
ESTIMATION OF GEOMETRIC RADAR CONFIGURATION PARAMETERS FOR
RANGE-DEPENDENT COMPENSATION IN STAP IN THE PRESENCE OF TARGETS,

JAMMERS, AND DECORRELATION EFFECTS

Xavier Neyt*, Fabian D. Lapierre (Research fellow)†, Jacques G. Verly†

*Royal Military Academy, Department of Electrical Engineering,
Avenue de la Renaissance, 30, B-1000, Bruxelles, Belgium
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ABSTRACT

We propose a new method for extracting the geometric radar
configuration parameters required to perform range-depen-
dence compensation of clutter statistics in space-time adap-
tive processing (STAP). The performance of the method is
evaluated in the presence of targets, jammers, and decorre-
lation effects, such as due to internal clutter motion.

1. INTRODUCTION

We consider space-time adaptive processing (STAP) for both
monostatic (MS) and bistatic (BS) radar configurations. For
STAP to reduce the interference caused by ground clutter
and jammers, the interference-plus-noise (I+N) covariance
matrix (CM) must be estimated for each range.

The standard method for estimating the I+N CM is to
average the single-sample CM at various ranges around each
range of interest. This average is called the sample CM [1].
Below, we generically refer to the power spectral density
PSD estimates of the STAP snapshot as the I+N (or simply
clutter) power spectrum (PS). The averaging of the single-
sample CMs provides an accurate estimate in MS sidelook-
ing configurations, where the clutter PS does not depend
upon range. For all other configurations, the clutter PS ex-
hibits a significant range dependence, hence resulting in an
incorrect CM estimate. The clutter PS can also be viewed as
a continuous function of range. In other words, “stacking”
2D clutter PS as a function of range results in a 3D clutter
PS. For conciseness, when no confusion is likely to arise,
we will often drop “clutter” when talking about a PS.

Reference [2] describes a method for taking into account
the range-dependence of the PS in performing the averag-
ing. This method relies on the knowledge of the variation
with range of the 2D PS. The method estimates the con-
figuration parameters, i.e., the receiver location (R, θ, φ)
relative to the transmitter, the transmitter velocity vT , the
receiver velocity vR, the receiver velocity direction αR rel-

ative to the emitter velocity direction, and the antenna azi-
muth δ. However, the method is intended for use with om-
nidirectional antenna configurations and in the absence of
other interferers, or decorrelation effects.

In this paper, we propose a new method capable of es-
timating the locus of the 3D PS from single realizations of
the I+N snapshots at all available ranges. The method is
shown to be robust to the presence of other interferers, such
as targets and jammers, and decorrelation effects.

In Section 2, the estimation method is described. In Sec-
tion 3, the artifacts of interest are modeled and their effect
on the performance of the new method is discussed. Con-
clusions are drawn in Section 4.

2. NEW PARAMETER ESTIMATION METHOD

The main motivation for this estimation method is that the
energy of the single-realization 2D PS is concentrated along
a curve, in the spatial-Doppler frequency plane, that only
depends on the configuration parameters. Indeed, by defi-
nition, the scatterers contributing to clutter are located on
the isorange corresponding to each BS range of interest. To
each scatterer at a specific position along this isorange cor-
respond specific spatial and Doppler frequencies and hence
a specific location in the spatial-Doppler frequency plane.
As one considers a succession of points along the isorange,
one creates a succession of corresponding points and, thus,
a curve in that frequency plane. The analytic expression for
this curve, i.e., for the theoretical locus of the 2D PS, can
be obtained by eliminating the coordinates of the scatterer
between the parametric equations of the isorange and the
equations giving the spatial and Doppler frequencies. Vari-
ous quantities of interest are illustrated in Fig. 1. The pres-
ence of “peaks” in the 2D PS is a result of modeling scat-
terers as backscattering signals with a random, uniformly-
distributed phase. When the loci of the 2D PS at different
ranges are stacked on top of each other, the theoretical locus
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Fig. 1. (a) The grayscale image shows the 2D PS of one
particular snapshot realization. The black line is the true
theoretical locus of the PS. The white dots indicate the po-
sitions of the peaks of the PS. (b) 3D view of the theoretical
locus of the PS as a function of range.

of the 3D PS is obtained, which is of course a 3D surface.
Due to the range dependence, this surface deviates consid-
erably from a vertical cylinder, as is illustrated in Fig. 1(b).

