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Summary

Rotating electric machines play an increasing role in our daily lives and in all power
levels such as power generation, boats, submarines and vehicles propulsion, indus-
trial machinery, medical robotics, space module actuators, door actuators, etc., for
civil applications as well as military applications. Their small size, their robust-
ness and theirlife time, their high dynamic performances, their energy efficiency
and their reduced noise levels are some of the many advantages compared to tradi-
tional combustion engines and hydraulic actuators.

In recent decades, designs such as permanent-magnet (PM) machines have
emerged thanks to the manufacturing progress and the reduction of rare-earth mag-
net costs. In some applications, such as vehicle propulsion, the polyphase PM ma-
chines present important benefits compared to other machine types: high-torque
density (ratio between the peak torque and the required machine mass), no rotor
electrical-circuit (that would introduce manufacturing costs and that would require
a connection system such as brushes and slip rings) resulting to compactness gain,
and simple control methods. An optimal and stable torque, with small losses, can
be reached by the use of a digital controller commanding a polyphase voltage-
source inverter (VSI). The optimal control requires however the knowledge of the
rotor position. This position can be measured by dedicated position sensors me-
chanically mounted on the rotor shaft (such as encoders or resolvers) or placed in
the rotor iron-block (such as hall-effect sensors or field-measurements windings).
These additional sensor devices are often fragile (relative to mechanical vibrations
and temperature variations, resulting to early aging) and they introduce a risk of
failure (leading to possible invalid control and dramatic damages), they require
space (cabling and processing in addition to the sensor device) and they have a
cost (purchase price and maintenance costs).

Intensive research is therefore performed in order to remove these sensors and
replace them through the development of so-called position-sensorless methods,
also called position-self-sensing methods. The latter terminology is preferred in
this document since it reflects the principle: some electromagnetic phenomena in
the machine, that vary with the rotor position, are used to estimate that position.
These phenomena can be observed and the position can be tracked from measurable
electrical variables, such as currents and voltages at the machine terminals. Mots
of the methods use the same sensors as those used by for the control. Some other
methods use additional current or voltage sensors dedicated to the self-sensing op-
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erations. All these self-sensing methods also benefit to hostile environment appli-
cations thanks to their increased reliability or can be used for emergency operations
in case of sensor failures.

Many of the self-sensing strategies are based on the back-electromotive force
(back-EMF), that is defined as the voltage induced by the magnetic field produced
from the rotor side. In synchronous machines, such as PM machines, the back-
EMF is a reliable source for the estimation since it is closely related to the rotor
position. The magnitude of this phenomenon is however related to the rotation
speed. Therefore, the position information becomes inaccurate at low speed, and
completely vanishes at standstill.

Latest and promising self-sensing strategies make use of high-frequency volt-
age signals, injected in the terminals in addition to the power signals used for the
rotation-drive control (also called fundamental-signal control). They are reliable
over a wide speed range from standstill. The measurements of the related high-
frequency current response allows to identify the orientation of a phenomenon
called magnetic anisotropy, that is generally related to the rotor position. This
anisotropy is particularly pronounced in many PM machines, mainly due to mag-
netic saturation effects in the iron, and in many other machines with salient poles.
These strategies however come with several new problems and issues that are, for
many, still in the top of the research topics.

This Ph.D. thesis summarizes a research work focusing on the anisotropy-
based self-sensing methods using high-frequency signal-injections without addi-
tional sensors. Different types of signals were implemented, such as the so-called
test pulses, rotating and pulsating signals, at different frequencies. The progress
was closely related to the issues faced during the implementation of the methods on
a challenging experimental Brushless DC (BLDC) motor, that is a specific type of
PM machine. Among them, we have the misalignment between the rotor position
and the anisotropy, whose orientation is identified by the high-frequency signals.
This can be due to significant load currents in the stator or to space harmonics in
the magnetic field and in the stator winding distribution. This misalignment causes
errors in the estimated position, to be considered or compensated before its use in
the rotation-drive control. The theory of this misalignment is largely developped
in this thesis. Another important issue is consequent to nonlinearities in the volt-
age supplied by the VSI, resulting in identification errors. Compensation of some
nonlinearities and prevention strategies from other non compensable ones is intro-
duced in this thesis. Another issue comes from the impact of the resistor and the
eddy currents in the identification operations. Their analysis are combined with a
last issue related to the separation between the signals for the self-sensing opera-
tions and the signals for the rotation-drive operations. It is shown that these issues
are significantly improved using the highest possible frequency for the signal in-
jection, that is one third of the sampling frequency (for rotating signals) or half the
sampling frequency (for pulsating signals) used for the digital operations.

Many of these issues are often neglected, or partially considered, in most of the
self-sensing control methods found in the recent state-of-the-art. Due to their sig-
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nificance during the research experimentation, it was however required to consider
all of them together. This lead to many questionings and analysis of the phenom-
ena in order to propose efficient solutions. These solutions are largely detailed in
this thesis. Note that they can be generalized to other machine characteristics and
many machine types. This is the contribution of this work.
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abbreviations
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Chapter 1

Introduction

1.1 The Research Context

1.1.1 Overview of the applications

We are surrounded by rotating electric machines of all powers and all types in a
lot of applications [1]. The highest powers of hundreds of MW (Mega Watt) are
delivered by huge alternators in the power production plants. The wind turbines
deliver some MW, generally produced by induction machines, possibly double-fed
in order to remove the gearbox, or increasingly by permanent-magnets (PM) ma-
chines through AC/AC converters. Medium powers of tens of kW (kilo Watt) are
found in electric and hybrid vehicles, submarines and boats propulsions, for civil
and military applications. They were previously powered by DC motors or induc-
tion motors, but more and more by PM synchronous motors. Similar power levels
are also found in industrial machinery, pumping or compressing applications, etc.
Low powers of hundreds or tens of Watts are found in robotics and in small actu-
ators, found in transportation, domotics, medical, entertainment sectors. They are
generally powered by DC, Brushless-DC or stepper motors. We see here the huge
fields of applications of the electric machines, explaining the intensive researches
performed on their design and their control methods.

In contrast with most of the large power generators and many industrial appli-
cations with constant rotation speeds, many of the mentioned applications require
variable speed controls. This means that the machines have to operate smoothly
and efficiently at different speeds defined by the user. This is required for the vehi-
cle traction, high-precision robotic applications, but also for the aleatory operating
conditions of the wind turbines. These variable speed operations have been largely
improved by the use of power inverters and, more recently, digital controls, offering
an important flexibility in the implementations.

In the context of energy savings and cost reductions, the efficiency and the
maintenance costs are two critical factors in the choice of the machine type for
medium and higher powers in civil applications. Thanks to their high robustness
and reliability, the induction machines with squirrel cages substituted the brushed
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16 CHAPTER 1. INTRODUCTION

DC-motors in many variable-speed applications [2]. In low speed conditions how-
ever, they offer generally lower efficiency rates, mainly due to the power losses in
the rotor. In comparison, the motors with permanent-magnets (PM) allow to reach
higher efficiencies, assuming optimal control methods, while benefiting of simi-
lar robustness and reliability levels due to the absence of rotor electrical-circuit
(that would introduce manufacturing costs and that would require a connection
system such as brushes and slip rings). Another strong benefit of the PM mo-
tors are their relative high-torque density (ratio between the peak torque and the
required machine mass) [2]. The price of rare-earth magnets was however an im-
portant drawback until recent decades. Nowadays, the PM machines have become
good candidates in applications where the efficiency increase and the weight re-
duction are crucial points, such as in electric vehicles. Many of the criteria for civil
applications are also valid for military applications [3]. In that context, PM mo-
tors also present strong advantages in terms of robustness and reliability in hostile
environments [4].

1.1.2 The optimal control issue

The so-called optimal control of machines is defined as a control point delivering a
constant torque with the lowest losses for a fixed torque instruction. This definition
is valid for any type of machine. This optimal point can be reached using advanced
digital controllers and efficient power inverters. These units allow to regulate accu-
rately the currents in the machine in order to control the produced torque following
the desired user instruction. In case of some AC machines, such as the PM ma-
chines, this solution however requires the knowledge of the rotor position (i.e. the
rotor angle with respect to a reference orientation) in order to adjust the currents as
a function of the magnetic field produced from the rotor. Traditionally, this posi-
tion is measured by dedicated position sensors mounted mechanically on the rotor
shaft (such as encoders or resolvers) or placed in the rotor iron-block (such as hall-
effect sensors or field-measurements windings). These dedicated sensors present
however many disadvantages [5, 6, 2, 1, 7]:

• due to their proximity with the machine, they must endure mechanical vibra-
tions, temperature variations and possible corrosive or hostile environments,
although they are often quite fragile regarding the machine itself, resulting
to early aging and risk of failures. These failures may lead to invalid con-
trol operations, mainly blocking suddenly the rotation or leading to blinded
control, that can result in dramatic damages ;

• if they are mounted on shaft, they inevitably require dedicated space, what
is not always possible or recommended in applications such as for wheel
motors. Moreover, dedicated cabling and processing are required, which
brings an additional risk of failure and noise ;

• finally, all these tools have a purchase price. They also require maintenance
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that have costs and that may interrupt the drive.

In order to maintain the advantages that the AC of machine, or simply to improve
their reliability with respect to the demands, intensive research is therefore per-
formed in order to remove these sensors and replace them through the development
of so-called position-sensorless methods, also called position-self-sensing meth-
ods. In our opinion, the expression sensorless can be confusing, since only the po-
sition sensor is removed, while other voltage and current sensors are still needed.
These voltage and current sensors are generally made with simpler technologies,
resulting in more robustness, and can be placed on the side of the power supply, dis-
tant from the machine and its environment. Moreover, the latter terminology “self-
sensing” better reflects the principle: some electromechanical phenomena in the
machine vary with the rotor position. Some of these phenomena can be observed
from measurable electrical variables, such as currents and voltages at the machine
terminals, and used to provide an estimation of the position position. Thanks to
their increased reliability, the self-sensing methods are strongly advised in hostile
environment applications [2], such as many military applications [3]. But they
can also be used in combination with traditional position sensors for emergency
operations in case of sensor failures [7], called fault-tolerant operations.

1.1.3 Self-sensing solutions

Technically, the simplest solution consist to perform the position estimation us-
ing the same current and voltage sensors as those used for the optimal control.
This can be quite easy to implement without modification of the drive setup. By
consequence, it can be implemented in existing applications without much effort.
Moreover, different possible self-sensing strategies can be quickly tested and com-
pared. Some methods however use additional current, current-derivative or voltage
sensors dedicated to the self-sensing operations. If feasible, the main advantage
is that the accuracy of these dedicated sensors can be especially selected for the
measurements of the signals used for the self-sensing operations. But their dis-
advantages are very similar to those described for the traditional position sensors.
Other methods use the same current and voltage sensors as the optimal control,
but require additional samplings or modified operations of the power converter.
The implementation of these solutions heavily depend on the existing hardware
specifications. In the frame of this thesis work, in order to optimize the research
and the time, we decided to focus on the first type of solutions, using the control
current and voltage sensors without any hardware modification or any special re-
quirements. Note that the quality of the sensors use in our experiments were quite
poor, leading to reduced resolutions. This constraint forced us to develop extremely
robust methods with respect to the measurement resolutions.

In PM machines, there are mainly two phenomena that can be used as sources
of position information:

1. the back-electromotive force (back-EMF), defined as the voltage induced
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The blue dashed lines represent the path drawn by the space vectors when δi rotates.

by the PM contribution to the magnetic field and produced from the rotor
side. It is written ePM using complex space-vectors (the concept of com-
plex space-vectors is largely introduced in this thesis and offers very power-
ful mathematical tools) and it is illustrated in an equivalent electrical-circuit
model in Figure 1.1. The back-EMF is a reliable source for the estimation
since it is closely related to the rotor position. This phenomenon is not re-
stricted to PM machines, but it exists in any synchronous machine, where the
back-EMF is defined as the voltage induced by the rotor-circuit contribution.
The back-EMF however suffers from an important limitation: it vanishes at
standstill, making any direct attempt to estimate the position impossible (ex-
cepted through predictions based on dynamic models, for a limited period of
time). However, the knowledge of the rotor position is essential for smooth
startup operations, or simply when a load torque must be maintained con-
stant at standstill, or at very low speed. For these situations, another source
of position information is therefore required ;

2. the magnetic anisotropy, defined as variable inductive relations depending
on the orientation the current signals in a space vector frame. From a phase
point of view, the magnetic anisotropy is related to differences in the induc-
tive behaviour along the different phases. The self-inductance l is illustrated
in an equivalent electrical-circuit model in Figure 1.1. In practice, most of
the anisotropy-based self-sensing methods use variations of the incremental
self-inductance lt, linking small stator-currents δi to their small contribu-
tions to the magnetic flux δψ

S
in the space-vector complex frame. Figure 1.2

illustrates the difference of the incremental self-inductance between two ex-
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trema directions, denoted by the the axes x and y. The anisotropy angle
ϕx provides an approximation of the rotor-PM orientation. The magnetic
anisotropy is mainly due to two characteristics:

• to physical variations of the air-gap space between the rotor and the
stator parts of the machine. These variations can be due to a design
saliency of the rotor or to teeth between conductors slots. The saliency
is generally pronounced in synchronous machines, but it can very small
in some PM machines, for example in machines where the PM are
placed on a smooth rotor surface, such as the Brushless-DC motors ;

• to variations of saturation levels of the iron. Most of the PM produce
noticeable saturations that is linked to their location in the rotor.

It is assumed that the anisotropy yields reliable information about the ro-
tor position. In practice however, it is not so simple and significant devia-
tions between the anisotropy angle and the rotor position can be observed.
We propose to refer to this by anisotropy misalignment. This issue consti-
tutes a large part of this thesis. Beside some issues in signal processing, the
anisotropy should not be affected by the rotation speed. Solutions based on
anisotropies should thus be reliable over a wide speed range from standstill.

Since the back-EMF-based methods are already sufficiently mature to our opinion,
we focused in this study on the second source of information that is the magnetic
anisotropy. Much work remains to be done for that, since the identification of the
rotor position based on the anisotropy brings many new issues that remain to be
solves and to be validated for industrial applications.

In order to identify the magnetic anisotropy for the position estimation, one
strategy consists to inject high-frequency voltage signals in the terminals in addi-
tion to the low-frequency power signals used for the control. In order to distinct
both signal types, authors refer to the control signals as fundamental-signals. We
prefer however to refer to them as rotation-drive control-signals, since it may con-
tent a larger spectrum than a simple fundamental: other harmonics in the spectrum
can be added due to transitory operations (such as variations in the load torque or
in the torque instruction, required for example in the case of an acceleration) or
also due to phenomenons such as nonlinearities in the power source. The high-
frequency signals required for the anisotropy identification are simply referred to
as signal injection.

1.1.4 Self-sensing in position/speed controls

We addressed the self-sensing from the point of view of optimal torque control.
Another control aspect must also be to point out concerning the speed and the po-
sition control. Some drives, such as many robotic applications, require an accurate
control of the speed or the position of the machine. The self-sensing solutions can
also be applied in that case instead of using dedicated speed and position sensors.
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The position estimation is therefore not only used to compute the optimal torque,
but it is used in feed-back loops controlling speeds and positions. The speed is
generally obtained from an observer using, in input, the estimated rotor position.
The observer can eventually include dynamic models of the machine in order to
improve the speed estimation. This benefit of the self-sensing is valid for any
type of machine [5], that can be PM machines, but also induction machines and
DC-motors [8]. The solution to track the rotor position in case of induction ma-
chines and DC-motors are however limited to small magnetic anisotropies mainly
related to rotor teeth. The small amplitude and the high-harmonic content of the
anisotropies in these cases bring some further issues that are not met in PM ma-
chines. Some references focus on these questions and are mentioned in this thesis,
but it is not further addressed.

Let us highlight here a third source of rotor-position information specific to
double-fed asynchronous machines: thanks to their double circuits, one at the ro-
tor and the other at the stator, the relative shift between these circuits provide an
additional source of information, used by [9]. This source exists in any machine
with connection to the rotor and can certainly be used in synchronous machine with
wound rotor, but we did not find references about this. Note that these machines
are generally less robust because of the slip rings required for the rotor connection.
Other types of connections using the coupling of two machines also exist, but these
solutions greatly deviate from the studied applications of the PM machines.

1.2 Technical Overview

1.2.1 Main issues and contributions

As introduced previously, this Ph.D. thesis summarizes a research work focus-
ing on the anisotropy-based self-sensing methods using high-frequency signal-
injections without additional sensors. Different types of signals were implemented,
such as the so-called test pulses, rotating and pulsating signals, at different fre-
quencies. All these types of signals have their advantages and their drawbacks,
depending on the application.

The progress of the work was closely related to the issues faced during the im-
plementation of the methods on a challenging experimental Brushless DC (BLDC)
motor, that is a specific type of PM machine described in the next subsection.
Among the issues, we have the significant misalignment between the rotor position
and the anisotropy, whose orientation is identified by the high-frequency signals.
This is firstly due to significant load currents in the stator that leads to an error shift
with respect to the real position of the rotor, but also to space harmonics in the mag-
netic field and in the stator winding distribution leading to an oscillating error in the
position estimation. This last error is illustrated in Figure 1.3 by the anisotropy an-
gle ϕx as a function of the rotor position located by its quadratic angle ϕq. These
misalignments can be neglected in certain machine designs, but they are highly
pronounced in the the experimental BLDC motor. They can significantly affect the
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Figure 1.3: Results with the experimental BLDC motor: anisotropy angle ϕ̂x estimated
using signal-injection, as a function of the PM-rotor orientation, related to ϕq.

optimal torque control, reducing its efficiency. They should therefore be assed and
compensated. Many publications analyze the misalignment through finite-element
simulations and address approximate technical solutions. But the theory of this
misalignment is not greatly beloved by the community of researchers. To bridge
this gap, we largely studied the possibility to develop a simple analytical model
that could given instructive information about the phenomenon of the anisotropy.
This development was rather long, providing very interesting models to be used.
But it did unfortunately not leave much time to concretely implement a solution.
Possible solutions are however suggested in this thesis.
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Figure 1.4: Design of the two-level three-phase VSI

Another important issue is due to nonlinearities in the voltage supplied by the
voltage-source inverter, corresponding to deviations between the expected voltage
and the real output voltage. The topology of the two-level three-phase voltage
source inverter (VSI) used in the experiments is shown in Figure 1.4. This type of
inverter operates by switching each phase output between a high-level voltage and
a low-level voltage from the dc-bus input, commanded by pulsewidth modulated
(PWM) signals. The self-sensing methods require an accurate knowledge of the
supplied voltage. For cost and reliability reasons however, the voltage is often not
directly measured. In that case, self-sensing operations rely on the command volt-
age sent to the ship generating the PWM. The behavior of the VSI is however not
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perfectly linear. The two main nonlinearities are the voltage drops that exist across
the semiconductor devices and the inherent commutation times of the switching
devices to turn on and to turn off. In order to avoid that the switching devices
of the two levels are simultaneously conducting, and so to prevent dc-bus short-
circuit, it is indispensable to add a delay to the turn on moments of the switching
devices. As a result during a short period of time called dead time, both switching
devices remain blocking. Both voltage drops and dead times can be compensated
by using approximate estimation values. But these compensations are however not
valid when the current of one phase crosses zero. The zero-crossing reveals an im-
portant nonlinear effect referred to as zero-clamping effect: if the current reaches
zero during the dead time, it is clamped to zero for the rest of the dead time. This
phenomenon is not easy to model as the topology of the machine is changed with
one disconnected phase. Moreover, the pulse-width modulation (PWM) technique
used to command most of the VSI results in small current ripples between two
samples, illustrated in Figure 1.5. These ripples are generally not measured and
they complicate any attempt to predict the zero-crossings and, by consequence, to
compensate for the zero-clamping effect. This problem was amplified due to the
relatively low voltage operations required for the experimental BLDC motor and
due to significant dead times in the supply operations. This has two consequences:
firstly on the rotation-drive operations, leading to strong disturbances in the control
signals and in the optimal operations. Secondly, on the self-sensing operations that
became inaccurate. The problem was very annoying in our experimental setup and
could probably be solved by adding dedicated voltage sensors. But the addition of
sensors however brings all the issues addressed about the traditional position sen-
sor. Moreover, voltage sensing could reduce the problem, but cannot removed it.
No satisfying solution was found in the literature for our experimental conditions.
In order to overcome this problem, the solution proposed in this thesis consists to
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estimate the amplitude of the current ripples and to add an offset in the current
reference in order to maintain the current ripples far enough from zero. This offset
is selected in order to minimize its impact on the torque and the performances of
the machine.

Another issue comes from the impact of the resistor and the eddy currents in
the identification operations. They are generally neglected in self-sensing opera-
tions using high-frequency signals, assuming a purely inductive behaviour of the
machine circuit. In practice however, they can lead to estimation errors. This topic
is addressed in some publications, but we propose a further analysis based on a
discrete-time model that we develop in this thesis. The issue of the resistance can
be combined with a last issue related to the separation between the signals for the
self-sensing operations and the rotation-drive operations. It is shown that these is-
sues are significantly reduced using the highest possible frequency for the signal
injection, that is one third of the sampling frequency (for rotating signals) or half
the sampling frequency (for pulsating signals) used for the digital operations. We
proposed a very simple and very reliable solution based on discrete-time opera-
tions and FIR filters. The efficiency and the robustness are verified in the drive
of the experimental BLDC motor, including all the problems due to the low sen-
sor resolution, due to anisotropy misalignment and due to the nonlinearities of the
voltage-source inverter. This is the most relevant contribution of this work.

1.2.2 Experimental bench

Figure 1.6: Experimental BLDC motor.

The experiments are performed on a 3 kW three-phase in-wheel motor brushless-
DC (BLDC) motor with P = 14 pairs of surface-mounted permanent-magnets in
an outer rotor, presented in Figure 1.6. It was developed by the company Tech-
nicréa, France, for the propulsion of small vehicles and initially intended for the
project Vélapac of the company SERA (Société d’Etude et de Recherche Automo-
bile). This is a 14 inch diameter cylindrically shaped motor and it weighs 13.5 kg.
The yoke is made of sheet of FeSi (type Ugine 250-35HA) and the PM are made of
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Nd-Fe-B, producing peak magnetic fields of 0.66 T in the air-gap. It is cooled by
forced air convection. The rated torque is 150 Nm from standstill to 191 rpm, cor-
responding to a rated stator current of 134 A. The maximum torque decreases down
to 57.3 Nm, corresponding to a rated stator current of 55 A, when the rated rotation
speed is of 500 rpm is reached, corresponding to a rotation electrical-frequency of
14× 500/60 = 116 Hz. The motor performance is 91 % at 500 rpm.

The motor is fed with an IGBT voltage-source inverter (VSI) from SEMIKRON
(model SKM 50GB123D with a rated current of 50 A), which is supplied by a DC-
bus voltage set around vdc = 50 V. Owing to the relatively small inductance of
the motor, the manufacturer Technicréa recommends not exceed a DC voltage of
vdc < 72 V. This voltage is supplied by a thyristor power rectifier from ACEC
(model REDACEC S, that is initially a power driver for DC-motor). The pulse-
width modulated (PWM) signals commanding the IGBT of the VSI are generated
by a DSP controller unit from Texas Instruments (model TMS320F240DSP) set in
a dSpace card (model DSP103 PPC Controller Board).

The same dSpace card is used to measure the phase currents at the machine
terminals, the DC-link voltage of the power rectifier and to perform the digital
control operations. The maximum sampling frequency for the current measure-
ments is νs = 13 kHz (obtained experimentally). This frequency is mainly limited
by the time required to perform the computations, that must be lower than the sam-
pling period Ts = 1/νs minus all the delays of the input/output operations. The
self-sensing control method has been implemented using partly Simulink codes
(Matlab R13 with Simulink 5.0.2) and mainly C codes, compiled and loaded in the
card (Real-Time Workshop 5.0.1).

The BLDC motor is equipped by hall-effect sensors from Honeywell (400SS
Series), but they are not used in this study. The position estimated by the self-
sensing operations are compared to the position given by a 8192-pulses incremental
encoder from Sick|Stegmann (model DRS61-A4A08192).

1.2.3 Flow chart of the self-sensing control

The anisotropy angle ϕx can be estimated by the injection of high-frequency sig-
nals in addition to the low-frequency voltage computed by the normal rotation-
drive operations. The resulting high and low-frequency contents of the current
response are filtered for self-sensing and rotation-drive operations.

Figure 1.7 gives an overview of the self-sensing control operations using signal-
injections in flow chart, including the different issues addressed in this work. Start-
ing from the upper left part of the flowchart:

• The speed controller computes a current-amplitude instruction i??c from the
error between the user speed-instruction ω?c and the estimated PM rotation
speed ω̂q ;

• The current instruction is oriented following the estimated angle ϕ̃q, corre-
sponding to the torque-producing orientation related to the rotor-PM posi-
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tion ;

• A zero-crossing prevention block computes a new current instruction i?c by
adding an offset in order to prevent the zero-crossing nonlinearity of the
power inverter ;

• The current controller computes the voltage command v?c from the error be-
tween the current instruction and the filtered current input ic ;

• A high-frequency voltage v?i is added to v?c , and the total voltage command
v? is sent to the block driving the power inverter ;

• If the voltage applied to the machine is not measured, the inverter nonlineari-
ties should be compensated in order to improve the correspondence between
the command voltage and the output voltage from the inverter ;

• The additional high-frequency voltage v?i produces a high-frequency current
variation ii in addition to the low-frequency current ic used for the rotation
control. Both are separated by applying low-pass and high-pass filters ;

• The high-frequency current ii is used to compute the estimation of the anisotropy
angle ϕ̂x ;

• An observer is used to provide an estimation of the rotor-PM speed ω̃q and a
filtered estimation of the angle ϕ̃q, possibly taking the misalignment of the
anisotropy into account.

1.3 Thesis Plan

This thesis is organized in four chapters, described hereafter. This organization
does not correspond to the steps of the work progress, but to the sequence of con-
cepts successively required to understand the issues met in the self-sensing imple-
mentation.

Chapter 2, entitled “Electromagnetic Model”, addresses the modelling of the
electromagnetic phenomena in the case of cylindrical machines with nonlinear
magnetic characteristics. Relations between the magnetic flux linked by one phase
coil and the different magnetic contributions, that are the stator current and the per-
manent magnets for the PM machine, are developped. Special attention is given to
linearized relations around working points, leading to the definition of incremental
relations. These relations are extended to polyphase machines using the concept of
space vectors to represent the phase values. This leads to the concept of anisotropy,
represented by the anisotropic incremental self-inductance factor between the small
current and their contribution to the linked flux. The relations are further simplified
for the case of a three-phase machine without neutral connection. The incremental
self-inductance therefore takes the form used in self-sensing operations. Through
this chapter, we want to reintroduce the concept of space vectors and to illustrate
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their potential for any number of phases. We want also to show the origin of the
anisotropy, that is the basis of the considered self-sensing strategy. This allows
to understand the causes of the anisotropy misalignment and to assess them in the
case of the experimental BLDC motor.

Chapter 3, entitled “Electrical Circuit Model”, addresses the modelling of the
relation between the currents and voltages at the machine terminals, firstly neglect-
ing the eddy currents and secondly including them. Since the operations are per-
formed by digital computation devices, the initial continuous-time model is sub-
stituted to a discrete-time model. Special attention is given to parameter distor-
tions due to the discretization and due to the pulsewidth modulation of the voltage
source, in particular for the case including eddy currents. The signal-injection
methods mainly identify an impedance (or inversely an admittance, depending on
the point of view), that can be modelled in equivalent apparent inductive and resis-
tive effects. The theoretical variations of these apparent parameters as a function
of the signal frequency are compared to measurements performed on the experi-
mental BLDC motor, in order to validate the models. This chapter does not present
any issue nor solution required for the self-sensing, but highlight the phenomenon
of apparent parameter variations, that are experimentally observed. Through this
chapter, we want to show that the discretization of the model in case of large eddy
currents is not an obvious operation, and that its validity is not guaranteed. We
propose therefore a tool allowing to assess the validity from the knowledge of the
continuous-time model parameters.

Chapter 4, entitled “Voltage-Source Inverter”, addresses the working of the
conventional two-level three-phase voltage-source inverter (VSI) based on IGBT
commanded by conventional pulsewidth-modulated (PWM) signals with a fixed
frequency. This is not the only type of power inverter nor the only type of command
signals, but it is a proven and widespread industrial solution until now. Moreover, it
is used in the experimental drive. The different nonlinearity issues met in that type
of PWM-VSI are introduced. The most problematic is referred to as zero-clamping
effect and occurs when a phase current crosses zero. By consequence, two meth-
ods to prevent zero-crossings are proposed and implemented for the experimental
drive. Note that the presented issues are strongly related to the PWM-VSI type.
They could possibly be removed using newer VSI types, or by the possible future
manufactures of new and more efficient semiconductors.

Chapter 5, entitled “Signal Processing”, addresses firstly an overview of the
vector controls and of different self-sensing methods. The case of the high-frequency
signal-injected is secondly addressed in details. Concrete self-sensing operations
are introduced depending on the type of injected signal. Different issues are ad-
dressed: the problem of the measurements noise, the separation between self-
sensing and rotation-drive operations, the impact of the resistance, the sources of
disturbances, the computation requirements, the robustness and the settling times.
All these issues are analyzed regarding the case of the experimental drive for dif-
ferent types of signals (rotating, pulsating and alternating) at different frequencies.
Through this chapter, we firstly want to justify the choice of the signal injection for
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the experimental case. It is however not the only solution and we propose compari-
son tables, since others solutions could be more advised for other drive conditions.
The quality of the position estimation is illustrated by experimental results.



Chapter 2

Electromagnetic Model

This chapter addresses the electromagnetic model of the permanent-magnet (PM)
machine. This model describes the relation that exist between the different mag-
netic sources in the machine and the magnetic flux linked by the stator coils, named
phases. In a permanent-magnet (PM) machine, the magnetic sources are the PM
mounted in the rotor and the currents flowing in the stator coils. This relation
may present nonlinear and anisotropic properties, that are defined in this chap-
ter. The electrical torque due to the interaction between the magnetic field and
the currents flowing in the coils is also introduced. This model provides essential
mathematic tools to understand the behaviour of the machine in order to introduce
control schemes and self-sensing methods in the last chapter.

2.1 Introduction

The concept of space vectors is widely used in machine control to describe the
relations between the electromagnetic values [10, 11, 12, 13, 1]. This concept is
also referred to as two-dimensional equivalent values or space phasors in some
publications. It provides a significant simplification tool for the relations, espe-
cially for three-phase machines. This concept was initially addressed with the ap-
proximation of fundamental magnetomotive-force distributions by R. H. Park in
1929 [14, 15, 16, 17], and assuming synchronous operations, i.e. sinusoidal vari-
ations of the power signals. The first approximation is equivalent to assume that
the magnetic field and the conductor distributions in the stator can be modelled by
fundamental sinusoidal functions on the pole-pairs, as described by J. Holtz [18].

Many authors continue to maintain this approximation, even for recent vari-
able speed drives and for machines where it could not be valid. In the early 20th
century, this choice was only dictated by limitations of the analog control devices
used at this time, and not to mathematical restrictions. The concept provides in fact
very interesting relations also for machines presenting significant harmonics. The
modelling in that case can be initiated by Fourier series developments of the differ-
ent design characteristics and the different electromagnetic phenomenon occurring

29
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all around the space separating the stator and the rotor, called the air-gap. These
series provide results that can be easily related to the concept of space vectors, that
is extended for the occasion. In a similar way, this methodology was proposed by
G. Maggetto [19] in 1973 and by H. R. Fudeh [20, 21, 22] in 1983, in order to
estimate the oscillations in the torque during synchronous operations. The consid-
eration of the harmonics is of first important in some machines designs, such as
in concentrated windings topologies or in recent brushless DC motors. They can
significantly affect the behaviour of the machine and results in oscillating errors in
the position estimated by self-sensing methods. This is addressed in this chapter.

Another widespread simplification in the machine modelling consist to ne-
glect the nonlinear magnetic characteristics linking the magnetic sources to the
produced magnetic B-field, and corresponding to magnetic saturations in the iron.
This choice is only justified by the strong complexity to find simple models of
the saturation. These nonlinear magnetic characteristics are however an important
contribution to the anisotropic properties of the machines, that are expected for
certain self-sensing methods. It can moreover be the only source of anisotropy in
the case of surface-mounted PM. Many authors dealing with anisotropy-based self-
sensing methods must assume the magnetic nonlinearities, but simplifies the model
assuming that the magnetic state of the machine is mainly function of the PM field,
neglecting the contribution of the stator currents. This contribution may however
affect the magnetic state and result in a shift of the anisotropy orientation used to
estimate the rotor position, as discussed in [23] with a model based on magnetic
co-energy. This is also addressed in this chapter.

In the vast number of recent publications, the space vectors description are
often very short using variable formalisms, and restricted to the fundamental model
approximation. In this chapter, we propose therefore to clarify the description
of the concept in a simple formalism. In a first time, the concept is generalized
for an arbitrary n number of phases and taking the harmonics into account. It is
reduced to three-phase machines only in a second time, leading to a more intuitive
expression of the anisotropy. This anisotropy yields an orientation that can be used
to estimate the rotor position. This orientation is affected by the two mentioned
subjects: harmonics, leading to anisotropy oscillations, and nonlinearities, leading
to anisotropy shifts. For convenience, both effects are referred to as anisotropy
misalignments in this document.

∼

This chapter is organized as follows: the section 2.2 introduces elementary
descriptions of the design and the topologies of different electric machines, in-
cluding the brushless DC (BLDC) motor ; Section 2.3 introduces some important
assumptions for the modelling and describes several relations from the point of
view of the stator coils, referred to as stator phases. Among them, we have the
relation between the magnetic field and the magnetic flux linked by one coil, the
nonlinear relation between the magnetomotive forces and the magnetic field, the



2.2. ELECTRIC MACHINE DESIGNS 31

axis
rotation

air−gap

front−edge

back−edge

stator/rotor

core

rotor/stator

yoke

Figure 2.1: Illustration of a rotating electrical machine with cylindrical shaped parts.

corresponding incremental relation useful for anisotropy-based self-sensing the-
ory, and the expression of the electrical torque ; Section 2.4 introduces the concept
of space vectors for polyphase machines, assuming any number of phases and in-
cluding harmonic aspects. The relations previously described are transposed in
relations between the space vectors ; Section 2.5 specifically develops the relations
for the widespread case of three-phase machines and introduces the mathematical
expression of the anisotropic relation, as further used in this thesis ; Section 2.6 ap-
plies the modelling to the experimental BLDC motor and adjusts its characteristics
by comparing experimental results to simulation results. This allows some draw
some conclusions about the impact of harmonics and stator currents in anisotropy
misalignment ; A summary of the important elements of this chapter is given in
section 2.7.

2.2 Electric Machine Designs

As illustrated in Figure 2.1, a rotating electrical machine is made of two iron parts
rotating with respect to each other. By convention, one part is called the stator
and the other part is called the rotor. The stator is generally the part mounted on
the same pedestal as the power electronic driving the machine. The space that
separates the rotor and stator parts is called the air-gap. Most of the electrical
machines present an inner-rotor design: the rotor is the core of the machine and
is accessible through a rotation axis, while the stator is the yoke surrounding the
core. The reverse outer-rotor design, with the rotor surrounding the stator, is less
common. This is the design of our experimental in-wheel motor, intended for
small car traction, where the rotation is assumed to be transmitted by a tire directly
mounted on the rotor external surface, while the stator replaces the wheel rim and
is fixed to the chassis of the car.

Most of the machines are formed by the assembly of cylindrical shaped parts.
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In other words, the cross-section of the machine is the same at any axial position
between front and back edges. This is the case of our experimental motor. In such a
design, the conductors are laid in parallel to the rotation axis, in slots that are gener-
ally close to the air-gap surface, as illustrated in Figure 2.2 with one coil. Machines
generally contain several interlaced coils, referred to as phases. And, it is assumed
that the magnetic field crosses radially the air-gap and has no axial component. In
less conventional designs (not illustrated), the magnetic field crosses axially the
machine through disks. They are referred to as axial-flux machines. These less
conventional designs are not specifically studied in this document, but most of the
proposed theory could however be adapted and applied to them.

As illustrated in Figure 2.2, an electrical machine is often made by the jux-
taposition of identical structure patterns along the physical angular position Θ ∈
{0, 2π}, where identical electromagnetic phenomenons are repeated. Such a pat-
tern is referred to as pole-pair substructure since the magnetic field loops in that
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place between two locations called North and South poles, crossing the air-gap.
Thanks to the repetition property, the model of a multipole machine can be re-
stricted to an equivalent single-pole-pair representation along an electrical angular
position θ ∈ {0, 2π}. If P is the number of pole-pairs the relation is: θ = PΘ.
This property is however lost if the rotor and stator axes are misaligned (develop-
ments assuming misalignment are found in [24]), if small variations occur between
substructures (such as differences in the aging of permanent magnets for instance)
or if the machine is immersed in a significant external magnetic field. These special
situations are not studied in this document and we assume therefore identical pole-
pairs. Note some interesting designs where the number of identical structures are
not the same at the stator and at the rotor. This is the case of the modular topolo-
gies of some BLDC motors as proposed by [25]. In that case, P is the common
denominator between the stator and the rotor structures.

We distinct two main types of machines depending on the supply strategies at
the stator side: the so-called DC and AC machines. An AC machine is a polyphase
machine generally made of minimum three stator coils, whose windings are dis-
tributed over the circumference of the stator, and presenting at least one connectible
output terminal. In so-called star-connection topologies, the others terminals of
the coils can be connected in one point, often called the neutral point. In so-called
delta-connection topologies, the terminals are connected by peers. The variations
of the currents in the coils are either due to the alternating character of the supply-
ing voltages, or they are controlled electronically by the modulation of an external
DC-bus voltage. The torque in electrical machine is produced by the electromag-
netic interactions between the stator and the rotor. The main part of the torque is
due to the interaction of the stator current with the magnetic field produced from
the rotor. This is produced either by the magnetic reaction in a closed coil located
in the rotor (defining the induction machines, also called asynchronous machines),
by a fixed current flow (DC) in one rotor coil (defining the synchronous machines)
or by currents in polyphase rotor-coils (defining the double-fed asynchronous ma-
chines). The current flow in the rotor coils can be replaced by permanent-magnets
(PM), leading to the so-called PM synchronous machines (PMSM). Variations of
the reluctance in the machine, mainly due to salient pole designs at the rotor, also
produce a torque (defining the reluctance motors). Only a small part of all the AC
machines types are mentioned here. A larger overview is found in [26, 27, 2].

A DC machine is generally made of a multitude of windings distributed over
the circumference of the rotor. The current flow in the different windings is com-
mutated mechanically by brushes rubbing on rings, while the global value of the
current flowing through two accessible terminals is controlled externally. In com-
parison to the AC machines, the drive of the DC machines is much simpler, but
this type of machine is generally more expensive and requires a higher mainte-
nance due to mechanical frictions. Note that the electric circuits of DC machines
can be modeled assuming an equivalent high number of phases. This is made by
[28]. The magnetic field from the stator can be produced by a fixed current flow
(DC) in one coil or by permanent-magnets (PM). Note that some machines hold
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additional compensation circuits for armature reactions and damping circuits, that
are not discussed here.

The Brushless-DC (BLDC) machine reproduces the principle of the DC ma-
chine with PM, where the rotor and the stator topologies are inverted (the PM
are in the rotor). The mechanical brushes are removed and replaced by electronic
commutations. The design of the BLDC machine is however closer to an AC ma-
chine than a DC machine, and can be classified among the PM machines (non
synchronous). In order to reproduce a behaviour similar to a DC machine, the
conductors of each phases are generally concentrated in low number of slots. The
reluctance variations due to the teeth separating the slots and the interaction with
the PM may produce significant cogging torque. This effect have an important im-
pact on the quality of the drive [29]. This is the case in the experimental BLDC
motor of this study. The designs can be improved in order to reduce the cogging
torque, such as the modular topology described in [25] or using skewing of the
stator conductors [29].

As explained in the introduction, the PM machines have generally strong ad-
vantages compared to other types: they present high power densities (power with
respect to the size and the weight), robustness and reliability. Their price is mainly
related to the rare magnetic material cost, that decreased during last decades. By
consequence, this work mainly focuses on that type of machine. To our opinion, it
is however important to develop models and strategies that could be possibly ap-
plied to other machines types. This is not specifically mentioned in this work, but
only small adaptations should be required to transpose the model to other designs.

2.3 Electromagnetic Relations

In this section, we develop the analytical relation between the magnetic flux ψp
linked by the coil of one phase, numbered p, with the different magnetic contri-
butions. In a permanent-magnet (PM) machine and neglecting the eddy currents,
these contributions are the currents ip′ flowing in the stator coils of the differ-
ent phases p′, multiplied by stator inductance parameters lpp′ , and the permanent-
magnets on the rotor written ψPM,p. Due to strong nonlinear properties of the
magnetic materials, the relation between the flux variations dψp and small current
variations dip′ can be strongly dependent on the magnetic state of the machine.
Local linearized values of the inductances lt,pp′ , denoted by the lower index t, are
therefore required. They are called incremental inductances or tangential induc-
tances [30, 31]. For convenience all the values and the relations related to small
variations are called incremental in this work. The expression of the torque due to
the interaction between the stator currents and the magnetic field is also introduced
in this section.
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Figure 2.3: Illustration of a surface on the cylinder defined at radiusR and on the machine
length lm; and illustration of the magnetic field vector crossing this surface at one point.

2.3.1 Function of the radial air-gap magnetic-field

The definition of the magnetic flux flowing through a surface S is:

φ(S) ,
∫
S

~B · ~dS (2.1)

The flux linked by a conductor winding is related to the magnetic field flowing
though the surface defined by this winding. Assume a cylindrical shaped machine
and assume that the different windings are located at the average radius R. The
surface S is then located at this radius R, as illustrated in Figure 2.3. As a con-
sequence, the normal vector ~dS is oriented along the radial unitary vector ~1r such
that only the radial component of ~B remains: Br = ~B · ~1r. Neglecting the ax-
ial component of the magnetic field, i.e. ~B · ~1z = 0, the magnetic field is constant
along the axial axis z. The value of the magnetic B-field along S then only depends
on the physical angle Θ. Since every pole-pair repeats the same electromagnetic
phenomenons, the magnetic B-field can be modelled as a function of the electrical
angle θ as follows:

B(θ) , Br
∣∣
S,(θ)

⇒ lmR

P
B(θ)dθ = ~B · ~dS (2.2)

whereB(θ) is the radial magnetic B-fieldBr crossing the surface S at the electrical
angle θ. The flux (2.1) is computed along a physical angle Θ, thus replacing dΘ
by dθ in (2.2) requires the division by P . This function is illustrated in Figure 2.4
assuming an ideal fundamental sinusoidal variation of the B-field along θ.

The Gauss’s law, also called flux conservation law, states that the flux computed
on the closed surface δV of a volume V is zero: φ(δV ) = 0. This implies that the
flux flowing through the whole cylindrical surface at the radius R is zero. Since
the same condition is observed along a single-pole-pair, it states:∮

B(θ)dθ = 0 (2.3)
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Figure 2.4: Illustration of the functions describing the conductor distribution of the coil p
and the magnetic B-field in the equivalent single-pole-pair cross-section.

This is the first condition of the machine model, where it is assumed that the mag-
netic field has no axial component, thus no edge leakage. This assumption is made
in many publications, such as [32, 33].

2.3.2 Function of the conductor distribution

The conductors of each stator coil numbered by p are approached by a distribution
located at the mean radius R and described by the function np(θ). This is illus-
trated in Figure 2.4 assuming an ideal sinusoidal distribution (this is not a realistic
distribution since the punctual location of the slots is not taken into account, but
this is enough for the illustrations). The symbols � and ⊗ denote the current flow
signs in these conductors assuming a positive current flowing at the stator terminals
of the phase, i.e. ip > 0 (this is a convention). We assume that windings of each
coil along the different P pole-pairs are connected in series, such as illustrated in
Figure 2.2. In that case, np(θ) is defined as the number of conductors at every
location θ along one single-pole-pair. The case where windings are connected in
parallel requires some slight adaptations of the relations, adding a factor P . This
is not done here.

In most of the machines, it can be assumed that the conductors are wound by
pairs, such that the integral of np(θ) along the single-pole-pair is equal to zero:

∮
np(θ)dθ = 0 ∀p (2.4)

This is the second condition of the machine model. Note that the conditions (2.4)
and (2.3) are not equivalent and both required for the modelling.
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Figure 2.5: Illustration of the unitary magnetic flux and the linking distribution in the
equivalent single-pole-pair cross-section.

