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ABSTRACT
We propose a method to compute an estimate of the clutter-
plus-noise covariance matrix in bistatic radar configura-
tions. The estimation is based on the computation of the
clutter scattering coefficients based on a single data snap-
shot at each range using a model of the received signal.
The covariance matrix of the data is modeled as a struc-
tured covariance matrix with the scattering coefficients as
unknown parameters. The method is based on the compu-
tation of the maximum likelihood. We use the Expectation-
Maximization method as estimation benchmark. Since the
problem is ill-posed, regularization is mandatory. This reg-
ularization is performed by spatial smoothing. The method
we propose, unlike the Expectation Maximization, is not
iterative and is thus less computationally demanding.

The obtained covariance matrix estimate is used to
compute the matched filter in order to perform target detec-
tion. The performance of the proposed estimation method
is evaluated in terms of signal to interference-plus-noise ra-
tio (SINR) losses and is found to be almost indistinguish-
able from the performance of the clairvoyant case.
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1 Introduction

Slow-moving target echoes received by airborne ground
moving target indicator (GMTI) radars typically compete
with very strong clutter return. Space-Time Adaptive Pro-
cessing (STAP) can be used to discriminate between target
and clutter signals [1, 2]. The clutter-plus-noise covariance
matrix (CM) at the range of interest is required in order
to compute the optimum STAP filter. An estimate of this
CM is typically obtained from secondary data, i.e., data at
neighboring ranges around the range of interest. To pro-
vide an accurate estimate, the secondary data needs to be
independent and needs to have the same distribution as the
clutter-plus-noise signal at the range of interest.

The two main factors that affect the statistical dis-
tribution of the clutter signal are ground cover and radar
geometry (position and velocity vector of the transmitter
and the receiver, antenna array geometry and element radi-

ation pattern, ground relief). Assuming a uniform ground
cover and a flat terrain, clutter echoes at different ranges
are typically independent and identically distributed (IID)
for monostatic sidelooking configurations with a uniform
linear array (ULA) and a few other particular bistatic con-
figurations [3]. This is however not the case for most
bistatic configurations [3, 4] and most multistatic config-
urations [5].

If the clutter echoes at different ranges are IID and
Gaussian and if no particular structure for the CM other
than hermitian semi-positive definite is assumed, the max-
imum likelihood (ML) estimate of the clutter CM can be
obtained by computing the average of the sample CM at
each range. If the clutter echoes at different ranges are not
IID, other methods have to be considered to compensate for
the range-dependence of the clutter statistics prior to aver-
aging (see for instance [6, 7, 8]). These methods can be
interpreted as performing an averaging in the spectral do-
main. However, they do not exploit the fact that there is a
direct relation between the spectral domain and the physi-
cal domain and thus have difficulties to cope with spatially
inhomogeneous clutter such as in coastal areas or in areas
of changing ground cover.

To be able to cope with inhomogeneous clutter and
be able to introduce spatial regularity as a constraint on the
solution, we want to estimate the parameter of the physical
process at the origin of the scattering, i.e., the scattering co-
efficients of the clutter patches on the ground. We show that
the problem can be cast as the estimation of a structured
CM which is classically solved by maximizing the likeli-
hood and requires the resolution of a non-linear equation.
One of the possible method to maximize the likelihood is
the Expectation-Maximization algorithm [9]. However this
method is very computationally intensive, we thus propose
an approximation of this method and show that the corre-
sponding result are almost as good. Moreover, given the
low-rank nature of the problem, the inverse problem is ill-
posed and needs to be regularized.

The paper is organized as follows. In Section 2, we
introduce the signal model and the resulting CM model.
Based on this model, in Section 3, we review the likeli-
hood and derive the expression to be maximized. In Sec-
tion 4, we briefly describe the Expectation-Maximization
algorithm applied to our problem and show that it can be



interpreted as a hill-climbing method. The regularization
methods are discussed in Section 5. In Section 6, we de-
scribe the approximation of the ML solution and how the
scattering coefficients can be estimated over the whole op-
erating range of the radar. In this section we also compare
the proposed method to other methods found in the litera-
ture. Section 7 presents the end-to-end performance of the
method in terms of SINR losses. Finally, Section 8 con-
cludes the paper.

