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ABSTRACT

We propose a new method for estimating the clutter power spec-
trum locus in arbitrary STAP radar configurations, i.e., both mo-
nostatic and bistatic. This locus is a surface in the 3D space
of spatial frequency, Doppler frequency and range. Based on
the knowledge of this locus, one can perform a range depen-
dence compensation of the snapshots to obtain an estimate of the
clutter covariance matrix. The method is designed to work with
omnidirectional or directional transmit and receive antenna pat-
terns and with single-realization random snapshots. End-to-end
simulations show that the method provides good results.

1. INTRODUCTION

Space-Time Adaptive Processing (STAP) can be used to mitigate
ground clutter in pulse-Doppler radars. However, an estimate of
the interference-plus-noise (I+N) covariance matrix at the range
of interest is needed to compute the optimum filter. This ma-
trix is typically estimated by averaging sample covariance ma-
trices at neighboring ranges. In all configurations but the mono-
static (MS) sidelooking case, clutter snapshots exhibit a range-
dependent power spectral density. In these cases, estimating the
I+N covariance matrix by averaging snapshot power spectral den-
sity estimates leads to severe performance degradations.

The range-dependence compensation methods proposed in [1]
are based on registering the ridges of the clutter power spectrum
(PS) using a mathematical theory of the clutter PS locus. These
methods come in two flavors: “True Parameters (TP),” where the
configuration parameters are known, and “Estimated Parameters
(EP),” where they are not known and autonomously estimated
from the data. However, in [1], the performances of the proposed
methods were only examined using theoretical covariance matri-
ces. Furthermore, the parameter estimation method was only in-
tended for use with omnidirectional antennas.

In this paper, we extend these methods to simulated single-
realization snapshots. The extension is straightforward for the TP
method. However, this becomes more difficult for the EP method.
In this case, the configuration parameter estimation is performed
by fitting a mathematical model of the clutter PS locus to the snap-
shot PS, the model being a surface in the 3D space corresponding
to spatial frequency, temporal (Doppler) frequency and range.

Section 2 describes the form of the clutter PS locus. Section 3

describes the generation of simulated random snapshots and dis-
cusses some of the properties of these snapshots. The parameter
estimation method is described in Section 4. In Section 5, the per-
formance of the estimation method is discussed, both in terms of
parameter-estimation accuracy and in terms of SINR loss. Let us
emphasize that the method is valid for any configuration, whether
MS or bistatic (BS).

2. 2D AND 3D CLUTTER POWER SPECTRUM LOCUS

The clutter patches contributing to the ground clutter in a snapshot
at a given range are evidently located on the corresponding iso-
range surface. The signal backscattered by each clutter patch along
that isorange corresponds to a particular pair (νs, νd) of spatial and
temporal (Doppler) frequencies. Each snapshot is the result of the
contribution of all the clutter patches along the corresponding isor-
ange. Hence, the energy of the PS of one snapshot is located along
a continuous curve in the spatio-temporal frequency plane. That
curve is the clutter PS locus. This is illustrated in Fig. 1. The
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Figure 1: (a) Clutter power spectrum (PS) at a specific range and
(b) corresponding 2D clutter PS locus.

analytic expression of this curve can be obtained by eliminating
the location of the clutter patch between the equations of the iso-
range and the equations giving the spatial and temporal (Doppler)
frequencies as functions of the location of the clutter patch.

The above considerations can be generalized from one parti-
cular range to a continuous variation of ranges (practically limited
to a finite interval). By vertically stacking the (2D) clutter PS locus



corresponding to increasing ranges, a 3D surface is obtained. With
the exception of the MS sidelooking configuration, the clutter PS
locus exhibits a range dependency. This is clearly visible in Fig. 2,
where the 3D clutter PS locus for two different BS configurations
is plotted.
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Figure 2: 3D clutter PS locus (a) for a bistatic (BS) configuration
where transmitter and receiver follow each other and (b) for an
arbitrary BS configuration.

3. SINGLE-REALIZATION RANDOM SNAPSHOTS

The ground clutter is modelled as described in [2]. The complex
returns from individual clutter patches are assumed to have a com-
plex circularly-symmetric gaussian distribution with zero mean
and appropriate variance. The return at a particular range due to
one pulse is the integral of the properly scaled and phased signals
backscattered by the clutter patches located along the correspond-
ing isorange. For each pulse, one sample is obtained at each of
the N elements of the linear antenna array. Thus, a train of M

(coherent) pulses results in an N ×M snapshot. By stacking the
2D snapshots corresponding to successive ranges, a 3D datacube
is obtained.