2.3.3 Relation between the flux linked by a coil and the magnetic field

The magnetic flux linked by a coil is defined as the sum of the contribution of the
magnetic fluxes linked by all the windings composing the coil. In order to propose
a mathematical development of the magnetic flux, let us firstly introduce to the
unitary magnetic flux. The unitary magnetic flux is defined as the flux linked by an
unitary winding. As illustrated in Figure 2.5, the unitary winding is defined by one
conductor located at a variable position θ′ paired with a virtual return conductor
located at the origin θ = 0. This virtual conductor is not involved in the flux
linked by the whole coil and its location is arbitrary (but fixed). This is justified
as follows: summing the contributions of all unitary windings, thanks to (2.4), the
total contribution of the virtual conductors on np(θ = 0) is zero. We define the
unitary magnetic flux φ(θ′) as the flux linked by an unitary winding as follows:

φ(θ′) , lm
R

P

∫ θ′

0
B(θ)dθ (2.5)

where lm is the length of the machine, R is the radius of the winding locations.
This definition is chosen such that the unitary flux is positive if the conductor of
the unitary winding located at θ′ is counted positive. Note again that (2.5) neglects
the axial magnetic field flowing through the machine edges. The total magnetic
flux ψp linked by the whole winding distribution of the coil p is then the integral
of the elementary fluxes φ(θ′) multiplied by the number n(θ′) at every location θ′,
multiplied by the pole-pair number P :

ψp , P

∮
np(θ

′)φ(θ′)dθ′ (2.6)

Replacing the unitary winding by its expression (2.5), (2.6) yields:

ψp = lmR

∮
θ′

∫ θ′

θ=0
np(θ

′)B(θ)dθdθ′ (2.7)
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Figure 2.6: Illustration of the slice S in the equivalent single-pole-pair cross-section,
where jp(θ) if the contribution from the current flowing in the phase p and jPM(θ) is the
equivalent contribution from the permanent-magnets to the current density j(θ).

Inverting the successive order of integration yields:

ψp = lmR

∮
θ

(
−
∫ θ

θ′=0
np(θ

′)dθ′
)
B(θ)dθ (2.8)

This expression can be shorten if we introduce the linking distribution Np(θ) as
the following integral of the distribution np(θ′) between θ′ = 0 and θ:

Np(θ)−Np(0) , −
∫ θ

0
np(θ

′)dθ′ (2.9)

As illustrated in Figure 2.5. This distribution is defined within an arbitrary constant
Np(0), but due to the property (2.3), this constant is removed in (2.8) and it yields:

ψp = lmR

∮
Np(θ)B(θ)dθ (2.10)

We obtain here a quite simple expression linking the magnetic flux to the mag-
netic field multiplied by the linking distribution and integrated on a single-pole-pair
revolution.

2.3.4 Relation between the magnetic field and the magnetomotive forces

The integral form of the Ampére’s circuital law states that:∮
l

~H · ~dl =

∫
S

~j · ~dS (2.11)

where l is the contour of an arbitrary surface S, ~j is the vector of the current
density and ~H is the vector of the magnetic H-field. These vectors should not be
confused with the space vectors that are further used in this chapter. As illustrated
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in Figure 2.6, we define the surface S in a slice between the angle θ = 0 and
θ′. Since the currents in the machine flow perpendicularly to the surface S and
assuming that j(θ) models the current density included in an elementary slice dθ,
it yields:

~j · ~dS = j(θ)dθ (2.12)

We introduce the magnetomotive force distribution F (θ′), defined in this work
from the right member integral of the Ampére’s law (2.11) computed on the slice
S:

F (θ′)− F (0) , −
∫ θ′

0
j(θ)dθ (2.13)

It is defined within an arbitrary constant.
Note that this definition of the magnetomotive force is not conventional: it is

generally defined from the left member of the Ampére’s law (2.11), i.e. as the
integral of ~H [19, 27]. This definition is however not convenient in our develop-
ments, justifying this small adaptation. For information, this value is called current
density distribution by [34].

The left member of the Ampére’s law is developped here below firstly in the
case of an unsaturated iron (infinite permeability of the iron) and in the case of a
saturated iron (local diminutions of the permeability).

Unsaturated case

The path l is partly located in the iron of the stator and the rotor, partly located in
the air, crossing radially the air-gap by two angles θ = 0 and θ = θ′. In the air,
the magnetic B-field is linked to the magnetic H-field by a permeability constant
µo = 4π10−7N/A2:

~B = µo ~H (2.14)

In a ferromagnetic medium, such as the iron, the magnetic H-field interacts with
the magnetic dipoles of the medium, producing an auxiliary magnetic field. It is
said that the medium is magnetized. This magnetization can be modeled using a
correction factor µr, called the relative permeability: ~B = µrµo ~H [35]. The left
member of the Ampére’s law (2.11) can therefore be separated in two integrals,
one path inside the air-gap and another path inside the iron:∮

l

~H · ~dl =

∫
lair

~B

µo
· ~dl +

∫
liron

~B

µrµo
· ~dl (2.15)

This relative permeability µr is very variable depending on the iron composition
and on the magnetic H-field intensity, but it is generally be assumed to be much
higher than the unity: µr � 1 [36]. Assuming that the value of the magnetic B-
field is not much increased in the iron compared to its value in the air (thank to the
flux conservation principle), the integral in the iron of (2.15) can be neglected:∮

l

~H · ~dl ≈
∫
lair

~B

µo
· ~dl =

∫
δo(0)

~B

µo
· ~dl −

∫
δo(θ)

~B

µo
· ~dl (2.16)
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where δo(θ) is the radial air-gap length at the angle θ. If the rotor presents saliences
or teeth, the air-gap length δo(θ) then varies also with the rotor position oriented
by ϕd (the exact location of this angle is further discussed), and we can mention it
writing δo(θ, ϕd). Let us define B̃(θ) as the mean of the radial component of the
B-field crossing the air-gap:

δo(θ, ϕd)B̃(θ) ,
∫
δo(θ)

~B · ~dl (2.17)

Combining these results (2.17) and (2.16) with the magnetomotive force (2.13)
yields:

B̃(θ) =
µoF (θ)

δo(θ, ϕd)
(2.18)

The issue of the arbitrary constant F (0) in (2.13) can be neglected in (2.18). This
is justified in the next page.

The impact of the stator slots transposed in an equivalent enlarge air-gap length
δo(θ) is referred to as the slotting effect in the literature. This is largely addressed
in many publications, such as [32, 33, 37, 38].

Saturated case

If a significant magnetic field is however flowing in the iron, the iron magnetization
reaches its saturation level resulting in a reduction of its relative permeability. In
that case, we proposed in [39] to transpose the saturation in an equivalent local in-
crease of the air-gap length δ1(θ, F, ϕd) as a function of the global magnetomotive
force F , referred to as the magnetic state of the machine. Note that “global” means
here that the value of δ1 at the position θ is related to the value of F everywhere,
an not only at θ. The total length at the angle θ is then:

δ(θ, F, ϕd) , δo(θ, ϕd) + δ1(θ, F, ϕd) (2.19)

where we keep the mention to the rotor position ϕd, and it yields:

B̃(θ) =
µoF (θ)

δ(θ, F, ϕd)
(2.20)

The saturation does not occur equally everywhere in the iron. In some machines,
this saturation mainly occurs around the stator teeth separating the winding slots,
since these teeth concentrate the magnetic field in smaller sections, increasing lo-
cally the magnetic field density [40, 41]. In that case, we assumed in [39] that the
saturation is a local phenomenon, such that it can be transposed as a local func-
tion of F (θ), i.e.: δ(θ, F, ϕd) = δ(θ, F (θ), ϕd). This does however not correctly
models saturations occurring more deeply than the winding slots in the stator iron
neither saturations occurring in the rotor iron.
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Constant magnetomotive force

In order to satisfy the flux conservation law (2.3), it is required that F (θ)/δ(θ)
does not have any constant component. Since F (θ) is defined within an arbitrary
constant, this condition can simply be added to its definition. Let us write F0 +
F ′(θ) := F (θ), where F0 is the constant component and

∮
F ′(θ)dθ = 0. It can be

shown that the flux conservation law on (2.20) yields:

F0 = −
∮

F ′(θ)

δ(θ, F, ϕd)
dθ

/∮
1

δ(θ, F, ϕd)
dθ (2.21)

More details can be found in [24]. In practice however, F0 is not required since it
is removed in the computation of the flux linked by the phase windings (2.10).

Leakage factor

If the stator conductor windings are close the air-gap surface (no deep slots), if the
air-gap length is small compared to the radius and if the iron is not saturating, it can
be assumed that the magnetic B-field in the air-gap is purely radial and of constant
value crossing the air-gap path. As a consequence, the mean value of the field B̃(θ)
is assumed equal to the field crossing radially the stator winding surfaceB(θ) [36].
It is however a strong approximation that neglects the azimuthal components of the
magnetic field flowing in the air-gap and flowing around the conductors, between
the stator teeth. These azimuthal components take part to the so-called leakage
field. This leakage field is related to the air-gap length δo, thus it is a function
of the rotor position ϕd in case of saliency, and it is a function of the saturation
level linked to the magnetic state F . In order to take the leakage into account,
some authors introduce a leakage factor κ(θ, F, ϕd) [36], whose inverse κ−1 is
also referred to as the Carter’s factor [19, 42, 37]:

B̃(θ) = κ(θ, F, ϕd)B(θ) (2.22)

Thus (2.20) yields:

B(θ) =
µoF (θ)

κ(θ, F, ϕd)δ(θ, F, ϕd)
(2.23)

A detailed development of κ in the specific case of unsaturated machine with con-
stant air-gap length and sinusoidal magnetic fields (no harmonics) can be found in
chapter 4.7. of [36]. Note that κ can be very different regarding the permanent-
magnet contribution, whose the major part of the field crosses the air-gap, and
regarding the stator current contribution, whose part of the field jumps between
the teeth. By definition, this factor κ models azimuthal phenomenons and cannot
therefore be restricted to a local relationship occurring only at θ. Note also that
they are other sources of leakage, due to rotor skewing effects and to the conductor
loop at the edges of the machine for instance [26].
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Figure 2.7: Illustration of the nonlinear relation between the magnetic B-field B and the
magnetomotive force F .

Final relation

For convenience, let us shorten the relation (2.23) introducing a factor m(θ, F, ϕd)
as follows:

m(θ, F, ϕd) ,
µo

κ(θ, F, ϕd)δ(θ, F, ϕd)

⇒ B(θ) = m(θ, F, ϕd)F (θ) (2.24)

Note that this expression is very general and gives no indication about the mod-
elling of κ nor δ included in m. This modelling requires further investigations
and strongly depends on the machine design. The magnetic analysis of a surface-
mounted PMSM design is proposed by [43]. It proposes a magnetic circuit model
in order to compute the optimal torque design based on a finite-element analysis.
Another analysis is proposed by [44]. The case of saturation occurring mainly in
the teeth of a PM machine is modelled by [41]. It is however difficult to extract
a simple model corresponding to (2.24) with these analysis. A strongly simplified
model of m is further proposed for the experimental BLDC motor.

2.3.5 Contributions to the magnetomotive force

The magnetomotive force F (θ) can be developed as the sum of the different current
density contributions. The contribution of the permanent magnets from the rotor
side can be modelled by an equivalent magnetomotive force (MMF) FPM(θ), as
done in [38, 43, 44]. This model is very convenient for surface-mounted PM, but
should be further analyzed for interior PM [6]. The contribution from the stator
coils to the magnetomotive force distribution can be modeled using the conductor
distributions: jp(θ) = ipnp(θ), where ip is the current flowing at the phase terminal
p. Using the embracing distributions (2.9), it yields: Fp(θ) = ipNp(θ) [27]. The
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sum of the stator coil contribution is written FS(θ) ,
∑

p Fp(θ). Neglecting any
other contribution, the total is: F (θ) = FPM(θ) + FS(θ). If required, the possible
contribution of eddy current or any other additional circuit can be modeled using
their equivalent current densities. It is not done here.

Transposing directly the different contributions to the magnetomotive force in
(2.23) does not model the nonlinear behaviour in an intuitive way. It is preferred
to model the different contributions such as if they could be successively superim-
posed. As illustrated in Figure 2.6, the contribution from the permanent magnets
BPM(θ) is modelled as if it was the only one, leading to a certain magnetic state,
and the phase current contributionsBS(θ) are superimposed to this initial magnetic
state. This can be written: B(θ) = BPM(θ) +BS(θ), where:

BPM(θ) = m(θ, FPM, ϕd)FPM(θ) (2.25a)

BS(θ) = m′(θ, FPM, FS , ϕd)FS(θ) (2.25b)

where m′(θ, FPM, FS , ϕd) is the m factor of the magnetomotive force FS(θ) with
respect to an initial magnetomotive force FPM(θ), as illustrated in Figure 2.7.

Incremental contribution

Control and self-sensing operations also requires to have a model of small signals.
Due to the nonlinearity of m, the relation between the variations of the magnetic
field dB(θ) related to small variations of the magnetomotive force dF (θ) must
be linearized around the magnetic operating point F illustrated in Figure 2.7 [23].
This linearized relation can be written introducing an incremental factor mt:

dB(θ) = mt(θ, FPM, FS , ϕd)dFS(θ)

where mt(θ, FPM, FS , ϕd) ,
∂(m(θ, FPM, FS , ϕd)FS(θ))

∂FS
(2.26)

Note that only the variations due to dF are assumed here, while mt is assumed
constant. In a more general consideration however, variations of mt may also
contribute to dB. This is developed in the next chapter 3.

The concept of magnetic anisotropy is directly linked to the variations of mt

along θ, as developped in section 2.4. Observe here that mt depends on three fac-
tors: the rotor position ϕd, the contribution from the permanent-magnets FPM and
from the stator currents FS . At this point, the orientation of FPM is still not de-
fined. In permanent-magnet synchronous machines, the permanent-magnets (PM)
are fixed to the rotor and ϕd can then be defined as the angle of the PM axis. The
equivalent MMF distribution FPM of the PM varies very slowly due to tempera-
ture variations or aging of the PM, but it can generally be assumed constant. The
dependencies of mt can be therefore restricted the PM-rotor angle ϕd and to FS :
mt(θ, FS , ϕd). If FS is negligible regarding FPM, the variations of mt are mainly
function of this angle ϕd: mt(θ, ϕd). This property is used in motion-self-sensing
methods based on the anisotropy in order to extract the rotor position ϕd.
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2.3.6 Relations between the fluxes and the magnetic contributions

In practice, we generally do not have a direct access to the magnetic B-field and to
the magnetomotive force, but we have an indirect access through the linked fluxes
ψp = ψPM,p+ψS,p. The expression of the permanent-magnet contribution is found
combining the expressions (2.25) and (2.24) in (2.10):

ψPM,p = lmR

∮
m(θ, FPM, ϕd)Np(θ)FPM(θ)dθ (2.27)

The expression of the stator current contribution is found to be:

ψS,p =
∑
p′

lpp′i
′
p (2.28)

where lpp′ are called the stator inductances:

lpp′ , lmR

∮
m′(θ, FPM, FS , ϕd) Np(θ)Np′(θ)dθ (2.29)

The expression of the incremental stator current contribution is found with (2.26):

dψS,p =
∑
p′

lt,pp′di
′
p (2.30)

where lt,pp′ are the incremental inductances:

lt,pp′ , lmRµo

∮
mt(θ, FPM, FS , ϕd) Np(θ)Np′(θ)dθ (2.31)

The computation of these inductances are not directly required in self-sensing
operations, but they allow to understand how the nonlinearity properties and the
dependencies of mt regarding the magnetomotive forces and the rotor position
are inherited by these incremental inductances lt,pp′ . In particular, lt,pp′ vary as a
function of the rotor position ϕd. This property is strongly expected in anisotropy-
based self-sensing strategies.

2.3.7 Electrical torque

In this part, we focus on the torque produced by the interactions between the stator
windings and the magnetic B-field, called simply the electrical torque. The torque
linked to the interaction between the permanent magnets and the stator teeth is
called the cogging torque. It is often considered as disturbing and it can be very
significant regarding the electrical torque in some machine designs such as our
experimental machine. It is addressed by [25] and numerically computed by finite-
element method in [38]. It seems however that finding an simple analytic expres-
sion of this cogging torque is rather complicated.This issue is however not studied
here.
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The Lorentz force law states that the force ~f applied on a current density ~j
flowing in a conductor of length lm immersed in a magnetic B-field ~B is:

~f = lm ~j × ~B (2.32)

where× denotes the vector product. The torque produced by this force with respect
to the rotation axis is:

~τ = R~1r × ~f (2.33)

Transposed in the current density distributions, the total torque Tp applied on the
phase p multiplied by the number of pole-pairs P yields:

Tp = ip PlmR

∮
np(θ)B(θ)dθ (2.34)

The total torque applied on the stator is simply the sum of the different phase
contributions:

T =
∑
p

Tp = PlmR
∑
p

ip

∮
np(θ)B(θ)dθ (2.35)

Note that the torque applied on the rotor is simply −T .

2.4 Relations using Space Vectors

Strong simplifications in the machine modelling can be found using the concept
of space vectors in two-dimensional frames, also referred to as two-dimensional
equivalent values or space phasors [10, 11, 12, 13, 1]. This concept is a very pow-
erful tool that we propose to clarify for an arbitrary n number of phases. The space
vectors are written in this thesis with underlined symbols: x. They are mathemat-
ical objects defined from the combination of a set of n phase values, xp, related
to electromagnetic phenomena occurring in the n different coils of the machine,
numbered as follows: p ∈ [0, n − 1]. Note that “n” should not be confused with
the conductor distribution n(θ). These phenomenons can be the voltage applied to
the winding terminals vp, the current flowing in the windings ip, the magnetic flux
linked by the windings ψ and the time-derivative of the flux e = dψ/dt. The rela-
tion between these space vectors are directly related to the magnetic phenomenons
occurring along the air-gap, such as the magnetomotive force F (θ) and the mag-
netic B-fieldB(θ), and to spatial characteristics described as functions of θ, such as
the conductor distribution np(θ) and the air-gap length δ(θ). They are involved in
the relation through the complex coefficients of their Fourier series, written by bold
symbols: f (k) being the kth rank coefficient of the function f(θ) [19]. Often, the
spatial phenomenons in the machines are approached by fundamental sinusoidal
functions along a revolution of θ, so that only the fundamental coefficient f (1) is
nonzero. This approximation strongly simplifies the space vector relations, but this
is sometimes not satisfying for the modelling of certain machine types, such as the
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experimental BLDC motor. In this chapter, we propose thus to develop relations in
a very general way, considering any coefficient spectrum.

Note that the number n used in the proposed model description may differ from
the mentioned number of phases in the technical description of a polyphase ma-
chine. This is typically the case for machines whose mentioned number of phases
is an even value. Modelling these machines with n equal to the even number of
phases only makes sense if the pairs of opposite coils are related to measurements
along different locations. In practice, many six-phase machines studied for faulty
tolerance methods are three-phase machines whose windings of each phase have
been divided in two independent coils, such as in [45]. By consequence, these pairs
of coils are indistinctly measuring the same phenomena, and the contributions of
their currents to the magnetic field are simply summed. These six-phase machines
should therefore be modelled using n = 3. Note finally that the so-called equiva-
lent two-phase machine representation, sometimes used to refer to the space vector
transformation, corresponds in fact to a model with n = 4 where the windings are
indistinct between opposite pairs.

2.4.1 Fourier transforms

Continuous function transform

Assume that f(θ) is a continuous 2π-periodical function that models an electro-
magnetic phenomenon, such as the magnetic field crossing the air-gap B(θ), or a
physical characteristic such as the distribution of the conductors np(θ), as illus-
trated in Figure 2.4. The complex coefficients f (k) of the continuous Fourier series
transform of this function, normalized on π and computed with a rank numbering
k that is opposite to the conventional way, are [46]:

f (k) ,
1

π

∮
f(θ′)ejkθ

′
dθ′ (2.36)

The function can then be developed as a Fourier series of its complex coefficients:

f(θ) =
1

2

∞∑
k=−∞

f (k)e
−jkθ (2.37)

If f(θ) is a real function of θ, the coefficients of opposite ranks are complex conju-
gates of each others, and the series component of rank (−k) is equal to the complex
conjugate of the series component of rank (k):

f (−k) = f∗(k) ⇒ f (−k)e
jkθ =

(
f (k)e

−jkθ
)∗

(2.38)

By consequence, the imaginary part of these complex components are simply can-
celed in the sum (2.37), while the real parts are cumulated. The Fourier series can
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then be rearranged as a sum of real components f(k)(θ) defined as follows:

f(k)(θ) , <
(
f (k)e

−jkθ
)

(2.39a)

⇒ f(θ) =
f(0)

2
+

∞∑
k=1

f(k)(θ) (2.39b)

The real component f(0)/2 and is called the constant component and f(1)(θ) is
called the fundamental component. The components of higher ranks are simply
called harmonics of higher ranks.

Note that if f(θ) is an even-symmetric function around an angle ϕ, it can be
shown that its coefficients have the following form:

f (k) = f̂(k)e
jkϕ (2.40)

where f̂(k) are the peak values, that can be positive of negative scalars. This is
typically the case for the magnetomotive force of the permanent-magnets (PM)
fixed along an angle ϕd. If f(θ) is an odd-symmetric function around an angle ϕ,
it can be shown that its coefficients have the following form:

f (k) = j
k

|k|
f̂(k)e

jkϕ (2.41)

This is typically the case for the conductor windings distribution of phase coils,
assuming that the conductor are symmetrically wound around an axis located at
ϕp. The factor k/|k| is required in order to satisfy the property (2.38).

Discrete function transform

Assume that xp is a set of n phase values, where p ∈ {0 · · · n− 1}, that models an
electromagnetic phenomenon linked to the n phases, such as the current flowing in
the coils, the voltage applied to the terminals or the flux linked by the coils. The
space vector x(k) are written with underline symbols and are defined as the complex
coefficients of the discrete Fourier transform of the set of values xp, normalized on
n/2 and computed with a rank numbering p′ that is opposite to the conventional
way [46]:

x(p′) ,
2

n

n−1∑
p=0

xpe
jp′ϕp (2.42)

where ϕp are phase angles starting at θ = 0 and shifted by 2π/n between two
consecutive phases:

ϕp , 2πp/n (2.43)

Observe that: x(p′+nξ) = x(p′) ∀ξ ∈ N. By consequence, there are no more than
n distinct space vectors. The set is found back from these space vectors by the
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following expression:

xp =
1

2

n−1∑
p′=0

x(p′)e
−jp′ϕp (2.44)

If xp is a set of real values, the space vectors of opposite ranks are complex con-
jugates of each others, and the series component of rank (n − p′) is equal to the
complex conjugate of the series component of rank (p′):

x(n−p′) = x∗(p′) ⇒ x(n−p′)e
jp′ϕp =

(
x(p′)e

−jp′ϕp
)∗

(2.45)

By consequence, the imaginary part of these complex components are simply can-
celed in the sum (2.44), while the real parts are cumulated. If the number of phases
n is odd, the Fourier series can then be rearranged as the following sum:

xo ,
x(0)

2
⇒ xp = xo +

(n−1)/2∑
p′=0

<
(
x(p′)e

−jp′ϕp
)

if n odd (2.46)

The coefficient xo is called the homopolar. The case n even is easily deduced, but
it is not studied in this thesis and it is therefore not mentioned.

2.4.2 Relation between space vectors and coefficients of the flux

Assume that the coils of the n different phases p are identical and oriented by ϕp, as
previously illustrated for one phase in Figure 2.4. This excludes cases of machines
having misaligned coils. On the one hand, let us introduce a virtual magnetic flux
function ψ(ϕ) defined as the flux linked by one coil, identical to the phase coils, but
oriented following a variable angle ϕ. Using (2.36), it is then possible to compute
coefficients ψ of this function by substituting θ = ϕ. The phase fluxes are then
equal to the continuous flux function at angles ϕp:

ψp = ψ(ϕ = ϕp) (2.47)

The continuous function ψ(ϕp) can be developed using its series given in (2.37).
Then separating the summation on k ∈ {−∞,∞} by two summations on p′ ∈
{0,n− 1} and ξ′ ∈ {−∞,∞}, defined such that p′ + nξ′ := k, yields:

ψp =
1

2

n−1∑
p′=0

 ∞∑
ξ′=−∞

ψ(p′+nξ′)


︸ ︷︷ ︸

ψ
(p′)

e−jp
′ϕp (2.48)

On the other hand, the space vectors ψ
(p′)

corresponding to the linked magnetic
fluxes ψ

p
is computed following (2.42). Comparing (2.48) with the development

given in (2.44) as a series of space vectors ψ
(p′)

, we can see that the summation
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content in brackets in (2.48) corresponds to these space vectors. It is therefore
found that:

ψ
(p′)

=

∞∑
ξ′=−∞

ψ(p′+nξ′) (2.49)

This relation between ψ and ψ is also referred to as the Poisson summation for-
mula. It illustrates the importance of considering the harmonic content in the mag-
netic flux. All the harmonic ranks ofψ are however not included by ψ, but only the
multiple of the phase number n. By consequence, the higher n, the higher p′+ nξ′,
reducing the harmonic pollution by lower harmonics in ψ. This property can be
an interesting consideration in the selection of the number of phases in electrical
machines.

In many drives and for many synchronous machines, only the fundamental ψ
(1)

is considered and the higher harmonics are neglected such that:

ψ
(p′)
≈ ψ(p′) if |ψ(p′)| � |ψ(p′+nξ′)| ∀ξ′ 6= 0 (2.50)

It is however an approximation that must be validated by experiments performed
for every machine that we want to study.

2.4.3 Relation between the flux and the B-field

Assume that the coils of the different phases p are symmetrically wound on ei-
ther side of their location ϕp. This excludes cases of machines having asymmet-
rical coils. The functions np(θ) of their conduction distribution are therefore odd-
symmetric with respect to their angle ϕp and their coefficients have the form (2.41)
where ϕ = ϕp. The linked winding function Np(θ) defined in (2.9) can then be
developed replacing np(θ) by its series (2.37). Thus, computing the integral along
the angle θ′ yields:

Np(θ)−Np(ϕp) , −
∫ θ

ϕp

np(θ
′)dθ′ = −

∫ θ

ϕp

(
1

2

∞∑
k=−∞

np,(k)e
−jkθ′

)
dθ′

= −
∫ θ

ϕp

(
1

2

∞∑
k=−∞

(
j
k

|k|
n̂(k)e

jkϕp

)
e−jkθ

′

)
dθ′

=
1

2

∞∑
k=−∞

n̂(k)

|k|
ejkϕp

(∫ θ

ϕp

−jk e−jkθ
′
dθ′

)

=
1

2

∞∑
k=−∞

n̂(k)

|k|

(
ejk(ϕp−θ) − 1

)
(2.51)



50 CHAPTER 2. ELECTROMAGNETIC MODEL

Note that according to (2.4), there is no constant coefficient n̂(0) = 0. Highlighting
harmonics and the constant component yields:

Np(θ) =
1

2

∞∑
k=−∞

(
n̂(k)

|k|
ejkϕp

)
︸ ︷︷ ︸

Np,(k)

e−jkθ +
1

2

(
2Np(ϕp)−

∞∑
k=−∞

n̂(k)

|k|

)
︸ ︷︷ ︸

Np,(0)

(2.52)

Except for k = 0, the relation between the coefficients of the the coefficients of
linking distribution and the conductor distribution is:

Np,(k) =
n̂(k)

|k|
ejkϕp ∀k 6= 0 (2.53)

As shown in the following equations, the magnetic flux (2.10) can then be devel-
oped replacing Np(θ) by (2.52), where the constant componentNp,(0) is removed.
Since Np,(−k) = N∗p,(k), the sum on k can be substituted by a sum on −k and it
is possible to highlight the coefficients B(k) of B(θ) given in (2.36). Introducing
ψp = ψ(ϕp) given in (2.47) and considering ϕp as a variable, the result is the series
of the coefficients ψ(k):

ψ(ϕp) = lmR

∮
Np(θ)B(θ)dθ = lmR

∮ (
1

2

∞∑
k=−∞

N∗p,(k)e
jkθ

)
B(θ)dθ

= lmR

∮ (
1

2

∞∑
k=−∞

(
n̂(k)

|k|
e−jkϕp

)
ejkθ

)
B(θ)dθ

=
1

2

∞∑
k=−∞

πlmRn̂(k)

|k|

(
1

π

∮
B(θ)ejkθdθ

)
︸ ︷︷ ︸

B(k)︸ ︷︷ ︸
ψ(k)

e−jkϕp (2.54)

This yields to the relation between the coefficients of the magnetic field and the
coefficients of the magnetic flux:

ψ(k) =
πlmR n̂(k)

|k|
B(k) ∀k 6= 0 (2.55)

This relations (2.55) teaches us that the harmonic content of the magnetic B-
field flux is filtered through the harmonics of the winding distribution. By con-
sequence, it would be incomplete and abusive to speak about machines with sinu-
soidal PM-magnetic field, such as the synchronous machines for example, or with
trapezoidal PM-magnetic field, such as BLDC machines for example. If the con-
ductor distributions tend toward ideal fundamental sinusoidal functions, i.e. that



2.4. RELATIONS USING SPACE VECTORS 51

n̂(k) � n̂(1), ∀k > 1, then the harmonics of the field are removed from the mag-
netic flux: |ψ(k)| � |ψ(1)|, ∀k > 1. It is therefore not specifically required that
the magnetic B-field varies as a perfect sinusoidal function, but that the harmonic
spectrum of the magnetic B-field and the harmonic spectrum of the conductor dis-
tributions concurs only at k = 1. In the second type of machines however, sig-
nificant harmonic concordances must exist elsewhere than k = 1, otherwise the
machine model would simply corresponds to a synchronous machine. This is the
reason why most of BLDC motors have conductors distributed punctually in low
number of slots [29, 47]. Note that [29, 6, 2, 48] speak about sinusoidal and trape-
zoidal back-EMF (that is the time variation of the flux), what is more adequate.

2.4.4 Relation between the B-field and the magnetomotive forces

The electromagnetic valuesB(θ) and F (θ) are linked by a factorm(θ, F ), as given
by (2.24). All these values can be represented using their coefficientsB, F andm
computed following (2.36). Using the Fourier series development of B(θ) given
by (2.37), and replacing the sum on k′′ by a sum on k defined as k = k′ + k′′, it is
found:

B(θ) = m(θ)F (θ)

=
1

4

∞∑
k′′=−∞

∞∑
k′=−∞

m(k′′)F (k′)e
−j(k′+k′′)θ

=
1

2

∞∑
k=−∞

(
1

2

∞∑
k′=−∞

m(k−k′)F (k′)

)
︸ ︷︷ ︸

B(k)

e−jkθ (2.56)

This yields the following relation, that is also referred to as circular convolution
[46]:

B(k) =
1

2

∞∑
k′=−∞

m(k−k′)F (k′) ∀k 6= 0 (2.57)

This convolution is valid for the permanent-magnets contribution, for the stator
phase current contributions as described in (2.25), and for the incremental contri-
butions (2.26):

BPM,(k) =
1

2

∞∑
k′=−∞

m(k−k′)F PM,(k′) (2.58a)

BS,(k) =
1

2

∞∑
k′=−∞

m′(k−k′)F s,(k′) (2.58b)

dB(k) =
1

2

∞∑
k′=−∞

mt,(k−k′)dF (k′) (2.58c)
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Remember that dB(k) only models here variations due to dF (k′), while mt,(k−k′)
are assumed constant. We see here that the relations between the harmonic content
of the magnetomotive forces and the magnetic B-fields are not straightforward.
Since the m factor can be strongly nonlinear, its harmonic spectrum may change
with the magnetic state of the machine. In particular, the harmonic spectra of m,
m′ andmt can be very different.

2.4.5 Contribution of the currents to the magnetomotive force

The contribution of the currents to the magnetomotive force Fp(θ) = ipNp(θ) can
be developed replacing Np(θ) by (2.52). Because all coils are identical but shifted
along their respective angles, the condition Np(ϕp) = N0(ϕ0) ∀p ∈ {1 . . . n− 1}
can be added to the linking distributions (2.9). We can then highlight the space
vectors i of the currents. It yields:

FS(θ) =
n−1∑
p=0

ipNp(θ) =
n−1∑
p=0

ip

(
1

2

∞∑
k=−∞

Np,(k)e
−jkθ

)

=
1

2

∞∑
k=−∞

n̂(k)

|k|
n

2

2

n

n−1∑
p=0

ipe
jkϕp


︸ ︷︷ ︸

i(k)︸ ︷︷ ︸
FS,(k)

e−jkθ +
1

2
Np,(0)

n

2

2

n

n−1∑
p=0

ip


︸ ︷︷ ︸

i(0)︸ ︷︷ ︸
F (S,(0))

(2.59)

Finally, the relation between the coefficients F S,(k) of FS(θ) and the space vectors
of the currents is:

F S,(k) =
n

2

n̂(k)

|k|
i(k) ∀k 6= 0 (2.60)

It is also valid for incremental contributions. Here also, the harmonic content of
the magnetomotive force is related to the harmonics in the conductor distributions.

2.4.6 Relation between the flux space vectors and the magnetic sources

Except for the incremental relation, the following relations are given for informa-
tion, since they are not used in the self-sensing theory. Combining (2.49) with
(2.55) and with (2.58a), the relation between the permanent-magnet contribution
to the flux and the contribution to the magnetomotive force yields:

ψ
PM,(p′)

=
∞∑

k′=−∞

 ∞∑
ξ′=−∞

πlmR n̂(p′+nξ′)

2|p′ + nξ′|
m(p′+nξ′−k′)

F PM,(k′) (2.61)
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where m are the coefficient of m(θ, FPM, ϕd). Combining (2.58b) with (2.60),
the relation between the current contribution to the flux and the contribution to the
magnetomotive force yields:

ψ
S,(p′)

=
∞∑

k′=−∞

 ∞∑
ξ′=−∞

πlmR n̂(p′+nξ′)

2|p′ + nξ′|
m′(p′+nξ′−k′)

 n

2

n̂(k′)

|k′|
i(k′) (2.62)

where m′ are the coefficient of m′(θ, FPM, FS , ϕd). Note also that there is no
more than n different ranks to i(k). Therefore, the summation on k′ ∈ {−∞,∞}
can be separated by two summations on p ∈ {0,n−1} and ξ ∈ {−∞,∞}, defined
such that p+ nξ := k′, and (2.62) yields:

ψ
S,(p′)

=
n−1∑
p=0

l(p,p′)i(p) (2.63)

where the self-inductance l(p,p′) is:

l(p,p′) ,
nπlmR

4

∞∑
ξ′,ξ=−∞

n̂(p′+nξ′)

|p′ + nξ′|
n̂(p+nξ)

|p+ nξ|
m′(p′−p+n(ξ′−ξ)) (2.64)

In a similar way, the relation between the incremental current contribution to the
flux and the contribution to the magnetomotive force can be found using (2.58c)
and yields:

dψ
S,(p′)

=
n−1∑
p=0

lt,(p,p′)di(p) (2.65)

incremental self-inductance lt,(p,p′) is:

lt,(p,p′) ,
nπlmR

4

∞∑
ξ′,ξ=−∞

n̂(p′+nξ′)

|p′ + nξ′|
n̂(p+nξ)

|p+ nξ|
mt,(p′−p+n(ξ′−ξ)) (2.66)

and wheremt are the coefficient of mt(θ, FPM, FS , ϕd).
The factors mt are complex values whose properties regarding the saturation

are inherited by the incremental inductances lt,(p,p′). Their complex form result in
an orientation shift between the incremental currents and the incremental fluxes.
This shift defines the orientation of the anisotropy. This is developed specifically
for three-phase machine in the next section.

2.4.7 Electrical torque

The expression of the total torque (2.34) applied on the stator can be developed
replacing the conductor distribution np(θ) by its Fourier series (2.37) in (2.34),
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where the coefficients are given by (2.41). Combined with (2.55), it yields:

T = PlmR
n−1∑
p=0

ip

∮
np(θ)B(θ)dθ

= PlmR

n−1∑
p=0

ip

∮ (
1

2

∞∑
k=−∞

j
k

|k|
n̂(k)e

jk(ϕp−θ′)

)
B(θ)dθ

=
nP

4

∞∑
k=−∞

jk

2

n

n−1∑
p=0

ipe
jkϕp


︸ ︷︷ ︸

i(k)

πlmR n̂(k)

|k|

(
1

π

∮
B(θ)e−jkθ

′
dθ

)
︸ ︷︷ ︸

B(−k)︸ ︷︷ ︸
ψ(−k)

=
nP

4

∞∑
k=−∞

k
(
j i(k) ψ(−k)

)
=

nP

2

∞∑
k=1

k=
(
i∗(k)ψ(k)

)
(2.67)

Note that i(k) have no more than n distinct values on k, and the summation on k ∈
{1,∞} can be separated by two summations on p ∈ {0,n − 1} and ξ ∈ {0,∞},
defined such that p+ nξ := k:

T =
nP

2

n−1∑
p=0

=

i∗(p) ∞∑
ξ=0

(p+ nξ)ψ(p+nξ)

 (2.68)

We see here that the torque can be affected by the harmonic content in the magnetic
flux. If the higher harmonics are neglected, using (2.50), we obtain the traditional
expression of the torque for the vector control:

T =
nP

2
=
(
i∗(1)ψ(1)

)
if |ψ(k)| � |ψ(1)| ∀k 6= 1 (2.69)

This approximation is largely assumed in the control of synchronous machines. It
is found from experimental measurements that this approximation can be valid in
the case of the experimental BLDC motor, even if the magnetic field contains a
significant spectra of harmonics. This expression (2.69) introduces the importance
of the rotor position ϕd: ψ

PM,(1)
is part of ψ

(1)
and its angle is related to ϕd.

By consequence, a good knowledge of the rotor position is required in order to
handle i(1) to a value leading to an optimal torque production. Note that (2.69)
also neglects the contribution of the interaction between the homopolar current
and the third harmonic of the flux addressed by [49, 50], that are not necessarily
null. This is exploited by [51] in order to increase the maximum torque.

Note that we addressed the torque applied on the stator. The torque applied on
the rotor is −T .
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Figure 2.8: Illustration of (a) the geometrical construction of a space vector x from the
phase values xa, xb and xc; (b) and the recovering of the phase values from the space
vector, assuming xo = 0, corresponding to the projections of x along the phase axes.

2.5 Three-Phase Machines

Most of the polyphase machines used in high power applications, such as vehicle
traction or power productions, have three phases: n = 3. This choice is historical
and linked to the connection with the three-phase network grid. It has benefits in
the power transportation, minimizing the cost and the loses in cables and in power
electronics compared to other number of phases. This number should however be
reassess in the light of robust control aspects, but it is not done in this work.

2.5.1 Space vector computations

The phases are numbered p ∈ {a, b, c} for the specific case of n = 3 in this
document. Note that many other numbering are found in the literature and the
technical documents. Using (2.42), the homopolar value xo , x(0)/2 is:

xo ,
1

3

∑
p=a,b,c

xp (2.70)

Since x(2) = x∗(1), there is only one distinct space vector x(1) in addition to the
homopolar. It is simply referred to as space vector and is written x:

x ,
2

3

∑
p=a,b,c

xp ejϕp (2.71)

Its geometrical construction is illustrated in Figure 2.8(a). The phase values are
found back using (2.46):

xp = xo + <
(
x e−jϕp

)
(2.72)

It is illustrated in Figure 2.8(b).
These computations are valid for any type of connections between the coils,

except the fact that the voltages or the currents at the machine terminals are not
necessarily equal to vp and ip. In a star-connection, ip is well the current flowing



56 CHAPTER 2. ELECTROMAGNETIC MODEL

through the terminals. The voltage at the machine terminals v′p are however equal
to the voltage vp at the coil terminals plus the voltage of the neutral point vn:
v′p = vp + vn. Since this vn is equal for all the phases, it disappears in the space
vector computation (2.71). This voltage vn should however not be confused with
the homopolar vo, since vo may also contain other internal voltages contributions
in addition to vn. This is specifically true in case of harmonics in the machine.
Without neutral connection, the homopolar current is null: io = 0. Note that the
voltage of the neutral point vn is also sometimes called the zero-sequence. In a
delta-connection, vp is the difference between the voltage v′p of two consecutive
machine terminals: for example va = v′a − v′b. The current i′p at the machine
terminal is divided in the two connected phases: for example i′a = i′a+i′c. This must
be taken into account in the space vector transformation. Note that the homopolar
voltage vo is not necessarily null due to the back-EMF, whose mean on all the
phases is not strictly null in case of harmonics. The homopolar current io is then the
current flowing in the delta-loop, also sometimes called the zero-sequence current.

2.5.2 The incremental self-inductances

The restriction to the case of three-phase machine results in strong simplifications
of the relation between the currents and the magnetic flux. Here, we focus on the
incremental relation that is used in anisotropy-based self-sensing methods. The
incremental relation (2.65) linking the fundamental space vectors p′ = 1 yields:

dψ
S

= 2lt,(0,1)dio + lt,(1,1)di+ lt,(2,1)di
∗ (2.73)

where the different incremental self-inductances are:

lt,(p,1) =
3πlmR

4

∞∑
ξ′,ξ=−∞

n̂(1+3ξ′)

|1 + 3ξ′|
n̂(p+3ξ)

|p+ 3ξ|
mt,(1−p+3(ξ′−ξ)) (2.74)

In order to further simplify the relation, assume either that lt,(0,1) = 0 (i.e. n̂(3ξ′)

∀ξ′), or that there is no homopolar connection io = 0. Both conditions are met in
the case of our experimental motor. By consequence, (2.74) becomes:

dψ
S

= lt,(1,1)di+ lt,(2,1)di
∗ (2.75)

Remember that dψ
S

only models small variations due to di, while lt,(1,1) and lt,(2,1)

are assumed constant.
Following the sames steps, the relation (2.63) yields a similar result for the

current contribution. Assuming either that l(0,1) = 0 or that io = 0, it is found:

ψ
S

= l(1,1)i+ l(2,1)i
∗ (2.76)

This last relation is fundamental for the rotation-drive operations, controlling steady-
state values i, but it is not considered in anisotropy-based self-sensing operations.
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2.5.3 The harmonic incremental self-inductances

The incremental self-inductances are affected by the harmonic spectrum of mt(θ).
In order to highlight the harmonic relation, let us define the following inductances
linked to the kth rank ofmt,(k):

lt,(k) ,
3πlmR

4

∞∑
ξ′=−∞

n̂(1+3ξ′)

|1 + 3ξ′|
n̂(1+3ξ′−k))

|1 + 3ξ′ − k|
mt,(k) (2.77)

Since mt(θ) is a real function: mt,(−k) = m∗t,(k). Applying a shift on ξ′, it can
also be shown that the sum in (2.77) is symmetrical. By consequence, we have the
following property:

lt,(−k) = l∗t,(k) (2.78)

Introducing ξ′′ = ξ − ξ′ and k := 1− p+ 3ξ′′, (2.74) can be written as a develop-
ments of these harmonics:

lt,(p,1) =
∑

k=1−p+3ξ′′, ∀ξ′′
lt,(k) (2.79)

Using the property (2.78), it can be shown that lt,(1,1) is strictly real. This property
is important in the definition of the anisotropy.

2.5.4 The anisotropy definition

The concept of anisotropy is based on the shift between the space vectors of the
currents and the fluxes. This shift is directly linked to the complex form of the
incremental self-inductance lt,(2,1), while lt,(1,1) is strictly real. At this point, we
propose to introduce some new parameters that correspond to the formalisms met
in the literature in case of anisotropy. Let us therefore define the positive lt,+ and
negative lt,- incremental self-inductance, and the anisotropy angle ϕx respectively
as follows: 

lt+ , lt,(1,1) ∈ <

lt- , lt,(2,1) ⇒
{
lt- = |lt-|
ϕx , ∠(lt-)/2

(2.80)

where ∠ denotes the complex argument. The positive and negative incremental
self-inductances are sometimes referred to as average and difference inductances
respectively [52], but this denomination is confusion with concepts further used in
signal processing. Thus replacing the inductances in the relation (2.75) by (2.80),
we have:

dψ
S

= lt+di+ lt-di
∗ = lt+di+ lt-di

∗ej2ϕx (2.81)

This relation is illustrated in Figure 2.9. For convenience, (2.81) is also further
written in short using a complex factor lt that is function of di (that should not be
confused with the coefficients of the Fourier series):

dψ
S

= ltdi where lt , lt+ + lt-e
j2(ϕx−∠di) (2.82)
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Figure 2.9: Illustration of dψ
S

represented as the sum of the positive and the negative con-
tributions, for different orientations of di (I), (II) and (III). The blue dashed lines represent
the path drawn by the different contributions when di rotates.
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when di rotates.
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where ∠di is the complex argument of di and thus where di∗ = die−j2∠di. This
new factor is illustrated in Figure 2.11.