2 Signal model

We consider a pulse-Doppler radar with arbitrary transmit-
ter and receiver locations. An arbitrary antenna array is
used on the receiver. At each coherent processing interval
(CPI), the echo signal from the M pulses received on the N
antenna array elements is sampled at the range of interest.
The resulting lexically-ordered samples form a data snap-
shot vector of size NM denoted by y. The signal due to the
clutter patches can be modeled as a sum of the contribution
over a finite number L of clutter patches [1, 10]

y =

L
∑

i=1

aivci
+ n, (1)

where ai denotes the (complex) reflectivity of clutter patch
i and is assumed zero mean circular complex Gaussian with
unknown variance rai

. vci
is the steering vector corre-

sponding to the clutter patch i, and is usually expressed
as vci

= ci ◦ vi where ci is a factor that groups the ge-
ometric factors of the radar equation (range attenuation,
element radiation pattern, ...), vi is the usual normalized
steering vector corresponding to clutter patch i, and ◦ de-
notes the Hadamar product (element-wise multiplication).
n denotes the thermal noise, assumed Gaussian with CM
Rn = σ2

nI . We assume σn known, e.g., based on direct
measurements [11].

Equation (1) can be rewritten in matrix form as
y = V a + n, (2)

where a = {a1, . . . , aL}
T and V = {vc1 , . . . ,vcL

}.
Using this model, the clutter-plus-noise CM Ry =

E{yy
†} is

Ry = V RaV † + Rn, (3)

where Ra = diag{ra} with ra = {ra1 , . . . , raL
}T and

rai
= E{aia

∗
i }.

3 The likelihood

We want to find the estimate of Ra which is the most com-
patible with the measurements y. Hence, we want to max-
imize the probability p(Ra|y) where p(α|β) denotes the
conditional probability of α knowing β. Using the Bayes
identity we can write

p(Ra|y) =
p(y|Ra)p(Ra)

p(y)
, (4)

where p(Ra) is some a priori probability for Ra, and p(y)
is the probability of the measurement y and is independent

of Ra. Using a flat a priori probability for Ra and noting
that p(y) is independent of Ra, the optimum estimate of Ra

can be found by maximizing p(y|Ra) which is classically
called the likelihood of Ra. Since y is assumed Gaussian
with CM Ry given by (3), one has

p(y|Ra) ∝
1

|Ry|
e−y

†R−1
y y, (5)

where |Ry| denotes the determinant of the matrix Ry. Since
y
†R−1

y y = tr(R−1
y yy

†), the logarithm of the likelihood
Λ(Ra|y) is given by

Λ(Ra|y) = ln p(y|Ra) = − ln |Ry| − tr(R−1
y yy

†) + C.
(6)

where C is a known constant, independent of Ra.
A necessary condition at the maximum of Λ(Ra|y) is

dΛ(Ra|y)

drai

= 0 (7)

for all i. Following [12, 13], we have ∂ ln |B|/∂b =
tr(B−1∂B/∂b) and ∂B−1/∂b = −B−1(∂B/∂b)B−1 and
hence, with {B}d denoting the column vector consisting of
the diagonal elements of B, we have

∂ ln |Ry|

∂ra

= {V †R−1
y V }d (8)

and ∂ tr(R−1
y yy

†)

∂ra

= −{V †R−1
y yy

†R−1
y V }d, (9)

and the derivative of (6) finally becomes
∂Λ(Ra|y)

∂ra

= {V †R−1
y (yy

† − Ry)R−1
y V }d. (10)

Equation (7) can thus be rewritten for all i in vector form
as {V †R−1

y (yy
† − Ry)R−1

y V }d = 0, (11)

which is equivalent to the trace equation [14] when all ad-
missible variations of ra are considered. This equation
must be solved for Ra. It is non linear in Ra and no closed-
form solution is known.

Noting, as in [13],

F = RaV †R−1
y , (12)

and decomposing Ry according to (3), (10) can be rewritten
as

ra ◦ ∂Λ(Ra|y)
∂ra

◦ ra = {Fyy
†F †}d

−{FV RaV †F †}d − {FRnF †}d.
(13)

Similarly as in [13], defining

T = diag{{FV RaV †F †}d}R
−1
a , (14)

from (13), the maximum satisfies

ra = T−1({Fyy
†F †}d − {FRnF †}d). (15)

Consequently, the following iterative solution is proposed
[13]

r
(k+1)
a = r

(k)
a

+ τ
(

T−1({Fyy
†F †}d − {FRnF †}d) − ra

)∣

∣

r
(k)
a

.

