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Abstract—Measuring the spatial distribution of soil moisture
is important for agricultural, hydrological, meteorological and
climatological research and applications. In this study, a new
technique is developed to create soil moisture maps, based on
the inversion of SAR measurements (RADARSAT-2, fine quad
polarization) combined with GPR measurements. The Integral
Equation Model is used to invert the SAR measurements,
assuming a constant surface roughness and correlation length for
the entire field, while the GPR data are inverted using a full wave
inversion method. High resolution GPR measurements taken
at different times under different land and weather conditions
are used to generate a relative soil moisture landscape. We
assume that these soil moisture difference patterns show little
variation over time. By combining the inverted SAR data with a
transformation of the soil moisture difference landscape, a high
resolution soil moisture map is generated. The high resolution
soil moisture maps show good agreement with the measured GPR
soil moisture maps. The advantage of this technique is that once
the relative soil moisture difference landscape is created, it allows
the creation of new high resolution soil moisture maps later, by
only taking a SAR image.

Index Terms—Inversion, GPR, SAR, soil moisture retrieval.

I. INTRODUCTION

Knowledge about the spatial distribution of soil moisture
is important for agricultural, hydrological, meteorological and
climatological research and applications. Techniques used for
measuring the soil moisture include moisture probes, soil
sampling, passive radiometry, ground penetrating radar (GPR)
and synthetic aperture radar (SAR), each having their specific
benefits and drawbacks [1]–[3]. The advantage of SAR is that
with one satellite measurement, a large area can be sampled,
but the drawback is the speckle. The benefit of GPR is that
the spatial resolution can be much higher, but it is quite labor-
intensive when the desired spatial resolution is very high.

The objective of this research is to find a technique that
gets the benefits of both methods. As shown in [4], spatial
soil moisture patterns do not show much temporal variation,
meaning that the area of the field that is the wettest, will likely
remain the wettest area of the field. Previous GPR data is
used to characterize these soil moisture patterns. Knowledge of
these patterns is used to improve the soil moisture estimation
based on a single SAR image. To see if this method performs
better than the classical multilook approach, results from both
methods are compared to ground truth.

II. DATA

The field used for the measurement campaigns is a ∼7 ha
agricultural field located in the loess belt area in the central
Belgium (Gembloux, Long. 4◦36’44”E, Lat. 50◦34’15”N),
which is a test site of the Centre Wallon de Recherches
Agronomiques (CRA). The elevation of the field ranges from
152.8 to 158.3 m a.s.l., which leads to a slope varying up
to a maximum of 4.7 degrees across the field. The surface
roughness of the field is about 1.2 cm.

The GPR data acquisition was done using a stepped-
frequency continuous-wave (SFCW) GPR and a dGPS for
positioning. The horn antenna used for these measurements
(BBHA 9120 F, Schwarzbeck Mess-Elektronik) operates in the
frequency range of 200-2000 MHz. This antenna is situated at
a distance of ∼50 cm above the soil surface. The used VNA
was a ZVL system (Rohde & Schwarz, Munich, Germany)
with a dynamic range of 70 dB, which was used with a step
frequency of 10 MHz, and with the bandwidth set to the same
value as the antenna bandwidth. All instruments were mounted
on an all-terrain vehicle and the overall field was swept at
an average velocity of 1 m/s following East-West oriented
transects. The average distance between the different transects
was about 3 m. The inversion of the data was done using the
near-field full-wave inversion model of Lambot and André [5],
to get the relative dielectric permittivity εr, and the model of
Topp [6] was used to convert these values to volumetric soil
moisture θv . For this inversion, only the frequencies below 1
GHz were used, since above this frequency, roughness effects
influence the model [7].

The used SAR data was single-look-complex quad-
polarization data from RADARSAT-2, which operates in C-
band (5.4 GHz). The inversion was done using the integral
equation model of Fung [8], [9], assuming that the surface
roughness kσ and the surface correlation kl are both equal to
1.2 cm. The assumption was made that multiple scattering is
negligible, so the cross-polarization data was not taken into
account for the inversion. The incidence angle contribution
from the topography provided by the dGPS was also taken
into account for the inversion.

In Table I, a summary of the measurement campaigns is
given. During the first campaign the soil was partially frozen,



and during the second campaign it was dry and sunny.

TABLE I
SUMMARY OF THE MEASUREMENT CAMPAIGNS TAKEN FOR THIS

RESEARCH.

Date Field conditions GPR datapoints
2013/03/27 Partially frozen 1794
2013/04/24 Sunny and very dry 4143

III. MODELS

A. General approach

As shown in [4], there is not much temporal variation in
spatial soil moisture patterns. The first step of this method
is to create a landscape δ(i) that characterizes these patterns,
where i is the pixel coordinate. In a second step, a moisture
model θm(i) is defined, that has this landscape and other
parameters as input. By applying the Topp equation [6], we
get the dielectric constant values εm(i) at each pixel. With the
model of Fung [8], [9], we can simulate the amplitude of the
backscatter σV V,m and σHH,m at each pixel. In the final step,
the values of the additional parameters of the moisture model
θm(i) are estimated by fitting the backscatter values that result
from the moisture model to the SAR backscatter. This can by
done by minimizing the cost function:

J(m) =
〈
(σV V,m − σV V )2 + (σHH,m − σHH)2

〉
i
, (1)

where σHH and σV V are the measured SAR backscatter
amplitudes. The notation 〈P 〉i is used for the mean value of
P (i) over all possible pixels i.

B. Landscape

Based on the GPR data from the first campaign, a moisture
difference landscape is made

δ(i) =
θ(i)− 〈θ(i)〉i
〈θ(i)〉i

, (2)

where θ(i) is the moisture at point i, and 〈θ(i)〉i is the average
moisture of the entire field.