It is possible to define an anisotropy frame made of two axes denoted x and
y, illustrated in Figure 2.10, such that the x-axis is oriented by an angle ϕx with
respect to θ = 0. It is shown that the relation (2.81) is real along the axes of the
anisotropy xy-frame and yields:(

dψ
S,x

dψ
S,y

)
=

(
ltx 0
0 lty

)(
dix
diy

)
(2.83)

where the inductances ltx and lty are:

ltx = lt+ + lt- & lty = lt+ − lt- (2.84)

such that ltx > lty. Note that the anisotropy xy-frame is here not defined by the
rotor angle ϕd. The link with the rotor position is introduced after.

Following the sames steps, the relation (2.76) yields a similar result for the
current contribution. Transposing (2.80) with l(1,1) and l(2,1) yields:

ψ
S

= l+i+ l-i
∗ = l+i+ l-i

∗ej2ϕx′ (2.85)

where the anisotropy angles may differ: ϕx′ 6= ϕx. Again, this last relation is fun-
damental for the rotation-drive operations. It is not considered in anisotropy-based
self-sensing operations, but we however introduce this relation since it appears in
the electromagnetic relations, and it is required to discuss the fact that it can be
neglected. This is done in chapter 5.

2.5.5 Impact of the harmonics on the anisotropy

We define the synchronous qd-frame made of two axes denoted q and d such that
the d-axis is oriented along the permanent-magnets by an angle ϕd. The q-axis
is defined here in back-quadrature with respect to the d-axis. From the perspec-
tive of anisotropy-based self-sensing, an ideal situation is met if the anisotropy
xy-frame is aligned with the synchronous qd-frame. In that case, the estimation
of the rotor position is directly obtained from the identification of the anisotropy
orientation. Harmonics in the machine however lead to significant misalignments
between these two frames, as explained here.

Assume that contribution of the stator currents FS to the magnetic state is neg-
ligible regarding the contribution of the permanent-magnets, such that mt is only
function of FPM oriented by ϕd. As a consequence, mt(θ, FPM, ϕd) is even sym-
metric along θ with respect to the angle ϕd and the coefficients mt,(k) have the
form (2.40). This form is inherited by lt,(k) defined in (2.77):

mt,(k) = m̂t,(k)e
jkϕd ⇒ lt,(k) = l̂t,(k)e

jkϕd (2.86)
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Note that the peak values can be positive of negative. Combining (2.79) with the
positive and negative incremental self-inductances defined in (2.80) yields:

lt+ = lt,(0) +
∑
k

2l̂t,(k) cos(kϕd) | k = 3ξ ∀ξ ∈ N > 1 (2.87a)

lt- = lt-e
j2ϕx =

∑
k

l̂t,(k)e
jkϕd | k = 2 + 3ξ ∀ξ ∈ N (2.87b)

The positive inductance lt+ only contains harmonic ranks multiple of 3 and lt- only
contains harmonics of ranks 2 plus a multiple of 3. They are sometimes referred
to as multliple saliencies [53, 23] and the rank k = −2 is sometimes referred to
as secondary saliency [54, 55, 56]. If lt,(k) = 0 except in k ∈ {0, 2}, then from
(2.87b) it is shown that:

ϕx = ϕd if lt,(k) = 0 ∀k /∈ {0, 2} (2.88)

This situation corresponds to the ideal situation for self-sensing operations since
the angle ϕx is directly equal to the rotor position. In qd values, it results generally
that ltx = ltq and lty = ltd, or inversely in some machine designs [57]. Other-
wise, ϕx oscillate around ϕd during the rotation. This is clearly observed in our
experimental motor.

2.5.6 Impact of the currents on the anisotropy

The value mt(θ, FPM, FS , ϕd) is function of the PM contribution, but also to the
stator current contribution FS(θ). If the current increases, and if this increase
mainly produce a significant contribution following a quadratic orientation with
respect to ϕd, this may lead to a shift of mt along θ, resulting in a shift of its
harmonicsmt,(k) inherited by the inductances and, especially, by lt-. This shift in-
creases the misalignments between the anisotropy xy-frame and the synchronous
qd-frame, and it is not desired for position estimation. Generally, this shift can
be assumed constant as a function of the component of stator current i along the
quadratic orientation. Note that this current can also be called load current. This is
generally valid if the ideal condition (2.88) is met. The strategy proposed in many
papers of the literature then consist to perform an initial estimation of that shift as
a function of the load current, and to store it in look-up table in order to be used for
position-estimation error compensation. This commissioning is however not easy.
Different solutions are addressed in chapter 5. In the case of significant harmonics,
the relation between the current and the shift in the different harmonic ranks must
be assessed. This is done hereafter in case of our experimental machine.

The contribution of the stator current can also affect the inductance values and
the anisotropy ratio lt-/lt+ (sometimes defined by ltx/lty [55]). Higher this ra-
tio, more accurate the position estimation. Generally, the stator current tends to
reduce this ratio. Therefore, some authors draw maps of feasibility regions for
PM machines, considering the anisotropy ratio as a function of the stator current
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Table 2.1: Design parameters of the experimental motor.
Machine length lm 7.1 cm

Stator conductor radius R 12.1 cm
Air-gap length δo 5 mm

Pair-pole number P 14
PM angle extend ϑ 0.85π

Conductor turns n̂ per pole-pair 4

[58, 59, 60, 61]. They also address the issue of anisotropy misalignment, generally
called magnetic cross-saturation. These maps are either estimated under commis-
sioning, or by finite-element method (FEM) simulations. This is also analyzed in
[62] for PM machines, drawing a graph of the anisotropy shift for various currents,
or in [63] drawing graphs for a BLDC motor.

Special attention can be given to the machine design in order to increase their
anisotropy ratio. A comparison between machines with buried magnets and surface-
mounted magnets is discussed in [58, 59]. A comparison between conventional
and “field-intensified” buried-magnet machines is discussed in [55]. Other “field-
intensified PM designs are studied by [64]. An analysis of the influence of the
bridge between PM is given by [65]. Similar analysis are proposed in [66], com-
paring four types of IM, and in [67], comparing three geometric variations in the
rotor of IM. Note that it is also possible to increase the some anisotropic properties
of existing machines by adding a copper turn wound around the poles, as proposed
by [68, 69]. The copper turn can be modelled in a similar way to the eddy current
contributions, as done in the following chapter 3.

2.6 Experimental Brushless-DC Motor

The experimental BLDC motor is a three-phase machine with 14 pairs of surface-
mounted permanent-magnets (P = 14) in an outer rotor and three coils at the stator,
n = 3, that are connected in star: io = 0. A cross-section is shown in Figure 2.12
and an equivalent representation of a single-pole-pair is shown in Figure 2.13. The
coils of each phase p ∈ {a,b, c} are made of n̂ conductor turns per pole-pair
located in single pairs of opposite slots a/a′, b/b′ and c/c′ on either side of their
winding axes (in a single-pole-pair representation). The P windings of each phase
are connected in series. The permanent-magnets (PM) are mounted on the rotor
surface and centered along the angle ϕd. Each PM covers an angle extent ϑ. The
values of the different design parameters are given in Table 2.1. More details on
the design of similar machines can be found in [70].
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Figure 2.12: Cross-section of the experimental Brushless-DC (BLDC) motor.
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Figure 2.13: Representation the experimental BLDC motor along a single-pole-pair.
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circles, in a simplified design model.

2.6.1 Simplified design model

In first approximation, the conductor distributions np(θ) can be modelled by punc-
tual values using a delta Dirac function, written here D (it is traditionally written
δ, but this notation is confusing with the air-gap length):

np(θ) = n̂
(
D(θ − ϕp − π/2)−D(θ − ϕp + π/2)

)
(2.89)

It is illustrated in Figure 2.14. The Fourier coefficients (2.36) of this distribution
are:

np,(k) =
1

π

∮
np(θ

′)ejkθ
′
dθ′ = j

2n̂

π
sin(kπ/2) ejkϕp (2.90)
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We have sin(kπ/2) = 0 if k is even, sin(kπ/2) = 1 if k = 1+4ξ and sin(kπ/2) =
−1 if k = 3 + 4ξ. Using the form (2.41), the peak values of the harmonics are:

np,(k) = jn̂(k)
k

|k|
ejkϕp ⇒ n̂(k) =

{
0 if k even
2n̂
π (−1)

|k|−1
2 if k odd

(2.91)

The spectrum is shown in Figure 2.14. Assuming (2.91), the value of the following
expression, that is involved in the computation of the inductances lt,(k) (2.77), is
given in Figure 2.15 as a function of k:

∞∑
ξ′=−∞

n̂(1+3ξ′)

|1 + 3ξ′|
n̂(1+3ξ′−k))

|1 + 3ξ′ − k|
(2.92)

where n̂(1+3ξ′) = 0 for ξ′ odd. The sum can therefore be restricted to n̂(1+6ξ′), ∀ξ′.
In particular, the case k = 0 yields:(

2n̂

π

)2 ∞∑
ξ′=−∞

1

(1 + 6ξ′)2︸ ︷︷ ︸
(π/3)2

=
4

9
n̂2 (2.93)

while the cases k = 3ξ, ∀ξ > 1 yield 0. As a result, using (2.87a) and using this
previous computation, it can be checked that the positive inductance lt+ is constant
and yields:

lt+ =
n̂2πlmR

3
m̂t,(0) (2.94)

The negative inductance lt-e
j2ϕx is not developed analytically, but the nonzero val-

ues of (2.92) involved in (2.87b) are shown by circles in Figure 2.15.
Traditionally, in a first approximation of the model of a BLDC motor, the

permanent-magnet contribution to the magnetomotive force distribution FPM(θ)
is modelled by a trapezoidal function, as illustrated in Figure 2.16 with the corre-
sponding spectrum F̂PM,(k). This condition is assessed by [29, 6] from the back-
EMF point of view. The incremental inductances are very sensitive to the magnetic
state between the permanent magnets and this trapezoidal model does not well
matches with the experimental measurements. We therefore propose to use a rect-
angular function, illustrated in Figure 2.17, as suggested by [44]. The real shape
of the distribution is generally more complicated, as suggested by [71] that deeply
studied the magnetic field distribution in BLDC motors.

The air-gap δo is assumed constant, neglecting the slot effects.

Simplified magnetic nonlinearity model

The variation of the factorm(θ) as a function of F (θ) in our experimental machine
cannot directly be measured with the available sensors. By consequence, for the
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Figure 2.16: Traditional simplified model of the permanent-magnet contribution FPM(θ)
to the magnetomotive force, and the corresponding spectrum F̂PM,(k).
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Figure 2.17: Proposed simplified model of the permanent-magnet contribution FPM(θ)
to the magnetomotive force, and the respective spectrum F̂PM,(k).

simulations and the analysis, we propose the following simplified expression for
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Figure 2.18: Spectrum of the permanent-magnet contribution to the magnetic field
B̂PM,(k) considering the simplified design model and the simplified magnetic nonlinearity
model.
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Figure 2.19: Illustration of the function mt(θ) of the simplified magnetic nonlinearity
model computed assuming F (θ) = FPM(θ) as given in Figure 2.17 and the corresponding
spectrum F̂PM,(k).

the local variation of the factor m(θ) as a function of F (θ), given in (2.24):

m(θ) =
µo
δo

e−A|F (θ)| ⇒ B(θ) =
µo
δo

e−A|F (θ)| F (θ) (2.95)
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Table 2.2: Magnetic nonlinearity parameters.
Peak value of the PM contribution to the field B̂PM 0.6 T
Leakage factor regarding the PM contribution κPM 1

Leakage factor regarding the stator current contribution κS 0.25
Nonlinearity constant A 1.28 10−4 A−1

The contribution of the permanent-magnets is approached without leakage, thus
κPM = 1 regarding FPM(θ). This model is purely intuitive, guided by characteris-
tic curves found in the literature, but it is not sustained by any other study. Better
model could certainly be used, such as the model proposed by [72].

The spectrum of corresponding magnetic field B̂PM,(k) is shown in Figure 2.18.
For the stator current contribution of the magnetic field, it is necessary to consider
significant leakages κS = 0.25 in order to obtain simulations results that match
with the measurements. The selection of the leakage factor is empirical. Further
investigations should be required in order to assess other possible sources of de-
viations between simulations and experiments. Transposed in the magnetomotive
forces, it can be written:

F (θ) = FPM(θ) + κSFS(θ) (2.96)

The constant A is adjusted empirically so as to match to the best with the experi-
mental measurements. Using (2.26), the incremental factor becomes:

mt(θ) =
µo
δoκS

(1−A|F (θ)|) e−A|F (θ)| (2.97)

The results with this simplified model are compared with measurements. The value
of BPM(θ) is estimated by measurements (shown hereafter). The different param-
eters linked to the magnetic nonlinearity are summarized in Table 2.2.

2.6.2 Estimation of the PM field

The estimation of the permanent-magnet field is based on measurements performed
on the experimental BLDC machine with open coil circuits (terminals disconnected
to power source). The rotor is driven by an external motor at approximate constant
electrical speed ωd ≈ 143 rad/s, measured by an external encoder. This rotation
speed corresponds to a frequency of 22.76 Hz. Because we have no access to the
neutral connection point, we measure the voltage difference between the terminals
of two phases a and b: vab = va− vb. We have 440 samples for the whole rotation
(on one pole-pair θ = [0, 2π]). Results are shown in Figure 2.20. The relation
between the PM field and the measurements is developed hereafter.

The Faraday’s law of induction states the induced back-electromotive force
(back-emf) in a coil as follows:

ep = −dψp
dt

= −ωd
dψp
dϕd

(2.98)
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Figure 2.20: Experimental measurements of the voltage difference vab and the rotation
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Figure 2.21: Spectrum of the permanent-magnet contribution to the flux, based on exper-
imental measurements.

where ωd = dϕd/dt is the rotation speed in radian per second. Since no current
is flowing in the coils (open circuits), the only contribution to the flux are the PM:
ψp = ψ(ϕp) = ψPM(ϕp). Without voltage drop due to stator currents, the voltage
at coil terminals is equal to the back-emf: vp = ePM,p. Using (2.98), the ratio
between the voltage difference vab and the rotation speed ωd yields:

vab

ωd
= −d (ψPM(ϕa)− ψPM(ϕb))

dϕd
(2.99)

The Fourier series of this expression is given by (2.37). Using the property of
symmetry of the flux along ϕd (2.40), inherited from the magnetic field B(θ),
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Figure 2.22: Spectrum of the permanent-magnet contribution to the magnetic field, based
on experimental measurements.

(2.37) yields:

ψPM(ϕp) =
1

2

∞∑
k=−∞

ψPM,(k)e
−jkϕp =

1

2

∞∑
k=−∞

(
ψ̂PM,(k)e

jkϕd

)
e−jkϕp

⇒ dψp(ϕp)

dϕd
=

1

2

∞∑
k=−∞

jkψ̂PM,(k)e
jk(ϕd−ϕp) (2.100)

Introducing this expression in (2.99) and using an opposite k order, it yields:

vab

ωd
= −1

2

∞∑
k=−∞

jkψ̂PM,(k)

(
e−jkϕa − e−jkϕb

)
ejkϕd

=
1

2

∞∑
k=−∞

jk
(

1− ej2kπ/3
)
ψ̂PM,(k)︸ ︷︷ ︸

vab

e−jkϕd (2.101)

where ϕa = 0 and ϕb = 2π/3. By consequence, computing the coefficients vab

from the measurements, it is possible to compute ψ̂PM,(k), except on k = 3ξ, ∀ξ,
since 1− ej2kπ/3 = 0, but these ranks are not involved in the computations:

ψ̂PM,(k) =
vab

jk
(
1− ej2kπ/3

) ∀k 6= 3ξ, ∀ξ (2.102)

The results are shown in Figure 2.21. The main observation is that the fundamen-
tal k = ±1 is very dominant and that the harmonics of ranks k = ±4 are about
only 1 % of the fundamental. This suggests that the traditional synchronous vector
control based on (2.50) and (2.69) could be an efficient solution, even if the mag-
netic field originally not sinusoidal. Note that part of the spectrum is unknown and
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could be large also. Even if this part is not involved in the vector control, it affects
the saturation and, by consequence, it affects the inductances. We cannot conclude
about them without further experiments.

Assuming the simplified model of the conductor distribution given in (2.91),
assuming no other contribution to the field than the permanent-magnets, and using
the relation (2.55), we can compute the spectrum of the magnetic field for non-even
k as follows:

B(k) =
|k|

πlmR n̂(k)
ψ(k) ∀k odd 6= 3ξ, ∀ξ (2.103)

The results are shown in Figure 2.22. It seems not to be far from the model spec-
trum Figure 2.18.

2.6.3 Simulation Results

Simulation of the incremental self-inductance from the simplified models

The negative incremental inductance is computed using (2.87) assuming the sim-
plified design model, the simplified magnetic nonlinearity model, and no other
contribution to the field than the permanent-magnets. Using (2.94), the positive
inductance yields:

lt+ = 115.5 µH (2.104)

The negative inductance lt- is computed using (2.87b).

Figures

The results shown in Figure 2.23 and Figure 2.24 are composed of:

• the value lt- in the complex frame ;

• the amplitude lt- = |lt-| as a function of the rotor position ϕd ;

• the anisotropy angle ϕx = 0.5∠(lt-) as a function of the rotor position ϕd ;

• the misalignment shift ϕx−ϕq− 90◦ as a function of the rotor position ϕd ;

• the harmonic spectrum of lt-.

The 90◦ shift ofϕx with respect toϕd is due to the fact that the peak value ofmt(θ),
illustrated in Figure 2.19, is not along ϕd, but along ϕd − 90◦. As a consequence,
the 2nd rank harmonic l̂t,(2) is negative. These simulation results are compared to
the results shown in Figure 2.23 assuming an ideal machine defined by (2.88).
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Figure 2.23: Virtual results of lt- for ϕd ∈ [0, 2π], assuming all harmonics are removed
except lt,(2) (2.88), considering the simplified design model, the simplified magnetic non-
linearity model and no other contribution to mt than the permanent-magnets.
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Figure 2.24: Values of lt- for ϕd ∈ [0, 2π] and spectrum of its harmonics, consider-
ing the simplified design model, the simplified magnetic nonlinearity model and no other
contribution to mt than the permanent-magnets.
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Results

In Figure 2.23, the behaviour of lt- is analyzed in the case of an ideal machine,
by keeping only the second harmonic rank lt(2) and removing all other ranks. As
a consequence, the shape drawn by lt- during the rotation is a circle. This circle
should not be confused with the circle drawn by lt-e

j2(ϕx−∠di) while di is rotating,
illustrated in Figure 2.11. As a consequence, the rotor angle is easily extracted
as ϕd = ϕx − 90◦. In comparison, in the case of our nonideal machine shown
in Figure 2.24, the relation between the anisotropy angle ϕx and the rotor angle
ϕd is affected by significant harmonics. Due to these harmonics, the shape drawn
by lt- during the rotation becomes a triangle. An important consequence of the
harmonics is the reduction of the accuracy of the rotor angle estimation based on
ϕx. This estimation is reliable only around some particular angles ξ60◦ illustrated
by crosses in Figure 2.19, while the estimation is inaccurate around angles 30◦ +
ξ60◦, illustrated by dashed circles.

Simulations analyzing the impact of significant stator currents on the saturation
is introduced in [39]. It is however not presented here because the model could
not be validated at rated load. This would require further investigations and an
improved test bench.

2.6.4 Experimental Results

Estimations of the incremental self-inductance from experiments

The experiments are performed on the standstill experimental BLDC motor, with
the rotor blocked at 127 different positions between ϕd = 0◦ and 360◦. At each ro-
tor position, the incremental self-inductances are computed based on 2× 100 sam-
ples taken with a voltage pulse instructions dv of 0.77 V amplitude injected during
periods of Ts = 0.1 ms along two different directions, such that they produce flux
variations dψS = dv/Ts of 7700 Wb amplitude. The current variations di related
to these flux variations are between 0.7 A and 1.4 A, depending the orientation with
respect to the anisotropy. They are measured by a current sensors with a 0.244 A
resolution. This low resolution constitutes the main source of noise (digital noise)
and the standard deviation of the current measurements is thus around half the sen-
sor resolution. The noise issue is further addressed in section 5.3. Due to the low
ratio of the current variations on the standard deviation, that is between 10 and 20,
the standard deviation on the self-inductances is also quite large, between 5µH and
13µH. The impact of this deviation is however reduced by 10 computing the mean
of the results on 100 samples. Assuming a computation method based on these
mean values, the error on self-inductances lt+ and lt- should be around 2µH, and
the error on the angle ϕd is around 2.5◦. The resolution step of the encoder, mea-
suring the rotor position, is 8192 on a whole rotation, thus 8192/P/360◦ = 1.6◦

on ϕd.
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Figure 2.25: Experimental values of lt- for ϕd ∈ [0, 2π] and spectrum of its harmonics,
with i = 0 A.
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Figure 2.26: Experimental values of lt- for ϕd ∈ [0, 2π] and spectrum of its harmonics,
with i = 36 A ejϕq .
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Figure 2.27: Experimental values of the load impact on the harmonic ranks k = 2,−4,
involved in lt-, and on the harmonic rank k = 0, involved in lt+.

Figures

Results are shown in Figure 2.25 and Figure 2.26, respectively for a no-load sit-
uation (i = 0) and for a loaded situation (i = 36 A along the q-axis). They are
composed as follows:

• the value lt- in the complex frame ;

• the amplitude lt- = |lt-| as a function of the rotor position ϕd ;

• the anisotropy angle ϕx = 0.5∠(lt-) as a function of the rotor position ϕd ;

• the misalignment shift ϕx−ϕq− 90◦ as a function of the rotor position ϕd ;

• the harmonic spectrum of lt-, with real values shown by dots and imaginary
values shown by small squares ;

• the value lt+ as a function of the rotor position ϕd.

Results

As we can see, Figure 2.25 is in good agreement with the simulation result Fig-
ure 2.24. The main difference concerns the harmonic spectrum where only the
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ranks k = 2 and k = −4 present significant values. Concerning the self-sensing
opportunities, compared to the previous conclusion based on simplified models,
this experimental result suggests that it could be possible to increase the resolution
of the rotor position estimation by taking only these second harmonics, of rank
k = −4, into account. This is however not done is thesis due to lack of time. As
we can see in Figure 2.26, the increase of the load (stator current along the q-axis)
produces a shift in the anisotropy angle. This is observed in the spectral content
of lt-, computed with respect to the angle ϕd given by the encoder. The positive
inductance lt+ is also slightly increased.

Figure 2.27 shows the load impacts, measured for |i| = 0, 12, 24, 36 A along
the q-axis, on different harmonic ranks k = 2,−4, involved in lt-, and on the
harmonic rank k = 0, involved in lt+. This impact is rather large and will certainly
continuously increase up to the rated 134 A. If a linear behaviour is assumed, the
anisotropy shift would reach 26◦. Observe that the ranks 2 and −4 that are shifted
by similar angles. This suggests that they are affected in a similar way by the
load. Many papers propose to compensate for this load shift performing an offline
commissioning. This commissioning however requires a specific test bench with
a rotor position sensor and with a blocked rotor up to the maximum load. In the
case of our experimental motor, the rated torque is 150 Nm. This is quite large and
this experiment was not performed at this stage of the study. Different solutions
are addressed in chapter 5.

2.7 Summary

In this chapter, we introduced the general electromagnetic model of the PM electric
machine. Several assumptions were however required:

• machine made of cylindrical parts without magnetic field flowing through
the edges, with as a consequence the exclusion of any axial component in
the magnetic field ;

• symmetrically wounded coils on either side of their phase angles ϕp, plus
the assumption of identical coils ;

• no homopolar current.

Large developments for any number of phases were proposed, offering tools for
the study and the control of polyphase machines. We however focus on three-
phase machine and the principal expressions to keep in mind for the rest of this
thesis are:

• the computation of the fundamental complex space vector (2.71) for three-
phase machines ;

• the expression of the torque (2.69) neglecting the harmonics ;
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• the expression of the anisotropic incremental relation (2.81) in three-phase
machines.

The experimental BLDC motor has been analyzed through simulations and exper-
iments. The main experimental results are:

• Figure 2.21 shows that the magnetic flux contains harmonics of rank k = 5
that is only 1 % the fundamental k = 1. We propose therefore to neglect
these harmonics in the torque expression and to perform a field-oriented con-
trol generally applied on PMSM, as further described in chapter 5 ;

• Figure 2.25 and Figure 2.26 illustrate the oscillating error due to harmonics
in the machine, and show that the negative self-inductance, used to obtained
the anisotropy angle ϕx, contains harmonics of rank k = −4, referred to
as second harmonics, while the other harmonics ranks are rather negligi-
ble. This would limit the complexity of the development of a compensation
method (not done in this thesis) ;

• Figure 2.27 finally illustrated the significant impact of the stator currents.



Chapter 3

Electrical Circuit Model

This chapter addresses the model of the electrical circuit of the machine using
space vectors. This model describes the relations linking the voltage and the current
including the anisotropic properties described in the previous chapter 2. Since eddy
currents can be significant in some types of machine, they are included for analysis
in a second model for standstill machines. Because recent control operations are
based on digital samples of the current, a transposition of the models in a discrete-
time form is advized. The issues regarding parameters distortions are theoretically
analyzed for the case of the model neglecting the eddy and for the model including
the eddy currents. The study of the impact of eddy currents and the discretization
on the model of the machine impedance is finally proposed.

3.1 Introduction

Since most of the recent drives are based on digital computations, it is advised to
develop the control scheme and to adjust the operations based on a discrete-time
model of the machine. All the publications found and dealing with digital control
transpose the continuous-time model of the machine in an equivalent discrete-time
model without taking care on any effect of the discretization on the apparent values
of the machine parameters. In many drives, the transient time-constants of the elec-
trical circuit of the machine are assumed large enough compared to the sampling
period. In that case, the simple transposition to a discrete-time is valid, correspond-
ing to a zero-order hold approach as done by [73, 74, 75]. In other cases however,
the use of discrete-time operations may lead to significant distortions of the appar-
ent parameters. Moreover, this distortion can be coupled with effects related to the
presence of significant eddy currents.

The treatment of these issues are directly linked to problems faced on the ex-
perimental BLDC motor. Identification of the impedance using signal injections,
as described in chapter 5, revealed variations of the parameter values as a function
of the sampling frequency, and as a function of the signal frequency. In order to
eliminate possible hardware errors or mistakes in the implemented methods, it was

79



80 CHAPTER 3. ELECTRICAL CIRCUIT MODEL

1 = eϕα , eϕa
β

j = eϕβ , eϕa+π/2

α

(a)

0 0 xα = <(x)

∠x
x=(x) = xβ

(b)

Figure 3.1: (a) Unitary space vectors of the stationary αβ-frame ; and (b) illustration of a
space vector x and its axis components in the stationary αβ-frame.

required to compare these results with simulations based on adequate models. It
was firstly revealed that the simple modelling considering the discretization, but
neglecting eddy currents gave unsatisfying results. Another model, much more
complicated and including the eddy currents, was therefore developped. This new
model offered very satisfying simulations results in adequacy with the experiments.
For complexity reasons, the model was however restricted to standstill machines.

A significant part of this chapter addressed the mathematical development of
the model discretization taking the eddy currents into account. This work allowed
to concluded that the eddy current were the cause of the parameter distortion, ex-
cluding any cause from the hardware or the implementation.

∼

This chapter is organized as follows: the section 3.2 introduces general rela-
tions with space vectors in different reference-frames ; Section 3.3 describes the
electrical model in case of anisotropic relations firstly neglecting the eddy current,
and secondly including the eddy currents ; Section 3.4 substitutes the continuous-
time models by equivalent discrete-time models. The impact of the two-level
three-phase pulse-width modulated voltage source inverter on this discretization is
largely developped, assuming a standstill motor ; Section 3.5 introduces the model
under the form of impedances, since the impedance is the value identified by the
self-sensing method proposed in chapter 5. Comparisons between measurements
on the experimental machines and model results confirm the validity of the mod-
els ; A summary of the important elements of this chapter is given in section 3.6.

3.2 Space Vectors in Different Frames

3.2.1 The Stationary Frame

Using complex space vectors

Assume a set of 3 phase values, written xp where p ∈ {a,b, c}, related to an
electromagnetic phenomenon occurring in the different stator phase-coils of the
machine. This phenomenon can be the voltage applied to the coil terminals vp, the
current flowing in the phase coils ip, the magnetic flux linked by the phase coils
ψp. The complex space vector x is defined in (2.71) of the chapter 2 as the phase
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contributions xp along the conductor orientations ϕp ; and the homopolar xo is
defined in (2.70) as the sum of the phase values xp:

x ,
2

3

∑
p=a,b,c

xp ejϕp and xo ,
1

3

∑
p=a,b,c

xp (3.1)

where ϕa = 0, ϕb = 2π/3 and ϕc = 4π/3. The phase values are found back using
(2.46):

xp = xo + <
(
x e−jϕp

)
∀p ∈ {a, b, c} (3.2)

Being defined with respect to the stator phase-coils, it is said that this space vector
x is in the stationary frame. As illustrated in Figure 3.1, this stationary frame is
generally identified by two orthogonal axes: one axis α is oriented along the first
phase a, i.e. by an angle ϕα = ϕa, and the other axis β is oriented in quadrature,
i.e. by an angle ϕα = ϕa + π/2. Since ϕa = 0, the axis α is thus also the axis of
the real values and β is the axis of the imaginary values, with the following unitary
space vectors: ejϕα = 1 and ejϕβ = j. The real and imaginary components of x
are thus linked to the axes as follows:

xα , <{x} and xβ , ={x} ⇔ x = xα + jxβ (3.3)

The matrix relations

Combining (3.2) with (3.3) yields the matrix relation between the αβ-components
of the space vector, plus the homopolar, and the phase values as follows: xa

xb

xc

 =

 cos(ϕa) sin(ϕa) 1
cos(ϕb) sin(ϕb) 1
cos(ϕc) sin(ϕc) 1


︸ ︷︷ ︸

C

 xα
xβ
xo

 (3.4)

This computation is often referred to as the Clark-transformation. It can be re-
versed and yields: xα

xβ
xo

 =
2

3

 cos(ϕa) cos(ϕb) cos(ϕc)
sin(ϕa) sin(ϕb) sin(ϕc)

0.5 0.5 0.5


︸ ︷︷ ︸

C−1

 xa

xb

xc

 (3.5)

The same result can be obtained combining (3.1) with (3.3).

Using matrix space vectors

In many papers of the literature, the term “space vector” refers to the matrix con-
taining the components along the frame axes. To make the difference with the
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Figure 3.2: (a) Unitary space vectors of the synchronous qd-frame, with respect to the
α-axis ; and (b) illustration of a space vector x and its axis components in the synchronous
qd-frame.

notation x, this matrix is written here with an uppercase letter X . Using (3.3), x is
related to x by:

X ,

(
xα
xβ

)
=

(
<{x}
={x}

)
and x =

(
1 j

)
X (3.6)

We propose here to simply refer toX as matrix space vector, to be distinct form the
complex space vector x. Since conjugate values x∗ are involved in the anisotropic
relations, in order to transpose these relations using matrix space vectors, we pro-
pose to define an equivalent conjugate X∗ as follows:

X∗ ,

(
xα
−xβ

)
and x∗ =

(
1 j

)
X∗ (3.7)

Both forms, complex and matrix space vectors, are equivalent. The choice to use
one or the other depends on practical aspects in mathematical handling. For exam-
ple, the self-sensing theory proposed in chapter 5 is easily based on the complex
space vectors. While the matrix space vectors generally lead to more compact
expressions. These last matrix space vectors are also more widespread in the liter-
ature.

3.2.2 The Synchronous Frame

Using complex space vectors

The machine model involves space vectors in different frames: stationary, syn-
chronous or possibly others. Generally, one frame is chosen as the reference,
namely we are observers in that frame. The reference-frame is indicated by the
axis symbols adjoined to the space vectors, or in the text if it concerns the whole
equation.

The synchronous frame is linked to the rotor in a single-pole-pair representa-
tion. As illustrated in Figure 3.2, it is identified by two orthogonal axes: the d-axis
is centered along the permanent-magnet location ; and the q-axis is oriented in
quadrature, or in back-quadrature, with respect to the d-axis. The back-quadrature
is assumed in this document. The angle formed by the q-axis with respect to the
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α-axis is written ϕq. As reference-frame, the q-axis becomes the axis of the real
values and the d-axis becomes the axis of the imaginary values.

It is possible to switch the reference frame from the stationary αβ-frame to the
qd-frame, applying a negative rotation on the space vector by the angle ϕq of the
q-axis with respect to the α-axis:

x|qd = e−jϕq x|αβ (3.8)

Time derivatives of space vectors are involved in the model. It is therefore con-
venient to introduce the expression linking the time derivative of a space vector in
different reference-frames. Using (3.8), in the qd reference-frame, it yields:

e−jϕq
dx|αβ
dt

=
dx|qd

dt
+ jωq x|qd (3.9)

where ωq = dϕq/dt. Observe that the change from the stationary αβ reference-
frame to the synchronous qd reference-frame introduce a term related to the speed
between the reference-frames.

Using matrix space vectors

Handling the matrix space vectors (3.6) in the respective reference-frames, the re-
lation (3.8) yields:

X|qd =

(
cos(ϕq) sin(ϕq)
− sin(ϕq) cos(ϕq)

)
X|αβ (3.10)

and the relation (3.9) yields:(
cos(ϕq) sin(ϕq)
− sin(ϕq) cos(ϕq)

)
dX|αβ
dt

=
dX|qd

dt
+ ωq

(
0 −1
1 0

)
︸ ︷︷ ︸

J

X|qd (3.11)

where we introduced the matrix J substituting the imaginary unity j.

The matrix relations including the homopolar

It is possible to link the axes components, plus the homopolar xo, with the phase
values directly by matrix referred to as Park transformations. This is found com-
bining (3.4) and (3.5) with (3.10), and yields: xa

xb

xc

 = C

 cos(ϕq) − sin(ϕq) 0
sin(ϕq) cos(ϕq) 0

0 0 1

 xq

xd

xo

 (3.12)

and  xq

xd

xo

 =

 cos(ϕq) sin(ϕq) 0
− sin(ϕq) cos(ϕq) 0

0 0 1

C−1

 xa

xb

xc

 (3.13)
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Figure 3.3: Illustration of the anisotropic relation between two space vectors x and y
following (3.14), and the related anisotropy xy-frame.

These matrix transformations are given for information, but they will not be further
used. We prefer to compute the space vectors using the initial definition (3.1)
and then to handle them in the synchronous reference frame using complex space
vectors (3.8) or matrix space vectors (3.10).

3.2.3 The Anisotropic Relation

Using complex space vectors

In a general way, an anisotropic relation between two space vectors x and y is
defined in the stationary αβ reference-frame by the following form:

y = a+x+ a-x
∗

= a+x+ a-e
j2ϕxx∗

where


a+ ∈ <

a- ∈ = ⇒
{
a- = |a-| ∈ <
ϕx , ∠(a-)/2

(3.14)

where a+ and a- are called the positive and negative parameters respectively, and
ϕx is called the anisotropy angle. This angle gives the orientation of the related
xy frame with respect to the reference-frame. This is illustrated in Figure 3.3. The
relation between the linked flux and the current contributions (2.81) and (2.85),
addressed in chapter 2, satisfy to this definition of the anisotropy.

Using (3.8), and since x∗|qd = ejϕq x∗|αβ , the anisotropic relation (3.14) trans-
posed in the synchronous qd reference-frame yields:

y = a+x+ a-e
−j2ϕqx∗

= a+x+ a-e
j2(ϕx−ϕq)x∗

(3.15)

If the synchronous qd frame is aligned with the anisotropy xy frame, we have
ϕx = ϕq and (3.15) yields:

y = a+x+ a-x
∗ (3.16)

We see hereafter how these relations appear using the matrix space vectors.
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Using matrix space vectors

Handling matrix space vectors (3.6) and (3.7), the relation (3.14) in the stationary
αβ reference-frame yields:

Y = a+X + a-

(
cos(2ϕx) − sin(2ϕx)
sin(2ϕx) cos(2ϕx)

)
X∗ (3.17)

This result can also be written as a matrix relation between X and Y :

Y =

(
aαα aαβ
aαβ aββ

)
︸ ︷︷ ︸

A

X ⇒


aαα = a+ + a- cos(2ϕx)
aββ = a+ − a- cos(2ϕx)
aαβ = a- sin(2ϕx)

(3.18)

For information, reversing it, yields:

a+ =
aαα + aββ

2
and a- = a-e

j2ϕx =
aαα − aββ

2
+ jaαβ (3.19)

This relation can be used to compute the parameters of the space vector relation
from the knowledge of the matrix A.

The relation (3.15) in the synchronous qd reference-frame yields:

Y =

(
aqq aqd

aqd add

)
X ⇒


aαα = a+ + a- cos(2(ϕx − ϕq))
aββ = a+ − a- cos(2(ϕx − ϕq))
aαβ = a- sin((ϕx − ϕq))

(3.20)

If the synchronous qd frame is aligned with the anisotropy xy frame, we have
ϕx = ϕq and (3.20) yields:

Y =

(
a+ + a- 0

0 a+ − a-

)
X (3.21)

where ax = a+ +a- and ay = a+−a- are respectively the maximum and minimum
values of the parameter.

Since the matrix (3.21) is diagonal, it is said that the relation along the x and
the y axes is uncoupled. A contrario, the matrix (3.20) is not diagonal if the
synchronous and anisotropy frames are misaligned. In that case, it is said that
the q and the d axes cross-coupled. These terms of “saturation cross-coupling”
[76, 63, 59, 55] or “cross-saturation” [54, 77, 60] or “cross-magnetization” [78]
are often addressed in literature concerning the position self-sensing strategies. We
see however that these coupling effects are only a point of view depending on the
considered reference-frame. Generally, the coupling is assessed with respect to
the qd frame and, thus, simply qualifies the fact that the synchronous qd frame is
misaligned with the anisotropy.
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3.3 Continuous-time models

3.3.1 Induced Voltages

The Faraday’s law of induction states that the time derivative of the flux ψ linked
by the phase coils induces a voltage e in the machine circuits. This relation is stated
in the reference-frame of the linking coils, that is the stationary αβ-frame. In that
frame, the relation can be written:

e =
dψ

dt
(3.22)

In a permanent-magnet machine, the flux ψ can be separate in three main contri-
butions:

ψ = ψ
S

+ ψ
PM

+ ψ
E

(3.23)

1. a self-contribution from the stator currents i, written ψ
S

, that is possibly
nonlinear (since the relation depends on the magnetic state of the machine
and therefore varies as a function of the different magnetic sources) and pos-
sibly anisotropic (due to rotor geometry variations or to magnetic saturation
effects) ;

2. the contribution from the permanent magnets (PM), written ψ
PM

, that by
definition only depends on the PM contribution to the magnetic state of the
machine. Since the magnetomotive force (mmf) of the PM is assumed con-
stant along the rotor-side, ψ

PM
has a constant amplitude and is oriented as a

function of the PM position ϕd ;

3. the contribution from eddy currents iE appearing in the iron of the machine,
written ψ

E
, that is further discussed.

The respective induced voltages are eS , ePM and eE, such that: e = eS+ePM +eE.
In addition, the Ohm’s law states that the electrical current i flowing through the
phase coils produce a voltage drop vr by a factor of resistance, introduced hereafter.
The supply voltage v applied to the coil terminals is then equal to the induced
voltage e plus the voltage drop vr:

v = vr + e = vr + eS + ePM + eE (3.24)

These different voltages are developed hereafter. Note that we often switch be-
tween complex and matrix space vectors, since both are useful.

3.3.2 The Resistive Voltage Drop

The relation between the voltage drop vr and the current i can reveal an anisotropic
property, as defined by (3.14), due to unbalancing between the resistances of the
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different stator coils. This is shown as follows. The resistive voltage drop vr,p of
the different phases p can be written in a matrix form as: vr,a

vr,b
vr,c

 =

 ra 0 0
0 rb 0
0 0 rc


︸ ︷︷ ︸

Rabc

 ia
ib
ic

 (3.25)

Using the Clack matrices (3.4) and (3.5), it is possible to compute the equivalent
relation between the space vector components in the stationary frame, plus the
homopolar, as follows: vr,α

vr,β
vr,o

 =

 rαα rαβ rαo
rβα rββ rβo
roα roβ roo


︸ ︷︷ ︸

Rαβo

 iα
iβ
io

 (3.26)

where Rαβo = C−1RabcC

=
2

3

 ra + 1
2(rb + rc)

√
3

4 (rc − rb) ra − 1
2(rb + rc)√

3
4 (rc − rb) 3

4(rc + rb)
√

3
2 (rb − rc)

1
2ra − 1

4(rb + rc)
√

3
4 (rb − rc)

1
2(ra + rb + rc)

 (3.27)

We firstly observe that there is an interaction between the homopolar current io
and the voltage drops vr,α and vr,β in the stationary frame through rαo and rβo that
are possibly not null. Since there are no neutral connection in our experimental
machine, we propose to assumed the case io = 0 and to ignore this interaction.
Thus using matrix space vectors (3.6), the relation (3.26) yields:

V r =

(
rαα rαβ
rβα rββ

)
︸ ︷︷ ︸

R

I (3.28)

We secondly observe that the interaction between the two axes is reciprocal: rαβ =
rβα. Thanks to this reciprocity, (3.28) has the form of an anisotropic relation in its
matrix form (3.18). Computing r+ and r- as given in (3.19), (3.28) can be written
with complex space vectors as given in (3.14) in the stationary reference-frame:

vr = r+i+ r-i
∗ (3.29)

It is important to note that the orientation of this resistive anisotropy, i.e. ∠(r-)/2,
is only function of the phase resistances, but does not contain any rotor position
information.
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3.3.3 Back-electromagnetic force

Approximations for a synchronous machine

The back-electromagnetic force (back-emf) is the contribution from the PM to the
induce voltage, written ePM. Assume that the the contribution from the PM is only
function of the PM angle ϕd. Thus we can write in the stationary αβ-frame:

ePM =
dψ

PM

dt
= ωd

∂ψ
PM

∂ϕd
(3.30)

where ωd = dϕd/dt. The expression (3.30) in the synchronous qd reference-frame
is found using (3.9) and yields:

ePM =
dψ

PM

dt
+ jωdψPM

= ωd

(
∂ψ

PM

∂ϕd
+ jψ

PM

)
(3.31)

where ωq = ωd.
Assume that ψ

PM
can be approached as a space vector oriented along the d-

axis. In the stationary reference-frame, (3.30) yields:

ψ
PM

= |ψ
PM
|ejϕd ⇒

∂ψ
PM

∂ϕd
= jψ

PM
⇒ ePM = jωdψPM

(3.32)

In the synchronous reference-frame, we have:

ψ
PM

= |ψ
PM
|ejϕde−jϕq = |ψ

PM
|ejπ/2 ⇒

∂ψ
PM

∂ϕd
= 0 (3.33)

And thus, (3.30) yields the same expression as (3.32).