If the transmit (Tx) antenna has a directional pattern, the con-
tributions to the integral come only from patches illuminated by
the footprint of this antenna. Similarly, if the receive (Rx) an-
tenna has a directional pattern, the contributions to the integral
come only from patches illuminated by the footprint of this an-
tenna. Following the same reasoning as the one in the previous
section, each clutter patch can be located in the spatio-temporal
frequency plane. This also means that the Tx and Rx antenna pat-
terns produce a scaling of the intensities of the clutter PS and thus,
of course, of the intensities along the clutter PS locus.

The PS of one particular realization of a random snapshot is
presented in Fig. 3(a) in the case of an omnidirectional antenna.
One sees that the PS energy is spread over the whole clutter PS
locus. Figure 3(b) shows the PS of one particular realization of
a snapshot for a directional Tx antenna with a raised-cosine dia-
gram similar to that described in [2]. In the latter case, the PS
energy is concentrated where the scatterers are illuminated by the
Tx-antenna footprint. Note that Fig. 3(b) is not the simple am-
plitude modulation of Fig. 3(a) by the antenna pattern along the
clutter PS locus. This is due to the fact that these two graphs cor-
respond to two distinct realizations of the same random process.
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Figure 3: PS of a single-realization snapshot for an omnidirec-
tional Rx antenna and (a) for an omnidirectional Tx antenna and
(b) for a directional Tx antenna. Note that the graphs also corre-
spond to two distinct realizations of the same random process.

4. PARAMETER-ESTIMATION METHOD

4.1. Overview of the method

As alluded to earlier, it is often useful to think of the stack of 2D PS
as a continuous function of (νs, νd) and range. If the returns are
essentially due to ground clutter, the 3D PS energy will concen-
trate along a particular surface, i.e., along the 3D clutter PS locus,
examples of which are shown in Fig. 2. The parameter estimation
method consists in fitting a mathematical model of the 3D clutter
PS locus to the 3D PS energy. The solution of this fitting problem
provides the parameters describing the radar configuration. These
parameters are lumped into the parameter vector

θ = (RTR, θ, φ, vT , αR, δ), (1)

where (RTR, θ, φ) defines the relative position of the receiver
w.r.t. the transmitter in terms of spherical coordinates, vT is the
velocity of the transmitter, αR is the relative velocity direction of
the receiver w.r.t. the velocity direction of the transmitter and δ is
the crab angle of the Rx antenna relative to the velocity direction of
the Rx. The optimum parameter vector is obtained by minimizing
some cost function. The minimization is performed by a modified
simplex method. Details are provided below.

4.2. Peak extraction

The first step of the method is to locate the energy of the clutter
PS. As can be seen from Fig. 3, the PS corresponding to any par-
ticular clutter snapshot is concentrated in “blobs” along the clut-
ter PS locus. Since the PS is very smooth, the location of these
peaks can be found by extracting local maxima. To remove spuri-
ous low-amplitude local maxima due to noise and other artifacts, a
threshold on the amplitude of the peaks is used. This is illustrated
in Fig. 4.

4.3. Definition of the cost function

It is clear that the cost function ought to be related to the distance
between the 3D clutter PS energy location and the 3D clutter PS
locus. The chosen cost function is defined as the RMS euclidean
(absolute) distance between the location of the peaks and the 3D
clutter PS locus. To reduce the complexity of the method, this cost
function is approximated by computing the required distances only
in horizontal planes, i.e., at constant ranges.
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Figure 4: Extracted local maximas (white dots) in the PS of one
particular clutter snapshot (a) before thresholding and (b) after
thresholding.

Two strategies are used in succession to eliminate or mitigate
the influence of potentially-spurious peaks on the parameter es-
timation to follow. First, peaks located at a distance larger than
5 times the mean distance are discarded. Second, the contribu-
tion of each peak to the cost function is weighted by the (normal-
ized) amplitude of the peak. This is done with the rationale that
low-amplitude peaks are more likely to be spurious, while large-
amplitude peaks are more likely to be real.

Since the cost function is not quadratic, local minima are to be
expected. These local minima correspond to natural symmetries
of the system. This is illustrated in Fig. 5, which shows two dis-
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Figure 5: 2D slices in the 6D cost-function hypercube correspond-
ing to (a) the (αR, δ) plane and (b) the (vT , RTR) plane. The true
values of the parameters are indicated by the white dots.

tinct orthogonal 2D slices in the 6D cost-function hypercube. In
Fig. 5(a), two local minima are clearly visible. The corresponding
true values of the parameters of interest are also shown.

4.4. Surface fitting

4.4.1. Overview

The cost function is minimized by using a variation of the simplex
algorithm. This algorithm has the advantage that no analytic ex-
pression of the derivative of the cost function with respect to the
parameters is needed.

