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ABSTRACT

A new scheme to perform stateless ice / sea discrim-
ination in ERS scatterometer data is proposed. This
method consists in combining several methods pro-
posed in the literature using a Bayesian framework.
Each of the combined method is first reviewed in
a consistent framework. In particular, the ice/sea
probability according to each individual criterion is
extracted using a neural network. The proposed
method is shown to provide acceptable results even
without taking into account historic data, i.e. with-
out performing temporal averaging.

Key words: Scatterometer, ERS, ice detection, neu-
ral network.

1. INTRODUCTION

The data acquired by the scatterometer on-board the
ERS spacecraft can be used to determine sea-surface
wind speed provided the data was acquired over open
water. Wind information is extracted from the σ0

triplets σ0
f , σ0

m and σ0
a measured in 3 different look

directions. The model used to compute the wind
speed and direction from the σ0 triplets is only valid
over open water. Wind extraction performed using
σ0 triplets measured over ice results in aberrant wind
speed and directions which in turn disturb the wind
ambiguity removal process. As part of the upgrade
of the ground-processing of the ERS-2 scatterometer
data (Ref. 1, 2), it was deemed necessary to per-
form a real-time ice detection in order to remove bo-
gus wind vectors. Moreover, due to operational con-
straints, a stateless approach is required. This imply
that the temporal coherence of the ice mask cannot
be considered to increase the classification accuracy.

While it is relatively easy to discriminate land from
sea trough the use of maps, discriminating between
sea-ice and open water is more challenging. Several
methods have been proposed to discriminate between
ice and open water. These methods are reviewed in
Section 2. In Section 3, the neural-network frame-
work that will be used to compare these methods

is presented. In this section, the conditions under
which the different methods are discriminant are ex-
posed under the form of an ice probability according
to the neural network output. Finally, we propose to
combine the different methods together in a Bayesian
framework in order to increase classification accuracy
and discuss the performance of the overall scheme.

2. REVIEW OF EXISTING SEA/ICE DIS-
CRIMINATION CRITERIA

2.1. Introduction

As can be seen in figures 1 and 2, the distribution of
the σ0 measurements over sea is different than that
of measurements over ice. This difference in dis-
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Figure 1. Scatter plot of the σ0 over ice and over sea
for node 5 (low incidence angle). Projection in the
σ0

f = σ0
a plane.

tribution makes it, in principle, possible to separate
the measurements in two classes: sea and ice.

However, the σ0 triplets corresponding to ice and sea
are not always as well separated. As the incidence
angle increases, both classes get closer to each other.



−22 −20 −18 −16 −14 −12 −10 −8 −6 −4

−22

−20

−18

−16

−14

−12

−10

−8

σ0 fore (dB)

σ0  a
ft 

(d
B

)

Ice nodes
Sea nodes

Figure 2. Scatter plot of the σ0 over ice and over sea
for node 5 (low incidence angle). Projection in the
σ0

f = σ0
a plane.

Actually, around mid-swath, the ice class is totally
inside the sea class. This is illustrated in figures 3
and 4.
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Figure 3. Scatter plot of the σ0 over ice and over sea
for node 15 (high incidence angle). Projection in the
σ0

f = σ0
a plane.

Due to the complex shape of the two classes, classi-
fication based on the raw σ0 triplets would be quite
complex. Hence other classification metrics have
been proposed in the literature. These will be re-
viewed below.

The graphs in this section correspond to data ac-
quired during two passes over the North pole on De-
cember 30th 1999. The classification is based on the
IFREMER ice mask, considered as reference data.
Misclassification is obvious for some data points, as
can for instance be seen in figure 1.
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Figure 4. Scatter plot of the σ0 over ice and over sea
for node 15 (high incidence angle). Projection in the
σ0

m = 0 plane.

2.2. Isotropy

In (Ref. 3, 4), a measure of the isotropy of the
backscattering is proposed as discriminating crite-
rion. The isotropy factor is defined as

A =

∣

∣

∣

∣

σf − σa

σf + σa

∣

∣

∣

∣

(1)

where the σ are provided in dB.

Ice is supposed to be isotropic as far as EM backscat-
tering is concerned and hence typically has a low
isotropy factor. On the other hand, open sea typi-
cally results in a high isotropy factor. However, low
isotropy values can be observed over sea. This hap-
pens when the wind is blowing parallel or perpendic-
ular to the ground track. Indeed, in this case, the
capillary waves generated by the wind are propagat-
ing perpendicular or parallel to the satellite ground
track hence the fore and aft measurements will have
similar values.