(16)



Taking (13) into account, this last equation can be rewritten
as

r
(k+1)
a = r

(k)
a + τ

(

T−1
ra ◦

∂Λ(Ra|y)

∂ra

◦ ra

)∣

∣

∣

∣

r
(k)
a

.

(17)
This shows that the iterative scheme proposed in [13] is
equivalent to a modified gradient descent where the gradi-
ent is multiplied by a matrix. Moreover, taking τ = 1 in
(17) results in

r
(k+1)
a =

(

T−1({Fyy
†F †}d − {FRnF †}d)

)

|
r
(k)
a

. (18)

The fixed points of this equation satisfy (15) and this might
be interpreted as an iterative solution to (15). Notice that
we do not claim convergence of (18).

4 Expectation-Maximization

The Expectation-Maximization (EM) algorithm can be
used to find the value of Ra that maximizes (6) [9]. In
the EM algorithm, the coefficients a are called the com-
plete data while y are the incomplete data and (2) provides
a mapping between them.

The EM algorithm is an iterative algorithm that con-
sists in a succession of an expectation (E) step and a max-
imization (M) step. In the E-step, the expectation of the
log-likelihood of the complete data Λcd(Ra|a) conditioned
on an estimate of Ra and on the incomplete data y is com-
puted,

Q(Ra|R
(k)
a ) = E{Λcd(Ra|a)|R(k)

a ,y}. (19)

In the M-step, the value of Ra that maximizes Q(Ra|R
(k)
a )

is computed

R(k+1)
a = argmax

Ra

Q(Ra|R
(k)
a ). (20)

These two steps are repeated until convergence.
Since a is complex Gaussian distributed with CM Ra,

we have

Λcd(Ra|a) = − ln |Ra| − tr(R−1
a aa

†) + C (21)

where C is a known constant independent of Ra and (19)
can be evaluated as

Q(Ra|R
(k)
a ) = − ln |Ra| − tr(R−1

a E{aa†|R(k)
a ,y}) + C.

(22)
Since the term E{aa†|R

(k)
a ,y} does not depend on Ra,

taking the derivative of Q(Ra|R
(k)
a ) with respect to ra

yields

∂Q(Ra|R
(k)
a )

∂ra

= −{R−1
a }d+{R−1

a R−1
a E{aa†|R(k)

a ,y}}d

(23)
and setting this derivative equal to zero to find the maxi-
mum of Q(Ra|R

(k)
a ) yields

r
(k+1)
a = {E{aa†|R(k)

a ,y}}d, (24)

which is a set of L decoupled equations. Equation i of this
set is

r(k+1)
ai

= E{|ai|
2|R(k)

a ,y}. (25)

The term E{aa†|R
(k)
a ,y} appearing in (24) can be

expressed as a function of the conditional mean ā =

E{a|R
(k)
a ,y} and the conditional covariance of a

E{aa†|R(k)
a ,y} = āā

† + cov{a|R(k)
a ,y} (26)

where the conditional mean and the conditional covariance
are well-known results from estimation theory [15, 16] and,
with Ry = Ry(Ra)|

R
(k)
a

, are respectively given by

ā = E{a|R(k)
a ,y} = R(k)

a V †R−1
y y (27)

and by

cov{a|R(k)
a ,y} = R(k)

a − R(k)
a V †R−1

y V R(k)
a . (28)

Hence, (24) can be rewritten as

r
(k+1)
a = {R

(k)
a V †R−1

y yy
†R−1

y V R
(k)
a }d

+{R
(k)
a }d − {R

(k)
a V †R−1

y V R
(k)
a }d

(29)

or, using the expression for ∂Λ(Ra|y)
∂ra

obtained in the previ-
ous section, we finally can rewrite one iteration of the EM
algorithm as

r
(k+1)
a = r

(k)
a + r

(k)
a ◦

∂Λ(Ra|y)

∂ra

∣

∣

∣

∣

R
(k)
a

◦ r
(k)
a . (30)

This shows that — at least in the context in which we use it
— the EM algorithm can be interpreted as a modified gradi-
ent descent method to find the value of Ra that maximizes
the log-likelihood Λ(Ra|y).