The parameter estimation method consists in fitting the
mathematical model of the theoretical 3D PS locus to the
experimental 3D PS. First, the 2D PS is obtained by com-
puting the periodogram of the snapshot data. Since the zero-
padding that is applied to the snapshot data (in order to in-
crease the frequency resolution) has the effect of smoothing
the 2D PS, the location of the peaks can be obtained by ex-
tracting local maxima. Only the largest local maxima are
kept, thus discarding spurious peaks. The result of this pro-
cess is indicated by the white dots in Fig. 1(a).

The next step consists in fitting the model of the theoret-
ical 3D PS locus to the extracted peaks. Note that the model
is valid for all ranges and that the fit is performed for all
ranges at the same time.

The accuracy of the fit is measured by a cost function
defined as the RMS of the distances of the peaks to the es-
timated theoretical 3D PS locus (i.e., corresponding to the
estimated parameters). In order to discard spurious peaks
(due for instance to targets), only the peaks “close” to the
estimated theoretical 3D PS locus are retained. Further-
more, the contribution of each peak to the value of the cost
function is weighted by the amplitude of this peak, with the
justification that “small-amplitude” peaks are more likely to
be due to some artifacts.

The configuration parameters are determined by mini-
mizing the cost function using a variant of the simplex
method. This method offers the advantage that the deriva-
tives of the cost function do not have to be explicitly com-
puted. The estimation method and the minimization of the
cost function are more extensively described in [3].

3. PERFORMANCE IN NONIDEAL CASES

We now discuss the ability of the configuration parameters
estimation method to converge correctly to the true theoret-
ical 3D PS locus (i.e., corresponding to the true parameters)
in the presence of various undesirable artifacts. The unde-
sirable artifacts discussed below are targets, jammers, and
decorrelation effects.

The BS scenario used to illustrate this section comprises
a transmitter located at the origin, 50km above ground, a
receiver located at (80, 50, 20)km. The transmitter velocity
is of 90m/s in the x-direction, while the receiver velocity
is also of 90m/s, but in a direction making an angle of 35o

with the x-axis. The crab angle of the receiver antenna is
of 60o.

The method used to estimate the CM is a variant of the
registration-based compensation (RBC) method presented
in [2]. The configuration parameters required by the RBC
method are estimated using the new method proposed in this
paper.

3.1. Targets

A target appears as a concentration of energy at a specific
point in the spatial-Doppler frequency spectrum. Its exact
location depends on the relative position and velocity of the
target and the transmitter/receiver pair.

Targets usually appear in one range bin only. Extended
targets might leak into neighboring range bins. As far as the
estimation method is concerned, each target thus appears
as one peak in one particular range bin and, possibly, in
neighboring range bins.

Since the estimated theoretical 3D PS locus is con-
strained to a particular mathematical model, the only influ-
ence targets can have is through their contribution to the cost
function. Indeed, peaks located “far” from the estimated
theoretical 3D PS locus are rejected and do not contribute
to the cost function. Furthermore, since most peaks corre-
spond to clutter, the presence of a few extra peaks due to
targets does not have a large impact on the value of the cost
function.

We conclude that the estimation method is highly insen-
sitive to the presence of targets in the training snapshots.

Figure 2 shows the PS of the estimated I+N CM ob-
tained, in the presence of a target, using (a) the sample
CM [1] and (b) the RBC method. The scenario of inter-
est consists of a target located at boresight of the receiving
antenna and positioned to yield an echo at a range smaller
than the range of interest. The target thus contaminates the
secondary snapshots, i.e, those used to compute the sam-
ple CM. The target is clearly visible near zero azimuth and
zero Doppler in the PS of the sample CM while it is absent
in the PS of the I+N CM estimate obtained using the RBC
method. However, even though the influence of the target on
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Fig. 2. PS of the I+N CM estimated using (a) the sample
CM and (b) the RBC method.

the sample CM is undesirable, this should not be confused
with self-nulling.

