Directionally adaptive image restoration
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Abstract— A directional selective restoration method is de-
scribed. The adaptivity is based on the estimation of the local
SNR of the ideal image. In order to achieve directional adaptiv-
ity, a directional selective transform, based on a discrete short
time Fourier transform is presented. The results obtained are
compared with a non-directional selective restoration method.

I. INTRODUCTION

MAGE restoration aims at removing blur in presence of ob-

servation noise. The inversion problem being ill-posed, regu-
larisation procedures are commonly used to make the deblurring
well-behaved.

Many restoration methods have been proposed [1], [2] but
most of these consider space-invariant restoration.

Adaptive restoration methods, that consist in computing an
inversion filter depending on the local properties of the image
[3], [4] have only recently been proposed. These methods often
involve the use of local image descriptions using a development
in basis functions with a local support like wavelets, windowed
polynomials or Gabor functions. In [3], adaptivity is attained by
estimating the local SNR of the original image and by selecting
the restoration filter based on its value.

Hence, this adaptive scheme always considers the image a iso-
tropic, what is obviously not the case in the presence of an edge
for instance. This results in a well deblurred edge transition, but
much noise is introduced along the edge. This could be solved
by introducing directional adaptivity, i.e. estimating the SNR
locally in various directions, allowing to catch the anisotropies
in the image.

In order to carry out this directional selectivity, a directional
selective transform has to be devised. A modified version of the
STFT was selected and is detailed in section 1. The core of the
restoration method, i.e. the computation of the restoration filters
is explained in section 2 while the next section shows how these
filters can be used to perform an adaptive restoration. Finally
section 4 shows some results.

[I. DIRECTIONAL SELECTIVE TRANSFORM

Since directional selectivity is of great importance, separable
filters, that confuse patterns in direction a and —«, can not be
used.

Good candidates transforms are the STFT or the Gabor trans-
form. These two transforms are widely used in pattern recog-
nition, where they are used to detect and classify patterns ac-
cording to their response in the (Z,w) plane.

In contrast with pattern recognition applications, we need to
reconstruct the original signal from the coefficients of the trans-
form. Unfortunately, the Gabor transform suffers from recon-
struction instabilities when critically sampled. Therefore, over-
lapping window functions will be used.

Considering discrete signals, let V(1, j) be the localisation win-
dow, the signal L(i, j) localised at location (kA;,IA;) equals

L(i, V(i — kA, j—1A,). (1)
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Defining a weighting function W (z, ) = >, , V(i—kA;, j—1A;),
and provided it is non zero Vi, j, the signal can be reconstructed
from the localised versions using the following formula

Zk,l L(3,j)V (i —kAi, g —1Ay)

W (i, ) ’
hence avoiding stability problems when reconstructing the ori-
ginal signal.

The Gabor transform can be viewed as the Fourier transform
of a localised signal, where the localisation function is a Gaus-
sian. This approach provides an easy mean to compute the
inverse transform: it consists in computing the inverse Four-
ier transform of the localised signal and reconstruct the whole
signal as described here above.

If we consider a window function of finite dimension (N, M),
a binomial function for instance

V2(i,5) = Oy NP o, (3)

L(i, 5) = (2)

the windowed signals are also of finite length, and can be de-
composed using the DFT.

The discrete Fourier transform consists in fact in decomposing
the original signal in a basis of plane waves e~2/7(k7/N+is/M)
where k and I determine the frequency and the orientation of the
waves. But since the original signal is real, some simplifications
may be conducted, leading to a transform that closely resemble
to a Fourier-series decomposition. The basis function of this

decomposition are

cos 27 (% + ]l\—;) and sin 27 (% + ]l\—j) . (4)
Due to the parity-properties of the sin and cos functions, the
functions corresponding the (k,{) and to (—k, —!) are not inde-
pendent. Moreover, the sin function corresponding to (k,1) =
(0,0) is also useless.