5 Regularization

In the intended application, V RaV † is not full rank, which
implies that there is no unique solution to the inverse prob-
lem. This kind of problem is called “ill conditioned” and
regularization is necessary to obtain a solution [17]. Reg-
ularization is obtained by introducing a priori knowledge
about the solution Ra. This can be done, e.g., by directly
imposing an a priori probability density of Ra in the likeli-
hood to be minimized [13, 18] or by restricting the space in
which the solution is looked for, e.g., by decomposing the
CM Ra in a family of CM [12, 19]. A review of various
regularization methods applied to the EM algorithm can be
found in [20].

A particular regularization is one that consists in
adding a smoothing step after computation of the M-step
of the EM algorithm. In [13, 20], it is shown that, in some
particular cases, there is an equivalence between the im-
position of some prior probability density p(Ra) and the
addition of a spatial smoothing step. The Tikhonov regu-
larization introduced in [13] results in the modification of
the matrix T in (17), which introduces a spatial smoothing.
This motivates the introduction of a spatial smoothing step
in (18) as

r
(k+1)
a = W

(

T−1({Fyy
†F †}d − {FRnF †}d)

)

|
R

(k)
a

(31)
and in (30) as
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Figure 1. Comparison of the scattering coefficient maps obtained using different estimation methods (each column correspond
to one method) for different scenarios (each line corresponds to a different scenario). The graphs share the same color scale.

r
(k+1)
a = W

(

r
(k)
a + r

(k)
a ◦

∂Λ(Ra|y)

∂ra

∣

∣

∣

∣

R
(k)
a

◦ r
(k)
a

)

,

(32)
where the square matrix W is a circulant smoothing ma-
trix. The matrix W is circulant because the scattering coef-
ficients are located along a closed isorange on the ground.
The effect of W is to perform a weighted averaging of rai

with the neighboring scattering coefficients.

6 Application to scattering coefficient maps
estimation

Equations (2) and (3) can be written down for each range-
gate. Notice that for bistatic scenarios, V typically depends
on the range. If the measurements y at different ranges are
uncorrelated, i.e., if the range sidelobes are negligible, the
estimation of the unregularized Ra is decoupled in range,
what simplifies the computations.

However, the physics clearly imposes a spatial con-
straint on the scattering coefficients rai

in the sense that
a smooth evolution of the scattering coefficients should be
favored, both in azimuth (cross-range) and in range. Hence
the smoothing step discussed in the previous section will
be extended to smooth the estimate of r

(k)
ai also across dif-

ferent ranges.
Equations (31) and (32), while able to provide a solu-

tion to the problem, result in an extremely computationally
intensive algorithm. We thus propose to consider a sin-

gle iteration of (31) as estimator. The motivation is that, if
the initial estimate R

(0)
a is close enough to the true value, a

single iteration might be sufficient. Moreover, if the clutter-
to-noise ratio is high enough, the contribution of the second
term in (31) may be neglected. At one range, an estimate
of Ra is thus obtained by computing

r̄a = W
(

T−1{āā†}d

)∣

∣

R
(0)
a

, (33)

where ā is the ML estimate of a conditioned on R
(0)
a and y

is given by (27).
The algorithm we propose thus consists in two steps.

The first step estimates ā at each range and computing
r̄a = T−1{āā†}d at each range independently. The sec-
ond step performs a local spatial averaging of the estimated
scattering coefficients.

As a comparison, we consider the estimator used in
[8], which roughly results from taking F = V †. In order to
avoid the introduction of a trivial bias on that crude estima-
tor, a normalization factor [13] is used to correct the mean
value. We will denote this estimator as the crude matched
filter (MF).

We compared the performances of the different esti-
mation methods for different scenarios. In all cases, we
considered a bistatic setup, where the transmitter is located
at the origin and the receiver is located at (0, 100). The
transmitter platform is flying east while the receiver is fly-
ing north. Unless otherwise specified, the clutter-to-noise
ratio is 20dB. The initial value of the covariance matrix



R
(0)
a is taken equal to rI where r is +30dB offset from

the true average value. The resulting scattering coefficient
maps are illustrated in Fig. 1. Each column corresponds to
a different method and each row to a different scenario. The
first column is the EM algorithm (32) where the smoothing
step is extended in range as discussed above. The middle
column is the single-iteration algorithm described above
and the third column is the crude MF.
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Figure 2. Scattering coefficient histogram for (a) uniform
scattering coefficients and (b) the checkerboard patterned
scattering coefficients.

