges of hardtop roads

Tank and cannon holes (shelters for
tanks or heavy weapons)

Mine accidents and incidents
Minefield records

Confrontation zones

Hilltops and elevated plateaus
Dominant slopes and heights
Houses used by the military (rooms,
ammunitions stores, HQs, bunkers)
Damaged or destroyed houses

Table 1. Indicators used in the test-sites in
Croatia

agricultural area (Ceretinci) and a site near the coast (Pris-
teg). The data we used are Daedalus data (obtained from an
optical scanner with 10 channels ranging roughly from blue
light to thermal infrared with 1-meter resolution), E-SAR
data (L-band and P-band full-polarimetric and dual-pass in-
terferometric, C-band and X-band VV-polarisation, with a
resolution from 2 to 4 meters), and RMK aerial photographs
(3-centimetre resolution colour-infrared films). In addition
we purchased satellite data from before the conflict, namely
some KVR panchromatic images with a 2-meter resolution.

3. Building a list of indicators

After a field campaign we made a list of the features to
look for in the data, based on what could be seen in the
data and what could be related to the absence or presence

of mines or minefields. If we want to help area reduction,
that is, to be able to help stating that a mine-safe area is ac-
tually mine-safe, we have to focus on indicators of absence
of mine infection. Unfortunately there are not so many of
these indicators. In our three test-sites, the key indicator of
mine absence seems to be the cultivated fields. Fields can
indeed be cultivated in areas that the MIS of CROMAC, the
Croatian mine action centre, labels as “’suspect.” See Table 1
for the list of indicators used.

Since most of the indicators in our list are indicators of
mine presence, we realise that SMART has two uses: the
area reduction as such — by detecting indicators of absence
of mine infection —, and the reinforcement of suspicion — by
detecting indicators of presence of mine infection.

It should be noted that these indicators are dedicated to
Croatia. Many can be useful in other countries. But when
working in another country, a careful analysis of the situa-
tion is necessary. For instance, if a cultivated land is a good
indication in Croatia that there is no mine, in South Africa
or Colombia it may be exactly the opposite because some
farmers may mine their own fields to protect their crops.

4. Extracting the information

We use two ways to detect these indicators: anomaly de-
tection and classification. Anomaly detection is the detec-
tion of specific elements in the data. Classification consists
in assigning a land-use class to each pixel or region of the
data. Satellite data from before the conflict was used to per-
form change detection and detect areas that were used be-
fore the conflict and have been abandoned since.

We integrate most of the tools and methods in a GIS
environment compatible with the Information Management
System for Mine Action (IMSMA).

4.1. Anomaly detection

In order to help the operator to extract the relevant in-
dicators, detectors were defined. Many indicators are lin-
ear, so extractors of linear features adapted to SAR data
and Daedalus multispectral data were built. Crossroads are
found as intersections of roads. Likewise, intersections of
roads and rivers help find bridges, even destroyed ones.
A dedicated use of E-SAR data provided an extractor of
aligned poles as described in [9]. Hilltops and elevated
plateaus are detected by using a DTM.

4.2. Classification

Classifiers built specifically for this application include
a minimum-distance discounted classifier, a classifier of
multi-spectral data based on belief functions and SAR-
specific classifiers [3][2][1].

In addition to building some dedicated classifiers we
have used commercial-off-the-shelf (COTS) software as
complementary sources of analysis, such as a region-based



classification. Besides automatic detection, interactive en-
hancement and extraction of anomalies — small artificial ob-
jects that are strong indicators of mine presence — were ap-
plied. For this purpose COTS software is used too.

4.3. Change detection

Since classification uses only current data it is not able
to make the difference between a land that has been aban-
doned, for instance because of the presence of mines, and
a land that is not used because it cannot be used for agri-
culture. Using satellite data from before the conflict, it is
possible to see if a land that is not used now was already
unused before the conflict or not. If it was the case then it
is no longer possible to use the sole fact that it is unused to
suspect a mine infection.

Edges of forests are indicators because forests can be
used as a hiding place by armies. But since forest edges
move over time we need to detect them at the time when the
minefields might have been laid. Here again satellite data
taken just before the conflict help.

4.4. Data fusion

A data fusion module is built to synthesize the classi-
fication results. First the results of various classifiers are
fused at a low level. Then the knowledge is included: detec-
tion and interpretation of lines, SAR-specific classification
of dedicated classes, such as rivers, results of change detec-
tion. Then a regularisation is performed by using a majority
voting on regions extracted from the data.