Figure 5 illustrates the distribution of the isotropy
values for the sea and the ice classes in function of
the incidence angle. Clearly, the isotropy values cor-
responding to ice are typically small. However small
isotropy factor over open sea are indeed possible too.
As written above, this occurs when the wind is blow-
ing parallel or perpendicular to the satellite ground
track.

2.3. Derivative of backscatter in function of
the incidence angle

In (Ref. 5), the derivative of the σ0 w.r.t. the inci-
dence angle was proposed as discriminating criterion.
Since the fore-/aft- and mid-beam measurements are
made at different incidence angles, the derivative can
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Figure 5. Scatter plot of the isotropy factor illustrat-
ing the distribution of the sea and ice classes.

be approximated by

D = −
(σf + σa)/2 − σm

(θf + θa)/2 − θm

(2)

where the σ0 values are in dB and the incidence angle
values in degrees. Notice that, due to the use of the
zero-gyro mode following the gyroscopes anomaly,
the incidence angles of the fore and of the aft beam
cannot be assumed equal anymore (Ref. 1) hence the
modification of the original formula given in (Ref. 5).
When the incidence angle is not too high, σ0 mea-
surements over ice typically result in a lower D than
measurements over sea.
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Figure 6. Scatter plot of the derivative of sigma, il-
lustrating the distribution of the sea and ice classes.

Figure 5 illustrates the distribution of the derivative
of sigma between sea and ice nodes in function of the
incidence angle. The figure tend to indicate that the
criterion will be more discriminant at low incidence
angles (low node number, near swath).

2.4. Distance to wind model

The (Euclidean) distance to the wind model was also
proposed (Ref. 6) as a criterion. Indeed, σ0 measure-
ments acquired over sea should lie close to the wind
model, while measurements performed over ice might
be located further away from the wind model. How-
ever, since the σ0 measurements over ice are actually
very close to the wind model at mid swath, this cri-
terion will not be very discriminating at mid swath.

This is illustrated in figure 7.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

Distance to wind model (dB)

N
od

e 
nu

m
be

r

Ice nodes
Sea nodes

Figure 7. Scatter plot of the distance to the wind
model, illustrating the distribution of the sea and ice
classes.

2.5. Distance to ice model

Several models of the σ0 over ice where proposed
(Ref. 7, 8). Similarly as what was done in the previ-
ous section, the idea is to use the euclidean distance
to the ice-model as discriminating criterion. The
model selected in this article is the ERS ice model
described in (Ref. 8). This model can however be
generalized to other types of scatterometers. The
model consists in an incidence angle-dependent line.
For the details of the model, the reader is referred to
(Ref. 8).

As can be seen in figure 8, this metric is essentially
discriminant at low incidence angles. Indeed, for
higher incidence angles, the distribution of ice and
sea nodes tends to be closer to each other as can be
seen in figures 1 and 3.

3. SEA ICE DISCRIMINATION

3.1. Introduction

In order to perform a classification between open sea
or ice, the criteria described in the previous section
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Figure 8. Scatter plot of the distance to the ice model,
illustrating the distribution of the sea and ice nodes.

are typically thresholded (Ref. 3, 8). The threshold
used is also typically dependent on the incidence an-
gle. However, a binary decision does not take into
account the fact that, in ambiguous cases, it is not
possible to make a decision based only on one single
σ0-triplet measurement. In (Ref. 8), a decision algo-
rithm using 4 classes (sea, ice, mixed and not valid)
is proposed. This algorithm is based on an incidence-
angle dependent thresholding of the distances to the
ice model and to the wind model. Measurements
close to the ice model and far from the wind model
are classified as ice, measurements close to the wind
model but far from the ice model are classified as sea
and measurements close to both the ice model and
the sea model are classified as mixed. The existence
of the mixed class acknowledges the fact that some
nodes cannot clearly be classified as ice or sea.

These decision methods provide a binary (quater-
nary) answer regarding the status of the considered
measurement point (sea or ice). No information is
provided on the (un)certainty of the classification
and the classification accuracy trade off is difficult
to master. In the following section, we define an ice
probability based on the criteria defined in the previ-
ous section. This ice probability can then be thresh-
olded to perform a classification. Furthermore, the
ice probability computed from the different criteria
presented above can be combined together, as indi-
vidual experts to provide a combined ice probability.

3.2. A neural-network based classification

Our goal is thus to compute the ice probability given
the measurements, P (H1|mc,i), where H1 is the hy-
pothesis “the measurement i corresponds to ice”,
mc,i = (Cc,i, ni) is the measurement vector com-
posed of the numerical value Cc,i of the criterion c for
measurement i and of the across-track node number
ni at which measurement i was made.