For the convenience of the notation, these basis functions will
be denoted by Cn m(r,s), where the odd n will corresponds to
functions with & > 0, while even n will corresponds to function
with £ < 0 and n = 0 will correspond to & = 0. Something
similar holds for m, where m odd corresponds to cos basis func-
tions, and m even corresponds to sin basis functions. Hence, up
to a constant multiplicative factor, the functions Cy m define an
orthonormal basis on RV *M,

Defining
D (i, 3) = V(=1,=3)Cnm (=1, =J) (5)

the decomposition of the localised original signal in the basis
functions C), ,, can be carried out by sampling the original signal
filtered using filters 1y, ,,

Lnm(kDi, 1A;) = [L(1, ) * D"ﬂm(i7j)](kAi;lAj)' (6)
Similarly, defining

N Co o (i WV (i, 7 ‘

Pn,m(%]) — s (17]') - (17]) (7)
Wz, j)

the reconstruction of the original signal can be carried out by

interpolating the coefficients Ly m(kA;,[A;) using the pattern

functions P,

L(i,5) =3 Y Prmli = kA 5 = 1)) L (KA, 18,) - (8)
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Dy, m filter functions for n,m = 0,...,6

The analysis functions Dy ., are depicted in figure 1 together
with their transmittance in fig 2. The directional selectivity of
these filter is clearly illustrated in this last figure. It should be
noticed that, while showing some similarities with the DC'T, the
described decomposition exhibits a true directional selectivity,
which is not the case of the DCT.

Moreover, due to the effect of the window function V (1,
DC component of the even filters (i.e. cos) is not zero.

Jj), the

[II. COMPUTATION OF THE RESTORATION FILTERS

The degradation model considered is a linear blur filter with
additive white noise. Hence, if L denotes the blurred signal
and L the ideal signal, we may write

Lb(i7 J) =

where B(i,j) is the blurring filter and Q(i, j) represents the
noise.

Assuming that the ideal signal can be described locally with
the coefficients of the transform described in section 2, image
restoration will be obtained by computing an estimate of the
coefficients of the transform of the ideal image, starting from
the degraded image.

L(i, 5) * B(i,5) + Q(i, ) (9)

We assume that these estimates can be
obtained from the blurred image using filters Hy ,,. Hence, an
estimate of the coefficient L, ,,(kA;,IA;) will be obtained by
computing
Ty (kA LA

= [Lb(i’j) * H";m(iv j)](kAi,lAj) (10)

Those estimates are then used to reconstruct an estimation of
the ideal signal using (8).

The coefficients of the filters H,, ,,, are obtained by minimising
the mean squared error (MSE) between the unknown coefficients
and their estimate

&= B ({nim — Lnm)?). (1)

If the noise 1s assumed to be zero-mean white and uncorrelated

with the ideal signal, the only noise characteristic of interest is

its variance
E(Q(i, 7)) = sg. (12)

Moreover, the autocorrelation function of the ideal signal in the

neighbourhood of (kA;,IA;) is given by

Rya(p, ;v 8) = B(L(KA; IA;)L(KA;  1A;)) (13)
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Fig. 2. |Dn,m| filter functions forn,m = 0,...,6

and if the signal is assumed to be stationary in the same neigh-
bourhood, i.e. if the statistical characteristics of the signal are
shift-invariant in this neighbourhood, the autocorrelation be-
comes

Rii(p,q;ry8) = Rra(p—r,g—s) = Rei(r —p,s—q) (14)

and the MSE can be rewritten as

enm = 553 Him(ij)

2,3
+ [Dn,m(_ps _q) * Dn,m(pa q) * Rk,l(ﬂ q)](g}())
]
[Dn,m(p,q) * B(=p,—q) * Rii(p, 9)]; ;)

+ZZHnm 1,7 Hnm( )

;J Il 1
[B(_P q) * B(p,q) * Rr.(p, q)](i—i',j—j’)
(15)
At the minimum of this error, the partial derivative of Ei,m with
respect to Hy, (1, j) equals zero, which yields

ZHn,m(i’,jl) (52Q5ii’5jj’ +
i’ 3

[B(=p,—q) * B(p,@) * Rt (ps @) (a_ir ;1))
= [Dun,m(p,q) * B(—p, —q) * Ri.(p, Q)](w)

(16)

Since the latter equality must be satisfied for all values of (1, ),

a system of linear equations is obtained whose solution gives the

coefficients of the desired filters H,, ,,,. It should be noticed that

the matrix in the left-hand term of eq. (16) is independent of the

order (n,m) of the filter, hence only one matrix inversion will
be required to compute all filters Hy m.