Three methods are implemented for the low-level data
fusion: two based on belief functions and one on fuzzy
logic.

5. Building a system to help a human decision

A core element of the approach that we have chosen is
to keep human beings at the centre of the whole process of
area reduction. These operators will use the GIS environ-
ment, launch the tools, intervene at any step to complete,
correct or discard results of tools, apply the methods and
synthesize their results. The operators must therefore have
a dual expertise: in mine actions and data analysis. So we
have trained mine-scene interpreters to act as operators.

6. The danger maps

A great challenge is to define the best ways the operators
will present their results to the decision makers performing
the area reduction. For this purpose we have devised sev-
eral continuous danger maps to provide a synthetic view of
the information produced and of the confidence degrees at-
tached to it.

These maps are the basis for proposing areas for area re-
duction. This method has been designed to be a preparatory

stage that produces danger maps to help the area reduction.
It is important to emphasize that the results are for decision
makers and the reduction of a suspicious area is not an au-
tomatic process.

What is pictured in the danger maps is a weighted sum
of factors derived from the mine-presence indicators, with
a superimposition of vectors having a see-through inside,
representing the mine-absence indicators. These maps pro-
vide the spatial distribution of the measure of danger, and
are completed with 2 confidence maps, one for the mine-
presence indicators and one for the mine-absence indica-
tors. This enables the human analysts to estimate the rela-
tive strengths of the information provided.

On the one hand, the decision makers can refer to in-
formation relating to the mine-absence indicators and the
associated confidence values during the process of area re-
duction. On the other hand, the other key element is the
information that concerns the mine-presence indicators and
the associated confidence values. As pointed out by the
end-users, this information can be of use for prioritizing the
mine clearance operations.

7. Results

Validation was done by blind tests in three test-sites in
Croatia: a fertile valley surrounded by hills (Glinska po-
ljana), a very flat, agricultural area (Ceretinci) and a site
near the coast (Pristeg). In each test-site clearing was per-
formed after the flight campaign to have the true status of
the mine presence. This information was of course not made
available before the production of the danger maps.

From the danger maps, a first selection of areas to be
proposed for area reduction was done, areas considered as
suspect were selected too. For some areas the information
available was not sufficient to make a determination: pres-
ence of water, forest, etc. Tables 2 through 5 show the cor-
respondence between these areas and the mine infection.

The three test-sites cover an area of 3.9 km?. Glinska
poljana: 0.63 km?2, Ceretinci: 1.7 km?, Pristeg: 1.5 km2.

In average 26% of the mine-free area has been proposed
for reduction (producer’s accuracy). Glinska poljana: 7.7%,
Ceretinci: 47%, Pristeg: 9.0%.

Note that 0.10% (976 m?) of what was proposed for re-
duction is actually mined (100 — user’s accuracy). Glinska
poljana: 0.058% (26 m?), Ceretinci: 0.12% (924 m?), Pris-
teg: 0.020% (26 m?).

A ROC diagram can be built in order to compare the re-
sults. But for this we need a different definition of error
rate. We choose therefore the following: the percentage
of the mined area of the validation area that was (wrongly)
included into the area proposed for reduction. The results
are 1.1% for the three test-sites combined. Glinska poljana:
0.070%, Ceretinci: 1.8%, Pristeg: 0.70%. The ROC dia-
gram is given in fig 2.

In addition to this technical evaluation a panel of inde-
pendent mine action experts working in Croatia has eval-
vated the method and danger maps, and recognized their



Table 2. Glinska poljana: first results of the
tests in km? with user’s accuracy (UA, or re-
liability accuracy, precision, predictive value)
and producer’s accuracy (PA, or reference ac-
curacy, sensitivity, recall) in %. 7.7% of what
was mine-free has been proposed for reduc-
tion. 0.058% of what has been proposed for

Table 4. Pristeg: first results of the tests in
km? with user’s accuracy (UA, or reliability ac-
curacy, precision, predictive value) and pro-
ducer’s accuracy (PA, or reference accuracy,
sensitivity, recall) in %. 9.0% of what was
mine-free has been proposed for reduction.
0.020% of what has been proposed for reduc-

reduction was actually mined.

tion was actually mined.