Figure 3 presents the SINR loss obtained with the RBC
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Fig. 3. SINR loss at νd = −0.04 in the presence of one
target in secondary training data.

method. The dashed-dotted line is the SINR loss obtained
with the sample CM, i.e., using the sample matrix inversion
(SMI) method [1]. The deep null near zero azimuth angle is
due to the presence of the target in the training set. More-
over, as expected, the clutter interference is under-nulled
due to the range-dependence effect. The solid line is the
SINR loss obtained with the CM estimated using the RBC
method. As a reference, the dashed curve shows the SINR
loss obtained when the true CM is used, thus yielding the
Optimum Processor (OP). The new method proposed thus
yields results very close to the optimum.

3.2. Jammers

As in [4, 5], barrage jammers are now considered. One
barrage jammer source is modeled as producing a received
signal that is spatially correlated from antenna array ele-
ment to antenna array element but temporally uncorrelated
from pulse to pulse. Consequently, the 2D PS of a barrage

jammer signal is perfectly localized in space and, thus, in
spatial frequency, whereas the same signal spans the whole
Doppler spectrum.
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Fig. 4. 2D PS with clutter and 3 jammers. (a) “True” PS
computed from the exact CM and (b) PS computed from a
single snapshot.

Compared to targets, jammers create about as many
peaks as clutter does in the 2D PS computed for a single
random snapshot. Hence, the presence of the jammer peaks
cannot be ignored as far as the fitting of the model for the
theoretical 3D PS locus is concerned. Thus, before being
able to fit the model of the theoretical (clutter) 3D PS locus,
the energy contribution of the jammers must be suppressed.

If the (jammers + clutter) 2D PS corresponding to dif-
ferent ranges are stacked on top of each other, the energy
of jammers appears as vertical planes at discrete spatial
frequencies. This is illustrated in Fig. 5(a), which clearly
shows that some peaks are clustered in 3 vertical planes cor-
responding to the 3 jammers.
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Fig. 5. Peaks extracted from a 3D PS for a 3-jammers sce-
nario (a) with jammer peaks present and (b) with jammer
peaks removed.

The method used to detect jammers is similar to that
used to estimate the configuration parameters. First, the
peaks are extracted from the 2D PS. This step is repeated for
all ranges. Next, a set of planes parameterized by their spa-
tial frequency is fitted to the extracted peaks. Since the num-
ber of jammers is unknown a-priori, the number of planes
to consider is also unknown. In order to be sure to detect all
jammers, a relatively large number of planes is considered.



Only a few of these will correspond to actual jammers. Ac-
cording to the jammer model described above, peaks due
to jammers should be uniformly distributed in Doppler fre-
quency. This property is used to select the planes that ac-
tually correspond to jammers. Peaks located close to the
jammer planes are subsequently removed. In the example
of Fig. 5, we used 5 planes for 5 hypothetical jammers. The
remaining peaks can then be used as input to the configura-
tion parameter estimation method described in Section 2.

Figure 6 shows the PS of the estimated I+N CM in the
presence of barrage jammers. The 3 jammers are clearly
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Fig. 6. PS of the I+N CM, estimated, in the presence of
barrage jammers, using (a) the sample CM and (b) the RBC
method.

visible in the PS of the estimate obtained using the RBC
method while they are mostly absent from the PS of the
sample CM. The most powerful jammer (on the left) is the
most visible, having the same SNR as the clutter. The other
jammers have a smaller SNR and are hardly visible in the
PS of the sample CM.