The first scenario (first row) corresponds to uniform
scattering coefficients. The fact that the estimate obtained
using the crude MF exhibits spatial artifacts indicates that
a constant correction factor does not completely compen-
sate the bias. It should also be noted that the EM-based
estimator and the single-iteration estimator provide a very
similar scattering coefficients map. This is also visible in
Fig. 2(a) showing the histogram of the scattering coeffi-
cients obtained using the different methods.

In the scenario of the second row, a sinc-shaped trans-
mit antenna without backlobe pattern was considered. The
scattering coefficients in the backlobe of the antenna have
no influence on the measured data and, thus, cannot be es-
timated. The values for those coefficients thus results from
the regularization. Again, clearly, the crude MF fails to pro-
vide a useful estimate. The crude MF is directly affected by
the antenna diagram through ci. Following a similar rea-
soning as in the previous sections, a similar expression to
the crude MF has been used [8] to obtain an estimate of
E{|aici|

2}, but in that case, the prior knowledge is diffi-
cult to express due to the mixture of the geometric effects
ci with knowledge about ai what makes regularization dif-
ficult whenever ci is not constant.

Finally, in the last scenario, non-uniform scattering
coefficients were considered. A difference of 10dB was
considered between the high and low scattering coeffi-
cients. This is the typical difference that is observed be-
tween (monostatic) ground backscattering and monostatic
backscattering by the sea-surface in C-band [21], a de-
manding scenario in STAP. As can be seen, despite the non-
uniformity, the pattern is still easily recognizable. More-
over, the histogram of Fig. 2(b) is clearly bimodal with
peaks around -5dB and +5dB, i.e. the exact values. While
the pattern is still present in the crude MF estimate, the cor-
responding histogram does not exhibit the bimodality, thus
denoting a large estimation error.

7 End-to-end results

Figure 3 presents a comparison of the performance of var-
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Figure 3. Comparison of the SINR loss for different covari-
ance matrix estimation methods.

ious CM estimation methods in terms of SINR loss. The
scenario considered is the same as the first scenario of
Fig. 1. In all cases, the filter considered has the same ex-
pression,

w = R−1
y v (34)

where v is the target steering vector and the CM Ry is re-
placed with an estimate or the clairvoyant CM. The classi-
cal sample CM [22], complemented with diagonal loading
to cope with the limited number of training samples, is de-
noted by SCM+DL [10]. The estimate obtained using the
proposed method, where the clutter reflectivity is estimated
using a single iteration of the ML iterative solution, is de-
noted by “ML (single iteration)”.

As can be seen, the SCM+DL method fails due to the
range-dependence of the clutter distribution and due to the
very limited number of available training snapshots. The
proposed method results in a SINR loss that is almost iden-
tical to that of the clairvoyant case.

8 Summary and conclusion

We propose a new method to estimate the clutter covariance
matrix (CM) in the presence of range-dependence effects
(due both the ground cover variation and to geometric ef-
fects). The method relies on the knowledge of the structure
of the CM to obtain an approximation of the ML estimate
of the CM of the data. An estimate of the true ML solution
is be obtained as the results of an iterative hill climbing
method, using, e.g., the Expectation-Maximization algo-
rithm. We approach this using a single iteration. Due to
the ill-posed nature of the problem, the estimation needs
to be regularized. We achieve this by performing a spatial
averaging. The estimated clutter scattering coefficients are
very close to the estimated ML solution. Moreover, a sig-
nificant reduction of the computational burden is achieved
by using a single iteration.

The method relies on a model and will of course fail
if the model is inaccurate. This is the case in the presence
of target and the corresponding ranges should be removed
before proceeding to the spatial averaging step.



Finally, the proposed method is shown to provide a
CM estimate that performs nearly as well as the clairvoyant
CM in terms of SINR loss, which indicates that the result-
ing filter will have nearly-optimal detection performance.
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