It is clear that a strategy must be developped to avoid spurious
local-minima solutions and to reach the global minimum. One
strategy is to use several different initial values. However, without
a deeper understanding of the behavior of the cost function, it is
difficult to know how to select pertinent initial conditions.

The strategy we propose consists in splitting the estimation of
the parameter vector in several steps. At each step, only a subset

of the parameters are estimated. The order in which the parame-
ter subsets are estimated and the initial value used differentiate the
different methods. We found that using 3 distinct (sub)methods
was adequate, each working independently on the data and pro-
viding its own individual estimation of the parameter vector θ as
well as the corresponding value of the cost function. The overall
method consists in picking the estimate of θ associated with the
lowest cost. Each submethod works according to the same princi-
ple and consists of 2 main phases. In Phase 1, one estimates the
parameters in some manner that is adhoc but guided by the physics
of the problem. In Phase 2, one reestimates all parameters using
the values obtained in Phase 1 as initial values. In all cases, the
estimation is done using the same algorithm, i.e., a variation of the
simplex algorithm.

The first submethod works in most situations and can thus be
termed “general-purpose.” The two other methods are aimed at
particular pathological cases. The above discussion clearly indi-
cates that these 3 submethods differ only by Phase 1, i.e., by the
adhoc strategy used. As we shall see, each Phase 1 is tailored to a
specific class of radar configurations.

One important observation lives at the heart of our strate-
gies. As range increases, any radar configuration becomes more
and more MS-like. In other words, the clutter PS locus tends
towards and ellipse, which can also degenerate into a diagonal
line [2, 3]. The more one approaches an MS-like configuration,
the more it makes sense to assume (RTR, θ, φ) = (0, 0, 0). The
more valid this assumption is, the more likely we are to correctly
estimate the remaining parameters (vT , αR, δ) using snapshots at
only long ranges. Then, we can go back and estimate the values
of (RTR, θ, φ) more precisely. To increase the sensitivity of the
cost function, it even makes sense to estimate these parameters
using snapshots at only short ranges. As we shall see, the above
comments are at the heart of Method 1 and guide the design of
Method 2 and Method 3.

We will see that a vector of initial values θ
0

can be provided
to start the overall method and, thus, each of the 3 (sub)methods,
unless otherwise stated. This vector could, for instance, come from
the estimation of the configuration parameters during the previous
coherent processing interval (CPI), with the justification that the
configuration parameters do not change much from one CPI to the
next. In the absence of any a priori information, this vector defaults
to zero. Moreover, we assume we can constrain the parameter δ

to about ±10o around its true value, since the crab angle can be
measured relatively accurately. The corresponding initial value is
adapted to initially satisfy this constraint.

4.4.2. Method 1

The important observation made above is the principal basis for
Phase 1 of this method. The processing steps of Phase 1 are as
follows:

1. Set (RTR, θ, φ) = (0, 0, 0), which corresponds to an MS
configuration. Then, estimate (vT , αR, δ) using only long-
range snapshots.

2. Continuing to use the values (θ, φ) = (0, 0) and using the
current estimates for (vT , αR, δ), estimate RTR using only
short-range snapshots. Note that we cannot possibly esti-
mate (θ, φ) in the next step below if RTR remains equal to
zero at the end of this step.

3. Using the current estimates for (RTR, vT , αR, δ), estimate
(RTR, θ, φ) using only short-range snapshots. If RTR is



zero, the method will detect that there is no change in the
value of the cost function as various values of (θ, φ) are
tried and will abandon trying to estimate (θ, φ).

As with any of the methods, we then perform Phase 2, which con-
sists in reestimating all parameters using the values obtained at the
end of Step 3 above as initial values.

Figure 6 illustrates the estimates of the 3D clutter PS locus ob-
tained after Step 1 of Phase 1 and after Phase 2. The 3D clutter PS
locus is represented from above and the +’s indicate the locations
of the peaks of the PS. The characteristic shape of the locus of MS
configurations is clearly visible in Fig. 6(a). If the assumption that
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Figure 6: Results of fitting the parametric model of the 3D clutter
PS locus to the extracted peaks (represented by +’s) (a) after Step 1
of Phase 1 (Method 1) and (b) after Phase 2 (Method 1).