3.3.4 Current Contribution To The Induced Voltage

Assume that the contribution from the stator current is function not only of the
stator currents i, but also of the PM angle ϕd. Thus, using ϕq = ϕd− π/2, we can
develop the induced voltage in the stationary αβ reference-frame as follows:

eS =
dψ

S

dt
=
∂ψ

S

∂i

di

dt
+ ωq

∂ψ
S

∂ϕq
(3.34)

Note that ωq = ωd. The partial derivative on the angle ϕq is found assuming a
constant current, i.e. it is found around the linearization point given by (2.85):

ψ
S

= l+i+ l-i
∗ ⇒

∂ψ
S

∂ϕq
=

∂l+
∂ϕq

i+
∂l-
∂ϕq

i∗ (3.35)

It is not demonstrated here, but it can be shown that the derivative of the positive
and negative inductances still yields an anisotropic relation, i.e. the anisotropy is
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not lost in (3.35). The partial derivative on the current i is addressed in the previous
chapter 2 and corresponds to the incremental contribution (2.81):

∂ψ
S

∂i

di

dt
= lt+

di

dt
+ lt-

di

dt

∗
(3.36)

Replacing the partial derivatives (3.35) and (3.36) in (3.34) yields:

eS = lt+
di

dt
+ lt-

di∗

dt
+ ωq

(
∂l+
∂ϕq

i+
∂l-
∂ϕq

i∗
)

(3.37)

The expression in the synchronous qd reference-frame is found using (3.9) and
yields:

eS =
dψ

S

dt
+ jωqψS (3.38)

Since x∗|qd = ejϕq x∗|αβ and hence in the qd reference-frame:

ψ
S

= l+i+ l-e
−2jϕqi∗ ⇒

∂ψ
S

∂ϕq
=

∂l+
∂ϕq

i+
∂l-e

−2jϕq

∂ϕq
i∗ (3.39)

Then (3.38) in the qd reference-frame yields:

eS = lt+
di

dt
+ lt-e

−2jϕq
di∗

dt

+ ωq

(
∂l+
∂ϕq

i+
∂l-e

−2jϕq

∂ϕq
i∗ + j

(
l+i+ l-e

−2jϕqi∗
))

(3.40)

This expression may looks more complicated than (3.37), but let us see hereafter
how it looks like assuming a synchronous machine.

Relation using matrix space vectors

Using matrix space vectors, where the relation is given by (3.18), (3.37) yields in
the stationary αβ reference-frame:

ES = Lt
dI

dt
+ ωq

∂L

∂ϕq
I (3.41)

In the synchronous qd-reference-frame, the relation is given by (3.20) and (3.40)
yields:

ES = Lt
dI

dt
+ ωq

(
∂L

∂ϕq
+ JL

)
I (3.42)

As we can see, these expressions are more compact than their equivalent complex
relations. But their anisotropic properties are not highlighted in these matrix rela-
tions.
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Approximations for a synchronous machine

Assume that the anisotropy frame related to the self-inductances is aligned with the
synchronous frame, i.e. ϕx = ϕq as introduced in (2.88), such that l- = l-e

j2ϕq .
Assume moreover that l+ and l- are constant. Hence:

∂l+
∂ϕq

= 0 and
∂l-
∂ϕq

= j2l-e
j2ϕq (3.43)

Idem, assume that the anisotropy frame related to the incremental self-inductances
is aligned with the synchronous frame, hence: lt- = lt-e

j2ϕq . Therefore, (3.37) in
the stationary αβ reference-frame yields:

eS = lt+
di

dt
+ lt-

di∗

dt
ej2ϕq + jωq2l-i

∗ej2ϕq (3.44)

We can see that, even in a synchronous machine, a contribution related to l- re-
mains. This specific contribution is not easily transposable in a matrix form, such
as (3.41).

In the synchronous qd reference-frame, we have:

∂l+
∂ϕq

= 0 and l-e
−2jϕq = l- ⇒ ∂l-e

−2jϕq

∂ϕq
= 0 (3.45)

Therefore, (3.40) in the synchronous qd reference-frame is:

eS = lt+
di

dt
+ lt-

di∗

dt
+ jωq (l+i+ l-i

∗) (3.46)

This last expression is often found in the literature under a matrix relation between
the axis components:

ES = Lt
dI

dt
+ ωqJLI (3.47)

Impact of the harmonics

The upper conditions of the synchronous machines are not met in the case of the
experimental BLDC motor. Since the inductances l+ and l- content harmonics of
ϕq, then ∂l+/∂ϕq and ∂l-/∂ϕq oscillate at frequencies multiple of ωq, as explained
in chapter 2.

Selection of the reference-frame

Assuming an ideal synchronous machine, the incremental part LtdI/dt of (3.46)
in the qd reference-frame yields a diagonal matrix relation (3.21). The relation is
qualified as “magnetically decoupled”. A contrario, the matrix relation in the sta-
tionary reference-frame leads to a magnetic cross-coupling (3.18). Many anisotropy-
based self-sensing methods found in the literature are thus developed in the qd-
frame exclusively, such as in [79]. This frame is however not necessarily aligned
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with the anisotropy xy-frame if the machine is not ideally synchronous, due to the
stator current contribution to the anisotropy and due to the anisotropy harmonics
as discussed in the previous chapter 2.

Some papers propose a strategy, referred to as cross-saturation compensation,
that consists to perform the self-sensing operations in an hypothetic qd-frame tak-
ing the cross-saturation into account. This is equivalent to take the misalignment
ϕx − ϕq into account. Unfortunately, neither ϕq nor ϕx are apriori known, since
they are the value to be estimated in self-sensing operations. As a consequence,
it seems to us that this strategy is rather complicated and estimations of ϕq and
ϕx could interfere. In the stationary-reference-frame however, only ϕx appears in
the relation (3.36). In a first step, ϕx can be estimated using, for example, signal
injection methods. In second step only, it is possible to estimate ϕq assuming a
good model of the current contribution and the anisotropic harmonics, or assuming
a compensation commissioning. Both step are therefore well separated. Both ϕx

and ϕq are then consecutive and the estimation of ϕq is not interfering back in the
estimation of ϕx.

Note that the term “cross-coupling” may also refer to JLI in (3.47) [79].

3.3.5 Electrical Circuit Model Without Eddy Currents

Combining the previous expression of this section, we can write the continuous-
time model of the machine neglecting the contribution of eddy currents. In the
stationary αβ reference-frame, introducing the resistive voltage drop (3.29), the
back-emf (3.30) and the self-induced voltage (3.37), the relation with the supply
voltage (3.24) assuming eE = 0 yields:

v = lt+
di

dt
+ lt-

di∗

dt
+

(
r+ + ωq

∂l+
∂ϕq

)
i+

(
r- + ωq

∂l-
∂ϕq

)
i∗ + ePM (3.48)

This expression can also be written using matrix space vectors (3.6) and (3.7), and
the matrix of the factors are computed by (3.18). It yields:

V = Lt
dI

dt
+

(
R+ ωq

∂L

∂ϕq

)
I + EPM (3.49)

3.3.6 Electrical Circuit Model Including Eddy Currents

The eddy currents occur in the stator iron and in the rotor iron, but also in the
permanent-magnets [80, 81, 82]. All the eddy currents must be modelled in the
reference-frame related to the location where they appear, and then be transposed
in one reference-frame. By consequence, a model including all the possibilities
combining the different eddy currents, while moreover the machine is rotating, is
very complicated. The goal is here however not to study all these possibilities, but
to have a slight idea of some possible impacts. We propose therefore here a first
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LM,t

I
IEV

R RE

LE,t − LM,tLt − LM,t = Lσ,t

Figure 3.4: Model of the electrical circuit including the eddy currents.

analysis with a simplified model assuming a standstill rotor: ωq = 0. As conse-
quence, the back-emf is null and the eddy currents from the rotor-side can be mixed
with the eddy currents from the stator-side, all being developed in the stationary
reference-frame. For convenience, the relations are given between matrix space
vectors only, since they are more compact. As illustrated in Figure 3.4, the con-
tribution of the eddy currents is modelled by an equivalent current IE flowing in a
closed circuit presenting a resistance RE [83, 59, 84, 85]. The mutual inductances
between the two circuits are denoted by the lower index M. It yields:

V = Lt
dI

dt
+ LM,t

dIE

dt
+RI

0 = LE,t
dIE

dt
+ LM,t

dI

dt
+REIE

(3.50)

where all the inductances are possibly nonlinear and anisotropic. Note that even-
tual homopolar component in the eddy currents is neglected here. The difference
between the mutual inductance and the self-inductances is related to flux leakages
phenomenons. Let us define the incremental stator leakage inductance as follows:
Lσ,t , Lt −LM,t ; and the mutual current: IM , IE + I . In can be shown that an
equivalent system, presenting the same behaviour, is found assuming LM,t = LE,t.
This transformation is demonstrated in [11]. As a result, (3.50) yields:

V = Lσ,t
dI

dt
+ LE,t

dIM

dt
+RI

0 = LE,t
dIM

dt
+REIE

(3.51)

One-line expression

Let us define the transient time-constant of the eddy current circuit:

TE,t = R−1
E LE,t (3.52)

It is possible to combine the relations of both circuits of (3.51) to obtain the differ-
ential equation of second order linking V S,t to I . Introducing (3.52) yields:

V + TE,t
dV

dt
= TE,tLσ,t

d2I

dt2
+ (Lt + TE,tR)

dI

dt
+RI (3.53)
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Figure 3.5: Illustration of typical signals along the α-axis: (a) the supply voltage vα(t)

synthesized by a two-levels three-phase PWM-VSI ; (b) the related mean values ṽ[k]
α during

the PWM periods ; (c) Stator current response iα(t) ; (d) the current samples iα(t[k]) (•)
and the sampling averages ī[k] (◦).

If I models a small signal (small amplitude) and assuming a small period of time,
the parameters can be assumed constant.

3.4 Discrete-Time Models

The drive operations are often described assuming a continuous-time model of the
electrical machine. In practice however, most of the machines are driven by digital
controllers and a digital model of the machine is therefore advised. Figure 3.5 illus-
trates typical signals, along the α-axis, that could appear in an electrical machine
supplied by a pulse-width-modulated (PWM) voltage-source inverter (VSI). At ev-
ery period of time Ts, the PWM-VSI generates a voltage signal switching between
fixed step values, as shown in (a). The mean value ṽ[k]

α of the voltage during every
period numbered k is shown in (b). As explained in chapter 4, ideally, this mean
value should be equal to the instruction voltage. Due to the PWM voltage, the cur-
rent response iα(t) exhibits ripples, as shown in (c). The current measurements are
periodically samples, as shown in (d). We assume that the sampling times of the
currents are synchronized with the PWM signal driving the VSI. The currents are
therefore sampled with a frequency νs at instants t[k] = kTs, where Ts = 1/νs is
also the sampling period.

It is generally assumed that the mean of the current during a period is equal to
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the average between two samples. This assumption strongly simplifies the discrete-
time expressions. This should however be validated. In this section, we firstly pro-
pose the discrete-time machine model that we wish to substitute to the continuous-
time model for digital operations. Their validity is then verified for standstill ma-
chines. The upper index [k] placed on a value refers to the related sampling period
k. For convenience however, this index will not be mentioned on the symbols in
the text if it is not confusing. For convenience also, the subscript t indicating incre-
mental parameters is removed, but all the parameters in the discrete-time modeling
are necessarily incremental.

3.4.1 Electrical Circuit Model Without Eddy Currents

Using matrix space vectors and removing the indication t, the continuous-time
model of the electrical circuit model neglecting the contribution of the eddy cur-
rents is:

V = L
dI

dt
+RI (3.54)

Assume that the influence of the so-called PWM-VSI nonlinearities are compen-
sated, as addressed in chapter 4. The discrete-time operations can therefore be
handled by the mean value Ṽ of the voltage supplied by the VSI between two
sampling times:

Ṽ
[k]

,
1

Ts

∫ t[k]

t[k−1]

V (t)dt (3.55)

Applying this mean on (3.54) and assuming constant parameters, it yields:

Ṽ
[k]

= L
δI [k]

Ts
+RĨ

[k]
(3.56)

where Ĩ is the mean value of the current between two sampling times and δI is the
sampling backward-difference of the current defined as the difference between two
samples:

δI [k] , I(t[k])− I(t[k−1]) =

∫ t[k]

t[k−1]

dI(t)dt (3.57)

Except if dedicated sensors are added, Ĩ is not measured and the expression (3.56)
is not convenient for digital operations. We propose therefore to substitute Ĩ with
the sampling average of the current Ī , defined as the average between two consec-
utive samples:

Ī
[k] ,

I(t[k]) + I(t[k−1])

2
(3.58)

The model (3.56) is then substituted by the following discrete-time model:

Ṽ
[k]

= L̄
δI [k]

Ts
+ R̄Ī

[k] (3.59)
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where L̄ and R̄ are the discrete-time parameters substituting the continuous-time
parameters. Note that these new parameters can significantly differ with respect
to the continuous-time parameters if Ī 6= Ĩ . This is shown hereafter. The steps
leading to (3.59) from the continuous-time model (3.54) is proposed hereafter for
the case of a standstill machine and separating the relations along uncoupled x
and y-axes. Note that other discrete-time formulations can be found in the liter-
ature [74, 75], mainly using directly the samples I(t[k−1) or I(t[k) instead of Ī .
But comparatively (3.59) as significant advantages in the digital signal-injection
processing. This is further explained in chapter 5.

Development of the proposed model

The proposed development is performed assuming a standstill machine, i.e. ωq =
0, and assuming that both incremental self-inductance and resistance present the
same anisotropy orientation. In that case, the relations can be separated along the
x and y-axes (entirely uncoupled). This is an approximation since, as we showed
previously, the resistance may present an anisotropy due to unbalancing that is
independent to the rotor position, while the incremental self-inductance presents
an anisotropy that is function of that rotor position. By consequence, both are not
necessarily aligned. A more general development can probably be obtained without
these assumptions, but this is not done here. For convenience, we do not mentioned
the axes symbols x and y, but they must be considered. For any of the two axes,
the components are linked by the following first-order derivative expression:

v(t)

l
=
di(t)

dt
+

1

τ
i(t) (3.60)

where the transient time-constant is τ = l/r. Note the time-constant can be differ-
ent along the x-axis and along the y-axis. The solution of this expression between
two sampling times is [86]:

i(t[k]) = e−
Ts
τ i(t[k−1]) +

∫ t[k]

t[k−1]

e
t−t[k]

τ
v(t)

l
dt (3.61)

We propose to compare the integral of the real PWM voltages with the ideal case
of constant step voltages equal to ṽ. If the voltage is constant during the period, it
can be taken out the integral, and thus the integral yields:∫ t[k]

t[k−1]

e
t−t[k]

τ
ṽ[k]

τ
dt = ṽ[k]

(
1− e−

Ts
τ

)
(3.62)

The PWM distortion factor kpwm is then defined as the ratio between the real PWM
voltage integral and the constant step voltage integral (3.62):

kpwm ,
∫ t[k]

t[k−1]

e
t−t[k]

τ
v(t)

τ
dt

/(
ṽ[k]

(
1− e−

Ts
τ

))
(3.63)
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This factor is an indicator of the distortion due to the PWM pattern compared to a
step voltage input. Note that kpwm should vary at each PWM period. Introducing
(3.63) in (3.61) yields:(

1− e−
Ts
τ

)
kpwm

ṽ[k]

r
= i(t[k])− e−

Ts
τ i(t[k−1]) (3.64)

The relation between the samples i(t[k]), i(t[k−1]) and δi, ī is found using (3.57)
and (3.58), and it yields:

i(t[k])− e−
Ts
τ i(t[k−1]) =

1 + e−
Ts
τ

2
δi[k] + (1− e−

Ts
τ )̄i[k] (3.65)

Rearranging (3.64) where the left member was replaced by (3.65) yields:

kpwmṽ
[k] =

(
Ts

2τ

1 + e−
Ts
τ

1− e−
Ts
τ

)
l
δi[k]

Ts
+ rī[k] (3.66)

The discretization distortion factor Kc2d is defined as follows:

Kc2d ,
Ts

2τ

1 + e−
Ts
τ

1− e−
Ts
τ

(3.67)

This factor Kc2d only depends on the ratio Ts/τ , but not on the PWM pattern.
Introducing (3.67) in (3.66) yields:

kpwmṽ
[k] = Kc2dl

δi[k]

Ts
+ rī[k] (3.68)

Let us define the discrete-time parameters as follows:

l̄ = l Kc2d/kpwm and r̄ = r/kpwm (3.69)

Introducing these parameters (3.69) in (3.68) yields the substituting discrete-time
model expression (3.59):

ṽ[k] = l̄
δi[k]

Ts
+ r̄ī[k] (3.70)

The condition to have ī ≈ ĩ is therefore that Kc2d ≈ 1 and kpwm ≈ 1. Note that
the transient time constant of the discrete-time model is τ̄ , r̄/l̄.

Analysis of the parameter distortions

As shown by (3.69), the discretization distorts the substituting discrete-time value
of the self-inductance l̄ with respect to the continuous-time value l through the
discretization distortion factor Kc2d. It does however not affect the substituting
discrete-time resistance r̄. The distortion error Kc2d − 1 is drawn in Figure 3.6(a)
as a function of τ/Ts. The 10 % error is chosen as reference for the analysis and it
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(b) Transiant constant timeDiscretization distortion error(a)

101 τ/Ts
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Kc2d − 1
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10.9 τ/Ts

Figure 3.6: Graph of (a) the distortion error Kc2d − 1 due to the discretization and the
10 % error point (◦) ; Graph of (b) the transient time constant of the discrete-time model τ̄
in ratio with the sampling period Ts, as a function of τ/Ts.
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∠ṽ
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Figure 3.7: PWM distortion error kpwm − 1 in case of a two-level three-phase VSI com-
manded by a conventional symmetrical PWM. Graph of (a) the complex amplitude | · | and
(b) the complex angle ∠· of the error kpwm−1 as a function of the voltage angle ∠ṽ for the
cases |ṽ| = vdc

20 (—), vdc

4 (- -), vdc

2 (· · · ), assuming τ/Ts = 1 ; Graph of (c) the maximum
amplitude |kpwm − 1| as a function of τ/Ts and the 10 % error point (◦).
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is found around τ/Ts = 0.9. Figure 3.6(b) shows the variation of the discrete-time
transient time constant τ̄ as a function of τ . We can see that τ̄ tends to 0.5 while
τ tends to zero. A first consequence for anisotropy-based self-sensing is that the
difference between maximum and minimum values of l̄, required for the position
estimation, decreases strongly for ranges under τ/Ts � 1.

In a first approximation, the PWM distortion factor is presented in (3.63) sep-
arately along the x and y-axes. By performing simulations with the case of a two-
level three-phase VSI commanded by a conventional symmetrical PWM, some in-
teractions between the two axes however appeared. These interactions strongly
vary as a function of the voltages. As a consequence, we propose to redefine a
PWM distortion factor, written kpmw, using complex space vectors of the voltage
v. The PWM distortion error kpmw−1 is drawn in Figure 3.7. Assuming τ/Ts = 1
equal for both axes, Figure 3.7(a) shows the complex amplitude of the error and
Figure 3.7(b) shows the complex angle of the error as a function of the angle of the
mean voltage ∠ṽ and for three different voltage amplitudes |ṽ|. The complex angle
of the error denotes a shift with respect to the orientation of ṽ. We observe in (a)
and (b) that the error amplitude and angle are very sensitive to the mean voltage.
The effect of this error would therefore be very difficult to predict. The graph of the
maximum amplitude of the error is shown in Figure 3.7(c). The main observation
is that the 10 % error is reached at τ/Ts = 0.4. This limit is lower than the limit
of 10 % error for the discretization distortion error. We suggest therefore to focus
only on the discretization distortion factor to validate the discrete-time model of an
electrical machine.

Note that τ/Ts � 1 in many drives. If not, a solution consists to increase the
sampling frequency. But nonlinearities of the voltage-source inverter (VSI) and the
switching losses tends however to increase with the frequency [87]. Moreover, the
time for the control operations tends to decrease when the frequency increase. It is
therefore not always advised to remove the discretization issues by this way.

3.4.2 Electrical Circuit Model Including Eddy Currents

Using matrix space vectors and removing the indication t, the continuous-time
model of the electrical circuit model including the contribution of the eddy currents
and assuming a standstill machine is:

V + TE
dV

dt
= TELσ

d2I

dt2
+ (L+ TER)

dI

dt
+RI (3.71)

Except if dedicated sensors are added and if noise problems are considered, nei-
ther the mean current nor the current-derivative, nor the voltage derivative are
measured. We propose therefore a discrete-time expression by substituting the
continuous-time current I , its derivative dI/dt and its second-derivative d2I/dt2

using samples only. For this, the backward-second-difference δδI is defined as:

δδI [k] , δI [k] − δI [k−1] = I(t[k])− 2I(t[k−1]) + I(t[k−2]) (3.72)
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The current sampling backward-difference after two sampling periods ∆I is de-
fined as:

∆I [k] , δI [k] + δI [k−1] = I(t[k])− I(t[k−2]) (3.73)

And the sampling average of the current after two sampling periods ¯̄I is defined as:

¯̄I
[k]

,
Ī

[k]
+ Ī

[k−1]

2
=
I(t[k]) + 2I(t[k−1]) + I(t[k−2])

4
(3.74)

Concerning the voltages, we define the mean of the voltage during two sampling

periods ˜̃V as: ˜̃V [k]

=
Ṽ

[k]
+ Ṽ

[k−1]

2
(3.75)

and the voltage backward-difference δṼ as:

δṼ
[k]

= Ṽ
[k] − Ṽ [k−1]

(3.76)

Using δδI/T 2
s defined in (3.72) to substitute d2I/dt2, using δĪ/Ts defined in (3.73)

to substitute dI/dt, using ¯̄I defined in (3.74) to substitute I , using δṼ
[k]
/Ts defined

in (3.76) to substitute dV /dt and using ˜̃V defined in (3.75) to substitute V , we
propose the following discrete-time model expression at standstill:

˜̃V [k]

+ T̄E
δṼ

[k]

Ts
= T̄ELσ

δδI [k]

T 2
s

+
(
L̄+ T̄ER̄

) ∆Ī
[k]

2Ts
+ R̄ ¯̄I

[k]
(3.77)

where L̄σ and T̄E are respectively the equivalent discrete-time leakage inductance
and eddy circuit transient time-constant. The eddy circuit discrete-time self-inductance
and resistance of the eddy circuit are then:

L̄E , L̄− L̄σ and R̄E , L̄E/T̄E (3.78)

These new parameters can significantly differ with respect to the continuous-time
parameters. The steps leading to (3.77) from the continuous-time model (3.71) is
proposed hereafter for the case of a standstill machine and separating the relations
along uncoupled x and y-axes.

Development of the proposed model

The proposed development is performed assuming a standstill machine, i.e. ωq =
0, and assuming that the anisotropic relations present the same anisotropy orienta-
tion. In that case, the relations can be separated along the x and y-axes (entirely
uncoupled). Again, a more general development can probably be obtained without
these assumptions, but this is not done here. Note that the following development
is quite long since all the details are given. If the reader is not interested in this
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long development, we can propose to go to the end of this subsection to read the
analysis.

For convenience, we do not mentioned the axes symbols x and y, but they must
be considered. For any of the two axes, the components are linked by the following
first-order derivative expression:

v(t) + τE
dv(t)

dt
= τElσ

d2i(t)

dt2
+ (l + τEr)

di(t)

dt
+ ri(t) (3.79)

where the transient time-constant of the eddy-current circuit is τE = lE/rE. The
global behaviour of this model is characterized by two other transient time-constants
τ1 and τ2 than are computed as the inverse and opposite values of the roots x1 and
x2 of the following second-order homogeneous equation [86]:

τElσx
2 + (l + τEr)x+ r = 0 ⇒ (x− x1)(x− x2) = 0

⇒ τ1 = −1/x1 and τ2 = −1/x2

(3.80)

Note the time-constants can be different along the x-axis and along the y-axis. If τ1

and τ2 are distinct, the solution of this second-order derivative expression between
two arbitrary times to and tf is [86]:

i(tf ) = e
−
tf−to
τ1 i1(to) + e

−
tf−to
τ2 i2(to)

+

∫ tf

to

(
v(t)

τE
+
dv(t)

dt

)(
e
t−tf
τ1 − e

t−tf
τ2

)
dt

/(
lσ
τ2
− lσ
τ1

)
(3.81)

The initial condition is given by:

i(to) = i1(to) + i2(to) (3.82)

The integral right member of (3.81), including the voltage v plus it derivative
dv/dt, can be strongly simplified if we assume that the PWM is such that the
voltage is switched to zero at sampling times: v(t[k−1]) = v(t[k]) = 0. This is
largely the case in many PWM strategies, such as in the illustration Figure 3.5.
Therefore, we can write:

dv(t) et/τ

dt
=
dv(t)

dt
et/τ +

v(t)

τ
et/τ ∀τ

Since:
∫ t[k]

t[k−1]

d
(
v(t) et/τ

)
=
(
v(t) et/τ

)t[k]

t[k−1]
= 0

⇒
∫ t[k]

t[k−1]

dv(t)

dt
et/τdt = −

∫ t[k]

t[k−1]

v(t)

τ
et/τdt (3.83)

Introducing (3.83) in (3.81), the integral right member becomes:∫ tf

to

v(t)

e
t−tf
τ1

τE
− e

t−tf
τ2

τE

−
e

t−tf
τ1

τ1
− e

t−tf
τ2

τ2

 dt

/(
lσ
τ2
− lσ
τ1

)
(3.84)
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This can be further simplified considering the following developments. In one
hand, the numerator of (3.84) yields:e

t−tf
τ1

τE
− e

t−tf
τ2

τE

−
e

t−tf
τ1

τ1
− e

t−tf
τ2

τ2


=

(
1

τE
− 1

τ1

)
e
t−tf
τ1 −

(
1

τE
− 1

τ2

)
e
t−tf
τ2

= (τ1 − τE)
e
t−tf
τ1

τEτ1
− (τ2 − τE)

e
t−tf
τ2

τEτ2
(3.85)

And in the other hand, the denominator of (3.84) yields:(
lσ
τ2
− lσ
τ1

)
= lσ

τ1 − τ2

τ1τ2
(3.86)

From these results, we define two new time-constants:

τ ′1 =
lστE

rτ2

(
τ1 − τ2

τ1 − τE

)
and τ ′2 =

lστE

rτ1

(
τ2 − τ1

τ2 − τE

)
(3.87)

Introducing (3.87) in (3.84), (3.81) finally yields:

i(tf ) = e
−
tf−to
τ1 i1(to) + e

−
tf−to
τ2 i2(to)−

1

r

∫ tf

to

v

e
t−tf
τ1

τ ′1
+

e
t−tf
τ2

τ ′2

 dt (3.88)

In order to obtain a discrete-time model expression, it is required to solve the dif-
ferential expression (3.88) during two different periods. As detailed hereafter, we
propose to solve it between:

1. t[k−2] and t[k−1]. It is then possible to remove i1(t[k−2]) and i2(t[k−2]) ;

2. t[k−2] and t[k]. It yields then an expression linking i(t[k]), i(t[k−1]) and
i(t[k−2]).

We temporary write the integral right member of (3.88): w1/r between t[k−2] and
t[k−1]; and: w2/r between t[k−2] and t[k]. These integrals are further solved. In a
matrix form, the initial condition and the solution 1) gathered yield:(

i(t[k−1])− w1/r

i(t[k−2])

)
=

(
e
−Ts
τ1 e

−Ts
τ2

1 1

)(
i1(t[k−2])

i2(t[k−2])

)
(3.89)

By inverting it, it yields:

(
i1(t[k−2])

i2(t[k−2])

)
=

(
1 −e

−Ts
τ2

−1 e
−Ts
τ1

)
e
−Ts
τ1 − e

−Ts
τ2

(
i(t[k−1])− w1/r

i(t[k−2])

)
(3.90)
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We have here the relation between i1(t[k−2]) and i2(t[k−2]) and the samples i(t[k−1])
and i(t[k−2]). This result can be replaced in the following solution of 2):

i(t[k])−
(

e
− 2Ts
τ1 e

− 2Ts
τ2

)( i1(t[k−2])

i2(t[k−2])

)
= w2/r (3.91)

The resulting matrix yields:

(
e
− 2Ts
τ1 e

− 2Ts
τ2

)
(

1 −e
−Ts
τ2

−1 e
−Ts
τ1

)
e
−Ts
τ1 − e

−Ts
τ2

=


(

e
− 2Ts
τ1 − e

− 2Ts
τ2

)
(

e
− 2Ts
τ2
−Ts
τ1 − e

− 2Ts
τ1
−Ts
τ2

)

t

e
−Ts
τ1 − e

−Ts
τ2

=


(

e
−Ts
τ1 + e

−Ts
τ2

)

−e
−
(
Ts
τ2

+Ts
τ1

)


t

(3.92)

Combining these results, it yields in a matrix form:

1

−
(

e
−Ts
τ1 + e

−Ts
τ2

)

e
−
(
Ts
τ2

+Ts
τ1

)



t

 i(t[k])

i(t[k−1])

i(t[k−2])



= w2/r −
(

e
−Ts
τ1 + e

−Ts
τ2

)
w1/r (3.93)

The result in an one-line relation is:

i(t[k])−
(

e
−Ts
τ1 + e

−Ts
τ2

)
i(t[k−1])

+ e
−
(
Ts
τ2

+Ts
τ1

)
i(t[k−2]) = w2/r −

(
e
−Ts
τ1 + e

−Ts
τ2

)
w1/r (3.94)

We should replace the current samples by the substitution values δδi, ∆i and ¯̄i
using their definitions (3.72), (3.73) and (3.74). In a matrix form, the definitions
yield:  δδi[k]

∆i[k]

¯̄i
[k]

 =

 1 −2 1
1 0 −1

0.25 0.5 0.25

 i(t[k])

i(t[k−1])

i(t[k−2])

 (3.95)
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By inverting it, it yields: i(t[k])

i(t[k−1])

i(t[k−2])

 =

 0.25 0.5 1
−0.25 0 1
0.25 −0.5 1


 δδi[k]

∆i[k]

¯̄i
[k]

 (3.96)

We have here the relation between the samples and the substitution values. This
result can be replaced in the solution (3.93). The resulting matrix yields:

1

−
(

e
−Ts
τ1 + e

−Ts
τ2

)

e
−
(
Ts
τ2

+Ts
τ1

)



t

 0.25 0.5 1
−0.25 0 1
0.25 −0.5 1



=



(
1 +

(
e
−Ts
τ1 + e

−Ts
τ2

)
+ e
−
(
Ts
τ2

+Ts
τ1

))
/4(

1− e
−
(
Ts
τ2

+Ts
τ1

))
/2

1−
(

e
−Ts
τ1 + e

−Ts
τ2

)
+ e
−
(
Ts
τ2

+Ts
τ1

)



t

=



(
1 + e

−Ts
τ1

)(
1 + e

−Ts
τ2

)
/4(

1− e
−
(
Ts
τ2

+Ts
τ1

))
/2(

1− e
−Ts
τ1

)(
1− e

−Ts
τ2

)



t

(3.97)

Dividing the result by
(

1− e
−Ts
τ1

)(
1− e

−Ts
τ2

)
, it yields in an one-line relation:

(
1 + e

−Ts
τ1

)(
1 + e

−Ts
τ2

)
(

1− e
−Ts
τ1

)(
1− e

−Ts
τ2

) δδi[k]

4
+

(
1− e

−
(
Ts
τ2

+Ts
τ1

))
(

1− e
−Ts
τ1

)(
1− e

−Ts
τ2

)∆i[k]

2
+ ¯̄i

[k]

=

w2/r −
(

e
−Ts
τ1 + e

−Ts
τ2

)
w1/r(

1− e
−Ts
τ1

)(
1− e

−Ts
τ2

) (3.98)

We define here the following discretization distortion factors:

Kδδ
c2d ,

T 2
s

4τ1τ2

(
1 + e

−Ts
τ1

)(
1 + e

−Ts
τ2

)
(

1− e
−Ts
τ1

)(
1− e

−Ts
τ2

) (3.99)
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and

K∆
c2d ,

Ts

τ1 + τ2

1− e
−Ts
τ1
−Ts
τ2(

1− e
−Ts
τ1

)(
1− e

−Ts
τ2

) (3.100)

It can be checked that τ1τ2 = τElσ/r and τ1 +τ2 = τ +τE. Therefore, introducing
(3.99) and (3.100) in (3.98) yields:

Kδδ
c2dτElσ

δδi[k]

T 2
s

+K∆
c2d (l + τEr)

∆i[k]

2Ts
+ r¯̄i

[k]

=

w2 −
(

e
−Ts
τ1 + e

−Ts
τ2

)
w1(

1− e
−Ts
τ1

)(
1− e

−Ts
τ2

) (3.101)

For the development of the integral right member of (3.101), we separate the inte-
gral of w2 between the two sampling periods:

w2 =

∫ t[k]

t[k−2]

v(t)

(
e
t−t[k]

τ1

τ ′1
+

e
t−t[k]

τ2

τ ′2

)
dt

=

∫ t[k]

t[k−1]

v(t)

(
e
t−t[k]

τ1

τ ′1
+

e
t−t[k]

τ2

τ ′2

)
dt

+

∫ t[k−1]

t[k−2]

v(t)

(
e
t−t[k−1]

τ1

τ ′1
e
−Ts
τ1 +

e
t−t[k−1]

τ2

τ ′2
e
−Ts
τ2

)
dt (3.102)

Gathering the common sampling periods of the integrals, it yields:

w2 −
(

e
−Ts
τ1 + e

−Ts
τ2

)
w1 =

∫ t[k]

t[k−1]

v(t)

(
e
t−t[k]

τ1

τ ′1
+

e
t−t[k]

τ2

τ ′2

)
dt

+

∫ t[k−1]

t[k−2]

v(t)

(
e
t−t[k−1]

τ1

τ ′1
e
−Ts
τ1 +

e
t−t[k−1]

τ2

τ ′2
e
−Ts
τ2

)
dt

−
(

e
−Ts
τ1 + e

−Ts
τ2

)∫ t[k−1]

t[k−2]

v(t)

(
e
t−t[k−1]

τ1

τ ′1
+

e
t−t[k−1]

τ2

τ ′2

)
dt (3.103)

=

∫ t[k]

t[k−1]

v(t)

(
e
t−t[k]

τ1

τ ′1
+

e
t−t[k]

τ2

τ ′2

)
dt

−
∫ t[k−1]

t[k−2]

v(t)

(
e
t−t[k−1]

τ1

τ ′1
e
−Ts
τ2 +

e
t−t[k−1]

τ2

τ ′2
e
−Ts
τ1

)
dt (3.104)
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=
1

τ ′1

(∫ t[k]

t[k−1]

v(t) e
t−t[k]

τ1 dt−
∫ t[k−1]

t[k−2]

v(t) e
t−t[k]

τ1 e
−Ts
τ2 dt

)

+
1

τ ′2

(∫ t[k]

t[k−1]

v(t) e
t−t[k]

τ2 dt−
∫ t[k−1]

t[k−2]

v(t) e
t−t[k]

τ2 e
−Ts
τ1 dt

)
(3.105)

We use here the following PWM distortion factors similarly to (3.63) :

k1 [k]
pwm ,

∫ t[k]

t[k−1]

v(t)

τ1
e
t−t[k]

τ1 dt

/(
ṽ[k]

(
1− e

−Ts
τ1

))
(3.106)

k2 [k]
pwm ,

∫ t[k]

t[k−1]

v(t)

τ2
e
t−t[k]

τ2 dt

/(
ṽ[k]

(
1− e

−Ts
τ2

))
(3.107)

Using these factors, it yields:

w2 −
(

e
−Ts
τ1 + e

−Ts
τ2

)
w1

=
τ1

τ ′1

(
1− e

−Ts
τ1

)(
k1 [k]

pwmṽ
[k] − k1 [k−1]

pwm ṽ[k−1]e
−Ts
τ2

)
+
τ2

τ ′2

(
1− e

−Ts
τ2

)(
k2 [k]

pwmṽ
[k] − k2 [k−1]

pwm ṽ[k−1]e
−Ts
τ1

)
(3.108)

Or, in a matrix form:

=



τ1
τ ′1

(
1− e

−Ts
τ1

)
k

1 [k]
pwm

+ τ2
τ ′2

(
1− e

−Ts
τ2

)
k

2 [k]
pwm

− τ1
τ ′1

(
1− e

−Ts
τ1

)
k

1 [k−1]
pwm e

−Ts
τ2

− τ2
τ ′2

(
1− e

−Ts
τ2

)
k

2 [k−1]
pwm e

−Ts
τ1



t

(
v[k]

v[k−1]

)
(3.109)

We can replace the voltages by the substitution values ˜̃v and δṽ using the definitions
(3.75) and (3.76). In matrix form, the definitions are:(

˜̃v
[k]

δṽ[k]

)
=

(
0.5 0.5
1 −1

)(
v[k]

v[k−1]

)
(3.110)

By inverting it, it yields:(
v[k]

v[k−1]

)
=

(
1 0.5
1 −0.5

)(
˜̃v

[k]

δṽ[k]

)
(3.111)
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This result can be replaced in the solution (3.109). The resulting matrix yields:



τ1
τ ′1

(
1− e

−Ts
τ1

)
k

1 [k]
pwm

+ τ2
τ ′2

(
1− e

−Ts
τ2

)
k

2 [k]
pwm

− τ1
τ ′1

(
1− e

−Ts
τ1

)
k

1 [k−1]
pwm e

−Ts
τ2

− τ2
τ ′2

(
1− e

−Ts
τ2

)
k

2 [k−1]
pwm e

−Ts
τ1



t

(
1 0.5
1 −0.5

)

=



τ1
τ ′1

(
1− e

−Ts
τ1

)(
k

1 [k]
pwm − k1 [k−1]

pwm e
−Ts
τ2

)
+ τ2
τ ′2

(
1− e

−Ts
τ2

)(
k

2 [k]
pwm − k2 [k−1]

pwm e
−Ts
τ1

)
τ1
τ ′1

(
1− e

−Ts
τ1

)(
k

1 [k]
pwm + k

1 [k−1]
pwm e

−Ts
τ2

)
/2

+ τ2
τ ′2

(
1− e

−Ts
τ2

)(
k

2 [k]
pwm + k

2 [k−1]
pwm e

−Ts
τ1

)
/2



t

(3.112)

Note that:

τ1

τ ′1
=
rτ1τ2

lστE︸ ︷︷ ︸
=1

(
τ1 − τE

τ1 − τ2

)
and

τ2

τ ′2
=
rτ1τ2

lστE︸ ︷︷ ︸
=1

(
τ2 − τE

τ2 − τ1

)
(3.113)

Introducing these results, (3.109) yields:

v2 −
(

e
−Ts
τ1 + e

−Ts
τ2

)
v1(

1− e
−Ts
τ1

)(
1− e

−Ts
τ2

)

=



(
τ1−τE
τ1−τ2

)
k

1 [k]
pwm−k

1 [k−1]
pwm e

−Ts
τ2

1−e
−Ts
τ2

+
(
τ2−τE
τ2−τ1

)
k

2 [k]
pwm−k

2 [k−1]
pwm e

−Ts
τ1

1−e
−Ts
τ1

(
τ1−τE
τ1−τ2

)
k

1 [k]
pwm+k

1 [k−1]
pwm e

−Ts
τ2

1−e
−Ts
τ2

/2

+
(
τ2−τE
τ2−τ1

)
k

2 [k]
pwm+k

2 [k−1]
pwm e

−Ts
τ1

1−e
−Ts
τ1

/2



t

(
˜̃v

[k]

δṽ[k]

)
(3.114)
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We define here one new discretization distortion factor and two new PWM distor-
tion factors as follows:

k∼ [k]
pwm ,

(
τ1 − τE

τ1 − τ2

)
k

1 [k]
pwm − k1 [k−1]

pwm e
−Ts
τ2

1− e
−Ts
τ2

+

(
τ2 − τE

τ2 − τ1

)
k

2 [k]
pwm − k2 [k−1]

pwm e
−Ts
τ1

1− e
−Ts
τ1

(3.115)

Kδ
c2d ,

Ts

2τE

((
τ1 − τE

τ1 − τ2

)
1 + e

−Ts
τ2

1− e
−Ts
τ2

+

(
τ2 − τE

τ2 − τ1

)
1 + e

−Ts
τ1

1− e
−Ts
τ1

)
(3.116)

kδ [k]
pwm ,

Ts

2τE

((
τ1 − τE

τ1 − τ2

)
k

1 [k]
pwm + k

1 [k−1]
pwm e

−Ts
τ2

1− e
−Ts
τ2

+

(
τ2 − τE

τ2 − τ1

)
k

2 [k]
pwm + k

2 [k−1]
pwm e

−Ts
τ1

1− e
−Ts
τ1

)/
Kδ

c2d (3.117)

Introducing these factors in (3.109) and replacing the integral right member of
(3.101) by the result, it yields the discrete-time model expression:

Kδδ
c2dτElσ

δδi[k]

T 2
s

+K∆
c2d (l + τEr)

∆i[k]

2Ts
+ r¯̄i

[k]

= k∼ [k]
pwm

˜̃v[k]
+Kδ

c2dk
δ [k]
pwmτE

δṽ[k]

Ts
(3.118)

Let us define the equivalent discrete-time parameters as follows:

τ̄
[k]
E , τE K

δ
c2dk

δ [k]
pwm/k

∼ [k]
pwm

r̄[k] , r/k
∼ [k]
pwm

l̄
[k]
σ , lσ K

δδ
c2d/K

δ
c2d/k

δ [k]
pwm

l̄[k] , (l + τEr)K
∆
c2d/k

∼ [k]
pwm − τ̄ [k]

E r̄[k]

(3.119)

Assume that the PWM distortion error is small, i.e. kδpwm ≈ 1 and k∼pwm ≈ 1,
∀k. By consequence, the discrete-time parameters (3.119) are assumed constant
and the index [k] can be removed. Introducing them in (3.118) yields the following
discrete-time model:

˜̃v[k]
+ τ̄E

δṽ[k]

Ts
= τ̄E l̄σ

δδi[k]

T 2
s

+
(
l̄ + τ̄E r̄

) ∆i[k]

2Ts
+ r̄¯̄i

[k]
(3.120)
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Discretization distortion error(a) Transiant constant time(b)

0
0.1

50 %

1 τE/Ts

Kδ
c2d − 1

Kc2d|τE − 1

100 %

10 %

10τE/Ts
0.1

0.5

1

110

τ̄E

Ts
= Kδ

c2d
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Ts

Figure 3.8: Graph of (a) the discretization distortion error Kδ
c2d − 1 (plain line) as a

function of τE/Ts and the 10 % error point (◦), for the case lσ/l = 0.5. Illustration of the
shift with respect to the graph of Kc2d|τE − 1 (dashed line) shown in Figure 3.6(a), as the
ratio lσ/l < 1 decreases ; Graph of (b) τ̄E in ratio with the sampling period Ts (plain line).
Illustration of the shift with respect to the graph Figure 3.6(b) (dashed line), as the ratio
lσ/l < 1 decreases.

Analysis of the parameter distortions

As shown by (3.119), the discretization distorts all the substituting discrete-time
parameters τ̄E , l̄σ and l̄ with respect to their continuous-time parameters, except
the resistance r̄. In order to limit the length of this analysis, we propose here to
assume that the stator resistance is negligible: r ≈ 0 ; and therefore that the sta-
tor transient time-constant is much larger than the PWM period: τ = r/l � Ts.
The discretization distortions are therefore only related to the presence of the eddy
currents, that vary as a function of the transient time-constant of the eddy-current
circuit: τE . With this assumption, using (3.100) it can be shown that K∆

c2d → 1.
Using (3.99) it can be shown that Kδδ

c2d → Kc2d|τE , where Kc2d|τE is the dis-
cretization distortion factor (3.67) computed with τE instead of τ . The conclusions
on this factor of distortion are therefore similar to the conclusions proposed in
the previous subsection, related to the Figure 3.6. As illustrated in Figure 3.8(a),
the factor Kδ

c2d computed in (3.116) deviates from Kc2d|τE as the ratio lσ/l < 1
decreases. The 10 % error limit tends to shift to higher values of τE while lσ/l
decreases. Figure 3.8(b) shows the variation of the discrete-time transient time
constant τ̄ as a function of τ . We can see that lower lσ/l, higher the distortion
due to the discretization. Concerning the PWM distortion factors, their graphs are
not shown here. We assume that the conclusion on these factors are similar to the
previous conclusions concerning the case of a model without eddy current.

As a first conclusion, we see that even if the stator circuit model presents an
adequate transient time-constant τ � Ts, this does not prevent from an impact of
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eddy currents on the discretization. This impact is analyzed hereafter, focusing on
signal-injection-based self-sensing methods. Note also that many models including
the eddy currents assume a large value of rE. This assumption however lead to
high values of τE and the discretization impact is therefore augmented. This is
not necessarily a big issue, but this should however be considered to validate the
model.

