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Abstract — This paper presents a restoration algorithm
based on a local signal description using discrete polyno-
mials. The algorithm is made adaptive by estimating the
local signal-to-noise ratio and by computing the corres-
ponding deblurring filter. Furthermore, this method is
developed for discrete signals, the input and output im-
ages being almost always available as discrete signals.

I. INTRODUCTION

Methods to describe, restore and compress signals by
mean of polynomials have already been developed by
Martens [1], [3] and Philips [7]. The basic idea behind
these methods is the computation of filters in order to
estimate the polynomial coefficients describing the ideal
signal, starting from the degraded signal.

Martens [3], applying these methods to image restora-
tion assumes that each sample of the sampled degraded
image corresponds to the zero-order term of the ideal im-
age polynomial expansion. This implies that the blurring
kernel is identical to the squared local window function
used to describe the signal.

In the proposed method, no other assumption is made
about the blurring kernel than a general low-pass beha-
viour. This allows the choice of arbitrary-shaped blurring
functions and of arbitrary positions for the localisation
windows.

Further, the developed method addresses the restora-
tion of discrete signals, and more specifically of sampled
images.

Section IT describes briefly the polynomial transform.
Section III presents its use for restoration purposes. In
the same section, we will show the utility of an adaptive
method, which will be described in section IV. Finally
section V, presents and discusses some results.

II. DISCRETE POLYNOMIAL TRANSFORMS

This section shows how signals can be approximated us-
ing discrete polynomial transforms. The one-dimensional
case will first be considered and will then be extended
to two dimensional signals. Finally, this theory will be
applied using discrete polynomials.

The theory exposed in this section is based on the work
of Martens [1] redrawn to consider discrete functions.

A. The one dimensional discrete polynomial transform

This process includes two steps. First, local versions of
the signal are produced by multiplying it by a window
function V(7). Second, the windowed version of the signal
is approximated by a polynomial.
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In the case of equally spaced windows, the following
weighting function can be defined

W(i)y =Y _V(i—kA) (1)

which is the periodic repetition with period A of the win-
dow function.

Provided W (i) is non-zero for all i, the original signal
can be recovered

=Y L)V (i — kA)

B W (i) 2)

k
Note that all the information available in the original sig-
nal is also included in the windowed versions of the signal.
The polynomial used to approximate the windowed
versions of the signal is a linear combination of the basis
polynomials G, (i) — where n is the degree of G, — or-
thonormals with respect to the weighting function V?(i),
ie.

+§ V2(k)G (k)Gr(k) = S

k=—c0

3)

Provided the original signal L(7) is square summable,
one gets

V(i — kA)L(i) = i Lnp Gu(i — kAY V(i — kA)  (4)

where

+§ L(1)Gn(i — kAYV2(i — kA).

i=—00

Ly =

, ()
The series in (4) converges if L(7) is finite for all . There-
fore, the approximation error can be made arbitrarily
small by taking the maximum degree of the polynomial
expansion sufficiently high. Conversely, the original sig-
nal can be approximated with an arbitrarily small ap-
proximation error by specifying a sufficient number of
coefficients.

Equation (5) expresses Ly, ; as the result of a discrete
convolution subsampled by A

Ln i = [L() * Dn(8)] A (6)

where the subscript kA means that the expression is eval-
uated at kA and

Dn(i) = Gu(=1)V*(—0). (7)
Finally, the direct polynomial transform consists in ob-
taining the set of coefficients L, ; where L, j is the kth
sample of the filtered version of the original signal using
a filter whose impulse response is D,,.



B. The one dimensional inverse discrete polynomial
transform

The inverse discrete polynomial transform aims at recon-
structing the signal from the polynomial coefficients L, ;.
Combining equations (2) and (4), we get

= Z i Lk Pa(i — kA).

k n=0

(8)

where GOV ()
2DV (1
—_— 9)
W (i)
Hence, the original signal can be reconstructed by in-
terpolating the coefficients L, ; with the pattern func-
tions P,.