It is well known (Ref. 9) that this probability can

be learned by a Multi-Layer Perceptron (MLP). The
learning process consists in feeding the MLP with
the measurements made mc,i and imposing as de-
sired output 1 if H1 is true for measurement i and
0 else. In order to avoid biasing the MLP output
due to a differing a priori probability we must en-
sure P (H1) = P (H1) over the training set. This
imply that the number of measurements correspond-
ing to ice in the training sets must be equal to the
number of measurements corresponding to sea.

We considered an MLP with two inputs, one for the
value of the criterion Cc,i and the other for the node
number ni. It has one single hidden layer counting 5
neurons. The number of hidden layers and the num-
ber of neurones in these layers govern the complexity
of the non-linear function that the MLP will be able
to approximate. We are actually seeking to approxi-
mate reasonably “simple” functions, hence the single
hidden layer and the small number of neurons in that
hidden layer.

The results1 of the learning of the probability
P (H1|mc,i) by the MLP for the different criteria are
shown in figures 9 to 12. For clarity, the 3D-surface
was thresholded. Blue corresponds to P < 20%
(open sea with 80% probability), red to P > 80%
(ice with 80% probability) and green to values in be-
tween (mixed or unknown).
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Figure 9. Thresholded probability P (H1|mc,i) for the
isotropy criterion.

1learning was performed on data acquired during one day,

on December 30th 1999.
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Figure 10. Thresholded probability P (H1|mc,i) for
the Derivative of sigma criterion.
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Figure 11. Thresholded probability P (H1|mc,i) for
the Distance to wind model criterion.
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Figure 12. Thresholded probability P (H1|mc,i) for
the Distance to ice model criterion.

As can be seen from these figures, the uncertain areas
for the Isotropy and for the Distance to wind model
criteria are quite large. In itself a large uncertain
area is not bad, as long as no measurement samples
fall inside that area. As can be seen by comparing
figures 9 to 12 with the figures from Section 2, there
are actually a lot of samples that fall inside that un-
certain area for the Isotropy and for the Distance to

the wind model criteria. Consequently, these meth-
ods exhibit a high rate of “No Decision” answers.

3.3. Performance comparison

The output of the MLP provides the probability that
a given input corresponds to ice (H1). By threshold-
ing the output probability, a decision can be taken re-
garding the class to which the provided input belong.
For a given threshold, it is possible to compute the
True Ice rate (measurements classified as ice and ac-
tually corresponding to ice), False Sea rate (measure-
ments classified as ice, but actually corresponding
to sea) and unclassified ice (measurement not classi-
fied although it was actually ice). Figure 13 shows
the ROC for ice, where the independent variable is
the threshold used in taking the decision. As can
be seen, the “Distance to ice model” criterion is the
most discriminant, closely followed by the “Deriva-
tive of sigma”. The two other criteria would imply
a much lower True Ice rate if a low False sea rate
was to be achieved. Figure 14 shows the unclassified
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Figure 13. Comparison between the different crite-
ria: ROC curve for the 4 criteria.

ice rate in function of the across track node-number
(which corresponds approximatively to an incidence
angle). As can be seen, the “Distance to wind model”
criterion fails to discriminate between ice and sea at
mid swath. This is due to the fact that at those in-
cidence angles, σ0 corresponding to ice are also very
close to the wind model. Also, the σ0 “Isotropy”
criterion does not prove to be very decisive at any
incidence angle. This confirms the deductions made
in Section 2.

4. COMBINATION

When several sources of information are available,
they can be combined to reduce imprecision and
uncertainty and increase completeness(Ref. 10). A
good review of some of the existing combination
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Figure 14. Comparison between the different crite-
ria: “No Decision” rate for a False Sea rate of 3%.

methods is to be found in (Ref. 10). It only makes
sense to combine the “best” sources of information,
hence we will combine the “Distance to ice model”
and the “Derivative of sigma” criteria. We will re-
spectively refer to these criteria as c1 and c2.

The neural networks described in the previous sec-
tion provide the posterior probability P (H1|mc,i).
However, we would like to compute the Ice prob-
ability given measurements made by two criteria
P (H1|mc1,i, mc2,i). We will follow a development
similar as in (Ref. 11), where it was performed for
classification in several classes. One has

P (H1|mc1,i, mc2,i) =
P (mc1,i, mc2,i|H1)P (H1)

P (mc1,i, mc2,i)
(3)

or since

P (mc1,i, mc2,i) = P (mc1,i, mc2,i|H1)P (H1)
+P (mc1,i, mc2,i|H1)P (H1)

one can rewrite (3) as

P (H1|mc1,i, mc2,i) =
1

1 + e−a
(4)

in which we recognize the sigmoidal activation func-
tion of the considered neurons and where

a = ln

(

P (mc1,i, mc2,i|H1)P (H1)