Figure 7 presents the SINR loss obtained with the RBC
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Fig. 7. SINR loss at νd = −0.04 in the presence of 3 bar-
rage jammers.

method for the 3-jammer scenario described above. The
dashed-dotted line is the SINR loss obtained using the SMI
method. The SMI method fails to correctly null the jammers

and, again, as expected, the clutter interference is under-
nulled due to the range dependence of the clutter PS. The
solid line represents the SINR loss obtained using the CM
estimated using the RBC method. The dashed line shows
the SINR loss obtained using the true (theoretical) I+N CM
(OP). The RBC method yields results close to the optimum
even in the presence of barrage jammers. Moreover, it is
able to tackle simultaneously the range dependence of the
clutter PS and the range-independent jammer PS.

3.3. Decorrelation effects

Several real-world phenomena result in a decorrelation of
the received signal [5, 6, 7]. One distinguishes between spa-
tial decorrelation, caused, e.g., by a finite system bandwidth
or by antenna element position errors, and temporal decor-
relation, caused by internal clutter motion (ICM), such as
due to waves or tree leaves, or by range walk. The auto-
correlation function of the decorrelated signals is either an-
gle independent, in the case of ICM, or angle dependent,
in the case of finite system bandwidth or range walk. In
the latter cases, the decorrelation can still be assumed to be
angle independent in the case of antennas with directional
beampatterns.

The effect of decorrelation is a widening of the clutter
ridge, which is dictated by the correlation function. The
widening occurs in the spatial (temporal) direction if spatial
(temporal) decorrelation effects are considered. As a conse-
quence, the 2D PS is not concentrated along the theoretical
2D PS locus, but it is spread in its neighborhood. The con-
figuration parameter estimation method described in Sec-
tion 2 works by fitting a model to the data. Minimizing the
distances between the extracted peaks and the estimated the-
oretical 3D PS forces the model to converge to a “mean” po-
sition. Since the pulse-to-pulse or element-to-element auto-
correlation function is necessarily symmetric around zero,
the estimated model will approach the true model, provided
enough peaks are available. The new proposed configura-
tion parameter estimation method is thus highly insensi-
tive to decorrelation effects. To illustrate this, simulations
were performed. A uniformly-distributed ICM (temporal
decorrelation) was simulated. The maximum ICM ranges
from 0 to 0.12 (normalized frequency units in the range
[−0.5, 0.5]). Since we are essentially concerned with the
estimation of the clutter PS locus, the shape of the PSD
of the random phase jitter is not critical. Even thought we
have considered a uniform PSD function, which is consis-
tent with what is done in [7], an exponential PSD would
be more realistic [8]. Figure 8(a) shows the RMS error be-
tween the estimated model and the true model as the max-
imum ICM increases. Figures 8(b) and 8(c) each show the
true clutter PS locus and the estimated clutter PS locus for
a maximum ICM of 0.01 and of 0.07, respectively. One can
see that the estimation is quite accurate, even in the presence
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Fig. 8. (a) RMS error as a function of the max ICM. (b)
True and estimated clutter PS locus for a max ICM of 0.01.
(c) Same for a max ICM of 0.07.

of high ICM.

Figure 9 shows a comparison of the SINR loss obtained
with different CM estimates. The dashed-dotted lines cor-
responds to the SINR loss obtained using the SMI method
and the dashed line corresponds to the SINR loss obtained
using the OP. The solid line is the SINR loss obtained using
the RBC method. In the latter case, the distribution of the
random phase jitter is assumed to be known.
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Fig. 9. SINR loss at νs = 0.0 in the presence of ICM.

4. CONCLUSIONS

The new method proposed for configuration parameter es-
timation for range-dependence compensation in STAP was
shown to be inherently insensitive to targets, jammers, and
decorrelation effects. In conjunction with the range com-
pensation method described in [2], the I+N covariance ma-
trix for any MS or BS radar configuration can be estimated.
With this matrix at hand, near-optimum target detection
can be performed, which is, of course, the ultimate goal of
STAP. The results in terms of SINR losses were shown to be
nearly undistinguishable from those obtained with the opti-
mum processor, which uses the true I+N covariance matrix.
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