Po(i) =

C. The two dimensional discrete polynomial transform

The polynomial transform in two dimensions is a strai-
ghtforward extension of the one-dimensional case.

Orthonormal polynomials are associated with the win-
dow function V' (4, j). These polynomials Gy, n—m (2, j) of
degree m in 7 and n—m in j and orthonormal with respect
to V%(i,j), are given by

+o0 +o0
> VL) CGmnem (i §)Gra—k (i, 5) (10)
i=—00 j=—00

= Omibni.
Equation (4) becomes

V(i— kA, j—IA)-

L(Z7.]) - Z Z Lm,n—m,k,l
n=0m=0

Gmpn-m(i—kA j—IA)| =0
where
+o0 +oco
Lm,n—m,k,l = Z Z L(z (12)
i=—co j=—00

Gmon-m(i— kA j—IAW?(i — kA, j—IA)

It follows that the coefficients are obtained by sub-
sampling the result of the discrete convolution of the ori-
ginal signal L(, ) with a filter whose impulse response is
given by

Dm,n—m(iyj) = Gm,n—m(_i’ _j)v2(_iv _.7) (13)

When the window function is separable, 1.e.
V(i,j) = V(@) V()

the functions derived from this window function are
also separable, in particular the filter impulse responses
Dy n—m(i,7) and the pattern functions Pp, n_m(%,7),
which drastically simplifies the computations of the poly-
nomial transforms.

(14)

D. The discrete Hermite transforms

Martens [1] suggests to select Gaussian windows and thus
Hermite basis polynomials in the case of continuous sig-
nals. Similarly, [1] considers binomial window functions
in the discrete case
7 C} i=0,..,M
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elsewhere

(15)

The associated discrete orthonormal polynomials are
known as the Krawtchouk polynomials

Gn(i) yRonTk ok (16)

a2l

Tt can be shown [8] that the central frequency of the
analysis bandpass filter D, increases with n. Hence, a
limitation of the polynomial expansion order will act as
a low-pass filtering of the signal.

ITI. NON ADAPTIVE RESTORATION
A. Introduction

Let Ly(é) be the degraded version of the ideal signal L,(z)
using a blurring filter B(7). If the acquisition noise Q(%)
is additive, Ly(4) is given by

Ly(i) = Q) + B(i) * Lo (5).

This is also depicted in figure 1

(17)
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Fig. 1. Image degradation model with additive noise

The restoration algorithm consists in computing the
coefficients of the polynomial expansion of the ideal signal
from its degraded version Lp(i).

Hence, assuming that the ideal signal can be described
locally with the coefficients of a polynomial expansion and
that those coefficients can be estimated from the degraded
signal using filters whose impulse response is H,, one
gets the estimate of the coefficient corresponding to the
polynomial of degree n in the k*" window by a convolution

product
Loy = E Ly (i

Those estimates are then used to estimate the ideal signal
with equation (8).

Figure 2 illustrates this restoration algorithm.

Note that, because of the noise included in the blurred
signal, it is not possible to accurately estimate the high
order polynomial coefficients.

Therefore it is necessary to limit the restoration pro-
cedure in order to avoid artefacts in the restored image.
This limitation of the deblurring procedure is the main
disadvantage of the space-invariant methods.

(kA = i), (18)



Fig. 2. Restoration algorithm

B. Determination of the filter coefficients Hy/(i)

These filter coefficients are obtained by minimising the
mean squared error (MSE) between the unknown coeffi-

cients L, r and their estimates Ly, .
Let L(7) be the ideal signal, then

Lk = [L(i) * Dy ()] -
The MSE between this coefficient and its estimate is

EZ,k =F ((in,k - Ln,k)2) :

(19)

(20)

If the noise 1s assumed to be zero-mean white and uncor-
related with the ideal signal, the only noise characteristic
of interest 1s the variance

E(QG)) = 3. (21)