3.5 Machine Impedance

Many anisotropy-based self-sensing methods using high-frequency signal-injections
are based on the identification of the high-frequency admittance linking the high-
frequency test voltage to the high-frequency current response, and written y(ω). If
the admittance contains an anisotropy linked to the rotor, it can be used to track
the rotor position. In a machine model where the eddy currents are neglected, the
impedance z(ω), that is the inverse of the admittance y(ω) = 1/z(ω), is easily
handled as the sum of the stator resistance, r, and the incremental self-inductance
multiplied by the frequency of the signals, jωl. In case of significant eddy cur-
rents, this model is not valid anymore. Nevertheless, many authors propose to keep
that model and to transpose the impact of the eddy currents on variations of r and
l. These parameters becomes then frequency-dependent. They are sometimes re-
ferred to as “frequency-dependent”, “apparent”, “eddy-currents-reflected” or sim-
ply “high-frequency” [88, 89, 90, 82, 91, 85]. We chose to keep the denomination
“apparent” parameters. Signal-injection based self-sensing methods generally rely
on the apparent incremental self-inductance.

In this section, we propose the expression of these apparent parameters con-
sidering the impact of the eddy-currents, but also the impact of the discretization.
For this, we use the discretized models (3.120) and (3.70) that were developed
in the previous assuming a standstill machine and assuming anisotropic relations
presenting equal anisotropy orientations, such that the relations can be separated
along the x and y-axes (entirely uncoupled). A more general model can probably
be proposed without these assumptions, but this is not done here. The different dis-
tortion on these apparent parameters are analyzed. Finally, comparisons between
simulations and experiments validate the models.

For convenience, the upper index [k] referring to the PWM/sampling period
will not be mentioned on the symbols in the text if it is not confusing. We as-
sume that the current variations related to the signal injection are small enough in
order to use the incremental models. For convenience also, the subscript t indi-
cating incremental parameters is removed, but all the parameters are necessarily
incremental.
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3.5.1 Continuous-time parameters

In order to allow a comparison, we propose here to introduce the apparent param-
eters for the continuous-time case. The model of the standstill machine, along any
of the xy-axes, neglecting the eddy currents is:

v(t) = l
di(t)

dt
+ ri(t) (3.121)

The impedance z(ω) is defined as the frequency response of the circuit, com-
puted as the transmittance linking the Fourier-transform of the current F{i} to
the Fourier-transform of the voltage F{v} [46]. It is found using the following
property:

F{dx/dt} = jωF{x} x ∈ {v, i} (3.122)

And yields:
z(ω) , F{v}/F{i} = jωl + r (3.123)

where ω is the considered signal frequency. Including the eddy currents, the model
is:

v(t) + τE
dv(t)

dt
= τElσ

d2i(t)

dt2
+ (l + τEr)

di(t)

dt
+ ri(t) (3.124)

The impedance z(ω) then yields:

z(ω) =
jω (l + τEr) + r − ω2τElσ

1 + jωτE
(3.125)

Using lσ = l − lE, this impedance can be rearranged as follows:

z(ω) =
jω (l + τEr) + r − ω2τElσ

1 + ω2τ2
E

(1− jωτE)

=
jω (l + τEr) + r − ω2τElσ + ω2τE (l + τEr)− jωτE(r − ω2τElσ)

1 + ω2τ2
E

=
jω
(
l + ω2τ2

Elσ
)

1 + ω2τ2
E

+
(1 + ω2τ2

E)r + ω2τE(l − lσ)

1 + ω2τ2
E

= jω

(
l − lE

ω2τ2
E

1 + ω2τ2
E

)
︸ ︷︷ ︸

l̂(ω)

+

(
r + rE

ω2τ2
E

1 + ω2τ2
E

)
︸ ︷︷ ︸

r̂(ω)

(3.126)

We highlighted here the apparent resistance r̂(ω) and the apparent incremental
self-inductance l̂(ω). As we can see, they are frequency-dependent.

Analysis of the apparent values

Including eddy currents, the apparent resistance and incremental self-inductance
of the continuous-time operations are illustrated in Figure 3.9. We see that r̂ varies
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Figure 3.9: Illustration of the apparent parameter values of the continuous-time model
including eddy currents, as a function of the frequency ν = ω/(2π). Graphs for cases:
τE,(I) > τE,(II) > τE,(III).

between r at low frequencies and r + rE at higher frequencies ; and that l̂ varies
between l at low frequencies and lσ = l− lE at higher frequencies. The frequency
range where the apparent parameters shift between the two extrema values depends
on the eddy circuit transient time-constant τE. Higher τE, lower is the frequency
of the shift. This is illustrated with cases (I), (II) and (III). This property is used
in some self-sensing strategies where a dedicated closed coil is added at the rotor
side [68, 68]. This coil can be handled using the same model as the eddy current
circuit. It is added along the d or the q-axis in order to modify the anisotropy at
higher frequency without affecting the lower-frequency behaviour of the model.

3.5.2 Discrete-time parameters

The discrete-time model of the standstill machine, along any of the xy-axes, ne-
glecting the eddy currents is:

ṽ[k] = l̄
δi[k]

Ts
+ r̄ī[k] (3.127)

The transmittance linking the Discrete-time Fourier-transform (DTFT) of two val-
ues is found using the following property [46]:

F{x[k+1]} = ejωTsF{x[k]} for x[k] ∈ {v[k], i(t[k]), ī[k], δi[k], . . . } (3.128)

Thanks to this property, we can compute the relation between the DTFT of the
average current ī and the sampling backward-difference δi:

F{i(t[k])} = ejωTsF{i(t[k−1])} ⇒ F{δi} =
2
(
1− e−jωTs

)
1 + e−jωTs

F{̄i} (3.129)

This relation can be rearranged in order to define the discrete-time frequency ω̄:

2
(
1− e−jωTs

)
1 + e−jωTs

=
2
(
ejωTs/2 − e−jωTs/2

)
ejωTs/2 + e−jωTs/2

= j
2

Ts
tan(ω

Ts

2
)︸ ︷︷ ︸

ω̄

Ts (3.130)
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Such that δi/Ts = jω̄ī. Let us define ωs = 2π/Ts. Note that ω̄ → ω when
ω � ωs. Using this result in (3.127) yields the impedance z̄(ω):

z̄(ω) , F{ṽ}/F{̄i} = jω̄l̄ + r̄ (3.131)

This expression is quite similar to the continuous-time impedance (3.125). Includ-
ing the eddy currents, the model is:

˜̃v[k]
+ τ̄E

δṽ[k]

Ts
= τ̄E l̄σ

δδi[k]

T 2
s

+
(
l̄ + τ̄E r̄

) ∆i[k]

2Ts
+ r̄¯̄i

[k]
(3.132)

Thanks to the property (3.128), we can compute the relation between the DTFT of
the average current on two periods ¯̄i, the backward-difference after two periods ∆i
and the backward-second-difference δδi:

F{∆i} =
4
(
1− e−2jωTs

)
1 + 2e−jωTs + e−2jωTs

F{̄̄i} = 2jω̄Ts F{̄̄i} (3.133)

and

F{δδi} =
4
(
1− 2e−jωTs + e−2jωTs

)
1 + 2e−jωTs + e−2jωTs

F{̄̄i} = −ω̄2T 2
s F{̄̄i} (3.134)

We have also the following relation:

F{δṽ} = jω̄Ts F{˜̃v} (3.135)

Using these relations, the impedance z(ω) then yields and expression similar to the
continuous-time impedance (3.126):

z̄(ω) = jω̄

(
l̄ − l̄E

ω̄2τ̄2
E

1 + ω̄2τ̄2
E

)
︸ ︷︷ ︸

ˆ̄l(ω)

+

(
r̄ + r̄E

ω̄2τ̄2
E

1 + ω̄2τ̄2
E

)
︸ ︷︷ ︸

ˆ̄r(ω)

(3.136)

where ˆ̄r(ω) and ˆ̄l(ω) are the apparent resistance and incremental self-inductance
of the discrete-time model.

Analysis of the distortions

Consider firstly the case where we neglect the PWM and discretization distortions.
The apparent resistance and inductance of the discrete-time operations are illus-
trated in Figure 3.10. From (3.130), we deduced that ω̄ → ω when the sampling
frequency is much higher than the signal frequency, i.e. ωTs � π. In that case,
illustrated by (I) by the plain line, the discrete-time behaviour of the machine is
similar to the continuous-time case Figure 3.9(II). When the sampling frequency
is decreasing however, i.e. ωTs → π, then ω̄ → ∞. Note that ωTs ≯ π since it
is not possible to produce an oscillating signal with a frequency higher than half
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Figure 3.10: Illustration of the apparent parameter values of the discrete-time model in-
cluding eddy currents but neglecting discretization distortions. Graphs for cases: νs,(I) >
νs,(II) > νs,(III), τE constant.
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Figure 3.11: Illustration of the apparent parameter values of the discrete-time model
including eddy currents and taking distortions into account. Graphs for cases: νs,(I) >
νs,(II) > νs,(III), τE constant.

the sampling frequency ν ≯ νs/2. The shift of ω̄ regarding ω distorts the graph
of the apparent parameters of the discrete-time compared to the continuous-time:
the values are shifted up to the maximum frequency νs/2. This is illustrated with
different sampling frequency cases Figure 3.10(II) and (III).

Taking the discretization distortions into account (assuming τE � τ ), the ap-
parent resistance and inductance of the discrete-time operations are illustrated in
Figure 3.11. The distortions result in vertical shift of the graphs compared to the
case neglecting the distortions. This is illustrated with different sampling frequency
cases (I)-(III). Compared to the continuous-time case Figure 3.9(II), the deviations
and distortions of the discrete-time impact like an homothetic contraction of the
curves. Even with very small τE, the eddy current would therefore still be observed
on the graphs. But while the sampling frequency decreases, the eddy current im-
pact decreases in amplitude and could not be measurable anymore.

In order to reduce the eddy currents, one can use specific designs, such as the
modular topology [25].
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3.5.3 Experiments and Simulations

Experimental set-up

The experiments are performed on the standstill uncoupled experimental BLDC
machine with PM oriented following ϕd = 120◦, equivalent to ϕq = 30◦ as il-
lustrated in Figure 3.1(a). The PM flux is positive in the negative d-axis direction.
The operating stator current io has an amplitude of 25 A and is oriented along the
negative d-axis, i.e. ∠io = −60◦. This operating stator current is chosen in order
to prevent some effects of the inverter nonlinearities and in order to keep the ro-
tor fixed in the desired position. As introduced in chapter 2, with these rotor and
current conditions, we have an alignment of the qd frame and the xy frame [92].
Therefore: x ≈ q and y ≈ d.

The apparent discrete-time parameters of the experimental machine are iden-
tified by the injection of pulsating high-frequency voltages, once along the d-axis
and once along the q-axis. More details about the signal injection methods are
found in chapter 5. In order to validate the characteristic curves illustrated in Fig-
ure 3.11, the identifications are performed with series of 20 different frequencies ν,
that are integer fractions of the PWM frequency: between half the PWM frequency
ν = νs/2 down to a fourth of the PWM frequency ν = νs/40. Each series are per-
formed for three different PWM frequencies νs at 13 kHz, 10 kHz and 6 kHz. It
was not possible to reach higher frequencies due to measurement constrains from
the DSP. In order to assess the standard deviation due to the measurement noise,
the computation of each point of the curves is based on 201 samples.

Along the axis νs = 13 kHz 10 kHz 6 kHz
x ≈ q 9.6 A 6.0 A 4.8 A
y ≈ d 14.1 A 9.0 A 7.0 A

Table 3.1: Amplitudes of the high-frequency current response |i|.

In order to produce equal high-frequency current amplitudes during every se-
ries, the amplitude of the high-frequency voltage is adapted at each frequency ν,
from 11.5 V at ν = νs/2 down to 1.8 V at ν = νs/40. Since the results for every
series were not predictable, the voltage amplitude were not adapted along the two
axes and for the different PWM frequencies. This choice leads to very different
high-frequency current amplitudes, given in Table 3.1. The order of amplitudes
(between 3.6 % and 10.5 % of the rated current) was chosen to obtain a satisfying
signal-to-noise response, especially for the resistance identification.

Measurements compared to simulations

The machine parameters for the simulation have been empirically adjusted in order
to correspond, as good as possible, to the experimental results. By consequence,
experiments precede simulations. Parameter estimations are shown in Table 3.2.
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Figure 3.12: Experimental results of the apparent discrete-time parameter values along
the x-axis and y-axis. Graphs for cases: νs,(I) = 13 kHz (—), νs,(II) = 10 kHz (- -), νs,(III) =
6 kHz (· · · ). The radius of the circles indicate the standard deviation of each point (tenth
of it for ˆ̄r).
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Figure 3.13: Simulation of the apparent discrete-time parameter values along the x-axis
and y-axis assuming continuous-time values given in Table 3.2. Graphs for cases: νs,(I) =
13 kHz (—), νs,(II) = 10 kHz (- -), νs,(III) = 6 kHz (· · · ).
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Along the axis r (Ω) l (µH) τ (µs) rE (Ω) lσ (µH) τE (µs)
x ≈ q 0.068 95.5 1404 0.5 80 31
y ≈ d 0.059 62.5 1059 0.5 51.5 22

Table 3.2: Continuous-time parameters used for the simulations.

Figure 3.12 shows the experimental results with series of identification tests
performed along the x-axis and the y-axis for three different sampling frequencies.
Each estimation is computed from 201 samples. The standard deviation (std) is
indicated by circles on the graphs. The std is notably larger for ˆ̄r compared to ˆ̄l.
Thus the circle radius indicates tenth of the std for ˆ̄r. This difference is explained
by the relative smaller impact of the resistance compared to the inductance, leading
to important noise estimations.

Figure 3.13 shows the simulation results to be compared with Figure 3.12. The
first difference concerns the last estimation of ˆ̄r that suddenly deflects downwardly.
This is possibly due to missing phenomenon in the modelling such as multiple
eddy current sources, skin effects or simply VSI-PWM nonlinearities. The second
difference concerns the deflection of the estimation of ˆ̄l for lower frequencies. This
is possibly due to the emergence of undamped high-frequency oscillations and thus
to nonzero back-emf. This explanation is evidenced by the higher impact along the
x-axis, that is aligned with the torque producing q-axis. Besides these differences,
the simulations are consistent with the experiments.

As a conclusion for this experimental machine, the eddy currents produce sig-
nificant distortions of the discrete-time parameters, mainly on the apparent resis-
tance ˆ̄r that is very sensitive to the signal frequency and to the PWM frequency.
These effects should be increased with the rotation speed ωq 6= 0, since angu-
lar variations of the inductance appear in the relation (3.59), and that these varia-
tions should a fortiori be involved also in the model that includes the eddy currents
(3.59). The incremental self-inductance ˆ̄l is also distorted. A large difference of the
incremental self-inductance between the two qd axes is however maintained. As
consequence, this value is still a very good candidate for digital anisotropy-based
self-sensing operations.

3.6 Summary

In this chapter, we introduced the electrical model of the machine using com-
plex and matrix space vectors. The issue of cross-saturation, corresponding to
anisotropy misalignment, is discussed. The model in the stationary reference-
frame, without eddy current, is given in (3.48). This expression involves many
terms:

• the anisotropic incremental relation, that contains the rotor position informa-
tion to extract ;



3.6. SUMMARY 117

• the stator resistance that can present anisotropic properties independent to
the rotor position, as shown in shown in (3.29) ;

• terms related to the variation of the inductance ;

• the back-EMF.

Because the control and the self-sensing operations are based on digital mea-
surements, a discrete-time model expression is advised. The distortion of the
discrete-time parameters with respect to the continuous-time parameters is mathe-
matically studied under the following hypothesis:

• the PWM of the VSI operates on fixed period lengths Ts ;

• the sampling of the measurements is synchronized at the beginning of the
PWM periods ;

• we assume a standstill motor for reasons of simplicity in the mathematical
developments ;

• we assume that the model relations can be uncoupled along x and y-axes.

It was possible to distinct two factors of distortion on the parameters:

1. one related to the discretization operation, modelled by the discretization
distortion factor ;

2. another related to the voltage commutations caused by the PWM, and mod-
elled by the PWM distortion factor.

It is firstly shown that the discretization distortion is larger that the PWM distortion
factor, such that we may focus on the discretization distortion only. In case of
negligible eddy currents, the distortion is function of τ/Ts, where τ = l/r is the
transient time-constant of the stator circuit. Lower this transient time-constant,
higher the distortion. It is shown that the discretization distortion reaches 10 % at
τ/Ts = 0.9. Fortunately, the stator resistance in many machine is very small and
this condition is satisfied. This is the case of the experimental BLDC motor, where
τy/Ts = 6.35 for the worst studied case at νs = 6 kHz. Noticeable distortions
are however experimentally observed and denotes the presence of significant eddy
currents.

A second mathematical study is thus performed based on an initial continuous-
time model including the eddy currents at standstill. Assuming that the transient
time-constant of the stator circuit is much higher than the sampling period τ � Ts,
the distortion is mainly function of τE/Ts, where τE is the transient time-constant
of the eddy-current circuit. Lower this transient time-constant, higher the distor-
tion. In the case of the experimental BLDC motor, τE,x/Ts = 0.31 for the best
studied case at νs = 10 kHz. This is very small and it explains why the eddy
currents have a significant impact on the parameter distortions.
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In practice, self-sensing operations identify the machine impedance. This impedance
is generally divided in resistive and inductive contributions. If the eddy currents
are negligible, the resistive contribution is directly related to the stator resistance
and the inductive contribution is related to the incremental self-inductance. If the
eddy currents are significant however, many publications on self-sensing methods
still model the contributions by apparent parameters. These parameters become
frequency-dependent and are sometimes referred to as eddy-current-reflected.

The strange behaviour of the discretization distortion and the eddy currents are
mathematically analyzed. Comparing with simulations, experimental results per-
formed on the BLDC motor allow to estimate the motor parameters, including the
inaccessible inductance and resistance of the eddy current circuit. These results
do not lead to any self-sensing method improvement, but it gives important infor-
mation on the machine in order to select the self-sensing method that is the more
adequate.

Note finally that identification methods based on the injection of multi-sine
[93] could have been implemented in order to observe the importance of the eddy
currents. However, this type of identification requires additional offset, which we
did not have.



Chapter 4

Voltage-Source Inverter

This chapter addresses the issues of nonlinearities in widespread two-level three-
phase voltage source inverters (VSI) commanded by conventional pulsewidth mod-
ulated (PWM) signals. Some characteristics of the PWM-VSI leads to nonlinear
relations between the command voltage send to the PWM signal generator and the
expected output voltage. They are mainly due to voltage drops at the semicon-
ductors and to commutation delays resulting in so-called dead times. Related to
these nonlinearities, when a phase current crosses zero during the dead times, it
is clamped to zero for the rest of that dead time. This phenomenon is referred
to as the zero-clamping and has important consequences on the control and on
the self-sensing operations. Solutions to this zero-clamping consist to prevent for
zero-crossings, as largely proposed in this chapter.

4.1 Introduction

Many traditional control methods use the command voltage in their models [94],
since the nonlinearities generally have limited impacts on the current controller,
that compensates for these effects. The self-sensing methods however require an
accurate knowledge of the voltages applied at the machine terminals [95, 96], and
the voltage distortions due to the nonlinearities may have a significant impacts on
the rotor position estimations.

One solution to overcome the nonlinearities consist to introduce voltage sen-
sors measuring the mean value of the output voltage during a PWM period, using
dedicated analog [84] or digital integrators [97]. The voltage sensors however re-
duce the reliability of the drive (these sensors are additional sources of failure),
require data-acquisition hardware [98], result in additional costs and are additional
source of noise to consider. Another solution consists in the compensation of the
nonlinearities. An overview of these nonlinearities and a state-of-the-art of some
solutions to compensate for them are proposed in the first half of the chapter. We
also introduce the problem of the zero-clamping effect occurring when a phase
current crosses zero.

119
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This zero-clamping effect is noticeable on the experimental BLDC motor. Its
impact was so large that the self-sensing methods initially implemented in the ma-
chine were inefficient and the position was quickly lost during the rotation. It was
therefore absolutely required to find a method to overcome that problem. Since
the solutions found in the existing literature were irrelevant for the experimental
conditions, the only solution found was to prevent the zero-crossings of the cur-
rent adding an offset to the instruction, with a reduced impact on the torque. This
solution is addressed in the second half of this chapter

∼

This chapter is organized as follows: the section 4.2 introduces elementary
descriptions of the two-level voltage-source inverter design, the modulation tech-
niques and the different nonlinearities, including the zero-clamping phenomenon
occurring when a phase crosses zero ; Section 4.3 describes the zero-crossing is-
sue for the point of view of space vectors, and proposes a model of the current
ripples that result from the modulation. It also introduces two methods for the
estimation of the minimum margin required between the current samples and the
zero-crossing lines in order to prevent zero-crossings by the ripples. Finally, it
introduces the operations of the zero-crossing prevention based on the estimated
margins ; Section 4.4 analyzes the margin estimations for the case of the exper-
imental BLDC motor ; A summary of the important elements of this chapter is
given in section 4.5.

4.2 Pulse-Width Modulated Voltage

This section describes the design of the voltage source inverter (VSI) and its math-
ematical model. A VSI provides several outputs with commanded voltages. The
number of outputs is related to the number of machine terminals to be connected.
The denomination of phase may also refer to the circuits of the VSI for the different
outputs, but they should not be confused with the machine phases.

We consider a two-level VSI, as it is the most simple and the most widespread
topology used in industrial power drive applications [99, 18]. In this topology, each
output is switched between two voltages, called high or low level voltages, by com-
manding the conductivity of two half-bridges. The design of one phase is described
in section 4.2.1. We consider that the half-bridges of every phase are commanded
by carrier-based pulsewidth modulated signals [18], also simply called pulsewidth
modulated (PWM) signals, based on cyclical sequences of commutations. A re-
view of the state-of-the-art about carrier-based PWM and others such as carrierless
PWM and PWM-control schemes at the year of 1994 is given in [18]. Section 4.2.2
addresses the PWM principle, the concept of symmetric and asymmetric modula-
tion techniques, and the PWM computation assuming an ideal PWM-VSI. Non-
ideal effects of the real VSI (non-ideal) are explained in section 4.2.3, section 4.2.4
and section 4.2.4.
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Figure 4.1: Design of one phase p of a two-level VSI: a dc-bus with a dc voltage vdc

between a high level (+) and a low level (−); two half-bridges (+) and (−) with free-
wheeling devices (diode) and switching devices (IGBT) driven by two switching signals
s?p+ and s?p−; an output that presents a voltage vp and delivers a current ip.

4.2.1 The Two-Level Design

The circuit of one phase p of the VSI is shown in Figure 4.1. It is made of two
half-bridges, one connected to the high level and the other to the low level of the
dc-bus, respectively denoted + and −. If the point of the middle voltage of the
dc-bus is connected to the ground potential, taken as reference potential, the high
and low level voltages are v+ = vdc/2 and v− = −vdc/2 respectively, where vdc

is the dc-bus voltage.

Each half-bridge is composed of two semiconductor devices: one switching
device and one freewheeling device (diode). The switching devices are generally
IGBT for medium power applications, and can be MOFSET [100] for lower power
applications. No snubber circuit coupled to the half-bridges is assumed. A switch-
ing signal is sent to the driver of each switching device. The switching signals are
noted s?p+ and s?p− respectively for the high level and low levels of the phase p. The
signals can take two values 0 or 1. The value 0 denotes a signal that commands the
device to be in a blocking state and 1 denotes a signal that commands the device
to be in a conducting state. We say that a signal turns on when it commutates from
blocking 0 to conducting state command 1, and that it turns off when it commutates
from conducting 1 to blocking state command 0. The corresponding real switch-
ing states of the switching devices are noted sp+ and sp−, for which the value 0
denotes a infinite device impedance and 1 denotes a null device impedance. Note
that sp+ = sp− = 1 corresponds to a dc-bus short-circuit and results in a failure.
The effective level connection is given by Sp that is 1 if the phase terminal output
is connected to the high level or 0 if it is connected to the low level.

We say that the VSI is ideal if the semiconductor devices are ideal, i.e., they
cause no voltage drop and the switching devices commutate instantly between per-
fect conducting states and perfect blocking states. In that ideal situation, the output
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voltage is modelled by:
vp =

vdc

2
(2Sp − 1) (4.1)

If the states of the switching devices are complementary sp+ = 1 − sp−, we sim-
ply have Sp = sp+ [100]. If both switching devices are blocking sp+ = sp− = 0,
either the current is positive ip > 0 and flows through the low level freewheeling
device, making the connection to the low level Sp = 0. Or the current is negative
ip < 0 and flows through the high level freewheeling device, making the connec-
tion to the high level Sp = 1. Note that the case sp+ = sp− = 0 and ip = 0 is
undetermined in an ideal VSI. This is further addressed in section 4.2.4.

We say that the PWM is ideal if there is no delay between the command of the
switching signals and the commutation of the state of the switching devices:

sp+ = s?p+ and sp− = s?p− (4.2)

The nonideal VSI, considering voltage drops and commutation delays, is addressed
in section 4.2.3 and section 4.2.4.

4.2.2 Modulation techniques

The PWM principle is based on carrier cycles, also sometimes simply called cycles
[18], of constant periods Ts called carrier cycle periods or more generally simply
PWM period. Both denominations are mixed in this chapter, but this last one,
“PWM period“, is more widespread. The PWM operations are based on mean
values during PWM periods [101, 102] defined by:

x̃[k] =
1

Ts

∫ t[k]

t[k−1]

x(t) dt (4.3)

where x can be the output voltages, the switching signals, switching states or the
level connections. The value x̃ at the period k is computed between the instants
t[k−1] and t[k] that correspond to the beginning and the end of the PWM period,
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such that Ts = t[k]−t[k−1]. We assume that these instants are synchronized with the
sampling times of the current measurements sampling, as described in section 3.5.
The mean S̃p of Sp is the duty-cycle corresponding to the relative duration of the
high level connection, assuming a low level connection the rest of the PWM period.
Note that 0 ≤ S̃p ≤ 1. For convenience and in order to shorten the expressions,
the upper index [k] mentioning the period is sometimes not mentioned if it is not
confusing.

As explained by a flowchart in Figure 4.2 for one phase p, before each cycle,
a reference voltage ṽ?p is sent to a PWM calculator. This calculator computes a
reference duty-cycle S̃?p . This reference duty-cycle is sent to a PWM generator that
synthesizes the two switching signals s?p+ and s?p− [103]. The switching signals
are sent to the drivers of the switching devices of the VSI. Note that no signal
corresponding to S?p is ever computed, as S̃?p is directly used as a reference value
to synthesize the switching signals s?p+ and s?p−.

The reference duty-cycle S̃?p is generally computed by the PWM calculator so
that the mean of the output voltage ṽp is equal to the reference voltage [104, 94]:

ṽp = ṽ?p (4.4)

If this condition is actually satisfied, the reference voltage ṽ?p can be used instead
of the output voltage in rotation-drive operations, self-sensing operations and any
other operations based on the discrete-time model of the machine, as explained in
section 3.5 of chapter 3. The computation leading to (4.4) is explained here below.

Duty-Cycle Computation

Assume that the VSI is ideal (4.1) and that the PWM is also ideal (4.2). If the PWM
generator synthesizes complementary switching signals s?p+ = 1 − s?p− such that
s̃?p+ = S̃?p , the mean output voltage defined by (4.3) during every cycle k yields:

ṽp =
vdc

2

(
2S̃?p − 1

)
(4.5)

By consequence, in order to have ṽp = v?p , as given in (4.4), the PWM calculator
should compute its output using the following expression:

S̃?p :=
ṽ?p
vdc

+ 0.5 (4.6)

The nonideal VSI introduce a nonlinear relation between s̃?p+ and ṽp. The expres-
sion (4.6) must therefore be adapted in order to take the nonlinearity into account,
as further explained.

Symmetric and asymmetric modulations

Before introducing the VSI nonlinearities, it is required to shortly explain the prin-
ciple of the PWM. The conventional modulation techniques are based on two car-
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mentary signals: illustration by two carrier half-cycles in case of (a) symmetric modulation
and (b) asymmetric modulation, assuming (S̃?,p + S̃?,p)/2 = S̃?p .

rier half-cycles of equal durations Ts/2 (PWM half-periods) [18]. The values cor-
responding to the first and the second carrier half-cycles will be denoted respec-
tively by the lower index  and . Let us therefore define the mean values x̃ and
x̃ of the variable x respectively during the first and the second half-cycle periods
as follow:

x̃[k]
 =

1

Ts/2

∫ t[k−1/2]

t[k−1]

x(t) dt and x̃[k]
 =

1

Ts/2

∫ t[k]

t[k−1/2]

x(t) dt (4.7)

where t[k−1/2] is conventionally the middle instant of the PWM period: t[k−1/2] =
(t[k] + t[k−1])/2. Using (4.7), we can define two distinct reference half-duty-cycles
S̃?,p and S̃?,p. In the continuous modulation techniques, every switching signal
s?p± turns “on” or “off” once during the first half-cycle and turns reversely “off”
or “on” once during the second half-cycle. Two continuous modulation techniques
are illustrated in Figure 4.3 [18]:

(a) either S̃?,p and S̃?,p are equal to S̃?p and the modulation is said symmetric. The
reference duty-cycle S̃?p is calculated from one reference voltage ṽ?p using
(4.6) ;
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(b) or S̃?,p and S̃?,p are different and the modulation is said asymmetric [105], or
unsymmetrical [106]. Hence, both S̃?,p and S̃?,p can be computed from two
different reference voltages ṽ?,p and ṽ?,p using (4.6).

All the PWM generator does not offer the possibility to work in an asymmetric
modulation mode. This is the case of the PWM generator of our test bench that
only allows symmetric modulations. In practice however, due to inherent delays
of the commutations of the nonideal VSI, the actual half-duty-cycles are always
slightly different [107]. This slight difference is considered in the VSI nonlineari-
ties addressed hereafter.

Note that many other modulation techniques exist. Among the conventional
modulation techniques, the discontinuous modulation techniques are characterized
by the saturation of the reference duty-cycle of one phase or more [99, 100]: S̃?p =

1 or S̃?p = 0. In that case, no switching may occur in the phase p. Some newer non
conventional modulation techniques such as [108] are characterized by switching
signals turning on or off more than once during the carrier half-cycles. Intuitively,
the method we propose could be extended to these cases, but this document only
focuses on the conventional modulation techniques.

4.2.3 Semiconductor Voltage Drop

The first nonlinearity introduced by the real VSI comes from the voltage drops that
exist across the semiconductor devices. For illustration, a typical static voltage/cur-
rent characteristic of a diode is presented Figure 4.4. Note that the characteristics
are generally different between the switching and freewheeling device types and
vary with the temperature [5]. Let define vsc,p that models an equivalent voltage
drop at the phase output p. The output voltage is

vp|real = vp|ideal − vsc,p(ip, sp+, sp−,T◦) (4.8)
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where vp|ideal is given by (4.1). The output voltage drop mainly depends on the
current ip, the states of the two switching devices sp+, sp− that determines which
half-bridge is active (if both switching devices are blocking, the current flows in
one of the freewheeling devices) and the temperature T◦.

In many machine drives, the voltage drops are small compared to the reference
voltages ṽ?p and no compensation is necessary. For drives using lower controlled
voltages, the impact of the voltage drops can be more significant. They are nat-
urally compensated by many controllers. However, the control efficiency can be
improved compensating them. Besides the issue of the zero-crossings, addressed
in section 4.2.4, the voltage drops have no impact on self-sensing operations us-
ing additional high-frequency signals. In order to compensate for them, one may
approach their effects neglecting the influence of the temperature and assuming an
approximate characteristic. Hence, the output voltage drop can be linearized using
a threshold voltage uth and a resistor rsc [5]:

vsc,p(ip) = sign (ip)uth + rscip (4.9)

Generally, the resistor rsc is mixed up with the stator circuit resistors and it is not
required to compensate for it. Only the threshold voltage multiplied by the current
sign remains to compensate:

vsc,p(ip) ≈ sign (ip)uth (4.10)

The current sign is generally approached by the sign of the sampled measurements
of the currents or by the sign of the instruction value of the current i?p sent to the
controller. This last solution is more stable although it is may differ from the sign
of the current samples while reaching values close to zero. Assuming that no zero-
crossing occurs, applying (4.3) and using (4.10), (4.8) during every cycle k yields:

ṽp|real ≈ ṽp|ideal − sign
(
i?p
)
uth (4.11)

Assume that there is no switching delay (4.2). If the PWM generator synthesizes
complementary switching signals s?p+ = 1 − s?p− such that s̃?p+ = S̃?p , the ideal
mean output voltage ṽp|ideal is given by (4.5). In order to have ṽp|real ≈ ṽ?p , the
PWM calculator computes its output using (4.6) and using (4.11) at every cycle k:

S̃?p :=
ṽ?p + sign

(
i?p
)
uth

vdc
+ 0.5 (4.12)

This compensation is also valid for each carrier half-cycle separately. Note that
the computation (4.12) is not valid when the current ip crosses zero as it creates a
nonlinearity during the carrier cycle. The specific question of the zero-crossing is
further addressed in section 4.2.4.

Compensation method based on (4.12) are proposed in [87, 18, 5]. More ac-
curate compensation methods exist that makes the distinction between both device
types, but they are not addressed in this paper. More information can be found in
[104, 109].
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ing states sp+ and sp− with their commutation delays. Output voltage vp in case (a) ip is
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4.2.4 Switching Dead Time

The second nonlinearity introduced by the real VSI comes from the inherent com-
mutation times of the switching devices to turn “on” and to turn “off”. Note that the
commutation times are generally different between the turn “on” and turn “off”,
and vary with the temperature and the current [18]. In order to avoid that the
switching devices of the two half-bridges are simultaneously conducting, and so
to prevent dc-bus short-circuit, it is indispensable to add a delay to the turn on
moments of the signals. This delay is called lag time [103], or sometimes blank-
ing time [110, 104], and we write it ∆tlag. The usual lag time is around 1-20 µs
[103, 111, 106, 110, 112], depending on the device technology. As a result of the
lag time and the commutation times, during a short period of time, both switching
devices remain blocking. This short period is called dead time.

In some machine drives, dead times are small compared to the cycle periods
and no compensation is necessary. For many other drives however, their impacts
are more significant. This is especially the case when the frequency of the PWM is
increased. The dead times are naturally compensated by many controllers. How-
ever, the control efficiency can be improved compensating them. Besides the issue
of the zero-crossings, addressed in section 4.2.4, the dead times have no impact on
self-sensing operations using additional high-frequency signals. In order to com-
pensate them, one may approach the commutation times by average commutation
delays, neglecting the influence of the temperature and the variations with the cur-
rent. We define ∆ton and ∆toff as the commutation delays respectively for the
on and the off transitions (assuming they are the same for both half-bridges). Us-
ing these average commutation delays, the VSI is idealized and we may use the
equations (4.5). The goal is now to determine the impact of the delays on Sp.

The situation of both carrier half-cycles are illustrated in Figure 4.6. Assume
the output is initially connected to the low level at the beginning of the first carrier
half-cycle: Sp = sp+ = 0 and sp− = 1. (a) If the current ip is positive, the
switching “off” of the low level switching device sp− does not affect the connection
to the low level, as the current continues to flow through the freewheeling device.
The commutation to the high level Sp = 1 occurs when the high level switching
device sp+ turns on after a total delay ∆ton +∆tlag compared to the signal s?p+. (b)
If the current ip is negative, the commutation to the high level Sp = 1 occurs when
the low level switching device sp− turns off after a delay ∆toff . The turn on of the
high level switching device sp+ does not affect the connection to the high level.
By consequence, depending on the sign of the current, the real duty-cycle S̃p is
shortened by one of these delays. Using mean values (4.7), all this is summarized
by:

S̃,p =

{
S̃?,p − (∆ton + ∆tlag)/(Ts/2) if ip > 0

S̃?,p −∆toff/(Ts/2) if ip < 0
(4.13)

The reasoning for the second carrier half-cycle (b) is similar assuming the output is
initially connected to the high level: Sp = sp+ = 1 and sp− = 0. It can be shown
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that the result is:

S̃,p =

{
S̃?,p + ∆toff/(Ts/2) if ip > 0

S̃?,p + (∆ton + ∆tlag)/(Ts/2) if ip < 0
(4.14)

If we use a symmetric modulation, remember that we have S̃?,p = S̃?,p = S̃?p . The
resulting duty-cycle during Ts is given by:

S̃p =
S̃,p + S̃,p

2
= S̃?p − sign (ip)

∆tdt

Ts
(4.15)

where:
∆tdt = ∆ton −∆toff + ∆tlag (4.16)

This expression is found in many publications, such as [113, 104]. Remark: the re-
lations (4.13) and (4.14) do not model situations where S̃,p or S̃,p is smaller than
0 or larger than 1, since it would correspond to commutations occurring outside the
half-cycle.

Assuming that no zero-crossing occurs, the sign of the current is generally
approached by the sign of the sampled measurements of the currents or by the sign
of the instruction value of the current i?p sent to the controller. In that last case,
(4.15) yields:

S̃p ≈ S̃?p − sign
(
i?p
) ∆tdt

Ts
(4.17)

Assume that the VSI is ideal (4.1), i.e. no voltage drop. In order to have ṽp ≈ v?p ,
the computation of the PWM calculator is found using (4.17) and yields:

S̃?p :=
ṽ?p
vdc

+ sign
(
i?p
) ∆tdt

Ts
+ 0.5 (4.18)

This compensation is no valid for each carrier half-cycle separately. For this, the
distinct expressions (4.13) and (4.14) must be used. Note also that this solution
is not valid when the current ip crosses zero. The specific question of the zero-
crossing is addressed hereafter.

Some methods are included in the control operations, such as in [113, 111,
5, 112]. The benefit is that the PWM generator is not modified and no additional
setup is required. Such a method in integrated in an self-sensing control using high-
frequency signal injection by [114]. It is also possible to take benefit of asymmetric
modulations in order to specifically compensate the dead times during every half-
cycles, as done in [106, 107, 115]. This has the advantage to improve the shape
of the PWM compared to the first methods, an asymmetric PWM generator is re-
quired. The solution proposed by [110] is based on the fact that when the current
of a phase is flowing in the diode of a half-bridge, it is not necessary to turn on
the switching device of this half-bridge. By consequence, no lag time delay is re-
quired. Older methods use additional analogical delayers, such as [116, 117, 118].
They are not much used to our knowledge. All the mentioned methods are based on
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Figure 4.7: Zoom in two half-cycles of the PWM-VSI showing the zero-clamping phe-
nomenon during dead times.

constant delays. More accurate methods exist that detects the real commutations
using extra detection circuits. That solution was initially proposed by [103] using
photocoupled devices in order to detect the voltage commutations. Another extra
current-polarity detection-circuit is used by [94] and applies a solution based on an
asymmetrical modulation similar to [110]. It also gives a very good state-of-the-art
about dead time issues. A estimation method of the dead time without additional
setup is proposed by [109] for permanent-magnet synchronous motor (PMSM) in
steady-state operations. It is based on the observation of the currents along the
d-axis, maintained to zero during a whole rotation. Another estimation method for
steady-state operations is proposed in [112]. It is based on integration of a steady-
state error related to the dead time. A dead time compensation is proposed by [104]
for open-loop drives, where the dead time is given by a look-up table from man-
ufacturer specifications or semiconductor models. Most of the proposed methods
do not compensate for nonlinearities occurring when a phase current crosses zero.

Zero-Crossing Problems

Finding a compensation solution valid also when a phase current crosses zero poses
some problems [94, 120, 121, 41]. First of all, assuming that the problem only
consists in determining the accurate moment when the current crosses zero: either
additional measurements should be used, but this is not advised for low cost so-
lutions; or accurate estimation of the current variations during the carrier cycles
should be used, but this is not a robust solution as it is very sensitive to errors and
to approximations in the model of the machine.

Another problem comes from the zero-current clamping effect illustrated in
Figure 4.7: if the current reaches zero during the dead time, it is clamped to zero for
the rest of the dead time [122, 107]. This is explained as follows: remember that
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the current flows in one of the freewheeling devices while the switching devices
are blocking. To overpass the voltage drop across the freewheeling device, the
output voltage vp must necessarily be higher than the high level voltage v+: vp =
v+ + vdiode if ip < 0; or lower than the low level voltage v−: vp = v− − vdiode if
ip > 0. Note that this is possible because the machine is an inductive circuit. The
fact that ip slides to zero is related to a decrease of vdiode, as shown in Figure 4.4.
The freewheeling device becomes blocking when the current reaches zero. At
this moment, both freewheeling devices are blocking and all the half-bridges are
completely blocking. As a consequence, the output voltage freely varies between
the low level and the high level voltages: v− < vp < v+. This phenomenon is
not easy modelled since it is strongly nonlinear, the zero-clamping instant is very
sensitive to very small variations of the current, and the topology of the machine is
changed with one disconnected phase during the zero-clamping.

The solutions proposed by [122, 123] consist in a compensation method based
on the repetitive nature of the zero-crossing in steady-state operations. The so-
lution is integrated by [96] in back-EMF-based self-sensing methods. In [107], a
feedback term in a predictive current controllers is used in order to reduce the zero-
current clamping effect. This effect is however not completely compensated. All
these solutions are not operating correctly during transient operations and are not
efficient for many anisotropy-based self-sensing methods due to the large approx-
imation of the correction. An improved method integrated in self-sensing opera-
tions is proposed by [124]. The duration of the zero-crossing, to be compensated,
is predicted using a first-order approximation of the circuit model. This solution
however assume only small ripple amplitudes and the accuracy should be further
analyzed with machine presenting significant resistive voltage drops.

If we want to keep a simple hardware solution and a low computation time,
one solution is therefore to find a method that maintains ip far enough from zero
most of the time, for example adding an offset in the current reference. When a
zero-crossing is required, it must occur as quick as possible, for example during
one carrier cycle, in order to reduce its impact. Ideally, the offset is selected in
order to minimize its impact on the torque and the performances of the machine.
This is addressed in the next section 4.3.

4.3 Zero-Crossing Issues and Prevention

We restrict the analysis to the case of a three-phase VSI supplying a three-phase
machine without neutral connection, i.e. without homopolar current io = 0. The
VSI phases are numbered by p ∈ {a,b, c}. The proposed solution is based on
space vectors handled in the stationary αβ reference-frame.

Due to the pulsewidth modulation (PWM) principle of the voltage source in-
verters, described in section 4.2.2, the space vector of the output voltage switches
between fixed values, called switching-state voltage space-vectors, during the car-
rier cycle. These voltages are addressed in section 4.3.1. These switches result in
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small variations of the currents between two samples used by the current controller.
These variations are called current ripples and are addressed in section 4.3.2. In
section 4.3.3, different methods are addressed to estimate the margin required be-
tween the current samples and the zero-crossing lines in order to prevent zero-
crossings. The strategy used to prevent zero-crossing from this margin is then
proposed in section 4.3.4.

For convenience, the index [k] of the period is not mentioned if not confusion,
but it should be considered.

4.3.1 Space Vector of Switching State Voltages

The Switching States

Assuming an ideal VSI, each level connection can take two values: 0 or 1. There-
fore, in a three-phase VSI, there are 23 possible combinations for the three level
connections Sa, Sb and Sc. A level connection combination S = {Sa, Sb, Sc} is
often called switching state [108, 114] and should not be confused with the switch-
ing state of the switching devices sp±. The sequence of the different switching
states {S1,S2, · · · } during the carrier cycle is called a switching sequence [108],
or switching pattern [101]. The number of distinct switching states in a switching
sequence depends on the modulation technique and is further addressed. On one
hand, let us define Sξ of the ξth switching state of the sequence such that Sξ = 1
when S = Sξ, and Sξ = 0 otherwise. We may therefore write:

S(t) =
∑
ξ

Sξ Sξ(t) (4.19)

Using (4.7) in (4.19), the three-phase duty-cycles S̃ = {S̃a, S̃b, S̃c} are:

S̃ =
∑
ξ

Sξ S̃ξ (4.20)

where S̃ξ is given by (4.7) and corresponds to the relative duration of the switching
state number ξ. The time duration of this state, called switching state subperiod,
is equal to S̃ξTs. On the other hand, let us define the sorted duty-cycles, in a
decreasing order, as follows:

S̃′ , sort(S̃) (4.21)

where S̃′ = {S̃a′ , S̃b′ , S̃c′} such that {a,b, c} → {a′, b′, c′} are the phase numbers
of the sorted set of duty-cycles. It can also be written:

S̃a′ , max(S̃) and S̃b′ , med(S̃) and S̃c′ , min(S̃) (4.22)

Using (4.21), then (4.19) yields:

S̃′ =
∑
ξ

S′ξ S̃ξ (4.23)
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Level connections and Switching states
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(
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)
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Figure 4.8: Illustration of the level connections Sp and their sorted numbering Sp′ in
an ideal conventional symmetrical modulation technique commanding an ideal two-level
three-phase VSI. In this example: a′ = b, b′ = c and c′ = c. Corresponding switching
states Sxζ and ordered switching states S′xζ numbered from xζ = 1 to 4 for the first
half-period and from xζ = 4 to 1 for the second half-period. Illustration of S1(t) and
S2(t) (the next Sxζ(t) follow the same principle).

where S′ξ = {Sa′ , Sb′ , Sc′}ξ. Note that S̃ξ is not affected by the sorting. These
relations (4.19)-(4.23) are also valid for carrier half-cycles using (4.7).