In order to simplify these equations, the signal autocorrelation

is assumed to be much smaller than the blurring kernel B(i, 7),

i.e.
B(i,5) * Ria(p,q) = st B(p,a) + miy Y B(r,s)  (17)

T,8

where 52,1 is the local signal variance and my; its local mean.
FEven though this hypothesis is not realistic for the whole image,
it remains a good approximation where the deblurring will have
the largest effect, i.e. where there are large intensity changes
and hence a small correlation length.



If a normalisation condition is enforced

Dn,’m P q.
> Haml(i',5) = Lopg Drom(prd)
1:/731

. (18)
2pq BlR9)
equation (16) finally becomes

. . 82 N
> Humli',5") (—Qam,f +[B(p, q) * B(-p, —q)](i_i,,j_,))
il gl

Si,l
= [D"’m(p7 q) * B(—p, —Q)](Z-/M,/)
(19)
The size of the system to be solved depends on the support size
of the filter kernel Hy m (2, j) which in turn depends on the width
of the localisation window and on the support size of the blurring
kernel.
Due to the presence of noise, it will not be possible to estimate
accurately the coefficients i;nym of high order.

[V. ADAPTIVE RESTORATION

The filters H,, ,, described in previous section depend on the
local signal variance Si,l of the image. Non adaptive restoration
consisted in taking a constant value for the variance used when
computing the filters H,, ,,,. This constant value resulted from a
compromise between good restoration where possible and little
noise amplification in constant areas of the image.

By locally adapting the restoration filter Hyn m to the local
signal variance, optimal restoration can be achieved, taking into
account the difference in information content at different places
in the image.

In order to evaluate what can be gained from an adaptive res-
toration, let us first compute the estimation error on the coeffi-
clents [A/n,m in function of the local SNR, for a given restoration
filter Hy . From (15), taking into account the small correla-
tion length of the signal with respect to the width of the impuls
response of B and Dy m, introducing the relations (19) together
with the normalisation condition (18), we obtain

enm = 5g ZHi,m(iJ)
]

+sk | [P (=P, =a) * Duon(p, @)) 0.0

= Ham(i,5) [Dom(p,a) + B(=p, =)]2
i,

(20)
where s? is the value of the signal variance that was used when
computing the filters H,, ,,. Defining the following amplification
factors

Ag(n,m) = > H; (i)
)

Ap(n,m) =Y Hum(i, 5) [Dnom(p,a) * B(=p,—a)], )
1,9

As(n, m) = [Dn,m(—p, _q) * D"ym(p7 Q)](o,o) )
R S R
‘ —Ar(n,m) — s—fAQ(n,m)

(21)
eq. (20) finally becomes

(22)
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Fig. 4. Coefficients’MSE for (n, m) = (4,0)

This equation gives the reduced estimation error on the coeffi-
cient Ly m(kAi,lA;) in function of the local SNR, when using
restoration filters computed using a given signal variance s.

The evolution of the coefficient estimation error is depicted in
figures 3 for the coefficient Lg o computed using filters optimised

for respectively a low SNR (:72 = 0dB) and a high SNR (:TE =
“Q “Q

30dB). The same data are plotted in figure 4 for the coefficient
[A/470. On these figures, we can see that the filter optimised for
a high SNR will only give an improvement with respect to the

52
filter optimised for a low SNR if the local SNR (%) exceeds

a certain threshold. This threshold increases for higher order.
Moreover, for coefficients of low order, this threshold will be
very small, hence low order coefficients will always be computed
using filters optimised for high SNR. Conversely, for high-order
coefficients, the filters optimised for low SNR will always be
used. For intermediate orders, we will switch between the two

filters, based on the local SNR.