Further, the autocorrelation function of the ideal signal
in the neighborhood of kA is given by

Ry(p,q) = E(L(kA — p)L(kA —q))
it follows from (17), (18) and (20)

Ei,k = SZ) ZHZ(J)
+3 " Ri(p.9) (Z Ho(i)B

ZH

(22)

1)B(¢ —j) — Dn(q)

(23)

If the signal is assumed to be stationary in the neigh-

borhood of kA, 1.e. the statistical characteristics of the

signal are shift-invariant in this neighborhood, the auto-
correlation becomes

Ri(p,q) = Ri(p—q) =
and the MSE can be rewritten
5Z,k = S?Q Z HA(5)

+[Da(- AN
=237 Hai) [Da(p) * (=) * Bul)];

+ Zf Ha(D)H
,j

Ri(q—p) (24)

At the minimum of this error, the partial derivative of
Eiyk with respect to Hy(i) equals zero which yields

S Ha() (shoi + [B(=p) + B) * Ru(p)l;_)

J
—p) * R (p)];
(26)
Since the latter equality must be satisfied for all values of
1, a system of linear equations is obtained whose solution
gives the coefficients of the desired filters H,,.

In the left-hand term of eq. (26), the coefficients Hy,(j)
are independent on the order n. It follows that, only one
matrix inversion is required to solve this system.

Still in order to simplify these equations, the signal
autocorrelation support is assumed to be much smaller
than the size of the blurring kernel B. This is equivalent
to write

= [Dn(p) * B(

Ry(p) = si6(p) + mj (27)

where s? is the local signal variance and my its local
mean. Even though this hypothesis seems not to be real-
istic for the whole image, it remains a good approxima-
tion where the deblurring will have the largest effect, i.e.
where there are large intensity changes and hence a small
correlation support.

To get rid of the local mean my in the above equation,
the following normalisation condition is added

Z Dr(p)

> Ha( (28)
i Z B(p
which yields a simplified equation
H,(j 82Q 6 B B
Zj: n(]) g 3 +[ (p) * (_p)]z’—j (29)

= [Dn(p) * B(=p));

The size of the system to be solved depends on the sup-
port size of the filter kernel H,, which in turn depends on
the width of the localisation window and on the support
size of the blurring kernel.

C. Local signal-to-noise ratio
The local SNR of the degraded signal is defined by

2
SNR; = 101og ~& (30)
s
Q
This ratio plays a leading role in the computation of the
filters H,. Indeed, it determines to which extend the high
spatial frequencies can be amplified.
Combining equations (25) and (26) yields the expres-
sion of the minimum MSE

en i = [Dn(~ )*D ( )*Rk( )o

—ZH p) * B(— (31)

p) * Ry (p)]s



and the expectation of Li,k is
E(L7, ) = [Dn(i) % Dn(=1) * Ri(i)]o, (32)

The assumption of the small correlation support of the
original signal yields

: >~ Ha()[Da(p) * B(=p)l

) " T T D@ Da(ile

n#0
(33)
which corresponds, by definition, to the inverse of the
mean signal-to-noise ratio of the coefficient L, 3.
Figure 3 presents the SNR of the coefficients as a func-
tion of the order n for different local SNR; of the de-
graded signal. Note that the SNR of the coefficients de-
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Fig. 3. Coefficient SNR as a function of the order n for different
local signal-to-noise ratios

Further, the SNR
of the coefficients needs to be large enough in order to
avoid artifacts. If follows that only a limited number of
coefficients can be used which will limit the order of the
polynomial transform.

creases when the order n Increases.

D. Frequency response of the restoration system

Replacing in the reconstruction equation (8) the coeffi-
cient L, 1 by its value estimated from equation (18) yields

L) =Y ZL,,(;‘) D Hu(kA = i) Po(j — kA). (34)

This equation shows that the degraded signal undergoes a
space variant linear transformation, which only becomes
invariant if the inter-window spacing equals unity.