As illustrated in Figure 4.8 for a continuous modulation technique, during ev-
ery carrier half-cycle, each VSI phase output switches once between the high and
low levels. Therefore, in a three-phase VSI, there are four different switching
states in one switching half-sequence. By consequence, instead of numbering the
switching states by 1, 2, . . . , let us number them by an index made of the half-cycle
number x ∈ {, } followed by their order of occurrence from ξ = 1 to 4 in the first
switching half-sequence: {S1,S2,S3,S4}; and reversely from ξ = 4 to 1 in
the second switching half-sequence: {S4,S3,S2,S1}. Using this numbering, it
is possible to write expressions that cover indiscriminately each carrier half-cycle.
Note that if the modulation is perfectly symmetric: Sξ = Sξ, ∀ξ ∈ {1, 2, 3, 4}.

Assume a continuous modulation technique with Sx1 = {000} and Sx4 =
{111}. Using the sorting of the duty-cycles as defined in (4.21) or (4.22), it can be
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shown that the respective consecutive switching states are:

S′x1 = {000}
S′x2 = {100}
S′x3 = {110}
S′x4 = {111}

(4.24)

In other words, the different level connections switch “on” successively in the or-
der of their sorted duty-cycles. Assuming a symmetric modulation, it can also be
demonstrated that the successive switching state durations are:

S̃x1 =
(

1 − S̃a′

)
/2

S̃x2 =
(
S̃a′ − S̃b′

)
/2

S̃x3 =
(
S̃b′ − S̃c′

)
/2

S̃x4 =
(
S̃c′

)
/2

(4.25)

where {a′, b′, c′} are the sorted phase numbers. The same computation is also
valid for each carrier half-cycles in case of an asymmetric modulation, considering
distinct half-duty-cycles. Note that, in that asymmetric modulation case, the order
{a′,b′, c′} is not necessarily the same for the first and the second carrier half-
cycles. As a conclusion, the duration of the different switching states are easily
computed from the sorted phase duty-cycles. In case of nonideal three-phase VSI,
the same computation (4.25) is valid, but the dead times should be cut off the duty-
cycle computations, as explained in section 4.2.4.

The Switching-State Voltage Space-Vectors

The space vector v of the output voltage is defined by (2.71) in chapter 2 as the
phase contributions vp counted along the conductor orientations ϕp:

v ,
2

3

(
va ejϕa + vb ejϕb + vc ejϕc

)
(4.26)

where ϕa = 0, ϕb = 2π/3 and ϕc = 4π/3. Assuming an ideal three-phase VSI,
vp can be replaced by the expression (4.1). Since ejϕa + ejϕb + ejϕc = 0, (4.26)
yields [100]:

v[S] =
2vdc

3

(
Sa ejϕa + Sb ejϕb + Sc ejϕc

)
(4.27)

As illustrated in Figure 4.9, the space vector of the output voltages v can thus take
23 positions called switching-state voltage space-vectors v[S] that correspond to
the different possible switching states S = {Sa, Sb, Sc} [108, 101, 18]. There
are two equal zero switching-state voltage space-vectors v[000] = v[111] = 0 and
six different active switching-state voltage space-vectors of amplitude 2

3vdc and
oriented in one phase direction ϕa, ϕb or ϕc [101, 100, 18].
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Figure 4.9: Illustration of the different switching-state voltage space-vectors v[S] in an
ideal two-level three-phase VSI. Example of the mean active space-vectors ṽ2 and ṽ3 cor-
responding to the illustrated mean voltage ṽ.

For convenience, the switching-state voltage space-vectors v[Sξ]
corresponding

to the ξth switching state Sξ is written in short vξ. The sequence of the different
switching-state voltage space-vectors {v1, v2, · · · } during the carrier cycle is also
called a switching sequence. Using Sξ as previously defined, we can write:

v(t) =
∑
ξ

vξ Sξ(t) (4.28)

Using (4.3) in (4.28), the mean space vector of the three-phase voltages ṽ is:

ṽ =
∑
ξ

vξ S̃ξ (4.29)

For convenience, we define the relative contribution of the ξth switching-state volt-
age space-vectors by:

ṽξ = vξ S̃ξ ⇒ ṽ =
∑
ξ

ṽξ (4.30)

These relations (4.29)-(4.30) are also valid for carrier half-cycles using (4.7).

As illustrated in Figure 4.10 for the conventional continuous modulation tech-
nique, during every carrier half-cycle, the output voltage switching between the
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Figure 4.10: Illustration of the switching-states voltages along the phase and along the
αβ-axes, in an ideal conventional symmetrical modulation technique commanding an ideal
two-level three-phase VSI.

zero switching-state voltage space-vectors and two active switching-state voltage
space-vectors [18]. Such as with the switching states, let us write the first and sec-
ond switching half-sequences with the following numbering: {v1, v2, v3, v4}
and {v4, v3, v2, v1}, respectively. Assume also that Sx1 = [000] and Sx4 =
[111]. Hence vx1 = vx4 = 0, and vx2 and vx3 are active switching-state volt-
age space-vectors. Using the sorted phase numbers {a′,b′, c′, the sequence (4.24)
yields [87, 99, 100]:

vx1 = 0
vx2 = 2

3vdc ejϕa′

vx3 = −2
3vdc ejϕc′

vx4 = 0

(4.31)

And using (4.25) and (4.31), (4.30) yields:

ṽx1 = 0

ṽx2 = 1
3vdc

(
S̃a′ − S̃b′

)
ejϕa′

ṽx3 = 1
3vdc

(
S̃c′ − S̃b′

)
ejϕc′

ṽx4 = 0

(4.32)



4.3. ZERO-CROSSING ISSUES AND PREVENTION 137

These results are easily computed from the apriori knowledge of the duty-cycle
and the measurement of vdc. The mean active space vectors ṽ2 , ṽ2 + ṽ2 and
ṽ3 , ṽ3 + ṽ3 corresponding to an example of v are illustrated in Figure 4.9.

PWM strategies

Using (2.72) with the supply voltages, it yields:

ṽp = ṽo + <
(
ṽ e−jϕp

)
(4.33)

where ṽo is sometimes called the zero-sequence voltage. Introduced this in (4.6)

S̃?p :=
ṽ?o + <

(
ṽ? e−jϕp

)
vdc

+ 0.5 (4.34)

By the difference in (4.32), this value ṽ?o is simply removed in the active vector
expression. This value gives therefore a degree of freedom in the selection of the
phase duty-cycles [18], and defines the different PWM strategies.

A review of the state-of-the-art about the conventional modulation techniques
at the year of 1999 is given in [99]. It compares the switching loss and har-
monic contents of the waveforms. Different strategies for continuous modulation
technique are compared by [101] regarding the minimization of root mean square
(RMS) of the current ripples in induction motors. They are compared regarding the
total harmonic distortion (TDH) in [102]. Discontinuous modulation techniques
are addressed by [100] regarding the RMS reduction of the current ripples at the
DC-bus. Less conventional hybrid modulation techniques are proposed by [108]
regarding the current ripples at phase outputs and DC-bus. The maximum voltage
in the space-vector frame supplied by the VSI is addressed by [101] for differ-
ent strategies. All of these papers give interesting state-of-the-arts concerning the
modulation techniques, but they all neglect the nonlinearities of the VSI.

The voltage drops

The voltage drop at the semiconductors of the real VSI can be transposed in the
machine model as a constant offset space vector vsc computed using (4.26) from
vsc,p given in (4.10). Details are found in [87, 18, 5, 114].

4.3.2 The Current Ripples

Zero-crossing lines

Assuming no neutral connection, i.e. io = 0, the relation between the space vector
of the currents i and the phase values ip is given by (2.72) in chapter 2 and yields:

ip = <
(
i e−jϕp

)
∀p ∈ {a,b, c} (4.35)
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Figure 4.11: Illustration of the current ripples due to the PWM during (I) one PWM
period and (II) several PWM periods, assuming an ideal PWM-VSI. From top to bottom:
(a) αβ-components of the instruction v? ; (b) phase output voltages ; (c) output voltage
along the αβ-axes ; (d) current response along the αβ-axes ; (e) current response i in the
space vector αβ-frame, with indication of the zero-crossing lines.
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where ϕa = 0, ϕb = 2π/3 and ϕc = 4π/3. It can be deduced that the location of i
corresponding to a zero-crossing are along angles ej(ϕp+π/2). They are represented
by gray lines in Figure 4.11(e) and Figure 4.12(c). These zero-crossings should be
prevented since they lead to inverter nonlinearities that are not compensated.

Due to the pulsewidth modulation (PWM) principle of the voltage source in-
verters, described in section 4.2.2, there are small variations of the currents between
two samples used by the current controller. These variations are called current rip-
ples [102, 99, 108, 101, 100] and are illustrated in Figure 4.11. In the example
of the illustration, the signals vary with a high frequency close to the PWM fre-
quency and a large amplitude regarding the amplitude of the ripples. This could
give the illusion that computation of the zero-crossing check could be restricted to
the samples. In practice however, the signals controlled by the normal rotation-
drive operations (fundamental signals) vary at a much lower frequencies related to
the rotation speed. As a consequency, the current ripples can be much larger than
the variations between two samples. In signal-injection-based self-sensing meth-
ods, the injected signals have high-frequencies close to the PWM frequency, but
their amplitudes should be as small as possible in order to reduce the impact on
the torque (the goal is also to prevent the emergence of a high-frequency back-emf
and to limit the production of noise). As a consequency, the current ripples can be
much larger than the injected signals. In both case, the current ripples may cross a
zero-crossing line even if the samples i(t[k]) and i(t[k−1]) do not. This is the main
problem met with the current ripples that requires to keep a minimum distance be-
tween i and the zero-crossing lines. This is illustrated in Figure 4.12 where we
assumed much larger ripples regarding the sampling variations.

The first step hereafter is thus to propose an expression of these current ripples
in order to find the minimum margin required between the current samples and the
zero-crossing lines such that, ∀p ∈ {a,b, c}:

sign (ip(t)) = sign
(
ip(t

[k])
)

= sign
(
ip(t

[k−1])
)
∀t ∈ [t[k−1], t[k]] (4.36)

The expression of this margin should be as simple as possible to allow quick and
robust operations.

Model of the ripples

The current ripples are described in this section using matrix space vectors instead
of complex space vectors. We assume that the current ripples can be modelled
by the relation (3.49) addressed in chapter 3, neglecting the eddy currents. Using
(4.8), we can link the real and ideal supply voltages by: V ideal = V real + V sc.
Removing the subscript “ideal” of V for convenience, we can thus write:

V = Lt
dI

dt
+ E where E =

(
R+ ωq

∂L

∂ϕq

)
I + EPM + V sc (4.37)

where EPM is the back-emf related to the permanent-magnets. Since we only fo-
cus on the current variations dI , that describe the current ripples, we gather all
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the other components in a temporary value E. This expression (4.37) neglects the
eddy current contribution. As it was shown in chapter 3 however, they are not neg-
ligible in the experimental BLDC motor. Moreover, the value of the discrete-time
parameters may differs from the continuous-time expression. In first approxima-
tion however, we assume that the model (4.37) is valid by approaching Lt with
the apparent discrete-time high-frequency inductance. The resistive voltage drop
should be separated in two contributions: one related to the operating current, us-
ing the low-frequency continuous-time resistance ; another related to the current
ripples, that could be approached by the apparent discrete-time high-frequency re-
sistance. This is further addressed. In order to compute the current ripples, (4.37)
is therefore rewritten:

dI = L−1
t (V − E) dt (4.38)

At every carrier cycle period of the PWM, for each switching subperiod ξ, the time
integral of (4.38) yields:

δIξ = L−1
t

(∫
S̃ξTs

V dt−
∫
S̃ξTs

Edt

)
(4.39)

where δIξ = I(tξ)− I(tξ−1) defines the current back-difference between the end
tξ and the beginning tξ−1 of the subperiod. Since the voltage V is constant during
every subperiod, its integration can be replaced by V ξS̃ξTs that is equal to Ṽ ξTs

using the definition (4.32). Keeping a similar notation, we propose to define ẼξTs

as the integration result of E during the subperiod. Therefore, (4.39) yields:

δIξ = L−1
t Ṽ ξTs︸ ︷︷ ︸
δIV,ξ

−L−1
t ẼξTs︸ ︷︷ ︸
δIE,ξ

(4.40)

where we defined δIV,ξ and δIE,ξ as virtual current variations due to the contri-
butions of V and E respectively. The points reached by the current ripples during
every subcycle are found at the instants tξ. The sign of their phase values define
the zero-crossing check: ∀p ∈ {a, b, c}

sign(ip(tξ)) = sign(ip(t0)) ∀ξ ∈ {1..n} (4.41)

However their computations are not straightforward. The value δIV,ξ can be com-
puted from the PWM calculator during every subcycle. But δIE,ξ are unknown and
may change at every subcycle. Moreover, since only the initial and final current val-
ues of the carrier cycle are sampled, the computation of the current after every sub-
cycle would cumulate any error from previous subcycles. A zero-crossing check
would therefore be inaccurate. We propose therefore another checking method
that consist to determine a margin around the current samples, that can be larger
than the real ripples. While the margins between the current samples and the zero-
crossing lines are satisfied, no zero-crossing should occurs. The main difficulty
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consists to fix these margins without two criteria: 1) a quick and reliable computa-
tion method regarding all the possible distortions, error and noise sources ; 2) the
smallest possible margin.

Two methods are proposed hereafter. The first one comes from [125]. It is
described for information only since it was not retained for several annoying draw-
backs: the margins are largely overestimated, they change at every subcycle and
require to be continuously recomputed. The second one is more approximate, but
offers a smaller margin that is fixed for a constant amplitude of the instruction
current and a constant speed.

4.3.3 The Margin Estimation - previous method

This method was published in [125]. Using complex space vectors, the principle
consists to use the virtual currents defined in (4.40), as boundary points to the cur-
rent ripples. Using the numbering xζ as introduced in section 4.3.1 and summing
all the δixζ during the different subperiods of one PWM carrier half-cycle x and
using (4.40) yields:

δix =

4∑
ζ=1

δixζ =

4∑
ζ=1

δiv,xζ −
4∑
ζ=1

δie,xζ (4.42)

Using (4.32) with (4.40), we have δiv,x1 = δiv,x4 = 0. Let us also define the
virtual current variation due to e during the half-cycle:

δie,x ,
4∑
ζ=1

δie,xζ (4.43)

We therefore can write (4.42) as follows:

i(tx4)− i(tx0) = δix = δiv,x2 + δiv,x3 − δie,x (4.44)

The virtual currents δiv,x2 and δiv,x3 are computed using (4.40) with the VSI active
voltages ṽx2 and ṽx3 respectively, that are themselves computed using (4.32). The
virtual current δie,x can be deduced from (4.44) assuming that i(tx0) and i(tx4) are
known. The currents are sampled at t0 = t[k−1] and t0 = t[k], but generally no
sampling occurs at the half-cycle time t4 = t4. By approximation however, we
assume that the modulation is symmetric. Thus both half-cycles are symmetrical
and we can assume that tx4 = (t0 + t0)/2.

Assume that the virtual currents δie,xζ contribute all to the total δie,x in the
same directions along the different phases. It means that there is no inversion
of the virtual currents during the carrier cycle. This condition can be written as
follows:

sign(δip,e,x) = sign(δip,e,xζ)
|δip,e,x| ≥ |δip,e,xζ |

(4.45)
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ples in the space vector αβ-frame. In that example: a′ = a, b′ = b and c′ = c.

This condition is satisfying if the different components of e introduced in (4.37)
can be assumed approximately constant during the carrier cycle. In that case, it
is demonstrated hereafter that, during the first half-cycle x = , the following six
current space vectors are:{

i(t0) , i(t4) , i(t0)− δie, , i(t4) + δie, ,

i(t0) + δiv,2 , i(t4)− δiv,3

}
(4.46)

During the second half-cycle x = , they are:{
i(t0) , i(t4) , i(t0) + δie, , i(t4)− δie, ,

i(t0)− δiv,2 , i(t4) + δiv,3

}
(4.47)

They are illustrated in Figure 4.13. The sign of these boundary points along the
different phases should be the same in order to guarantee no zero-crossing.

The computation can be reduced along the different phases if we can assume
moreover that, using the sorted phase numbers {a′,b′, c′}, the two virtual currents
δiv,x2 and δiv,x3 are such that:

sign(δia′,v,x2) = sign(δia′,v,x3)
sign(δib′,v,x2) 6= sign(δib′,v,x3)
sign(δic′,v,x2) = sign(δic′,v,x3)

(4.48)

This condition is met if the incremental self-inductance anisotropy do not exceed a
certain ratio:

atan

(
lt-

lt+

)
= atan

(
ltx − lty
ltx + lty

)
≤ 30◦ ⇒ lty

ltx
≥ 1− tan(30◦)

1 + tan(30◦)
= 0.2679

(4.49)
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The experimental BLDC motor satisfies this conditions with anisotropic ratio around
0.66. If the conditions (4.45) and (4.48) are satisfied, it is demonstrated that the
boundary points whose sign must be checked are reduced to:

along p = a′ :
{
ia′(t0) , ia′(t0)− δia′,e, , ia′(t4) + δia′,e, , ia′(t4)

}
along p = b′ :

{
ib′(t0) + δib′,v,2 , ib′(t0) + δib′,v,3 ,

ib′(t4)− δib′,v,2 , ib′(t4)− δib′,v,3

}
along p = c′ :

{
ic′(t0) , ic′(t0)− δic′,e, , ic′(t4) + δic′,e, , ic′(t4)

}
(4.50)

and for the second half-cycle:

along p = a′ :
{
ia′(t0) , ia′(t0) + δia′,e, , ia′(t4)− δia′,e, , ia′(t4)

}
along p = b′ :

{
ib′(t0)− δib′,v,2 , ib′(t0)− δib′,v,3 ,

ib′(t4) + δib′,v,2 , ib′(t4) + δib′,v,3

}
along p = c′ :

{
ic′(t0) , ic′(t0) + δic′,e, , ic′(t4)− δic′,e, , ic′(t4)

}
(4.51)

These points can be checked geometrically by the projection of the boundary points,
illustrated in Figure 4.13, along the phase axes.

The zero-crossing margins are computed from these points and correspond to
the distance between the current samples ip(tx0), ip(tx4) and the boundary points.
For convenience, they can be transposed along the zero-crossing lines, as illustrated
in Figure 4.14. In order to simplify the computation of the margin, we assume
that the ripples are much large than the variation between two consecutive current
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samples. It can be written: ip(tx0) = ip(tx4). The margins are therefore:

along p = a′ : ∆im,a′ := |δip,e,a′ |
along p = b′ : ∆im,b′ := max

(
|δib′,v,x2| , δib′,v,x3

)
along p = c′ : ∆im,c′ := |δip,e,c′ |

(4.52)

Benefits of this method: no need to estimate the values contained in e, such as the
back-emf and the voltage drops. Drawbacks: the margins are overestimated, they
must be recomputed after every carrier cycle and they are sensitive to VSI time
delays and to the dc-bus voltage measurement. Moreover, the margins computed
using (4.52) do not take into account the oscillations due to the high-frequency
signal than can be injected for the self-sensing in addition to the low-frequency
signal used for the rotation-drive.

Demonstrations

It is demonstrated here that the points (4.46) are bounding the current ripples
reached after every subcycle of the first half-cycle x = . The demonstration
for the second half-cycle follows exactly the same principle. During the subcycle
ζ = 1, since δip,v,x1 = 0 and using (4.45), it is shown that ip(t1) along the phase
p is limited by the following boundaries:

ip(t1) = ip(t0)− δip,e,1
⇒ ip(t1) ∈ [ip(t0) , ip(t0)− δip,e,] (4.53)

During the subcycle ζ = 4, since δip,v,4 = 0 and using (4.45), it is shown that
ip(t3) is in:

ip(t3) = ip(t4) + δip,e,4

⇒ ip(t3) ∈ [ip(t4) , ip(t4) + δip,e,] (4.54)

For the middle point ip(t2), the result is:

ip(t2) = ip(t0) + δip,v,2 − δip,e,1 − δip,e,2
ip(t2) = ip(t4)− δip,v,3 + δip,e,4 + δip,e,3

}
⇒ ip(t2) ∈ [ip(t0) + δip,v,2 , ip(t4)− δip,v,3] (4.55)

These points form the boundaries of the ripples given (4.46).
Using (4.48), the number of boundary points can be further reduced. For this,

we start with the relation (4.44) along the phase p:

ip(t4)− ip(t0) = δip,v,2 + δip,v,3 − δip,e, (4.56)

Along p = a′ or c′, the boundary point ip(t0) + δip,v,2 is limited by two other
boundary points:

ip(t0) + δip,v,2 = ip(t4) + δip,e, − δip,v,3
⇒ ip(t0) + δip,v,2 ∈ [ip(t0) , ip(t4) + δip,e,] (4.57)
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and the boundary point ip(t4)− δip,v,3 is in:

ip(t4)− δip,v,3 = ip(t0)− δip,e, + δip,v,2

⇒ ip(t4)− δip,v,3 ∈ [ip(t4) , ip(t0)− δip,e,] (4.58)

It is therefore not required to check these points along a′ and c′. Along p = b′, it
yields:

ip(t0) ∈ [ip(t0) + δip,v,2 , ip(t0) + δip,v,3] (4.59)

and
ip(t4) ∈ [ip(t4)− δip,v,2 , ip(t4)− δip,v,3] (4.60)

Moreover:

ip(t0)− δip,e, ∈ [ip(t4)− δip,v,2 , ip(t4)− δip,v,3] (4.61)

and
ip(t4) + δip,e, ∈ [ip(t0) + δip,v,2 , ip(t0) + δip,v,3] (4.62)

It is therefore not required to check these points along b′. This leads to the bound-
aries mentioned in (4.50).

4.3.4 The Margin Estimation - simplified method

In this simplified method, the issue of the high-frequency and low-frequency com-
ponents of the current signal are analyzed separately. We assume that their corre-
sponding margins required to prevent the zero-crossing can be summed in order to
provide the total margin.

Low-frequency margin

For the low-frequency components, we assume that the current variations are much
smaller than the ripples, as in the previous method: i(tx0) = i(tx4). The margins
are however not computed for any position of the current space vector, but only
around the zero-crossing lines. The computation is based on the value e only, and
not on the supply voltage anymore. The benefit is that the computation of the
switching voltages at every carrier cycle is not required anymore, but the drawback
is that an estimation of e is needed. The contributions of ri, ePM and vsc in e are
analyzed, but ωq

∂L
∂ϕq

is neglected. Note that we make the approximation of an ideal
symmetrical modulation. For reason of uniformity in the notations, we maintain
the index of the half-cycle (with the index x =  hereafter), but the results are
independent on this index.

The margins that should be kept between the current samples and the zero-
crossing lines vary as a function of the current values. In order to give a simple so-
lution, we make the assumption that the largest margin would be found for current
samples located on a zero-crossing line, assuming not inverter nonlinearity. The
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margin is therefore computed for current virtually located at these positions, even
if the current should be kept outside this margin in practice. In that location and ne-
glecting any anisotropy on the resistance r, the resistive voltage drop ri, computed
with the sample i(t0), is parallel to the zero-crossing line and directed toward
zero 0. We neglect here the current ripple contribution to the resistive voltage drop.
Assume also that the current is controlled along the quadratic q-axis and that the
back-emf ePM = jωdψPM

is along the q-axis oriented toward zero 0, i.e. the shift
between the PM magnetic flux ψ

PM
and the d-axis is neglected. As a consequence,

ePM and ri both act in the same direction along the q-axis. While no zero-crossing
occurs, the semiconductor voltage drop vsc is a constant space vector oriented by
an angle of 30◦ with respect to the zero-crossing line and towards this line. Its con-
tribution along the q-axis is therefore equal to |vsc| cos(30◦) = |vsc|

√
3/2. Adding

this contribution of the vsc, the virtual current variation along the q-axis is:

δie,,q :=
1

ltq

(
r|i(to)|+ ωd|ψPM

|+
√

3

2
|vsc|

)
Ts

2
(4.63)

where Ts/2 is the period of the carrier half-cycle and where ltq is the value of the
incremental self-inductance along the q-axis. This virtual current is illustrated in
Figure 4.15(a) with the current samples located on the line ib = 0 (the result is the
same along any zero-crossing line) and neglecting the contribution of the vsc along
the d-axis: δie, = δie,,qejϕq . This contribution along the d-axis is introduced
hereafter. Assuming that the samples are fixed, this virtual current variation δie, is
compensated by the virtual current variations δiv,2 and δiv,3 related to the active
switching voltages. These virtual currents are oriented by an angle γ symmetrically
one either side of the zero-crossing line. If the incremental self-inductance has no
anisotropy, this angle is γ = 30◦. In case of anisotropy, this angle should be
slightly smaller. We propose therefore to use the overestimated angle γ = 30◦ for
the margin computation:

|δiv,2| cos (30◦) = |δiv,3| cos (30◦) =
δie,,q

2
(4.64)

The margin to keep is equal to the component of δiv,2 or δiv,1 perpendicular to
the zero-crossing line:

∆im,I := |δiv,2| sin (30◦) =
δie,,q

2
tan (30◦) =

1√
3
δie,,q (4.65)

It is illustrated in Figure 4.15(a). Consider the semiconductor voltage drop along
the d-axis: |vsc| sin(30◦) = |vsc|/2. Since there is not other contribution, the
virtual current variation along the d-axis is thus:

δie,,d :=
1

ltd

(
1

2
|vsc|

)
Ts

2
(4.66)
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It is illustrated in Figure 4.15(b) with the current samples located at the limit with
the margin. An margin additional margin is approached by this virtual current:

∆im,II := δie,,d (4.67)

The total margin is then the sum of the two proposed margins:

∆im := ∆im,I + ∆im,II

=
Ts

2
√

3 ltq

(
r|i(to)|+ ωd|ψPM

|
)

+
Ts

4

(
1

ltq
+

1

ltd

)
|vsc| (4.68)

This is illustrated in Figure 4.15(b). This margin is proposed with respect to one
zero-crossing line, in the illustration it is ib = 0. For very small operating current
however, the possibility of zero-crossing with respect to another zero-crossing line
should also be analyzed. From simulations, it seemed however that the proposed
margin prevent from multiple zero-crossing. It is illustrated in Figure 4.15(c).

Remember that these computation are performed for a current that is virtually
located along a zero-crossing line, but it is independent to the real position of the
current. The only values that are required for this computation are those used in
(4.68). Note that overestimated parameters r, ωd, l−1

tq and l−1
td are valid. Note

that issues regarding the resolution and the measurement noise must be considered
if the resistive voltage drop is computed using current samples. To remove that
problem, we propose to simply use the current instruction instead of the samples.

High-frequency margin

The additional margin linked to the high-frequency digital signal ∆im,hf is simply
approached as the biggest magnitude of the high-frequency digital current-response
ihf :

∆im,hf = |ihf | (4.69)

This is a strong approximation, but this solution was satisfying during experiments
with our experimental machine. The total margin is then the low-frequency margin
∆im,lf given in (4.68) plus ∆im,hf :

∆im := ∆im,lf + ∆im,hf

=
Ts

2
√

3 ltq

(
r|i(to)|+ ωd|ψPM

|
)

+
Ts

4

(
1

ltq
+

1

ltd

)
|vsc|+ |ihf | (4.70)

Restrictions of the methods

The method is restricted to vector control where the current is controlled along the
q-axis. The proposed zero-crossing prevention, introduced hereafter, add an offset
to the current instruction that is partly oriented along the d-axis. So we deviate
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slightly from the hypothesis. Moreover, it is assumed that the synchronous qd-
frame is aligned with the anisotropy xy-frame, but this condition is not always met
in our experimental motor. This method is therefore rather approximate and further
improvements could certainly be introduced.

4.3.5 Zero-Crossing Prevention

Computation of the Offset

The strategy consist in adding an offset to the initial current instruction i?? such
that the new current instruction i? is outside the zero-crossing margins. In order to
minimize the torque impact, the offset should be oriented as much as possible in a
direction that minimize the torque production. It is assumed here that this direction
is along the direction d-axis. A first method was proposed in [125] and a slightly
improved method was proposed in [126]. We introduce this last method hereafter.

Assume that i?? is along the q-axis. The possible locations of the instruction i??
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inside the margins are divided in zones Z, as illustrated in Figure 4.16(a). They are
numbered from 1 to 6 in an anticlockwise order, and the central zone of the margin
intersections is numbered Z = 0. The first step consist to compute the zone Z
where i?? is located. If it is in Z ∈ {1 . . . 6} as illustrated in Figure 4.16(b), we
propose to compute the new instruction i? with the same amplitude but with an
angle rotated outside the margin as follows:{

|i?| := |i??|
∠i? := (Z + 1

2)π3 + sign
(
∠i?? − (Z + 1

2)π3
)

asin∆im
|i??|

(4.71)

If the margin size is small compared to the amplitude of the current instruction, the
offset should be along the d-axis in order to keep the impact on the torque small.
If Z = 0, as illustrated in Figure 4.16(c), we add a first instruction offset along the
d-axis, such that a temporary new instruction i′?? is:{

|i′??| := 2∆im

∠i′?? := ∠i?? + acos |i
??|

2∆im

(4.72)

and then (4.71) is used with i′?? instead of i?? to compute the second offset. This
second offset is not necessarily along the d-axis, resulting in some torque ripples
during the rotation [125].

Impact of the Offset

There is a discontinuity in the proposed method introduced by the “sign” function
in (4.71). Due to this discontinuity, the new current instruction i? jumps across
the margins during the rotation. Assuming a good controller, the jumps should be
small (a few PWM-periods). For the case when the initial instruction is remaining
close to a zero-crossing line, it is strongly advised to compute the “sign” using an
hysteresis in order to avoid uncontrollable and repetitive jumps.

In order to reduce as much as possible the current jumps and in order to reduce
the torque impact, the margin ∆im should be as small as possible. This is satisfied
as low speed and small controlled currents. When the torque requirements or when
the speed increase however, the margins can be quite larges. This is the case with
our experimental motor.

4.4 Experimental Analysis

4.4.1 Estimation of the Margins

We propose to assess the margin corresponding to the method section 4.3.4 for the
case of the experimental drive. For this, it is required to estimate different values
and parameters of the test-bench VSI and the experimental machine.



152 CHAPTER 4. VOLTAGE-SOURCE INVERTER

0

2

100 20 30

vsc (V)

isc (A)

Voltage drop at the diode

1

vth = 1.1

rsc ≈ 0.023Ω

0

2

100 20 30

vsc (V)

isc (A)

Voltage drop at the IGBT

1

vth = 1.1

rsc ≈ 0.03Ω

Figure 4.17: Graph of the voltage drop at the semiconductors vsc as a function of the
current isc, for the diode and for the IGBT. Linear approximations (plain lines). Standard
deviation of the voltage measurements: 0.17 V.

Dead-time and Voltage drops

The semiconductor voltage drops have been sampled at the beginning of the PWM
cycle for 2 × 941 different values of the currents between −30 A and 30 A. For
each current value, the voltage drop is averaged on about 100 samples. Referring
to Figure 4.1, for positive values, the current is flowing through the diode while, for
negative values, it is flowing through the IGBT. Results are shown in Figure 4.17.
We see that the voltage threshold is about the same for the diode and the IGBT,
uth ≈ 1.1 V, but that the resistance is slightly different. Note that these resistances
represent about half the machine resistance mentioned in Table 3.2. For informa-
tion, the dead-time is approximately ∆tdt ≈ 4.2µs (4.2% of the PWM-period
Ts = 10−4 s−1). For the margin computations, we neglect the dead-time and we
approach the semiconductor voltage drop by the voltage threshold. Using the space
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Figure 4.18: Graph of the theoretical margin, computed using (4.68), as a function of the
speed and as a function of the load.

vector definition (4.26), we have |vsc| = 4/3 uth ≈ 1.5 V.

Machine Parameters

For the machine circuit parameters, we propose to base them on the estimations
performed at the previous chapter 3. We take a slightly overestimation of the low-
frequency resistance r ≈ 0.7 Ω, and underestimations of the discrete-time appar-
ent incremental self-inductances ˆ̄ltx = 80µH and ˆ̄ltx = 50µH. Neglecting the
harmonics, the PM flux was estimated in chapter 2 around: ψ̂PM ≈ 0.05 Wb.

Ts (µs) |vsc| (V) r (Ω) ˆ̄ltx (µH) ˆ̄lty (µH) ψ̂PM (Wb)
100 1.5 0.7 80 50 0.05

Table 4.1: Parameters required for the computation of the zero-crossing margin.

Results

The different parameters are gathered in Table 4.1. Based on these parameters, the
margin computed using (4.68), as a function of the speed, assuming no load 0 A and
no high-frequency signal injection, is shown in Figure 4.18(a). It starts at 1.22 A
up to 14 A for an unloaded machine rotating at the rated 500 rpm. This represents
about 10% of the rated current, that is significant. The margin as a function of the
load in current, assuming standstill machine and no high-frequency signal injec-
tion, is shown in Figure 4.18(b). It reaches 34.7 A for a standstill machine loaded
at the rated current 134 A, that is about 25% of the rated current. This margin would
lead to huge cogging torque and it is not advised. As a consequence, for that type
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machine and if any method that needs an accurate knowledge of the voltage is oper-
ating (such as signal-injection-based self-sensing methods), it is therefore required
to reduce the maximum eligible load. This illustrates how annoying is the prob-
lem of zero-crossings. The margin related to the high-frequency signal-injection
should be added using (4.70). Experimental results with signal injections used for
the position self-sensing and performing the zero-crossing prevention method ex-
plained in section 4.3.5 are shown in the next chapter 5. Empirical observations
on an oscilloscope for experiments at standstill, without load and with a signal-
injection of 1 A amplitude showed us that the minimum margin required to prevent
zero-crossings was found around 2.1 A. Subtracting the injected-signal amplitude,
it corresponds to a low-frequency margin of 1.1 A. This matches well with the theo-
retical margin computed with the new method (4.68) and shown in Figure 4.18. At
this stage of the study however, further experiments would be required to measure
the experimental margin under load and at higher speeds.

Experiments

For illustration, Figure 4.19 shows previous experimental results without signal
injection and with a machine rotating at ωd ≈ 10 Hz (43 rpm). The rotor position
is given by an encoder. The zero-crossing prevention is based on the previous
method to compute the margin (4.52). We can see the effect of the offset on the
currents in (a) that produce jumps of the current across the zero. The margins are
not represented in (b) because, in this previous method, the margins were changing
all around the rotation. An approximation of the electrical torque, computed with
T ≈ 1.5P =(i∗ψ

PM
), is shown in (c). We see the oscillating impact of the offset on

the torque, that must be compared to the rated torque of 150 Nm. Figure 4.20 shows
the measurements performed through an oscilloscope for the same experiment (not
at the same instant). We see by these measurements that the current ripples are
between 1 A and 2 A amplitude. This matches with the estimated ripple amplitude
using (4.68). We see also that the margins of the method (4.52) are rather larger
than the ripples.

4.5 Summary

In this chapter, we described the topology and the nonlinear characteristics of
the two-level voltage-source inverter (VSI) with switching devices commanded by
carrier-based pulsewidth modulated (PWM) signals. They mainly are:

1. the voltage drops at the semiconductor devices ;

2. the lag-time in the switching signals plus the commutation delays of the
semiconductor devices, that result in so-called dead times.

The voltage drop can be linearized by a fixed voltage threshold in opposition to the
current flow and a semiconductor resistance. The dead times can be linearized by
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Figure 4.19: Experimental results of the zero-crossing prevention method based on the
margin (4.52), for a initial current instruction around 1 A along the q-axis. No high-
frequency signal is injected. The rotor orientation is given by an encoder. (a) New current
instruction with the offset (plain lines) and measurements samples of the phase currents
(dots) ; (b) Representation of the currents in the space-vector frame ; (c) Electrical torque
approached using the fundamental space-vector of the PM flux.
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fixed values with a sign depending on the current flow. The compensation methods
are therefore closely related to the current flow in the different phases. Note how-
ever that these nonlinearities, when no phase current crosses zero, are not involved
in the self-sensing operations.

When a phase current crosses zero however, a phenomenon called zero-clamping
tends to maintain the current at zero during the dead time. This phenomenon has a
dramatic impact on the self-sensing operations based on signal injection, and leads
to faulty estimations. No simple and efficient compensation method was found to
compensate this zero-crossing nonlinearity. The solution is even more complicated
than the current ripples may cross zero even if the current samples do not. It is
therefore proposed to maintain the current instruction far enough from the zero-
crossing lines and to jump through these lines when required. This solution limits
the number of zero-crossings and the impact of the nonlinearity.

The first step consist to estimate the required margins. Two methods were
proposed:

1. the first method computes confident margins after every sampling period.
The margins are however overestimated and vary during the control opera-
tions ;

2. the second method proposes approximate margins, as a function of the stator
current amplitude and the speed. This method requires an initial estimation
of the stator resistance and an estimation of the PM magnetic flux. The
margin is however smaller and fixed for stead-state operations.

The second step is the implementation of the zero-crossing prevention method.
This method adds an offset to the initial current instruction in order to keep the
current outside the margins. The offset is selected in order to have a reduced impact
on the control operations, but it inevitably produces a small torque. It was shown
that the required margin for the experiment BLDC motor at rated conditions are
rather large. This zero-crossing prevention solution requires therefore a reduction
of the maximum torque in order to limit the margin amplitude.
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Chapter 5

Signal Processing

This chapter addresses the control of the machines and the position-self-sensing
solutions. It details the numerous self-sensing strategies and gives the concrete
operations for the studied case of high-frequency signal-injections used by the
anisotropy-based self-sensing method. It is the outcome of the developments initi-
ated from the first chapter of this thesis.

5.1 Introduction

The optimal control of PM machines requires the knowledge of the rotor position,
that can be measured by external dedicated sensors. However, more and more,
these sensors are removed for all the reasons mentioned in the introduction chap-
ter 1, leading to so-called self-sensing methods. The principle is to use electrome-
chanical phenomenons in the machine itself, that vary with the rotor position, to
estimate the rotor position. These phenomenons can be observed and tracked from
measurable electrical variables, such as currents and voltages.

At high speeds, the back-emf is a reliable source to estimate the rotor position
without much effort. Its signal-to-noise quality however decreases with the rotation
speed. At low rotation speed and standstill, an estimation of the rotor position can
be obtained from anisotropic properties linked to the rotor position. As addressed
in chapter 2, these anisotropies can be due to variations in the rotor geometry or to
magnetic saturation effects in the iron and are revealed through parameters, such
as the incremental self-inductance. Anisotropy misalignment may appear due to
significant stator currents and to harmonics in the machines related to harmonics
in the conductor distributions and to nonsinusoidal magnetic-fields.

In the vast majority of anisotropy-based strategies without extra sensors, the
anisotropy is tracked performing high-frequency signal injection in addition to the
rotation-drive operating signals. Many different types of signal injection can be
used: test-pulse trains, PWM modifications, carrier-based pulsating and rotating-
signals injection. Mathematical developments and comparisons between different
signal injections are proposed in this chapter.

159
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Except in some publications, the resistance impact is often neglected in signal-
injection operations, assuming an ideal inductive machine. The eddy currents how-
ever increase with the frequency and may significantly affect the apparent resis-
tance value, as describe in chapter 3, leading to position-estimation errors. This
issue is closely related to the frequency of the injected signals. This frequency is
often selected between 400 Hz and 2 kHz [127, 128] and many papers introduce
self-sensing using continuous-time operations. We propose here to study discrete-
time operations up to one third of the sampling frequency used by the current con-
troller, which is the maximum possible frequency defining rotating signals. The
benefits of the proposed method are analyzed regarding disturbing interactions be-
tween the rotation-drive and the self-sensing operations, regarding the filtering and
the computational requirement, the robustness and the impact of the apparent re-
sistance.

∼

This chapter is organized as follows: the section 5.2 introduces elementary de-
scriptions of the field-orient control. It is attempted to give a large overview of the
many different self-sensing, to categorize them and to compared their advantages
and drawbacks ; Section 5.3 addresses the model specially for the high-frequency
signal-injection methods using digital measurements of the terminal currents. The
principle, the assumptions and the filtering operations of the signal-injection are
introduced. The position estimations operations are developed for rotating and pul-
sating signal injections. A last case of alternating signal injection is also addressed ;
Section 5.4 shows experiment results of the self-sensing operations applied on the
experimental BLDC motor ; A summary of the important elements of this chapter
is given in section 5.5.

5.2 Self-Sensing Field-Oriented Vector-Control

5.2.1 The Vector-Control Principle

The term vector controls gather all variable-speed control-schemes intended for
polyphase machines and using tools based on the space-vector concept. The current
and voltage values are therefore handled using their transpositions in space vector
frames, either by their complex or their matrix forms. Note that the classification of
a control method in the category of “vector controls” is sometime only a question of
point of view: a same processing can be equivalently deduced from phase relations
or space-vector relations. In the case of a three-phase machine without neutral
connection however, the space-vector relations offer generally more intuitive and
shorter expressions than the phase relations.

Among the vector controls, we mainly have two strategies:

• the Field-Oriented Control (FOC), described hereafter and assumed in this
work ;
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• the Direct Torque Controls (DTC) and the more recent Predictive Torque
Controls (PTC).

Comparisons between FOC and PTC for induction machines (IM) are proposed by
[130, 131]. Comparisons between different PTC, called Optimal Switching Time
PTC, hysteresis based PTC and more basic PTC are addressed in [132]. They
are however not addressed in the frame of self-sensing controls. Review of the
adjustable-speed drives, including open-loop scalar controls, are found in [5, 2,
1, 7]. Note that the choice of FOC in this work is not due to any performance
consideration, but simply to the experimental equipment that does not allow to
perform PTC.

5.2.2 The Field-Oriented Control

The Field-Oriented Control (FOC) is a vector control generally intended to three-
phase synchronous machines, i.e. machines where the harmonics are small com-
pared to the fundamental of the flux. In that case, the fundamental space vector
of the flux ψ yields a good approximation of the fundamental coefficient ψ(1), as
shown in chapter 2 by (2.50). Combining this approximation with the expression
of the torque applied on the stator (2.69) yields:

T =
3P

2
=
(
i∗ψ
)

(5.1)

where n is the number of phases and P is the number of pole-pair in the machine.
Note that the torque applied on the rotor is −T . This expression (5.1) is valid
with space vectors in any reference-frame. This is demonstrated here with the
transposition in the synchronous qd-reference-frame using (3.8), as described in
chapter 3: (

i∗ ψ
) ∣∣

qd
=
(
i∗���ejϕq ψ���

e−jϕq

) ∣∣
αβ

=
(
i∗ ψ

) ∣∣
αβ

(5.2)

In the case of a permanent-magnet (PM) machine, the flux ψ is made of two con-
tributions: one from the stator currents and one from the rotor PM:

ψ = ψ
S

+ ψ
PM

(5.3)

On the other hand, the assumption of synchronous machines yields that the PM flux
ψ

PM
is oriented along the d-axis of the permanent magnet locations (by convention

in a negative direction along this axis). In the synchronous qd-reference-frame, this
yields:

ψ
PM

∣∣
qd

= −jψ̂PM (5.4)

On the other hand, for convenience, it is generally assumed that the synchronous
qd-frame is aligned with the anisotropy frame related to the relation linking i to
ψ

S
. In the synchronous qd-reference-frame, this yields:

ψ
S

= lqiq + jldid (5.5)
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Combining these results with i∗|qd = iq − jid, (5.1) yields:

T =
3P

2
=
(

(iq − jid) (lqiq + j(ldid − ψ̂PM))
)

⇒ T = −3P

2

(
(lq − ld)id + ψ̂PM

)
︸ ︷︷ ︸

Magnetization

iq (5.6)

A similar expression is found in [1, 114]. A matrix form is found in [133]. As-
suming that the magnetization part, made of ψ̂PM and (lq − ld)id, is constant, this
expression shows that the torque TPM is only function of iq. The q-axis can there-
fore also be referred to as the torque axis. Note that some publications in the field
of PM-machine sensorless control neglect the contribution of the anisotropy to the
torque, such as [79] for the PM-machines and [131] in the case of an inductance
machine. The FOC schemes are illustrated in [79, 1] with flowcharts.