P (mc1,i, mc2,i|H1)P (H1)

)

. (5)

This last expression can further be decomposed, as-
suming independence of mc1,i and mc2,i,

a = ln
(

P (mc1,i|H1)

P (mc1,i|H1)

)

+ ln
(

P (mc2,i|H1)

P (mc2,i|H1)

)

+ ln
(

P (H1)

P (H1)

)

.
(6)

On the other hand, the neural networks described in
the previous section provide

P (H1|mc,i) =
1

1 + e−ac
(7)

where

ac = ln

(

P (mc,i|H1)

P (mc,i|H1)

)

+ ln

(

P (H1)

P (H1)

)

. (8)

where c denotes the criterion considered. Since the
training set is balanced, one has P (H1) = P (H1) and
the last term in (6) and (8) vanishes. Combining (8)
in (6), one obtains

a = ac1
+ ac2

. (9)

This means that the posterior probability condi-
tioned on two measurements P (H1|mc1,i, mc2,i) can
be obtained using the existing neural networks each
being trained on one criterion. The combined poste-
rior probability is obtained by adding the output of
the existing neural network before the sigmoidal acti-
vation function of the output neuron and by applying
a sigmoidal activation function on the resulting sum.

Interestingly enough, from (7), one has

−ac = ln

(

P (H1|mc,i)

P (H1|mc,i)

)

(10)

and if we combine this equation with (9) and (4), we
obtain

P (H1|mc1,i, mc2,i) =
P (H1|mc1,i)P (H1|mc2,i)

P (H1|mc1,i)P (H1|mc2,i)+P (H1|mc1,i)P (H1|mc2,i)
.

(11)
If we denote P1 = P (H1|mc1,i) and P2 =
P (H1|mc2,i), this last equation can be rewritten as

s(P1, P2) =
P1P2

P1P2 + (1 − P1)(1 − P2)
(12)

which is precisely the expression of a particular sym-
metric associative sum operator well known in the
fusion theory (Ref. 10). Independently of probabil-
ity considerations, this operator has a behavior that
depends on the input data P1 and P2. It will tend
to a compromise if the inputs do not agree. On the
other hand, if the inputs do agree, it will reinforce
the agreement.

We will compare this combination method to he
mean operator. The mean operator simply outputs
the mean of its inputs, i.e. s(P1, P2) = (P1 + P2)/2,
where P1 and P2 have the same definitions as above.
It is obvious that this operator always makes a com-
promise between its inputs.

Figure 15 compares the performance of the two se-
lected criteria (“Distance to ice model” and “Deriva-
tive of sigma”) with those obtained after combina-
tion of these two criteria using each of the two fusion
operators considered. The ROC curves of the com-
binations are above that of the best single criterion,
which means that the True Ice rate will be higher
for the same False Sea rate. There is hardly any
difference between the two fusion operators consid-
ered. This might be explained by the fact that the
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Figure 15. Comparison of the performance of the
fusion: ROC curve for a False Sea rate of 3% (right).

input data are not totally independent with as con-
sequences that the Symmetric associative sum under
performs.

Figure 16 compares the “No Decision” rate of the
same decision methods in function of the across-track
node number. The combination has the effect of re-
ducing the “No Decision” rate but for large node
numbers. This is particularly true for the Symmetri-
cal associative sum operator. The lower performance
at large node numbers is due to the fact that the per-
formance of the “Derivative of sigma” criterion has
a lower decisiveness for large node numbers.
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Figure 16. Comparison of the performance of the
fusion: and “No Decision” rate for a False Sea rate
of 3%.

Table 1 shows the performance figures for the two
individual criteria and the proposed combination
methods.

True Ice Unkn. Ice

Deriv. of σ 95.6% 1.4%
Dist. to ice model 93.8% 3.3%
Mean 96.8% 0.2%
Sym. Ass. Sum 96.9% 0.2%

Table 1. Performance comparison at a False Sea rate
of 3%.

5. CONCLUSIONS

We reviewed the existing sea/ice discriminating cri-
teria found in a literature by comparing them using
a Neural-network framework. The advantage of the
Neural-network framework is that sea/ice decision is
seen as a thresholding of a conditional ice probability
with clear trade offs. The results of the comparison
clearly show the limits of each criterion.

The use of the conditional ice probability further
makes it straightforward to perform a fusion of the
Neural-network output. The obtained results (both
in terms of classification accuracy as in terms of de-
cisiveness) are enhanced by the fusion. These per-
formances where obtained without considering state
information, i.e. without relying on temporal coher-
ence of the ice mask.
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