The Fourier analysis is unusable to study the frequency
response of this transform because 1t only applies to lin-
ear space invariant transformation. However, the Fourier
transform of the impulse response in a given position give
an evaluation of the frequency response in the neighbor-
hood of that position. Furthermore, in practice, for a
moderate inter-window distance A, the impulse response
hardly depends on the position.

Figure 4 depicts the modulus of the Fourier transform
of the impulse response in the center of a localisation
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Fig. 4. Global frequency response of the deblurring system

that, as expected, the system has a global high-pass be-
haviour, the very high frequency being cut off. This cut
off has two reasons. First, an insufficient signal-to-noise
ratio of the degraded signal results in a too small SNR
for the high spatial frequencies. Second, only a limited
polynomial expansion has been considered.

E. Two dimensional restoration

The restoration of two dimensional signals can be handled
in two ways. A first method consists in a simple extension
of the 1D case, and the 2D filter coefficients are given by

Lm,n—m,k,l = ZLb(Z:]) Hm,n—m(kA - Z,lA - .7) (35)
i,j

where the filters H,, ,_m are solution of the linear system

Z Hm,n—m(ilyj/)
il,jl

2
S
(ééwéﬁf +[B(p,q) * B(=p, —0)];_ir j_j
— [Dm,n—m(p: Q) * B(_pa _q)]i’j
Vi, j
(36)
with

Z Dm,n—m(p1 Q)
Hm,n—m(ia .7) = L
ZJ: > Bp.a)
p,q

(37)

A second method consists in approximating the fil-
ters Hpy p—m by the product of one-dimensional filters
H,(7) - Hp—m(j) obtained in the same way as in the one-
dimensional case. Note that even if the filters Dy, ,_pm
and B are separable, the filters Hp, ,_, generally are not

2
separable because of the presence of 55—2 in equation (36).
k



IV. ADAPTIVE IMAGE RESTORATION

It has been shown above that the filters Hy, —m depend
on the local signal variance s7 which must be estimated.

In the non adaptive method, a constant value has been
selected for the local signal variance. Consequently, to
make the algorithm adaptive, the local variance must be
estimated in each window, and the corresponding filters
must be computed.

A. Local variance estimation

It is easy to show that the mean energy of the estimated
coefficients is given by [8]

B. Mean error on the coefficient Ly,

In order to find the best value for s? in (29) to compute
the filter coefficients H, (i) which are used to compute
the polynomial coefficients ﬁn’k, and finally to determine
the local variance of the ideal signal, let us compute the
mean error on the coefficient ﬁn,k when the local signal
variance is different from the signal variance used to find
the filter coefficients H, ().

The expected squared estimation error on the coeffi-
cient ﬁn,k, normalised with respect to the noise variance
is given by [8]

2 2
€nk

- & Sk
(L} 4) = sy Y HA)+sE Y Hali)Ha ) [B(p) * B(=p)];_; g, = Aelm)F 5 As(n) (43)
i,J
(38)  where Ao has been defined above and
Sy . Q
for n > 0. Considering the equation system (29) an
assuming 523
, As(n) = [Da(=p) * Da(p)ly = Ar — 3 4q  (44)
Ag(n) = Y Ha(D)
d ) In this equation, s? refers to the variance used to compute
Ap(n) = Z Hy (i) [Dn(p) * B(—p)]; (39) the filter coefficients H, (i) which are used to evaluate the
i ) 22
S¢ ——(dB)
Ap(n) = Ap(n) - 8—(2314@(") °
where s? is an initial guess of the ideal signal variance 407 n=0
used to compute the filters H, (see (27) and (29)), yields
30 —
E(L; 1) = sy Aq(n) + s Ar(n). (40) < =0dB
20 — @
Hence, adding eq. (40) up to order N, we can write
N N 10 7 2
A =~ =30dB
Y E(L ) = s ) Ag(n) E
2 _ n=1 n=1 0 I o — I I )
57 = = . (41) 0 20 30 40 50 :Tk(dB)
> An(n) —10 | N
n=1

One should mention that if s? = s?, i.e. if the guessed

variance equals the local signal variance, the above equa-
tion simply becomes

> B )

> Ap(n)

In practice, the noise will always be sufficiently low to
neglect the term 82Q in equations (39) and (41), the latter
becoming identical to eq. (42).