The current id along the d-axis is sometimes used to reduce the magnetic flux
amplitude |ψ| [1]. The goal is to reach higher controllable speeds ωd, assuming
that the command voltage is maintained under the maximum voltage vmax supplied
by the PWM-VSI. This is illustrated as follows. Neglecting resistive voltage drops,
inverter nonlinearities and the eddy currents, the voltage v at the machine terminals
in the synchronous qd-reference-frame is:

v|qd ≈ jωdψ|qd ⇒ |v| ≈ |ωd|
√

(ldid − ψ̂PM)2 + (lqiq)2 (5.7)

While the speed increases, ωd ↗, the principle consists to increase the current
id ↗ such that |v| < vmax. The variations of id are therefore related to the speed
ωd and are slow regarding the variations of iq performed by the torque control
operations.

As we showed, all these operations are performed with space vectors in the syn-
chronous qd-reference-frame, defined with respect to the PM-rotor position. The
PM position can be measured by dedicated sensors, or using estimation methods
such as the self-sensing methods described hereafter.

The expression of the PM contribution to the torque is complicated if ψ
PM

is
not oriented along the d-axis and (5.4) is not valid anymore. This is the case in
our experimental BLDC motor, but experiments shown in chapter 2 that the fifth
harmonic, that was the highest, represented only 1% of the fundamental amplitude.
As a consequence, we could neglect the harmonics even in the case of our nonsyn-
chronous BLDC motor. Another difference comes from the misalignment between
the anisotropy and the synchronous frame. In that case, (5.5) is not valid anymore.
As addressed in chapter 2, the misalignment can be due to space harmonics, but
also to the increasing impact of i on the magnetic state. This issue is not easy to
handle since the value of the self-inductance is then required for any rotor position
and any value of i. Moreover, we can not rely on signal-injection methods since
this method only identify the incremental part of the self-inductance, but not the
self-inductance l regarding the total current i.
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Methods taking all these issues into account could certainly be developed, but
this is not the topic of this study. We propose therefore to simply neglect the
stator current contribution to the flux in the torque computation, and to assume the
approximation of a synchronous flux for the control operations:

|id| � |iq| ⇒ T ≈ −3P

2
ψ̂PM iq (5.8)

Note that there are also other sources of torque that are not controlled, such
as the cogging torque or the torque due to the homopolar current. Controlling the
homopolar current can increase the average torque produced during the rotation if
we have access to the neutral connection [51]. They are however not studied in this
document.

5.2.3 Conventional BLDC Control

The conventional control of BLDC-machines differs from FOC [2]. It is often de-
scribed from the point of view of the phase values and assuming that the PM-fields
can be approached by a trapezoidal function along the air-gap. It also neglects the
anisotropy and its contribution to the torque. In that case, the torque should remain
constant if opposite currents are injected in the two phases whose conductors are in
front of the PM, while no current is injected in the third phase. The phase currents
are therefore commutating during the rotation. Transposed in space vectors, we can
define the torque axis along discrete positions of the PM. The current space vector
is therefore not smoothly rotating with the PM, but jumps between these discrete
positions. The commutations are usually initiated by hall-effect sensors that detect
inversions of the magnetic field in the air-gap [29].

Our experimental machine is a BLDC motor. It would therefore make sense to
use a conventional BLDC control method. Some experiments however showed us
that the FOC produced a much smoother torque than the BLDC control. This issue
was also introduced by [50].

5.2.4 Regulators in Closed-Loop Controls

Details about regulators and observers can be found in many publications [46, 134,
10, 11, 135, 36]. This work however does not focus on the regulation issues.
All the regulations implemented in the experiments are based on simple discrete
proportional-integral operations with anti-wind-up and limited output instructions.
The operations are similar to those presented in [136]. Other type of operations
exist, such as sliding-model regulators, but they are not studied in this work. For
the position estimation filtering, simple Luenberger observers are used, as clearly
described by Luenberger himself [137] and by [138], or in more recent publications
[134].
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Table 5.1: Comparison between the back-emf and the anisotropy as source of rotor-
position information.

1. back-EMF 2. Anisotropy
Speed range Nonzero speed Any from standstill

Load sensitivity Low Strong
Harmonic sensitivity Medium Strong

5.2.5 Sources of Position Information

As discussed previously, the vector controls require the knowledge of the rotor po-
sition. Two electromechanical phenomenons in the PM machine model can contain
rotor-position information:

• the back-electromotive force (back-EMF) ;

• a magnetic anisotropy.

They are compared in Table 5.2.5 and addressed in details hereafter. A huge num-
ber of different self-sensing strategies are found in the literature, with names that
are very variable from one publication to the other. Often, the back-EMF-based
methods are referred to as fundamental model methods [5, 139, 2]. But to our
knowledge, the strategies found are all based on one or both of these sources of
position information, sometimes with specific issues depending on the machine
types.

5.2.6 Back-EMF-Based Self-Sensing

The back-EMF is the voltage induced by the time variation of the magnetic flux
produced from the rotor-side and linked by the stator circuits. It is related to the
rotor position in any machine having an independent magnetic source at the rotor,
generally referred to as synchronous machine. The case of induction machines,
also called asynchronous machines, is more complicated since the back-EMF is
not induced from an independent rotor source, but related to a mutual flux and it
is function of the shift between the rotor speed and the stator signal frequency.
More details about back-EMF-based self-sensing methods in induction machines
are given in [140] with analysis of parameter sensitivity and in [5, 2].

In case of PM, the back-EMF is written: ePM = dψ
PM
/dt. In synchronous

machines where the flux can be approached by its fundamental component, the PM
flux is of constant amplitude and aligned with the d-axis: ψ

PM
= ψ̂PMejϕd . The

back-EMF is then a reliable source to estimate the rotor position and speed without
much effort [141]:

ePM =
dψ

PM

dt
= jωdψ̂PMejϕd ⇒

{
ωd = |ePM|/ψ̂PM

ϕd = ∠(−jePM)
(5.9)
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If ψ̂PM is known, the rotation speed ωd is directly deduced. Otherwise, ωd can
be computed using an observer of the dynamic model (not developed here), and
then ψ̂PM could be deduced. Except in [142, 143], note that (5.9) is generally not
explicitly mentioned in most of the publications, but it is integrated in an observer
expression, such as described hereafter.

The back-EMF estimation can be based on one of the machine models devel-
oped in chapter 3. Let us analyze this issue from the continuous-time machine
model without eddy currents in the stationary αβ-frame (3.48):

ePM = v − lt+
di

dt
− lt-

di∗

dt
−
(
r+ + ωq

∂l+
∂ϕq

)
i−
(
r- + ωq

∂l-
∂ϕq

)
i∗ (5.10)

If the PWM-VSI nonlinearities are compensated, v is known by its command value
v?. The currents i are measured. The computation of ePM then requires accu-
rate knowledge of all the parameters appearing in that expression. The expression
(5.10) is generally not directly used to compute the back-EMF estimation. In or-
der to reduce the noise impact and in order to eventually correct the parameter
values, the use of an observer is advised. Most of the observers found in the litera-
ture assume no anisotropy and no variation of the self-inductances as a function
of the position [5]. This is the case with [144] with a stator-flux-based meth-
ods using MRAS observer. Other publications take the anisotropy into account
[79, 133, 142], or [145] using extended Kalman filters, but assuming constant pa-
rameters and assuming that the anisotropy is aligned with the synchronous frame.
In [133], the method is improved including the dynamic model of the machine in
the observation. In [133], the method is augmented by a signal-injection that iden-
tifies the resistance, that may vary with the temperature. It however neglects any
anisotropic aspects. Taking the anisotropy into account in back-EMF-based meth-
ods is however not easy. Anisotropy misalignments can appear if the current load is
significant or if the machine presents important harmonics. Moreover, the harmon-
ics result in anisotropic relations oscillating at several times the rotation frequency.
This strongly complicates the implementation of an observer. This is the case of
the experimental BLDC motor. A review of the different types of methods is given
by [5, 2].

As shown by (5.9), the back-EMF magnitude is directly related to the rotor
speed. Therefore, the position estimation accuracy decreases with the speed re-
duction, and completely vanishes at standstill. This is the main drawback of the
solutions compared to the anisotropy-based solutions, described hereafter. Some
authors therefore propose methods switching between the two self-sensing solu-
tions around a threshold speed [133, 143, 114].

5.2.7 Anisotropy-Based Self-Sensing

Terminal-based circuit model

We focused here on a model linking space vectors of the voltage and current ter-
minals, that are sampled by the sensors used by the rotation-drive controller. Self-
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sensing methods based on this model do therefore not require extra sensors, leading
to a cost reduction and better reliability. The robustness is further improved by the
possibility to place the terminal current sensors, and the DC-bus voltage sensor,
distant from the rotor. They can thus be isolated from rotation vibrations and other
environmental stresses [6].

The anisotropy of the incremental self-inductance is linked to geometry varia-
tions such as the air-gap length (rotor with salient poles) or to variations in mag-
netic saturation levels in the iron. It can be written using (2.81):

dψ
S

= lt+di+ lt-di
∗ej2ϕx (5.11)

where the anisotropy angle ϕx is an estimator of the synchronous qd-frame an-
gle ϕq linked to the rotor position. Misalignment between the anisotropy and the
synchronous frame lead to position estimation errors, as discussed in Chapter 2.

A pronounced anisotropy, i.e. a significant lt- regarding lt+, is a benefit to
achieve accurate estimations. The anisotropy ratio lt-/lt+ tends to decrease with
the load current i in most of the machine designs. A map of the anisotropy with
respect to the load, and feasibility operation regions are therefore established by
some authors [60, 58, 59]. Special attention can be paid to the machine design
in order to increase their anisotropy [40, 59, 146, 67]. On existing machines, it
is sometimes possible to increase the anisotropy by adding a copper turn wound
around the poles [68, 69]. Salient-poles machines, reluctance machines and many
permanent-magnet (PM) machines, naturally present significant anisotropic prop-
erties. They are therefore appropriate candidates for the study of self-sensing meth-
ods based on anisotropies. The only anisotropy is related to the teeth between the
slots containing the rotor coil. This results in small anisotropic amplitudes and
in harmonics of much higher orders, that are not easy to identify. More details
about anisotropy-based self-sensing methods in induction machines are given in
[147, 139]. We focus here on PM machines.

The anisotropic relation (5.11) is independent to the speed and it can be used
to estimate the rotor position from standstill up to the maximum speed. This is an
important benefit compared to back-EMF-based self-sensing methods. The iden-
tification method can however carry some difficulties and drawbacks, that are dis-
cussed in this study. In practice, we do not have a direct access to dψ

S
, since the

relation is involved in the electrical circuit expression linking the stator currents
i with the supply voltage v and the back-EMF ePM. Let us analyze this relation
using the continuous-time machine model without eddy currents in the stationary
αβ-frame (3.48):

lt+
di

dt
+ lt-

di∗

dt︸ ︷︷ ︸
dψ

S
/dt

+ r+i+ r-i
∗︸ ︷︷ ︸

vr

= v − ePM −
(
ωq

∂l+
∂ϕq

i+ ωq
∂l-
∂ϕq

i∗
)

︸ ︷︷ ︸
neglected

(5.12)

The last term is due to harmonics in the self-inductance anisotropy, as explained
in chapter 2. Being proportional to the current, it acts as an equivalent resistive
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contribution, with the oscillating value, that could be mixed with the stator resistor.
No publication found by the author manage this term, that is generally neglected
[143]. We propose also to neglect it at this stage of the study, but its impact is
quickly assessed at the end of this subsection.

As we can see in (5.12), the incremental self-inductance is not the only possible
anisotropy source of this relation. Chapter 3 introduced the fact that the stator
resistance can also present an anisotropy due to unbalancing between the different
phase resistances, but this anisotropy is not linked to the rotor position. It was
however showed that eddy currents, or any additional circuit placed in the rotor
[68, 69], influence the apparent parameter values of the circuit model. In particular,
the apparent resistance for high-frequency signals could largely increase in relation
with a magnetic anisotropy linked to the rotor position. This effect is used in
some publications to develop self-sensing methods based on resistance-anisotropy
[148, 85, 149]. As discussed in chapter 3, this strategy should however be assessed
with respect to discretization and PWM distortions. Assuming that the anisotropy
angles of the incremental self-inductance and the resistance are equal, (5.12) can
be written: (

lt+
di

dt
+ r+i

)
+

(
lt-
di

dt
+ r-i

)∗
ej2ϕx = v − ePM (5.13)

The low frequency signals used by the rotation-drive operations are generally not
adequate to perform self-sensing estimations. In one hand, the current variations
di/dt are small compared to the measurements noise, leading to inaccurate esti-
mations. On the other hand, the back-EMF is apriori unknown. In the vast ma-
jority of anisotropy-based methods, the solution to overcome these issues consists
to use self-sensing estimations based on signals having higher frequencies than
the rotation-drive operating signals (also sometimes referred to as “fundamental”
operating signals) [5]. The self-sensing operations are then based on the relation
between high-frequency signals, denoted here by hf . Higher the frequency, higher
the contribution of dihf/dt with respect to i and to the noise. As a consequence,
a large number of methods found in publications neglect the resistive contribution.
Moreover, the contribution of the high-frequency signals to the back-EMF tends to
decrease, such that ePM,hf is neglected in the high-frequency model. These points
are further discussed in section 5.3. Therefore, (5.13) simply yields:

lt+
dihf

dt
+ lt-

di∗hf

dt
ej2ϕx ≈ vhf (5.14)

Since the injected high-frequency voltage vhf is known and since ihf can be mea-
sured, it is possible to identify the anisotropy angle ϕx. The method to extract ϕx

depends on the type of signal. This is addressed in the next section 5.2. The impact
of significant resistance on the self-sensing operations assuming this approxima-
tion is also addressed in this chapter.



168 CHAPTER 5. SIGNAL PROCESSING

Table 5.2: Comparison between solutions with extra sensors dedicated to the self-sensing
operations and solutions using the terminal values.

1. Terminal-based 2. Dedicated sensors
Type Control sensors Specifically selected

Accuracy Lower Increased
Reliability Strong Lower

Assessment of the impact from self-inductance variations

The impact of the neglected part in (5.12) is quickly assessed in the case of the
experimental machine. For this, we assume that the harmonic content of the self-
inductance should be lower in amplitude than the harmonic content of its incre-
mental part. Therefore, the assessment is based on the incremental self-inductance,
considered as an upper limit. Using the results of the experimental BLDC machine
presented chapter 2, it was shown that lt,+ is quite constant: ∂l+/∂ϕq ≈ 0 ; and
that lt,- only contains significant harmonics at k = 2 and k = −4. Neglecting the
misalignment due to the current load, it yields:

lt- = lt,(2)e
j2ϕq + lt,(−4)e

−j4ϕq (5.15)

⇒ ωq
∂lt-

∂ϕq
= 2ωqlt,(2)e

−j4ϕq − 4ωqlt,(−4)e
−j4ϕq (5.16)

where |lt,(2)| ≈ 23µH and |lt,(−4)| ≈ 3µH. At the rated speed of the motor,
ωq = 2π × 116 = 729 rad/s. Therefore:{

|2ωqlt,(2)| ≈ 0.034 Ω

|4ωqlt,(−4)| ≈ 0.009 Ω
(5.17)

These results are lower than resistance, that varies between 0.05 Ω for DC sig-
nals and 0.15 Ω for 3.33 kHz signals. We assume therefore that if the resistance
contribution is small, then the self-inductive-variations contribution should also be
small.

Dedicated-sensor solutions

Other solutions based on extra sensors are however possible. The drawback of ex-
tra sensors are always the sames: additional source of possible failure, additional
setup and cost. However, if dedicated to the self-sensing operations, the resolution
of these extra sensors can be adapted to the small amplitude of the high-frequency
signals used to identify the anisotropy angle [105]. This can be especially advised
for machines presenting very small anisotropic properties, such as induction motors
(IM). For example, [147, 139] use the zero-sequence current response flowing in a
delta-connected stator circuit of IM. The main risk concerns the reliability because
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Table 5.3: Comparison between different sources of high-frequency signals.

1. DTC/PTC 2. PWM 3. Signal-Injection
Command Subordinated Subordinated Free (∗)

High-frequency / ωc ≪ ωs < ωhf ωc � ωhf < ωs

Measurements Samples Additional Samples
Model sensitivity High Low Low

Symbols: Usable high-frequencies ωhf ; rotation-drive frequency ωc ; sampling frequency
ωs. Note: (∗) in the limit of the eligible voltages by the VSI and on the maximum current.

this sensor is placed in the stator circuit of the machine, and undergoes environ-
mental stresses. It is also possible to use the zero-sequence voltage for self-sensing
operations, as proposed in [150, 66, 105].

Note that some publications mention the use of current-slope sensors. These
sensors can be dedicated [139, 151] or simply included in some newer sensors
also used for the rotation-drive control operations. The issue of the noise in such
current-slope measurements must however seriously be studied.

We also mentioned some alternative solutions: [77] proposes a solution based
on an independent high-frequency supplier. This solution therefore requires also
additional setup of the separated supply. [152] proposes to use a back-EMF detec-
tion circuit for the commutation of the currents in a BLDC motor control. [153]
proposes a low cost solution by the measurement of the DC-bus current.

5.2.8 High-Frequency Sources

Let us analyze three sources of high-frequency signals that could be used for self-
sensing operations. They are summarized in Table 5.2.8:

1. The high-frequency signals can be naturally produced by the rotation-drive
operations, even if they are not used for the rotation drive. This is the case
of the ripples in DTC and in PTC. The self-sensing operations can be per-
formed using the current samples used for the control, without additional
samplings. The high-frequency signal is however subordinated to the hys-
teresis method of the torque controller and it is therefore not independently
commanded in time and amplitude. Moreover, that type of self-sensing
strategy is significantly sensitive to the model parameters, such as the re-
sistance and the back-EMF that must be known since they contribute to the
current variations. Self-sensing methods using DTC signals or PTC signals
are developed in [154, 155, 156]. Another type of controls such as the Cur-
rent Hysteresis Chopping Control intended for switched reluctance motor
(SRM) supplied by asymmetrical half bridge power converter may also pro-
vide high-frequency signals reliable for self-sensing operations, as proposed
by [157].
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2. It is also possible to use the high-frequency ripples due to the pulse-width
modulation (PWM) of the voltage-source inverter (VSI) introduced in chap-
ter 4. The main benefit is that the PWM is naturally present in the supplied
voltage and that the frequencies are much larger than the rotation-drive fre-
quencies [5]. The signal amplitudes are however generally small, especially
at standstill and without load [143]. A solution to increase the ripple am-
plitude is proposed by [158] with the adjunction of a capacity at the neutral
point of the three-phase circuit. Another drawback is that the high-frequency
voltage is function of the modulation strategy and it is not independently
commanded. Finally, this solution requires additional measurements, oper-
ating at higher frequencies than the sampling frequency used for the drive.
Different solutions are possible: either measuring the current at specific in-
stants [143], using current-derivative dedicated sensors [151] or using very
high-frequency digital measurements systems.

3. The last proposed solution consist to inject additional high-frequency sig-
nals in the drive. The main benefit is that this signal is commanded, such
that the high-frequency voltage amplitude can be adapted in order to com-
pensate for noise and distortions, and the orientation can be modified in order
to track the anisotropy. The self-sensing operations can also be performed
using the current samples used for the rotation-drive operations also, and no
extra sensor is thus required. The main drawback comes from the fact that
this solution requires by principle the injection of addition signals, leading to
additional vibrations and additional noise. Note however that some methods
using signal injection use additional current samplings, such as in [159], but
they are not further studied here. In that categorization, the methods based
on PWM modifications are part of the signal-injection methods and not of
PWM-ripple-based methods.

This study mainly focuses on the solution 3) using high-frequency signal injection
that does not require additional measurements and allows an independent command
of the injected voltage.

All these methods consist in the injection of high-frequency voltages in ad-
dition to the low-frequency voltage in output of the current controller, used for
the rotation-drive. Another solution is proposed by [160] that inject current sig-
nal through the current instruction sent to the controller. This solution is however
strongly limited by the performances of that controller.

Another particular method to be mentioned is proposed by [161], and con-
sists to inject a very high-frequency signal during one subperiod of the PWM. By
choosing a signal that does not modify the mean voltage, this solution removes
any interaction with the rotation-drive, but it requires additional and very accurate
samples.
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Table 5.4: Comparison between permanent and intermittent signal injections, as generally
met in the literature.

1. Permanent 2. Intermittent
Self-sensing filtering High-pass filtering Response difference

Signal frequencies ωi ≤ ωs/2 ωi = ωs/2
(∗)

Settling time To be considered Very short
Voltage amplitudes Small May be larger

Rotation-drive measur. Low-pass filtering Interruption
Remaining impact None To be considered

Symbols: signal-injection frequencies ωi ; sampling frequency ωs.
Note: (∗) in case of asymmetrical modulation, the signal-injection frequency can reach the
PWM frequency: ωi = ωPWM = ωs/2.

5.2.9 Types of Signal Injections

We propose to distinct two categories of injected signals:

1. Permanent signal-injection: the voltage-signal is continuously injected with-
out interruption. The so-called carrier-based signal injections, rotating and
pulsating, are part of this branch [115, 105, 54, 77, 55, 133, 56, 90, 7,
148, 91, 41, 162]. The high-frequency and low-frequency signals are sep-
arated using conventional low and high-pass filters, as further addressed.
Many authors propose developments based on continuous-time models and
continuous-time filtering, even if the operations are digital. In this chapter
and in [126, 163], digital operations are however proposed. The main benefit
of the permanent signal-injections are their simplicity.

2. Intermittent signal-injection: the voltage-signal is applied during limited pe-
riod of times, generally after two sampling periods. The so-called trains of
test pulses [79, 164, 159, 154, 165, 166, 7, 167] and certain modified-PWM
[162, 168] are part of this branch, and are based on discrete-time machine
models. The modified-PWM methods are generally based on asymmetrical
modulation techniques, as introduced in chapter 3, and are equivalent to test
pulse methods where the pulses are alternating on two half PWM-carriers,
as in [166, 162]. In many of these methods, the low-frequency signal is
filtered by the difference of the current response between two consecutive
tests. The samples containing the high-frequency current response are gen-
erally removed for the rotation-drive operations. In some previous strategies,
important distortions of the current remained after the test-pulse period, that
affected the rotation-drive operations [159]. Improved solutions are intro-
duced in [165] with adaptive test pulses that reduce the remaining current
response after a test period. Compared to permanent signal-injection, test
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pulses allow to modify the injected voltage after every signal-injection pe-
riod and to cover the maximum supplied voltage [165]. The only drawback
concerns the remaining impact of resistive voltage drops that may affect the
rotation-drive operations, as explained in [169].

The distinction between permanent and intermittent signal-injections are not al-
ways obvious. The method proposed in the next chapter shows that, using discrete-
time operations, finite-impulse response filters and some other considerations, both
signal-injections are quite equivalent. A comparison between the rotating and pul-
sating permanent signal-injections is proposed by [66, 120].

Other uses of signal injections

The presence of an anisotropy is not required for double-fed IM. As proposed by
[9], the rotor orientation can be deduced from the mutual inductance orientation.
This is performed measuring the current response induced in the rotor by high-
frequency signals injected in the stator (or inversely).

For information, signal-injection can be performed for other reasons than self-
sensing position estimations, but to estimate the motor temperature, based on re-
sistance variations during the drive operations, as proposed by [170, 171].

5.2.10 Position Estimation From The Anisotropy Angle

Initial polar ambiguity issue

The angle ϕx is defined on a period π, leading to an inherent ambiguity about the
directions of the poles. Assuming that the orientation of the d-axis is known, the
polar ambiguity can be initially removed by tracking small differences of the in-
cremental self-inductance along opposite magnetizing directions: injecting a large
test current along the positive direction of the d-axis should reduce the magnetic
saturation in the machine (assuming that ψ

PM
is oriented in the direction of nega-

tive values); while injecting a large test current along the negative direction should
increase the magnetic saturation in the machine. The incremental self-inductance
should therefore be slightly larger for positive currents than for negative currents
along the d-axis. If that difference is larger than the noise, it is possible to remove
the initial ambiguity. This strategy is proposed by [79, 164, 95, 172]. It is also
performed by [173] for a brushless DC motor, comparing the difference between
phase inductances with a position look-up table. In [174, 175, 176], large oscillat-
ing signals are used instead to test pulses.

Naturally the back-EMF-based self-sensing methods do not have problem of
polar ambiguity, but are not working at standstill [79]. Combining both anisotropy-
based with back-EMF-based self-sensing methods allow to guarantee that the po-
larity ambiguity is not lost at higher speeds [177].
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Position error due to the load

Misalignment must be corrected if the contribution of the stator current to the mag-
netic state becomes significant. This contribution mainly comes from the current
component along the quadratic q-axis, also called load current due to the relation-
ship with the torque. Publications propose to compensate for this misalignment
use look-up tables of angle corrections. These look-up tables however require ini-
tial and offline commissioning that are not always feasible in practice. Other re-
cent methods combine simultaneously anisotropy-based and back-EMF-based self-
sensing methods, in order to compensate for their respective error sources. Assum-
ing that the back-EMF estimation is less sensitive to the load current, it can be used
as an online commissioning of the anisotropy misalignment. The angle correction
can then be performed online. These solutions are proposed in [57, 115, 167, 177].

Position error due to harmonics

A compensation method to the second harmonics in the anisotropy is proposed in
[158]. This second harmonic is estimated during a commissioning, but not online.
Methods of estimation based on feedback gains are proposed by [53, 56].

5.3 High-Frequency Signal Injection

We propose here the development of the required discrete-time model, the prin-
ciple and the conditions for anisotropy-based self-sensing operations using high-
frequency signal injections.

5.3.1 The Discrete-Time Model

We assume that the different operations are performed by digital controllers. A
discretized model is therefore required. The current measurements are sampled
with a frequency νs at instants t[k] = kTs, where Ts = 1/νs is the sampling period.
For convenience, the pulse-width modulated signal (PWM) driving the voltage-
source inverter (VSI) is synchronized with the sampling times. The mean value of
the voltage supplied by the VSI between two sampling times was defined in (3.55)
as follows:

ṽ[k] ,
1

Ts

∫ t[k]

t[k−1]

v(t)dt (5.18)

Assuming that the inverter nonlinearities are compensated, as described in chap-
ter 4, the mean voltage supplied by the VSI should be equal to the command voltage
sent to the PWM-VSI. Similarly, ẽ[k]

PM is therefore the mean value of the back-EMF
between two sampling times. The backward-difference of the current was defined
in (3.57) as follows:

δi[k] , i(t[k])− i(t[k−1]) (5.19)
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And finally the sampling average of the current was defined in (3.58) as follows:

ī
[k] ,

i(t[k]) + i(t[k−1])

2
(5.20)

Base on (5.13) and assuming constant parameters during the sampling periods,
the discrete-time machine model without eddy currents in the stationary αβ-frame
yields: (

lt+

Ts
δi[k] + r+ī

[k]
)

+

(
lt-

Ts
δi[k] + r-ī

[k]
)∗

ej2ϕx = ũ[k] (5.21)

where we defined u , v − ePM.

5.3.2 The z-Transform of the Model

The operations can be described using the z-transform of the discrete-time model
(5.21). In this chapter, the z-transform of a discrete-time space vector is written:

X(z) , Z{x} (5.22)

where X is therefore a function of the parameter z. This X should not be confused
with the matrix space vector introduced in Chapter 3, but not used here. Being used
in the model, the z-transform of the conjugate value x∗ is [46]:

Z{x∗} = X∗(z∗) (5.23)

Assume in first approximation that ϕx is constant. Introducing the following z-
transform Ũ(z) , Z{ũ}, δI(z) , Z{δi} and Ī(z) , Z{̄i}, the z-transform of the
model (5.21) yields:(

lt+

Ts
δI(z) + r+Ī(z)

)
+

(
lt-

Ts
δI∗(z∗) + r-Ī

∗
(z∗)

)
ej2ϕx = Ũ(z) (5.24)

This expression can be further simplified using the relation between δi and ī that
is deduced from (5.19) and (5.20). It can be shown that the relation between their
z-transforms is linked by a transfer function D(z):

δI(z) = D(z)Ī(z) ⇒ D(z) ,
2(1− z−1)

1 + z−1
(5.25)

Observe thatD∗(z∗) = D(z). This relation allows to highlight the relation between
Ũ(z) and either 1) only δI(z) or only 2) Ī(z) in (5.24), removing the other value.
Most of the permanent signal-injection strategies are based on the choice 2) while
most of the intermittent signal-injection strategies are based on the choice 1). This
is choice is further addressed. We propose here to continue with the choice 1), and
(5.24) can be written:

Z+(z)δI(z) + Z-(z)ej2ϕxδI∗(z∗) = Ũ(z) (5.26)
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where we define two transfer-functions Z+(z) and Z-(z), that we respectively call
positive and negative integral-impedances:

Z+(z) =
lt+

Ts
+

r+

D(z)

Z-(z) =
lt-

Ts
+

r-

D(z)

(5.27)

In most of the drives, the voltage is the commanded input signal and the current is
the measured output signal. It is therefore required to reverse the relation (5.26).
As demonstrated in the annexes of [163] and hereafter, using some mathematical
manipulations, it is shown that it can be written:

Y+(z)Ũ(z) + Y-(z)ej2ϕxŨ
∗
(z∗) = δI(z) (5.28)

where we introduced two transfer-functions Y+(z) and Y-(z), that we respectively
call positive and negative derivative-admittances, and that are computed as follows:

Y+(z) ,
Z+(z)

Zx(z)Zy(z)

Y-(z) , − Z-(z)

Zx(z)Zy(z)

(5.29)

Note that Zx = Z+ + Z- and Zy = Z+ − Z- denote the integral-impedances along
the xy-axes.

Demonstration of the inversion

It can be shown in (5.27) that Z∗+(z∗) = Z+(z) and Z∗- (z∗) = Z-(z). Using the
complex conjugate of (5.26) yields:

δI∗(z∗) =
(
Ũ
∗
(z∗)− Z-(z)e−j2ϕxδI(z)

)/
Z+(z) (5.30)

Replacing δI∗(z∗) back in (5.26) yields:

Z+(z))Ũ(z) =
(
Z2

+(z)− Z2
- (z)

)
δI(z) + Z-(z)ej2ϕxŨ

∗
(z∗) (5.31)

Since Z2
+(z)− Z2

- (z) = Zx(z)Zy(z), we obtain:

Z+(z)

Zx(z)Zy(z)
Ũ(z)− Z-(z)

Zx(z)Zy(z)
ej2ϕxŨ

∗
(z∗) = δI(z) (5.32)

5.3.3 The Fourier-Transform of the Model

The signal injection is based on repetitive voltage sequences, generally at fixed
frequencies. It is therefore convenient to use the discrete-time Fourier-transform
(DTFT) of the space vector signals that is found replacing z by a unitary complex
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value ejωTs in the relations, where ω ≤ ωs/2 = π/Ts. It is shown thatD(z) defined
in (5.25) yields:

D(ejωTs) =
2(1− e−jωTs)

1 + e−jωTs
=

2(ejωTs/2 − e−jωTs/2)

ejωTs/2 + e−jωTs/2
= 2

sin(ωTs/2)

cos(ωTs/2)
(5.33)

It can also be written as follows:

D(ejωTs) = jω̄Ts where ω̄ ,
2

Ts
tan(ω

Ts

2
) (5.34)

with ω̄ that tends to ω when ω � ωs. Introducing (5.34) in (5.27) yields the DTFT
of the positive and negative integral-impedances:

Z+(z) =
lt+

Ts
− j r+

ω̄

Z-(z) =
lt-

Ts
− j r-

ω̄

(5.35)

Combining (5.29) with (5.35) yields the DTFT of the positive and negative derivative-
admittances: 

Y+(ejωTs) = Ts
lt+ − jr+/ω̄

(ltx − jrx/ω̄) (lty − jry/ω̄)

Y-(e
jωTs) = −Ts

lt- − jr-/ω̄

(ltx − jrx/ω̄) (lty − jry/ω̄)

(5.36)

The resistance is often neglected in self-sensing operations and these parameters
become very simple as the imaginary and frequency dependency vanish:

rx � ω̄ltx
ry � ω̄lty

}
⇒


Z+(z) =

lt+

Ts

Z-(z) =
lt-

Ts

and


Y+ = Ts

lt+

ltxlty

Y- = −Ts
lt-

ltxlty

(5.37)

Let us define the inverse incremental self-inductances as follows: ytx , l−1
tx and

yty , l−1
ty . The derivative-admittances therefore yields:


Y+ = Ts

lt+

ltxlty
=
Ts

2

ltx + lty
ltxlty

=
Ts

2
(yty + ytx) = Tsyt+

Y- = Ts
lt-

ltxlty
=
Ts

2

ltx − lty
ltxlty

=
Ts

2
(yty − ytx) = Tsyt-

(5.38)

This is a common formalism found in some publications.
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Figure 5.1: Flowchart of the rotation-drive plant including a signal-injection and a self-
sensing computation

5.3.4 Principle and Assumptions

The principle is illustrated in Figure 5.1. It consists in the injection of a high-
frequency voltage, written ṽi and computed by the self-sensing operations, in ad-
dition to the low-frequency voltage, written ṽc and computed by the rotation-drive
operations: ṽ = ṽc + ṽi. As a consequence, a high-frequency current response ii
is added to the low-frequency current response ic controlled by the rotation-drive
operations: i = ic + ii.

In order to prevent or reduce disturbing interactions, the signal-injection op-
erations and the rotation-drive operations should produce signals xi and xc cov-
ering separated frequency ranges {ωc} and {ωi} respectively. In terms of DTFT
X = F{x}, the condition is:{

|Xc(ω)| � |X i(ω)| for ω ∈ {ωi}
|Xc(ω)| � |X i(ω)| for ω ∈ {ωc}

(5.39)

Obviously, higher the signal-injection frequency, better is the separation [162, 147].
Note that the frequency content of the PWM is not considered in discrete-time
operations and is, by consequence, excluded from the condition (5.39).

The high-frequency signals inevitably produce a high-frequency torque leading
to high-frequency vibrations (that are audible under 20 kHz) and, by consequence,
to a high-frequency back-EMF. The mechanical damping effects (due to the inertia
plus the frictions of the machine and the coupled load) tend however to increase
with the frequency, reducing the high-frequency back-EMF to a negligible value.
In terms of DTFT of the back-EMF ẼPM = F{ẽPM} and of the PWM mean
voltage Ṽ = F{ṽ}, this leads to:∣∣∣ẼPM(ω)

∣∣∣� ∣∣∣Ṽ (ω)
∣∣∣ for ω ∈ {ωi} (5.40)

The back-EMF can therefore be removed from the high-frequency electrical model
and from self-sensing operations such that U i(ω) ≈ V i(ω). Introducing these
assumptions (5.39) and (5.40), the relation (5.28) yields for the injected signals:

Y+(ejωTs)Ṽ i(e
jωTs) + Y-(e

jωTs)ej2ϕx Ṽ
∗
i (e−jωTs) = δI i(e

jωTs) (5.41)
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This expression is valid for any type of high-frequency injected signal based on
digital operations, that can be permanent or intermittent.

5.3.5 Filtering Operations and Spectrum Dispersions

Concerning the self-sensing operations, apriori Ṽ i in (5.41) is known, since it cor-
responds to the injected voltage. The difficulty is found in the implementation
of an adequate filtering method that allows to extract δI i at the desired frequen-
cies ω ∈ {ωi}, removing the contribution at other frequencies, in particular at
the rotation-drive frequencies {ωc}. A widespread solution consists to perform a
low-pass filtering (LPF) applied to the demodulated signal:

δI i(e
−jωTs) ≈ LPF

(
δi ejωt

)
∀ω ∈ {ωi} (5.42)

The band-pass of that filter should however not be too thin because of spectrum
dispersion phenomena, explained as follows.

Until now, we assumed a constant anisotropy angleϕx during the operations. In
practice however, this angle varies ωx = dϕx/dt 6= 0 due to the machine rotation
and to possible harmonics in the anisotropy variations. Assume in first approxi-
mation that ωx is constant. The following part of (5.21) can therefore be rewritten
highlighting the exponential of this rotating term:(

lt-

Ts
δi[k] + r-ī

[k]
)∗

ej2ϕx =

(
lt-

Ts
(δi[k]ej2ωxt) + r-(̄i

[k]
ej2ωxt)

)∗
ej2ϕx,o (5.43)

It can be shown that the z-transform of the conjugate value x∗, where x ∈ {δi, ī},
multiplied by ej2ωxt, where the values are sampled at instants t[k] = kTs, is:

Z
{
x∗ ej2ωxt

}
= X∗

(
z∗ ej2ωx

)
(5.44)

Using the DTFT, this term leads to a spectrum shift of 2ωx:

F
{
x∗ ej2ωxt

}
= X∗(e−j(ω−2ωx)Ts) (5.45)

The inversion of the model relation (5.26) leading to (5.28) and therefore to (5.41)
should include this shift. The computation is rather complicated and is thus not de-
tailed here. We can however imagine that this shift results in a spectrum dispersion
on the current response. It is negligible if |2ωx| � |ωi|, but this condition must be
checked. Other spectrum dispersions are due to possible variations in the param-
eter values and to unmodelled phenomena, such as the angular variations of the
self-inductance. A specific LPF implementation is further proposed considering
the dispersion issue.

Note that some papers use pre-filtering with band-pass (BPF) or band-stop fil-
ters on the current signal in order to extract the signal-injection current response
before the demodulation [178, 127, 179, 115, 147, 54, 180, 128, 77, 181, 90, 56,
182, 41, 120, 85, 162, 149, 114]: ii = BPF (i). This is justified in [147] by the
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Figure 5.2: Filtering characteristics (magnitudes) of the moving average (dashed line) and
the moving average shifted at ωs/3 (plain line) for N = 3 and N = 12, as a function of
the signal frequency.

use of analog measurements that requires a notch filter in order to reject harmonics
of the PWM frequency. But it is not required if the sampling is synchronized with
the PWM. This is also not required since (5.53) naturally removes the frequency
content outside −ωi. Moreover, the fact to use operations directly based on the ra-
tio between the current and the high-frequency voltage removes lagging problems
[128, 54, 183]. No prefiltering is performed by [105, 133].

5.3.6 Filter Implementation

We propose LPF operations based on the moving average, that is a finite impulse
response (FIR) filter defined as the mean of the N previous discrete-time values x,
computed every sampling period k [46]:

LPF
[k]
N (x) :=

1

N

N−1∑
n=0

x[k−n] (5.46)

Its characteristic for the negative frequencies is illustrated in Figure 5.2 with dashed
lines for the case N = 3 and N = 12. Note that the characteristic is symmetrical
around zero. Assume that the considered high-frequency ωi of the injected signals
is an integer fraction Ni ≥ 3 of the sampling frequency ωs:

ωi = ωs/Ni ⇒ ωiTs = 2π/Ni (5.47)

The moving average (5.46) can then be used as a LPF for the operation (5.42)
computed at −ωi, selecting an integer multiple N of Ni:

δI i(e
−jωiTs) ≈ 1

N

N−1∑
n=0

(
δi[k−n] ej2π(k−n)/Ni

)
(5.48)

Considering the case Ni = 3, the characteristic of the moving averages shifted
around −ωi = −ωs/3 is illustrated in Figure 5.2 with plain lines for N = Ni = 3
and N = 4 × Ni = 12. The choice of N depends on the expanse of the low-
frequency range {ωc} to be removed. However, assuming that ωi is much higher
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than {ωc}, a higher N does not strongly improve the attenuation characteristic at
low frequencies, while it requires more computational power. The choice of N
also depends on the spectrum dispersions around −ωi. Higher N , higher the risk
to filter beside the high-frequency current response. We propose therefore to use to
lowest N = Ni for the operations (5.53).

Apart from this, the moving average can also be used to remove the high-
frequency current component in the samples i(t[k]) for the rotation-drive opera-
tions, possibly using a higher N to restrict the bandwidth:

LPF (ii) = 0 ⇒ LPF (ic) = LPF (i) (5.49)

If the rotation-drive controller bandwidth is much smaller than ωi however, the
filtering becomes unnecessary [128].

In many papers, operations are based on infinite impulse response (IIR) filters
[176, 115, 105, 180, 128, 182, 120, 162, 149, 114]. The comparison between
IIR and FIR filters would require further analysis, but apriori, the moving average
provides a simple solution with good filtering characteristics and with good phase
linearity. Moreover, the stabilization time of the FIR is not greater thanN sampling
periods, while it can be much longer with IIR filters for the same bandwidth.

5.3.7 Operations with Rotating Signals

The goal is to obtain a quick estimation of the angle ϕx from the model (5.41).
An efficient solution, that does not require initial parameter knowledge, consists to
inject a rotating voltage at one frequency ωi [5]. The discrete-time expression of
the injected rotating voltage is given as the rotating modulation of an initial voltage
space vector vi,o:

ṽ
[k]
i := vi,oe

jωikTs (5.50)

The DTFT of this voltage Ṽ i = F{ṽi} is null except at ω = ωi. In particular, it is
null at ω = −ωi. At ω = ωi, it corresponds to its demodulation:

Ṽ i(e
jωTs) =

{
vi,o if ω = ωi

0 if ω 6= ωi
(5.51)

Thus at ω = −ωi, (5.41) yields:

Y-(e
−jωiTs)ej2ϕx = δI i(e

−jωiTs)/vi,o (5.52)

The DTFT of the current difference at −ωi can be approached using the filtering
(5.42). Dividing (5.42) by vi,o and using (5.50), (5.52) can be computed as follows:

Ŷ-(e
−jωiTs)ej2ϕ̂x := LPF

(
δi[k]/ṽ

∗[k]
i

)
(5.53)

where the hat denotes estimated values.
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Figure 5.3: Apparent resistances and inductances of the experimental BLDC machine
identified at different frequencies ωi, assuming νs = 10 kHz, with ωs = 2πνs.

Position Estimation

As it is widely assumed in the literature, if the resistance impact is negligible com-
pared to the inductance, the positive Y+ and negative Y- derivative-admittances are
strictly real values: (5.37). Using (5.53), the angle is then easily extracted by:

ϕ̂x :=
∠ (−LPF (δi/ṽ∗i ))

2
(5.54)

where ∠ denotes the complex argument. The minus in front of−LPF(·) is required
because Ŷ- < 0. In practice however, the resistance is not always negligible, and
Y- is not strictly real, leading to angle estimation errors. Using (5.54), this error is
the half complex argument of Y- given in (5.36):

ϕ̂x|(5.54) − ϕ̂x =
∠
(
−Y-(e

−jωiTs)
)

2

=
∠ (lt- + jr-/ω̄i)− ∠ (ltx + jrx/ω̄i)− ∠ (lty + jry/ω̄i)

2
(5.55)

Note here that higher ω̄i, lower the impact of the resistance. Except in [184, 90,
185, 183, 91, 148, 85, 149], the resistance impact is often neglected in signal-
injection operations using rotating signal injections. This position error is ad-
dressed in [54, 90]. It is analyzed hereafter for experimental cases.

Experimental Cases

Figure 5.3 shows the apparent parameters of the experimental BLDC motor for dif-
ferent pulsating-signal frequencies along the x and y-axes, and with νs = 10 kHz.
These values are also in Figure 3.12 of chapter 3. Figure 5.4 shows the theoreti-
cal error due to the resistance, and computed using (5.55). The circles, joined by
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Figure 5.4: Theoretical estimation errors in experimental cases.