GP Considered| Proposed| No Total | PA
(km?) | as suspect | for decision| (%)
reduction
Mined| 0.037 0.000026| 0.00010| 0.040| 99.7
Not 0.51 0.045 0.038 | 0.59 | 7.7

mined

Total | 0.54 0.045 0.039 | 0.63
UA 6.8 99.942

(%)

Pr Considered Proposed No Total | PA

(km?) | as suspect | for decision (%)
reduction

Mined| 0.0037 0.000026| 0.0 0.0037 99.3

Not 0.87 0.13 0.45 1.5 9.0

mined

Total | 0.89 0.13 0.45 1.5

UA 0.4 99.980

(%)

Table 3. Ceretinci: first results of the tests
in km? with user’s accuracy (UA, or reliabil-
ity accuracy, precision, predictive value) and
producer’s accuracy (PA, or reference accu-
racy, sensitivity, recall) in %. 47% of what
was mine-free has been proposed for reduc-
tion. 0.12% of what has been proposed for

Table 5. First results of the tests in km? with
user’s accuracy (UA, or reliability accuracy,
precision, predictive value) and producer’s
accuracy (PA, or reference accuracy, sensi-
tivity, recall) in %. 26% of what was mine-free
has been proposed for reduction. 0.10% of
what has been proposed for reduction was

reduction was actually mined.

actually mined.

Ce Considered| Proposed| No Total | PA

(km?) | as suspect | for decision (%)
reduction

Mined| 0.040 0.000924| 0.014 0.053| 99.7

Not 0.68 0.80 0.22 1.7 47

mined

Total | 0.72 0.80 0.24 1.8

UA 5.3 99.88

(%)

All Considered Proposed No Total | PA
three | as suspect | for decision (%)
sites reduction

(km?)

Mined| 0.078 0.000976| 0.014 0.093| 84.0
Not 2.1 0.97 0.71 3.8 26
mined

Total | 2.2 0.97 0.73 39

UA 3.6 99.90

(%)
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Figure 2. ROC diagram based on the results
on three test-sites (for a better visibility the
error-rate scale is from 0% to 2%)

contribution for an early stage of area reduction. It has been
found that it might be even more suited for risk assessment.

In order to reduce an area one must be very confident that
the area is risk-free. With few indicators of mine absence it
may be difficult to reach the satisfying level of confidence.
In this approach, however, the production of danger maps is
useful in the first stages of area reduction. Later surveys will
not have to spend time in spots where danger maps indicate
that there are a lot of indicators of mine presence. But by
focusing on areas where indicators of mine absence have
been detected they can help reinforce the confidence that
these areas should be reduced.

8. Limitations

It must be noted that three points have not been com-
pletely covered by the validation.

1. The cost-effectiveness analysis was performed but
only partially, and more could be done to better as-
sess the economic relevance of an airborne approach
to area reduction.

2. The results are given only as raw figures, and a more
detailed analysis on the results may be needed to see,
for instance, where the 0.10% error that we obtain
comes from, if it can be reduced or if it is inherent
to the method, if we can foresee conditions where
the SMART approach is more suitable and conditions
where it may not be adequate, etc.

3. No analysis has been done yet regarding how the input
can influence the results, for instance which sensors
bring the more useful information, which tools extract
the most relevant information, etc.

More could have been done in validation — a statement
true in many research activities. But the validation done is
sufficient to be confident that the proposed method can be
useful to mine action centres.

9. Conclusions

We presented a method to help area reduction by the use
of aerial and satellite data.

This method has been tested and evaluated. It involves
the definition of indicators of mine absence and presence,
their detection through land-use classification, dedicated
detectors and change detection analysis, the combination
of all these data with other available information — from
the MIS, historical study, or visual interpretation of high-
resolution data — into danger maps that summarize the avail-
able information and its relevance.

The small number of indicators of mine absence makes it
difficult to identify areas that could be safe, and even when
such areas are found the small number of indicators may
make the confidence low. However a panel of independent
mine action experts working in Croatia has evaluated the
project and recognized its contribution for an early stage of
area reduction. One conclusion is that SMART might be
even more suited for risk assessment.

A quantitative validation of SMART was performed on
three test-sites in Croatia. SMART showed a significant rate
of reduction of 26% (from 7.7% to 47% depending on the
test-sites). But 0.10% of what was proposed for reduction
was actually mined (from 0.020% to 0.12%).

It must be noted that this method is not designed to pro-
vide the final stage of area reduction — which would require
that 0% of the reduced area is mined —, but an early stage
in the whole process. It provides danger maps, confidence
maps of indicators of mine absence, and confidence maps
of indicators of mine presence that help the interpretation
of the areas proposed for area reduction.

Results can be improved by a better extraction of infor-
mation from the remote sensing data and a better use of the
danger maps and confidence maps in the selection of areas
proposed for reduction.
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