C. First landscape based model

The first moisture model θm1(i) based on this landscape is
defined as:

θm1(i) = α+ βδ(i), (3)

where α and β are fitting parameters. Based on this model,
the value of the dielectric constant εm1(i) at each pixel i can
be calculated by inverting the Topp equation [6]. We get the
values of the backscatter σV V,m1 and σHH,m1 by applying
the model of Fung [8], [9] to these dielectric constant values.
To determine the values of the parameters α0 and α1, we
minimize the cost function J given in (1). We find the optimal
values for the parameters α and β by applying a Nelder-Mead
simplex method [10] to minimize this cost function.

D. Second landscape based model

To make the second model, we define εG as the dielectric
constant we get when inverting the moisture from the first
campaign θGPR with the equation of Topp. In the next step we
define σG,pp as the backscatter for polarization pp computed
with the model of Fung. We then define

δS,pp(i) =
σG,pp(i)− 〈σpp〉i

〈σpp〉i
, (4)

where σpp is the measured SAR backscatter of the first
campaign. Based on this indicator, we can define the simulated
backscatter as

σsim,pp(i) = app + bppδS,pp(i), (5)

where app and bpp are fitting parameters. To find the best
values for these parameters, we minimize the cost function

J =
〈
(σV V,sim − σV V,t)2 + (σHH,sim − σHH,t)2

〉
i
, (6)

to get the optimal values for aV V , bV V , aHH and bHH . Based
on these values, we compute the backscatter in both polariza-
tions. The dielectric value at each pixel is then computed as

ε̂ = arg min
ε

(
(σV V,sim − σV V (ε))2 + (σHH,sim − σHH(ε))2

)
.

(7)
With the Topp equation, these dielectric values are then
converted to moisture values θm2(i).

E. Reference models

To evaluate the performance of these methods, the obtained
results are compared with those obtained with the classical
multilook approach [11]. We define θm7(i) as the moisture
values that are obtained when applying a multilook filter of
7× 7 pixels to the SAR data, before inverting them with the
model of Fung. Similarly, θm9(i) are defined as the moisture
values that result from using a multilook filter of 9× 9 pixels
on the SAR data, before inverting them with the model of
Fung.

F. Comparison to ground truth

To compare our model to these reference models, we define
the ground truth moisture values θGT (i) for each pixel i as
the average of the GPR moisture values measured in the last
campaign in a radius of 8 m from the center of the pixel. Then
we can define the error with respect to the ground truth for
each model as

em(i) = θm(i)− θGT (i). (8)

IV. RESULTS AND DISCUSSION

A. Reference models

The statistical parameters of the errors calculated with (8)
are given in Table II. When comparing the moisture values
from the reference models to the ground truth, we see that both
reference models overestimate the moisture by 6.4% and 6.2%
for m7 and m9, respectively. To see if the moisture patterns of
the field are well represented, we need to look at the standard
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Fig. 1. Moisture values from the two discussed models m1 and m2, the multilook model m9 and the offset-corrected ground truth moisture, all in units of
cm3.cm−3. An offset of 0.063 has been added to the ground truth moisture, to better visualize the difference in moisture patterns.

deviation. The standard deviation for m7 is 7.0%, and for m9

it is 5.8%, which is better. In figure 1, the moisture of the
multilook model m9 is shown, together with ground truth and
the moisture values of the two discussed models.

TABLE II
STATISTICAL PARAMETERS OF THE COMPARISON BETWEEN THE MODEL
MOISTURE VALUES AND THE GROUND TRUTH MOISTURE VALUES. ALL

VALUES ARE IN UNITS OF CM3 .CM−3 .

em

model mean std
m1 0.063 0.021
m2 0.062 0.024
m7 0.064 0.070
m9 0.062 0.058

B. First landscape based model

To create the landscape for our first landscape based model
θm1 , the GPR data from the first campaign is used to create

the indicator landscape with (2). Due to the spatial distribution
of the points across the field, the values in this landscape are
created with (9), by taking the average of this indicator in a
radius of 8 m:

δ(i) = 〈δ(j)〉d(j,i)<8m , (9)

where d(j, i) is the distance between points i and j. In Fig.
2, this landscape is shown, for the spatial coordinates of the
SAR pixels from the last campaign.

After determination of the coefficients α and β, the first
landscape based model is

θm1(i) = 0.190 + 0.055δ(i). (10)

When comparing these moisture values with the ground truth,
we find in Table II that similar to the reference models, the
mean moisture of the field is overestimated by 6.3%. The
standard deviation of the difference with the ground truth is
2.1%, which is much better than either of the reference models.
This means that the spatial distribution of the soil moisture
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Fig. 2. Moisture landscape δ(i), as defined by (9), sampled at the location
of the SAR pixels.

across the field is much better represented than in the reference
models.

C. Second landscape based model

For the second landscape based model θm2 , after deter-
mining the coefficients aV V , bV V , aHH , bHH , the simulated
backscatter is

σSim,V V (i) = 0.083 + 0.013δS,V V (i) (11)
σSim,HH(i) = 0.097 + 0.052δS,HH(i) (12)

From Table II, we see that the mean of the error is 6.2%,
which is a similar overestimation as the other models. The
standard deviation is 2.4%, indicating that this model fits the
ground truth very well.

V. CONCLUSION

In this research a new method is presented to estimate the
soil moisture based on the inversion of SAR data. Based on
previous GPR measurements, a moisture landscape is gener-
ated which characterizes the relative soil moisture difference
patterns. Two models to acquire the soil moisture based on
this landscape and SAR data are analyzed and show good
agreement when compared to ground truth data acquired with
GPR. Both models give much better results than the soil
moisture retrieved by the classical multilook approach for the
inversion of SAR data.
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