In order to estimate the local signal variance using
eq. (41), the coefficients of the polynomial expansion in
that window are needed and will be computed using the
filters H,, obtained by solving the system (29) selecting
for the variance s? a value which minimises the error on
the polynomial coefficients.

sp =

(42)

Fig. 5. Mean squared error for n = 0
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Fig. 6. Mean squared error for n = 1



functions Ag, Ar and Ag, while s? is the real local signal
variance.

The expected squared estimation error versus the local
variance, both normalised with respect to the noise vari-
ance, has been plotted in figure 5 and 6 according to
eq. (43) for two different filters. The first one is optim-
ised for a small local SNR, (% = 0dB) and the second

for a high local SNR (£~ = 30 dB).
Q

Note on these figures that in the case of the high-SNR
filter, the local signal variance must exceed a threshold
in order to give better results than the low-SNR filter.
For low orders, this threshold is very low. Hence, the
filter optimised for high SNR will always be used to com-
pute low-order polynomial coefficients. Conversely, for
high orders, this threshold will be quite high and the low
SNR filters will be used. For intermediate orders, the
local signal variance must be estimated to compute the
corresponding filter coefficients H, (7).

C. Adaptive restoration method

The adaptive restoration method can be divided into two
steps. First, an estimate of the local signal variance will
be computed in order to compute the filter coefficients
H, (i) which are finally used to estimate the polynomial
coefficients ﬁn,k of the ideal signal.

However, in practice, only two families of filters will
be used. The one will be optimised for high-SNR signals
and will be used to estimate the local signal variance, the
other for low-SNR.

For this last family, the null filter can even be con-
sidered which always return zero. Indeed, these filters
will only be used to estimate high order coefficients in
areas of low SNR and according to figure 4, these coeffi-
cients will always be taken equal to zero.

Fig. 7. Artificially blurred image

V. RESULTS

In this section, some results are presented and discussed.
First, the deblurring algorithm is applied to an artificially
blurred image, i.e. an image filtered with a known filter
B. The method is then used to restore a real image, i.e.
taken with an out-of-focus camera.

Obviously, the signal-to-noise ratio of the artificially
blurred image will be very high. Indeed, the only re-
maining noise is the quantization noise, the sensor noise
being filtered with the blurring.

Satisfying results are obviously obtained, even when a
non adaptive approach is used, as shown in figure 8.

Fig. 8. Restoration of an artificially blurred image

The use of an adaptive method enhances slightly the
restoration of the high spatial frequencies.

When real degraded images are used, the blurring filter
B must be known. Figure 9 shows the considered filter,
which is a mathematical model of the blur, developed in
[8] and adjusted by trial and error.

binomial filter

real filter

—-10 -5 0 5

Fig. 9. Model of the real blurring filter



Fig. 10. Real blurred image

Another drawback of real images is their low signal-to-
noise ratio. The result of a non adaptive method is shown
in figure 11.

Fig. 11. Non adaptive restoration of a real image

The use of the adaptive algorithm allows to reduce the
noise appearing in the uniform regions of figure 11, as
shown in figure 12.

VI. CONCLUSIONS

In this paper, a deblurring method based on the use of
a local polynomial approximation of the signal has been
presented. Such a local description is particularly well
suited for adaptive restoration methods. It has been
shown how to make the algorithm adaptive with respect

Fig. 12. Adaptive restoration of a real image

to the signal-to-noise ratio but a spatially variant blur-
ring filter B could easily be considered since no assump-
tion has been made about the blurring filter. Note finally
that this local description enables the easy parallelisation
of the algorithms.
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