An estimate of the local SNR of the ideal signal can be ob-
tained from the estimates of the coefficients of the development.



Indeed, from (10) we may write
E(L2,.) = 55> Hi.u(ij)

Y
+ 3 Humli, 5) Hum (i, 5')
iy i)
[B(p,a) * B(=p,—q) * Rxa(p, @)l i_ir ;1)
(23)
or, taking the hypothesis of the small autocorrelation length (17)
together with the normalisation condition (18) into account and
introducing the amplification factors defined in (21), we finally
obtain
FE (iim) = séAq(n,m)
2
s
ey (Apm, m) 22 Ag(n, m)

(24)

2

+mi,l ZDn,m(pa Q) 3

p,q

giving a mean to compute an estimate of the local signal variance
of the ideal signal using an estimation of the coefficients of the
development of the ideal image. The term in mi’l in eq. (24)
vanishes if the DC component of the corresponding filter 1)y, ., is
zero. For the simplicity, we will assume that the above equation
is only used when this is verified, i.e. for the sin based filters.
Summing eq. (24) for (n,m) corresponding to filters 1),, ,, with
similar directional selectivity «, we obtain an estimate of the
signal variance in the corresponding direction

Z E(f/iym)—sz Z Ag(n, m)

(n,m)Ea (n,m)Ea
Shi = u . (25)

Z (Ap(n, m) — Z—fAQ(n,m))

(n,m)€Ea

This estimation of the local signal variance could be used to
compute the corresponding optimal restoration filters Hy ,n, but
this has one drawback without providing a great performance
enhancement. The drawback is obviously the computation load,
since for each filter-family, the inversion of a (large) matrix is
required. The influence of the local SNR in the computation of
the restoration filters Hy », lies in the extend to which the high-
frequencies of the ideal signal will be recovered. For low SNR,
the high-frequencies of the blurred signal will be considered as
being covered by noise, while for high SNR, these high frequen-
cies will be recovered by the restoration filters. In other words,
filters optimised for a low SNR will always return zero HF coeffi-
cients (high order coeflicients), while giving the same coefficients
as the filters optimised for high SNR for low order coefficients.

Hence the adaptive restoration method is as follows: compute
a family of restoration filters optimised for a high SNR (30dB for
instance) and compute an estimate of the low-order coefficients
in all directions and for all window positions. These estimates
are then used to compute an estimate of the local signal vari-
ance, and at the window positions where that local signal vari-
ance in certain directions exceeds a threshold, compute higher
order coefficients corresponding to this direction/location. All
estimated coefficients are then used to reconstruct an estimate
of the ideal image before degradation.

V. RESULTS

The blurred image (fig. 5) used as test image was taken with
an out of focus CCD camera. It should be noticed that doing

the blur is quite severe and that the CCD camera used was very
noisy. The blurring filter that must be known in order to ap-
ply this algorithm was determined starting with a parametrised
model of an out of focus camera. The parameters of the model
were determined by trial and error.

-
-

Fig. 5. Degraded image
The figure 6 presents the same picture restored using the res-

toration scheme described in [3] where adaptivity with respect
to the local image SNR, but that

Fig. 6.

Simple adaptive method

doesn’t consider directional adaptivity. Although the noise



Fig. 7. Directional adaptive method

in the constant areas of the image is smoothed out, artifacts
appears near large intensity transitions.

Figure 7 presents a restoration conducted using the directional
adaptive method described in this paper.

V1. CONCLUSIONS

A directional adaptive restoration method is presented. This
method is based on the estimation of the local SNR of the ideal
image. To achieve directional selectivity, a directional selective
decomposition scheme based on a variant of the discrete short-
time Fourier transform is developed. The major improvement of
this method with respect to non directional adaptive restoration
methods is particularly well visible along edges, where the noise
in the direction of the edge is greatly reduced.
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