Table 5.5: Parameters of some machines found in the literature.
νi (Hz) [ry − rx] (Ω)(∗) [lt,y − lt,x] (H)(∗∗)

[91]-1 0.5 k [0.404− 0.635] [2.33− 3.61] m
[91]-1 1 k [1.339− 1.959] [2.33− 3.61] m
[91]-1 1.5 k [2.601− 4.431] [2.33− 3.61] m
[91]-2 0.5 k [0.259− 0.436] [2.17− 2.83] m
[91]-2 1 k [0.765− 1.385] [2.17− 2.83] m
[91]-2 1.5 k [1.48− 2.791] [2.17− 2.83] m
[182] 2.5 k 0.15 [2.5− 3.1] m
[128] 700 1.5 [5.15− 7.35] m
[179] 500 0.0103 [101− 306]µ

[56] 500 1.4 [10− 76] m
[183]-1 500 2.2 [6.5− 19.69] m
[183]-2 500 2.875 [8.5− 12.75] m
[176] 500 8.4 m [100− 300]µ

[148]-1 500 [1.87− 1.96] [7.5− 9.4] m
[148]-2 500 [0.76− 0.88] [420− 440]µ

All machines are permanent-magnets, except [56] that is a switched reluctance machine.
These parameters must be taken with care and as information only. (∗) If the
high-frequency resistance is not mentioned, the DC resistance is taken instead. (∗∗) We
take the inductances corresponding to the lowest load. The digital sampling frequency is
νs = 10 kHz for all drives, except in [56, 183] where this frequency is assumed because
not specified. Note that ω = 2πν.

plain lines, correspond to the error with our experimental BLDC machine, using
the parameters of Figure 5.3. It is observed that, even if the apparent resistance
tends to increase with the frequency, its relative impact is divided by ω̄i and tends
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to decrease. This tends to confirm the benefits of using the highest frequency.
Results using the parameters of some machines found in the literature are

shown by diamonds and triangles. The parameters can be found in Table 5.5. If
there is more than one machine in one reference, the reference is followed by a
numbering for each machine. In [91], parameters of two machines are given at
three different frequencies. The corresponding errors are mentioned in Figure 5.4
by diamonds joined by dashed lines. A decrease of the resistance impact is also
observed. The other machines are mentioned by triangles. We can see that many
papers chose a frequency at νi = νs/20 = 500 Hz. Even if the error is typically
not much larger than 5◦, using higher frequencies could possibly further reduce the
resistance impact.

5.3.8 Operations with Pulsating Signals

Another possibility to obtain an estimation of the angle ϕx from the model (5.41)
consists to inject a pulsating voltage at one frequency ωi [5]. The initial param-
eter knowledge must however be discussed. The discrete-time expression of the
injected pulsating voltage can be given as the sum of two voltage space vectors
rotating in opposition with respect to an fixed voltage vi,o:

ṽ
[k]
i := vi,o

ejωikTs + e−jωikTs

2
= vi,o cos(ωikTs) (5.56)

The voltage vi,o has a fixed amplitude V̂i and is oriented by an angle ϕi that may
possibly vary at a lower frequency than ωi, around ωc:

vi,o := V̂ie
jϕi (5.57)

The DTFT of this voltage Ṽ i = F{ṽi} is null except at ω = ±ωi and yields in the
case ωi < ωs/2:

Ṽ i(e
jωTs) =

{
vi,o/2 if ω = ±ωi

0 if ω 6= ωi
(5.58)

Due to this spectrum content, not null at two opposite frequencies, it is not possible
to isolate the negative part of the relation (5.41) as done previously with rotating
signals. But other strategies are possible using the property of Ṽ i being equal at
ω = ±ωi. We propose to sum the relation (5.41) at ω = ωi and at ω = −ωi. Since:

Y±(e−jωiTs) = Y ∗± (ejωiTs) ⇒ Y±(ejωiTs) + Y±(e−jωiTs)

2
= <

(
Y±(ejωiTs)

)
(5.59)

And since v∗i,o = vi,oe
−2jϕi , it can be shown that it yields:

<
(
Y+(ejωiTs)

)
+ <

(
Y-(e

jωiTs)
)

ej2(ϕx−ϕi) =
δI i(e

jωiTs) + δI i(e
−jωiTs)

vi,o

(5.60)
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Figure 5.5: Illustration of (a) the approached locus of <(Ŷ-)e
j2(ϕ̂x−ϕi) compared to the

correct one <(Y-)e
j2(ϕx−ϕi) assuming a faulty <(Ŷ+) ; and (b) approached angle between

the anisotropy and the signal-injection ϕ̂x − ϕi as a function of the correct one ϕx − ϕi.
Case (I): <(Ŷ+) < <(Y+) ; Case (II): <(Ŷ+) > <(Y+).

The sum of DTFT of the current difference at the two frequencies can be ap-
proached using the filtering (5.42). Dividing by vi,o, using (5.56) and (5.57), it
yields:

δI i(e
jωiTs) + δI i(e

−jωiTs)

vi,o

≈
LPF

(
δi (ejωit + e−jωit)

)
vi,o

=
LPF (δi 2 cos(ωit))

vi,o

=
LPF

(
δi cos(ωit) v

∗
i,o

)
vi,o v

∗
i,o /2

=
LPF (δi ṽ∗i )

V̂ 2
i /2

(5.61)

⇒ <
(
Ŷ+(ejωiTs)

)
+ <

(
Ŷ-(e

jωiTs)
)

ej2(ϕ̂x−ϕi) :=
LPF (δi ṽ∗i )

V̂ 2
i /2

(5.62)

where the hat denotes estimated values.

Position Estimation

In the case of a permanent signal, the possibilities to modify the angleϕi are limited
to slow variations, in order to limit the effect on spectrum dispersion, as previously
discussed. A strategy, largely found in the literature, consists to track the anisotropy
angle: ϕi → ϕx. A shift between these angles leads to an estimation error ε̂x

that is used in a regulator (proportional-integral for instance) that computes the
anisotropy angle estimation: ϕ̂x = REG(ε̂x). Two possible computations of the
estimation error are addressed hereafter. Note that there is a settling time related
to the initially tracking of the anisotropy angle. This time depends on the regulator
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bandwidth (or regulation poles) that is limited by the signal-injection period. By
consequence, higher the signal-injection frequency, lower the minimum settling
time. This settling time (in addition to settling times due to the noise filtering and
due to any compensation method) is a drawback that does not exist in other self-
sensing methods. Note that strategies using ϕi → ϕ̂y are also valid and result in
similar operations.

1. Either the estimation error is computed taking the imaginary part of (5.62):

ε̂x :=
= (LPF (δi ṽ∗i ))

<
(
Ŷ-(ejωiTs)

)
V̂ 2

i

(5.63)

This method is found in [186, 184, 59, 133, 68, 41, 85, 149, 114].

2. Or the estimation error is computed taking the angle of (5.62) reduced by the
positive derivative-admittance estimation:

ε̂x := ∠

(
−LPF (δi ṽ∗i )

V̂ 2
i /2

+ <
(
Ŷ+(ejωiTs)

))/
2 (5.64)

Both methods require at least an approximate knowledge of one parameter. For
the method 1. it is: Ŷ- ; and for the method 2. it is: Ŷ+. These methods are
therefore not really parameter independent. Figure 5.5(a) illustrates the error on
the angle estimation ϕ̂x consequent to an error on <(Ŷ+) with respect to <(Y+)
using (5.64). As illustrated in Figure 5.5(b), the impact of this error should vanish
while ϕi → ϕ̂x. It is therefore not required to have an accurate knowledge of
<(Y+), but the only requirement is: <(Yy) < <(Ŷ+) < <(Yx). This is discussed in
[126].

5.3.9 Operations with Alternating Signals

The operations (5.62) are simplified to their maximum with the case of an signal
injected at half the sampling frequency: ωi = ωs/2. Using (5.47), it corresponds
to Ni = 2 and ṽi is purely alternating after every sampling period, as illustrated in
Figure 5.6:

ṽ
[k]
i := vi,o ejπk = (−1)k vi,o (5.65)

This alternating signal can be handled as a pulsating signal, but the relation presents
some differences that should be considered. The DTFT of this voltage differs com-
pared to (5.58) due to frequency overlays:

Ṽ i(e
jωTs) =

{
vi,o if ω = ±ωi = ±ωs/2

0 if ω 6= ±ωi
(5.66)
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Figure 5.6: Illustration of the alternating signal-injection in addition to the rotation-drive
operating signals (along ejϕi ). The dots correspond to the current samples used for self-
sensing operations. The circles correspond to the current value used as input for the
rotation-drive control.

At the injected frequencies, using (5.34) we can compute that ω̄i = ∞ and the
condition to obtain (5.38) is met: Y± = Tsyt±. The filtering operations (5.46)
are reduced to two sampling periods, i.e. three samples i(t), (including the initial,
middle and last sample), such that (5.61) yields:

LPF
[k]
N=2 (δi 2 cos(πk)) = δi[k]−δi[k−1] = i(t[k])−2i(t[k−1])+ i(t[k−2]) (5.67)

The current back-differences are illustrated in Figure 5.6. Following the same steps
as for the previous pulsating signal development, it yields:

ŷt+ − ŷt-e
j2(ϕ̂x−ϕi) :=

i(t[k])− 2i(t[k−1]) + i(t[k−2])

2 ṽ
[k]
i Ts

(5.68)

An equivalent form of this operation was proposed in [126].
Since ω̄i = ∞, the signal-injection contribution to the current sample-average

is null: īi = 0. Therefore, the LPF operation (5.49) applied on the signal for the
rotation-drive input can be reduced to only one sampling period, and it corresponds
to:

ī
[k]
c := LPF

[k]
N=2 (i) =

i(t[k]) + i(t[k−1])

2
= ī

[k] (5.69)

This value is illustrated by circles in Figure 5.6.

Position Estimation For Permanent Signals

The strategy differs if we use a permanent or an intermittent signal. The case of
the intermittent signal is further discussed.
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1. In the case of a permanent alternating signal, the operation (5.63) combined
with (5.68) yields:

ε̂x := −=

(
i(t[k])− 2i(t[k−1]) + i(t[k−2])

ṽ
[k]
i ŷt- Ts

)
(5.70)

where an approximate knowledge of ŷt- is required. This solution seems to
be used by some authors [178, 181, 182]. However, all the developments
are given under the form of continuous-time operations, leading to some
interrogations about the filtering operations.

2. The operation (5.64) combined with (5.68) yields:

ε̂x := ∠

(
− i(t

[k])− 2i(t[k−1]) + i(t[k−2])

2 ṽ
[k]
i Ts

+ ŷt+

)/
2 (5.71)

where an approximate knowledge of ŷt+ is required. This second method
was proposed in [126].

The choice of method 2. for the experiments on the BLDC motor in [126] was
justified by the significant harmonics in the machine anisotropy, described in chap-
ter 2. These harmonics produce strong variations of yt- during the rotation, while
yt+ was more stable, justifying the choice.

Position Estimation For Test Pulses

In the case of an intermittent signal, such as test pulses, the angle ϕi is easily
changed after every test. The test pulses can be treated as alternating pulsating
signals. Injection the test voltage at least following two different angles, denoted
by I and II, and assuming that the anisotropy angle ϕ̂x did not significantly change
between the two tests, it can be estimated by subtraction the two results (5.68) as
follows:

ŷt-e
j2ϕ̂x =

Eq.(5.68)I − Eq.(5.68)II

e−j2ϕi,II − e−j2ϕi,I
(5.72)

Since ŷt- is strictly real and positive, the angle is found taking the complex argu-
ment ∠ of (5.72):

ϕ̂x := ∠

(
Eq.(5.68)I − Eq.(5.68)II

e−j2ϕi,II − e−j2ϕi,I

)/
2 (5.73)

This is the solution proposed by [165], that is greatly simplified using quadratic
signal injections. Note first of all that there is no angular error due to the resistance.
The resistance can however lead to a remaining impact of the signal injection after
the test period, that can disturb the rotation-drive operations. This problem was
addressed in [169], however the solution was not perfect.
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With test pulses, the rotation-drive current is generally not extracted through
low-pass filtering. Instead, the current samples affected by the signal-injection are
simply removed from the rotation-drive operations. As a consequence, lower the
signal-injection period, lower is the number to affected samples. Typically, using
methods such as adaptive test pulses proposed by [165], only one sample on two
is removed. As explained in [165, 169], the issue of remaining test-pulses impact
must however considered. This is not developed here.

5.3.10 Signal-to-Noise Ratio Issue

The noise in the current measurements is an important issue. We propose here a
first approach based on the standard deviation σ, assuming a Gaussian noise. Us-
ing the space vector definition (2.71) given in chapter 2, it is shown that the vari-
ance (square of the standard deviation) on the space vector i is related to the vari-
ance on the phase-current samples by: σ2(i) = (2/3)2

∑
p σ

2(ip) = (4/3)σ2(ip).
From the definition (5.19), it is further shown that the variance on the current back-
difference is: σ2(δi) = 2σ2(i) = (8/3)σ2(ip) = 1.633σ2(ip).

The noise is firstly reduced through the LPF such, as (5.46) and depending
on the number of values N on which the filter operates. In the case of a rotating
signal, from (5.52) and assuming that the current measurements are the only source
of noise, it is shown that the standard deviation of the identification (5.53), written
σY, yields:

σ2
Y|(5.53) , σ2

(
LPF

(
δiejωiTs

)
vi,o

)
=

σ2(δi)
1

N2

N︷ ︸︸ ︷
N−1∑
n=0

∣∣∣ej2π(k−n)/Ni

∣∣∣2
V̂i

(5.74)

⇒ σY|(5.53) =
1√
N

σ(δi)

V̂i

(5.75)

where N/Ni must be an integer. The result is similar for the case of an alternating
signal (5.68). In the case of a pulsating signal, from (5.61), it is shown that the
standard deviation of the identification (5.62):

σ2
Y|(5.62) , σ2

(
LPF (δi 2 cos(ωit))

vi,o

)
=

σ2(δi)
4

N2

N/2︷ ︸︸ ︷
N−1∑
n=0

cos2 (2π(k − n)/Ni)

V̂i
(5.76)

⇒ σY|(5.62) =

√
2

N

σ(δi)

V̂i

(5.77)

Comparing (5.75) and (5.77), we see that the noise is a little bit stronger for pul-
sating than rotating (or alternating) signals, assuming the same voltage amplitude.
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In practice, the voltage is not measured, but a noise exists in the PWM signals.
The assessment of this noise would require further experiments. It is neglected
here. In a second time, the remaining noise is inherited by the position estimation
ϕ̂x through one of the operations (5.54), (5.63), (5.64), (5.70), (5.71) or (5.73).
This noise could be further filtered, as done in all the publications. Filtering solu-
tions are detailed in [114]. A large description of position/speed/torque observers
is addressed in [187] for PM machines.

There is however a limit in the admissible inherited noise due to the nonlinear-
ity of the operation of position estimation: if the ratio between inherited noise and
the negative derivative-admittance <(Ŷ-) is higher than 1, then some identification
points could lead to π-turn estimation errors. The consequences can be dramatic
because the polarity of the anisotropy can be lost. We propose therefore to select
the minimum signal magnitude to be used for signal-injection methods as follows,
based on two times σY that should cover 94.5 % of the identification points:

2σY < <(Ŷ-) ⇒

 V̂i >
2√
N

σ(δi)

<(Ŷ-)
for rotating signals

V̂i > 2
√

2
N

σ(δi)

<(Ŷ-)
for pulsating signals

(5.78)

We see that increasing N in the LPF reduce the lower limit of the injected voltage.
This consideration however neglect the signal-to-noise on the supplied voltage, that
decrease with the signal amplitude.

Further analysis of the noise is proposed by [105] from the point of view of total
harmonic distortion (THD). ...Some authors proposed to draw maps of feasibility
regions, representing the limit of the self-sensing accuracy as a function of [58, 59,
60]

Experimental example

The issue of the measurements noise is illustrated with experiments performed on
a standstill uncoupled machine with PM oriented following ϕd = 120◦, equiva-
lent to ϕq = 30◦. In that orientation, we have an overlay of the qd-frame and the
xy-frame, as developed in chapter 2 and in [92]. The stator current has an ampli-
tude of ‖i‖ = 25 A and is oriented along the negative d-axis, i.e. ∠i = −60◦.
This stator current is chosen in order to prevent the effects of the zero-crossing
inverter nonlinearities and in order to keep the rotor fixed in the desired position.
The sampling frequency is νs = 10 kHz. The identification is performed using
pulsating high-frequency voltages between 5 kHz and 1.25 kHz, i.e. Ni = 2 up to
8, oriented along 18 different angles ϕi. There are 201 identification points for
each condition, as shown in Figure 5.7 for the cases Ni = 2 and 8. The voltage
amplitudes are adapted depending on the frequency, in order to produce a pulsat-
ing high-frequency current response with similar amplitudes. The moving average
used for the LPF computation is based on N = Ni. The results are shown in
Table 5.3.10.
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Table 5.6: Experimental identification using pulsating high-frequency signals.

Ni 2 3 4 5 6 7 8

νi (Hz) 5000 3333 2500 2000 1667 1429 1250

V̂i (V) 11.5 10.0 8.2 6.8 5.8 5.0 4.4

<(Ŷ-) (Ω−1) 0.300 0.293 0.278 0.272 0.266 0.264 0.263

σY (Ω−1) 0.010 0.012 0.011 0.011 0.010 0.010 0.010

σY|(5.62) (Ω−1) 0.012 0.011 0.012 0.013 0.014 0.014 0.015

σϕx (deg) 1.48◦ 1.60◦ 2.11◦ 1.63◦ 1.58◦ 1.60◦ 2.19◦

V̂i|(5.78) > (V) 0.45 0.38 0.34 0.31 0.29 0.27 0.26

<

0

0.1

1 (Ω−1) 1.5

<
1 (Ω−1) 1.5

0

0.1

<
(
Ŷ+(ejωiTs)

)
+ <

(
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jωiTs)
)

ej2(ϕ̂x−ϕi)

(a) (b)

Figure 5.7: Experimental identification using pulsating high-frequency signals at (a) νi =
5 kHz and (b) νi = 1.25 kHz, along 19 angles ϕi = 0◦, 10◦, . . . , 180◦.

The resolution of the current measurements is 0.244 A, that is the main digital
noise. This type of noise does unfortunately not satisfy to the Gaussian approxi-
mation. This has consequences on the noise computation: the standard deviation
computed on 100 samples of the phase current is σ(ip) = 0.1213 A, while the stan-
dard deviation on the corresponding current difference is σ(δi) = 0.1350 A, that
is around the same result. The value σY|(5.62) in Table 5.3.10 is computed based
on this σ(δi) and shows a small increase with Ni. This is not observed with the
experimental noise σ̂Y, that is quite constant. This is probably due to the fact that
the noise is not Gaussian. The noise inherited by the estimated anisotropy angle is
represented by σϕx . It tends to increase mainly because <(Ŷ-) decreases with Ni.
The condition (5.78) is met in all these experiments. The minimum voltage using
that condition is shown in the table.
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Choice of the current back-difference

In most of the papers dealing with rotating voltage injection, the self-sensing op-
erations are based on the current samples instead of the current back-differences.
The corresponding relation is simply found replacing the current back-difference
using the relation (5.25) combined with the definition (5.34):

δI(ejωTs) = jω̄Ts Ī(ejωTs) (5.79)

Our choice of the current back-differences is however justified as follows. Using
the definitions (5.20) and (5.19), the standard deviation σ, that corresponds to the
noise, yield:

σ(δi) = 2σ(̄i) (5.80)

Assume a fixed voltage amplitude |Ṽ | for the comparison and assume that the same
filtering method (5.42) would be applied in both cases, it is shown that the signal-
to-noise ratio of the current back-differences becomes favorable above:

2 ≤ |ω̄Ts| ⇒ σ
(
δI(ejωTs)

)
≤ |ω̄Ts| σ

(
Ī(ejωTs)

)
(5.81)

Using (5.34), it corresponds to: |ωTs| ≥ π/2. At first glance, since the maxi-
mum frequency for discrete-time signals is such that |ωmaxTs| = π, this condition
strongly limit the frequencies at which the use of current back-differences is fa-
vorable. It is however further shown that many other benefits are found using
high-frequencies in that range [163].

Note that the use of current back-differences is a benefic compared to the use
of average current samples in terms of filtering. For the comparison, assume sim-
ilar amplitudes for rotating-drive voltages and injected voltages. Using (5.79), we
can say that the amplitude of δic is even reduced by its low frequency content ωc

regarding δii increased by the high-frequency content ωi. This is a strong benefit
compared to operations based on current samples or average current samples.

5.3.11 Issue regarding the PWM-VSI

We assume that the voltages are not measured but the command voltage is used
instead. Dead-times in the pulse-width modulation (PWM) and voltage drops at
the semiconductors of the voltage-source inverter (VSI) are common nonlinear-
ities that must be managed. They can generally be linearized and compensated
assuming fixed phase current flows [5, 121, 41, 114]. This is largely addressed in
chapter 4. The frequency content of the compensation signal is mainly present in
the low-frequencies and should therefore not affect the self-sensing operations.

As explained in chapter 4, when a phase current crosses zero however, non
compensable dead-times and voltage drops discontinuities occur, referred to as
zero-crossing clamping phenomenons. Even small, they may lead to significant
estimation errors [169, 125, 120, 41]. The smaller Ni however, the smaller the
number of estimations affected by the zero-crossing nonlinearity and better is the
robustness of the self-sensing regarding the inverter nonlinearities. This is valid
also regarding any other interruption in the measurements or in the signal injection.
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Table 5.7: Comparison between 1. the permanent rotating voltage, 2. the permanent
pulsating voltage, 3. the intermittent test pulses.

1. Rotating 2. Pulsating (0) 3. Test Pulses
Frequency ωi ≤ ωs/3 ≤ ωs/2 = ωs/2

(1)

Sensitivity to resistance To be considered None None (2)

Settling time (3) Ti Several Ti
(4) 2× Ti

(5)

Parameter knowledge None Approx. None

Symbols: signal-injection frequency ωi ; signal-injection period Ti = 2π/ωi ; sampling
frequency ωs.
Notes: (0) Includes the alternating voltage injection corresponding to ωi = ωs/2. (1) The
test pulses can generally be treated as signals with a frequency of half the sampling
frequency. (2) Beside the issue of the remaining signal-injection impact on the
rotation-drive operations. (3) Excluding the effect of any additional noise filter and
misalignment compensator. (4) Due to the initial anisotropy tracking. (5) The two distinct
test pulses do not need to be consecutive, therefore the time can be longer.

5.3.12 Discussion on the Signal Characteristics

A summary comparing the properties of different types of injected voltage and
their corresponding self-sensing operations, based on the developments in this sec-
tion 5.3, is given in Table 5.3.12.

Discussion on the amplitude and frequency of the injected signal

The selection of the voltage signal amplitude is a compromise: on one hand, the
amplitude of the current response should be the smallest possible in order to reduce
the resistive loss, the vibrations and to limit the problems of possible zero-crossing
nonlinearities [105]. On the other hand, the amplitude must be high enough in
order to satisfy the condition (5.39) and in order to provide a good signal-to-noise
ratio (5.78).

The higher the signal injection frequency, the higher the required injected volt-
age amplitude, assuming a fixed current response amplitude. This reduces the
range of voltage allowable for the rotation-drive operations. Moreover, the audible
nuisance and the eddy current loss increase with the frequency [7]. Assuming that
these issues are managed otherwise, higher frequencies however present significant
benefits. According to the different aspects highlighted in this section, they are:

1. reduction of frequency interactions (5.40) and decrease of the back-emf in-
fluence (5.39), that could lead to operation disturbances and affect the posi-
tion estimation ;

2. lower computational requirements, since the computation steps of the mov-
ing average (5.46) is proportional to Ni ;
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3. lower settling time at initialization and restart, due the stabilization time of
only Ni sampling periods ;

4. robustness regarding inverter nonlinearities and other interruptions.

It is also beneficial regarding the resistance impact (5.55) for rotating signal injec-
tions, assuming that r/ω̄i decreases with the frequency ωi. Note however that the
contribution of eddy currents increases with the signal frequency [89, 90, 82, 91,
85] and augment the apparent value of the resistances, as addressed in chapter 3.
This issue is analyzed experimentally hereafter. As a conclusion, the optimum fre-
quency is the maximum satisfying (5.47). It is Ni = 3 ⇔ ωi = ωs/3 for rotating
signals and Ni = 2⇔ ωi = ωs/2 for pulsating signals.

5.4 Experiments

5.4.1 Self-Sensing Using Rotating Signals

Experiments are performed on the experimental BLDC motor. Having 14 pole-
pairs, its rated speed 500 rpm corresponds to a rotation frequency of 14∗500/60 =
116 Hz. This indicates the lower limit for the signal injection operations. The
current controller bandwidth is around 400 Hz. A speed control is performed for
the experiments, with a rather low bandwidth around 10 Hz. Note that the BLDC
motors are generally not controlled in speed, but in torque only. The position is
estimated using (5.54) and filtered through a third order observer, with a 62.6 Hz
bandwidth, before it is used in the vector control of the rotation-drive. This ob-
server also provides the speed estimation.

As explained in chapter 2, the anisotropy angle presents oscillations during
the rotation, due to significant harmonics in the machine. No compensation is
performed here, mainly due to lack to time, and they are therefore clearly visible
on the results. Better results could therefore certainly be obtained if a compensation
was implemented.

The zero-clamping inverter nonlinearity is very annoying in this type of ma-
chine: when a phase current crosses zero, the position is lost. As explained in
chapter 4, in order to prevent this drawback, a current offset is added to the instruc-
tion to maintain a margin with respect to the zero-crossing phase lines. This offset
is chosen in order to minimize its impact on the torque. As a consequence of the
offset, the low-frequency current signal behaviour is far from a sinusoidal signal
and the current instruction regularly jumps across the zero-crossing phase lines.
This is clearly visible on the current signals. Since the position is lost, the self-
sensing operations (but not the signal injection) are interrupted during the jumps.
The lower the injected signal frequency, the longer the duration of the interruption.
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Figures

From the top to the bottom, Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11 are
organized as follows: 1) a graph of the current samples of the first phase containing
both high and low-frequency content (gray dots) and the filtered currents for the
normal-drive operations (black dots) ; 2) the rotation speed (electrical frequency)
measured by an external encoder (dashed lines) and the anisotropy speed estimated
by the observer (black dots) ; 3) the rotor-PM angle (electrical degree) measured
by an external encoder (dashed lines) and the estimated anisotropy angle (black
dots) ; 4) the error (electrical degree) between the estimated angle and the rotor-PM
angle ; 5) the frequency spectrum |I(ejωTs)| of the current samples. As discussed
previously, the position information is contained in the negative frequency ν =
−νi.

Results

These results were published in [163].
The two first experiments compare the case Ni = 20, i.e. νi = 500 Hz, in

Figure 5.8 with the case Ni = 3, i.e. νi = 3333 Hz, in Figure 5.9, for low-speed
drives at 5 Hz that is 4.3% the rated speed. The voltage is chosen such that the
peak values of the high-frequency current are equal in both cases, around 2 A that
is 1.5% the rated current. For each case respectively it is 0.36 V, i.e. 1.4% of vdc/2,
and 2 V, i.e. 8% of vdc/2. The drive operations are based on the encoder measure-
ments and not on the estimated position in order to strictly assess the quality of the
estimation and prevent feedback effects. The errors are around −10◦ for Ni = 20
and close to zero for Ni = 3, as theoretically predicted. An important problem
with Ni = 20 is the interruption due to the zero-crossing, that becomes relatively
long compared to the rotation period at higher speeds. The spectra illustrate the
better frequency separation between signal injection and rotation-drive signals in
the case of Ni = 3.

The two last experiments Figure 5.10 and Figure 5.11 show results of self-
sensing operations, where the estimated position is used by the vector control. In
Figure 5.10, the experiment starts at standstill with a speed ramp instruction up to
30 Hz at t = 0.2 s. In Figure 5.11, the experiment starts at standstill with the speed
instruction step of 60 Hz at t = 0, that is 51.7% of the rated speed. Note that 0.2 s
is quite short for such an acceleration in vehicle applications. At t = 0.02 s, larger
errors on the position and the speed (negative) are observed, due to a phase cur-
rent zero-crossing (inverter nonlinearity) that is not perfectly avoided. Such errors
are repeated, especially at higher speeds. Above 60 Hz, the position estimation is
strongly degraded because of the zero-crossings and the lower quantity of informa-
tion, but this speed limitation is not inherent to the self-sensing. A clear spectrum
dispersion is observed at −νi. Despite the zero-crossing effects, the harmonic os-
cillations and the spectrum dispersion, these results are very satisfying for that type
of machine. Note that the obtained resolution is much better than the one provided
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Figure 5.8: Experiments with a 0.36 V rotating voltage injection and Ni = 20, i.e. νi =
500 Hz. Speed instruction at 5 Hz.
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Figure 5.9: Experiments with a 2 V rotating voltage injection and Ni = 3, i.e. νi =
3333 Hz. Speed instruction at 5 Hz.
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Figure 5.10: Experiments with a 2 V rotating voltage injection and Ni = 3. Ramp in-
struction from standstill to 30 Hz.
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Figure 5.11: Experiments with a 2 V rotating voltage injection and Ni = 3. Step instruc-
tion from standstill to 60 Hz.
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Figure 5.12: Experiments: machine unloaded and rotating at about 6 Hz.

by the hall-effect sensors traditionally used with BLDC machines [29].

5.4.2 Self-Sensing Using Alternating Signals

Experiments are performed on the experimental BLDC motor with the same pro-
gram as for the rotating signal injection. The angle error εx is computed using
a method similar to (5.71) using an approximate incremental self-inductance of
l̂t+ = 80µH. More information can be found in [126]. The anisotropy angle is
estimated using the third order observer, with a 62.6 Hz bandwidth.

We chose a signal-injection amplitude of approximately Vi ≈ 1.2 V, such that
the current response is 2 A in the y direction. The experiments showed us that un-
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Figure 5.13: Experiments: machine loaded and rotating at about 6 Hz.

der 2 A amplitude, the position estimator isn’t sufficiently accurate for the rotation-
drive operations. Note that 2 A is only 1.5 % of the nominal current. The empiri-
cally zero-crossing margin is chosen here at a fixed ∆im = 2.1 A.

Figures

The values ϕ̌x and l̂t- are computed before their filtering (through the observator or
the angle). While ϕ̌x and l̃t- are the filtered values.

The different figures are organized as follow: (a) the space vector of the current
samples i with the zero-crossing margins and (b) its angle ∠i; (c) ϕ̂x in black dots
and ϕ̌x in blue lines ; (d) l̂t- in black dots and l̃t- in blue lines. The angle ϕq is
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Figure 5.14: Experiments: machine unloaded and rotating at about 60 Hz.

measured by an encoder (not used in the control scheme).

Results

These results were published in [126].
The two first experimental results shown in Figure 5.12 and Figure 5.13 are

performed with a low rotating machine around 6 Hz (5 % of the nominal speed).
The two next shown Figure 5.14 and Figure 5.15 are performed with a machine
rotating around 60 Hz (51 % of the nominal speed). The load corresponds to a
current stator current of about 15 A amplitude (11 % of the nominal current). The
distortion on ϕ̂x with respect to ϕd and the variations of l̂t- are due to the harmonic
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Figure 5.15: Experiments: machine loaded and rotating at about 60 Hz.

content in the anisotropy. No correction for the influence of this harmonic content
on the estimated position is performed here. The distortions are only smoothed on
ϕ̌x and l̃t- due to the observer filtering (bandwidth of 63 Hz).

The position estimation is satisfying at low speed, at no load as well as with
a small load. At higher speed however, the current ripples are much larger than
the margin size and the zero-crossings can not be avoided. This may explain the
large dispersion of the estimations ϕ̂x (dots). Nevertheless, the observer seems to
filter these distortions since the filtered position ϕ̌x (lines) is still reliable for the
self-sensing control. It seems that a small load reduces the shift on the position
estimation at higher speed, probably due to the fact that the current is farther from
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the zero-crossing lines.
The oscillating behaviour of the current, specially in Figure 5.15, is far from a

circle. This can be explained by the zero-crossing impact, since a similar behaviour
is observed using the traditional BLDC-machine control with position sensors.

5.5 Summary

In this chapter, we firstly introduced the principle of the field-oriented control and
we tried to categorize the numerous different self-sensing methods as follows:

• Back-EMF or Anisotropy-based methods ;

• Using terminal value measurements or extra dedicated sensors ;

• Anisotropy-based methods using the high-frequency signals of the rotation-
drive operations, the high-frequency content of the PWM or methods using
additional high-frequency injection ;

• Using permanent signal-injections or intermittent signal-injections ;

Solutions to the initial polar ambiguity, position error due to significant stator cur-
rents and estimation oscillations due to harmonics are addressed.

The next part focuses on the high-frequency signal injection. The discrete-time
model of the transmittance to be identified is developed. The principle and the
assumption required in order to separate the high-frequency operations of the self-
sensing from the the low-frequency operations of the rotation-drive are detailed.
The solution of the moving average for the filtering implementation is proposed
and discussed. Among the types of signal-injections, we developed the operations
of position estimations for the case of:

1. The rotating signal injection ;

2. The pulsating signal injection ;

3. And the so-called alternating signal injection.

The issue of the noise is quickly assessed. The issues regarding the frequency
separation, the back-EMF impact, the resistance impact on the position estimation,
the PWM-VSI nonlinearities, the settling time and the computation requirements
are addressed for the case of rotating signal injection. The conclusions can be
extended to the pulsating signal injection. It is shown that higher the frequency,
better the operations regarding all these aspects. The optimal frequency is therefore
third of the sampling frequency for rotating signals and half the sampling frequency
for pulsating signals.

Experiments confirmed the considerations about the frequency and illustrate
the high reliability of the high-frequency signal injection methods. It seems that
rotating signal injections offer better accuracy than the pulsating signal injections,
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but the experimental conditions were however not comparable. Further experi-
ments would be require to compare them rigorously. A first comparison was pro-
posed by [54], but it would require further analysis.



Chapter 6

Conclusions and Future Works

This chapter summaries the main results and conclusions obtained in this thesis
about self-sensing control, mentioning the contributions of our research work. It
finishes by listing the large number of possible topics that could be addressed in
continuation of that work.

6.1 Summary and Contributions

In the last chapter 5, we introduced how important was the knowledge of the rotor
position regarding optimal field-oriented control operations for permanent-magnet
machines. Firstly, an optimal torque production for a certain current amplitude is
obtained by orienting the space vector of the current with respect to the permanent-
magnets position. In first approximation, this orientation is found in quadrature
regarding the axis of the permanents magnets. Secondly, the rotor position and the
rotating speed are required in position and speed control operations.

As explained in chapter 1, the dedicated sensors used to obtain the position and
the speed present many drawbacks. Instead of these sensors, it is possible to use
some phenomena in the machine it-self containing rotor position information. The
position can therefore be extracted by on-line estimations of values modelling these
phenomena, using only the phase current measurements and the DC-bus measure-
ments. Other solutions using additional dedicated current/voltage sensors, addi-
tional samples or modifying the pulse-width modulated signal sent to the voltage-
source inverter can be very efficient, but they present a relatively larger complexity
and they are therefore not deeply addressed in this work. Among the phenom-
ena, the back-EMF yields a simple and confident source of position information,
except at low speeds and at standstill. The anisotropy, characterized by the vari-
ation of the incremental self-inductance as a function of the current space-vector
orientation, is another source of position information valid for a wide speed range
down to standstill. Back-EMF-based methods are already largely addressed in the
literature. Therefore, this thesis work mainly focused on the anisotropy-based self-
sensing methods.

205
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Many publications assume an ideal sinusoidal variation of the anisotropic char-
acteristics along the air-gap for their machine models. As introduced in chap-
ter 2, if this simplification is valid, the incremental self-inductance should vary
synchronously with the rotor position. In our experimental Brushless-DC motor
however, important high-harmonic contents in the magnetic fields and in the stator
conductor distributions create an oscillation of the anisotropy as a function of the
rotor position. We referred to this as an “anisotropy misalignment”. An approached
analytical model of the anisotropy highlighting this oscillating misalignment was
published in [92]. Another misalignment, met in about all the machines, is due to
the contribution of the currents along the quadratic axis. This contribution mod-
ifies the saturation levels in the machine in addition to the saturation due to the
permanent-magnets fixed to the rotor. This misalignment is generally modeled as
an error shift as a function of the currents. Another analytical model taking the
currents into account was published in [39]. The chapter 2 of this thesis completed
these models and provided tools to assess different impacts of the harmonics. For
our experimental bench, it was firstly shown that the permanent-magnet contri-
bution to the magnetic flux as a function of the rotor position mainly contains a
fundamental component and only a small 5th rank harmonic. By consequence, this
machine could reasonably be commanded as a synchronous machine, leading to
a small oscillating torque related to the small 5th rank harmonic. Note that this
oscillating torque is to be compared to the huge cogging torque due to the inter-
action between stator teeth and permanent magnets, that was not modelled. It was
secondly shown that the anisotropic incremental self-inductances contain the 2th

rank harmonic, expected to estimate the rotor position, plus a significant −4th rank
harmonic, sometimes referred to as ”second saliency” and leading to the oscillat-
ing misalignment. Other harmonics were however negligible. The compensation
solutions of the misalignment were addressed in chapter 5.

Upstream of this, methods to identify the incremental self-inductance and to es-
timate its anisotropy orientation are needed. All the identification methods require
an accurate knowledge of the supplied voltage. For cost and reliability reasons
however, the voltage is often not directly measured. In that case, self-sensing op-
erations rely on the command voltage sent to the VSI. The behavior of the VSI
is however not perfectly linear. In particular, the relation between the expected
output voltage and the command voltage is strongly nonlinear when one phase
current crosses zero. This is due to a phenomenon known as “zero-clamping” ef-
fect. Moreover, the current ripples due to the pulse-width modulation technique
used to command most of the VSI are generally not measured and they compli-
cate any attempt to compensate for the zero-clamping effect. This effect is very
significant in our experimental bench because of the relatively low inductance of
the machine, leading to large ripples and frequent zero-crossings. A first solution
preventing zero-crossings, and thus reducing the zero-clamping impact, was pub-
lished in [125]. Improvements were made and implemented in [126] and [163].
They are detailed in chapter 4. These solutions were absolutely required in the
frame of our experiments, but they inevitably affect the performances of the con-
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trol. For further researches, it is therefore advised to use other technologies and
machine characteristics that do not present these problems.

We mainly focussed on self-sensing operations using signal injection at dif-
ferent high-frequencies, using current samples and based on discrete-time opera-
tions. A discrete-time model of the machine was therefore advised. In most of
the publications, it is assumed that the discrete-time model can be represented as
a first-order hold of the continuous-time model during the sampling periods. But
experimentally, we observed unexpected variations of the model parameter values
as a function of the injected signal frequency and as a function of the sampling
frequency. The good understanding of these variations were required in order to
eliminate any possible error in the implementation or to possibly discover any un-
modelled phenomenon. A long development taking discretization effects and tak-
ing the pulse-width modulation into account was addressed in chapter 4, neglecting
the eddy currents and taking the eddy currents into account. Comparing the theory
with the experimental results at standstill, it was observed that the eddy currents
have a significant impact on the apparent values of the discrete-time model of our
experimental machine. These variations were however not dramatic for the perfor-
mances of the self-sensing operations.

Many different types of high-frequency signals can be injected in the machine
in order to identify the incremental self-inductance. They are overview and com-
pared in chapter 5. Adaptive test signals were used in [169], permanent pulsating
signals at half the sampling frequency were analyzed in [126] and permanent rotat-
ing signals up to one-third the sampling frequency were studied in [163]. In many
aspects, the use of the maximum frequency in signal injection present important
benefits. The first one is related to the error in the anisotropy estimation due to
the presence of a resistance in the model for rotating signals (the pulsating sig-
nals do not experience that problem). Most of the self-sensing methods based on
high-frequency signal-injections assume that the electrical-circuit of the machine
behaves as a purely integrator (inductive behaviour): the variations of the currents
are assumed directly proportional to the injected voltages, where the proportional
factor is the incremental self-inductance. This assumption is however not valid
in the experimental Brushless-DC motor due to significant resistive voltage drops,
mainly due to eddy currents. Even if the eddy current contribution tends to in-
crease with the frequency to some extent, as explained in chapter 4, it was however
shown that their impacts on the self-sensing operations tend to decrease with the
frequency of the injected signal. Other analyzed aspects are the separation between
the self-sensing and the rotation-drive operations. This is of upmost importance in
order to prevent mutual interactions and, possibly, to reduce the efficiency of the
control. This separation is generally done by filtering operations. The quality of
the filtering however depends on the gap between the frequencies used for both
operations. Higher the injected-signal frequency, better is this gap. The optimal
advised frequency is therefore the highest one. These conclusions concern the per-
manent signals. The test signals are equivalent to intermittent pulsating signals.
Further issues concerning the remaining impact of the test signals on the control
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operations, mainly due to the resistance, were addressed in [169].
The main conclusion concerning the experimental bench was that the use of

such a Brushless-DC motor is not really advised in real applications requiring self-
sensing, due to all the problems concerning the harmonics and the zero-clamping
effects. It was however very interesting to implement self-sensing methods on that
bench for scientific purposes in order to highlight all these undesired effects and to
assess their impacts, since they exist anyway in all machines in a lesser extent and
they could be considered to improve the control. For example, it allowed to demon-
strate the robustness of the signal-injection techniques at the highest frequencies.
It would now be recommendable to perform further analysis on other machines,
with better characteristics, in order to assess the reachable accuracy.

6.2 Future Works

The final implementation of the self-sensing methods were very satisfying, but still
incomplete to be transposed in industrial applications without further considera-
tions and validations. Much work remains, but the numerous theoretical models
and tools, plus the different proposed methods prepared the ground to future works
and opens up the possibility of success in a short time. We suggest hereafter some
topics for future works in the frame of this thesis:

• The impact of the load current on the anisotropy ratio and on the anisotropy
misalignment have been theoretically analyzed. The theoretical model per-
mitted to perform some observations on the experimental BLDC motor up
to a reduced torque and a reduced speed. These limitations were inherited
from hardware and power source capacities of the test bench. Experiments
on the full ranges up to the rated values still remain to be performed in or-
der to draw maps of feasibility regions. This could probably leads to new
observations and conclusions about the experimental motor ;

• Some publications already drew maps of feasibility regions for anisotropy-
based self-sensing operations as a function of the load current [66, 62, 63,
58, 59, 55, 65, 67, 60, 61, 64]. They are even computed using finite-element
simulations, treating with variation of some small elements in order to high-
light some benefits. Or they are proposing comparisons of different machine
designs. This comparative methodology however takes much time and, by
consequence, a lot of work remains with the many different possible ma-
chine designs. In order to accelerate this research, simple analytical models
of the load impact, represented by the angular factor m(θ), could eventually
be developped and coupled to the model of the incremental self-inductance
proposed in the first chapter. We see some opportunities offered by that
methodology in the selection of optimal designs. This is an open topic ;

• As explained in the last chapter, some authors already proposed angular cor-
rections of the anisotropy misalignment as a function of the load current and
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of the secondary anisotropy [53, 56, 158]. None of these methods, or any
other method, were implemented and experimented in this work due to lack
of time. This could however strongly increase the accuracy and improve the
control, reducing the oscillations on the position estimation. A promising
solution combines the back-EMF-based and the anisotropy-base self-sensing
[57, 115, 167, 177]. Each of these source of position information could be
used in order to mutually compensated for their errors. This is a signifi-
cant evolution compared to hybrid solutions simply commutating between
one to the other source of position over a speed threshold, as proposed in
[133, 143, 114] ;

• The inverter nonlinearities were very annoying in this study. Due to the ad-
ditional torque ripples and the computation complexity, the solution of zero-
crossing prevention that we proposed could be discouraging for the industry
and we have no great hope for the future of this solution. Other types of
voltage source or other topologies, for instance using the neutral connection
point, could possibly remove part of these problems and strongly improve
the position estimation at higher speeds. This topic is however lying in fal-
low ;

• Between the different types of high-frequency signals were used in this work.
Results suggested that rotating signal-injections presented better accuracy
than pulsating signal-injection. Further experiments in comparable condi-
tions should be performed in order to quantitatively assess this issue. It
would also be interesting to further compare these permanent signal injec-
tions with intermittent signals injections, such as the test pulses proposed by
[154]. This could probably be performed without much effort ;

• We mainly focused on the high-frequency injection using the controller sen-
sors. Even if the use of extra dedicated sensors present some important draw-
backs, it could however be interesting to compare their accuracy with the
solution using controller sensors under similar conditions, since they could
be more interesting for applications where the quality of the control is more
important than the cost and the robustness ;

• Finally, the signal-injection method could be extended to multiphase ma-
chines (i.e. more than 3-phases). The theory presented in chapter 5 is
independent to the number of phases and applications to multiphase ma-
chines were already published [188]. Possible interactions of the fundamen-
tal space-vectors, i.e. x(1) with other harmonic orders in the machine, as de-
scribed in chapter 2, should however be analyzed. The multiphase machines
also present important benefits with respect to the fault-tolerance capacity,
by maintaining drives under a smaller number of phases, even with reduced
performances. Application to faulty three-phase machines was proposed by
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[189]. But the case self-sensing methods applied to faulty multiphase ma-
chines could be a excellent topic of research.
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