(vT , αR, δ) can be estimated at long ranges is not valid, i.e., if the
estimates obtained after Step 1 are too far from the true values,
this method will fail. This is due to the fact that the method can
get trapped in a local minimum as a result of the fact that incorrect
initial values were considered. This is illustrated in Fig. 7, where
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Figure 7: Results of fitting after Phase 2 (Method 1) for (a) wing-
to-wing formation and (b) in-trail formation. Errors are due to
getting stuck in a local minimum.

the final estimates are shown.
An explanation of the results of Fig. 7(b) follows. This figure

corresponds to a scenario where Tx and Rx follow each other along
the same path. In this case, the true 3D clutter PS locus is like
a planar surface slightly bent out of shape (such as depicted in
Fig. 2(a)). The extracted peaks, shown as +’s in Fig. 7(b), are
in the general vicinity of this surface. Step 1 of Method 1 fits
an ellipse to all peaks (at each range). A key observation is that
the resulting ellipse essentially follows the peaks with only one
of its “sides.” There are no peaks to constrain the other “side,”

which is thus free-floating. As one goes through Steps 2 and 3
of Method 1, one essentially bends the ellipse into a boomerang
shape (at each range). This results in a bad estimate of the 2D
clutter PS locus at each range. Both “sides” of the ellipses are so
close to each other that both pick up clutter PS energy as part of
the range-compensation process. This would ultimately result in a
widening of the clutter notch. If we had been prescient, we would
have used a diagonal line instead of an ellipse in Step 1 (at each
range). Then, Steps 2 and 3 would have bent the diagonal line to
match the peaks. The result would have been, not only a surface
closely matching the peaks, but a good set of parameters. A similar
explanation holds for Fig.7(a).

4.4.3. Method 2

Method 2 is designed to favor parameter values for which the 3D
clutter PS locus is folded onto itself, in a kind of “butterfly”- or
eight-shaped surface. This corresponds to scenarios where the Tx
and Rx fly wing-to-wing. This is also the scenario considered in
Fig.7(a). A major difference in strategy as compared to that of
Method 1, is that, at long range, we favor an eight-shaped surface
in Step 1, as opposed to an ellipse. The processing steps of Phase 1
are as follows:

1. Set δ = 0 and impose a nonzero initial value for (RTR, φ),
which favors an eight-shaped surface. Then estimate (RTR,
θ, φ, vT ), using only long-range snapshots.

2. Using the current estimates for (RTR, θ, φ, vT ), estimate
(vT , αR, δ) using all snapshots (note that vT is reesti-
mated).

3. Using the current estimates for all parameters, reestimate
RTR using only short-range snapshots. This refines the es-
timate of RTR obtained after Step 1.

Figure 8 illustrates the 3D clutter PS locus obtained after Step 1 of
Phase 1 and after Phase 2. One sees that the fit is nearly perfect
after Step 1. Notice that the BS configuration considered in Fig. 8
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Figure 8: Result of the fitting of the parametric model of the 3D
clutter PS locus (a) after Step 1 (Method 2) and (b) after Phase 2
(Method 2).

differs slightly from the one for which the method was conceived,
in that the true crab angle δ is not zero, which yields a 3D clutter
PS locus that has the shape of an asymmetric-eight surface.

4.4.4. Method 3

Method 3 is designed to favor parameter values for which the 3D
clutter PS locus is a planar surface bent out of shape. This cor-
responds to Tx and Rx following each other along the same path



(this is also the scenario considered in Fig. 7(b)). A major differ-
ence in strategy, as compared to that of Method 1 and Method 2, is
that, at long range, we favor a line instead of an ellipse or an eight.
This is achieved by imposing φ = 0 as initial value.

Phase 1 of this method thus consists of the single following
step:

1. Set (φ, αR, δ) = (0, 0, 0) and estimate (RTR, θ, vT ) using
all snapshots. This is done to force the estimation of mean-
ingful initial values for (RTR, θ, vT ), before performing the
global optimization. This avoids convergence to a narrow
ellipse or to a narrow “eight”.

4.5. Overall method

The overall parameter estimation method consists in placing the
three above (sub)methods in competition. Each Method i provides
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Figure 9: Block diagram of the overall method, where the 3
(sub)methods compete against each other.

an estimated parameter vector θ̂
i

together with the associated value
Ji of the cost function. This value is the RMS distance between
the extracted PS peaks and the estimated 3D clutter PS locus model
corresponding to θ̂

i
. The parameter vector that is finally retained is

the one that corresponds to the smallest Ji. It is indeed clear that

the corresponding θ̂
i

best fits the peaks extracted from the data.
The block diagram of the overall parameter estimation method is
depicted in Fig. 9.

5. PERFORMANCE EVALUATION

5.1. Parameter estimation

We first evaluate the performance of the proposed method w.r.t.
the estimation of the parameters. The performance is essentially
measured by the distance, which we denote by Jm, between the
estimated 3D PS locus and the true 3D PS locus.

The estimation was performed for 10 random realizations of
the STAP datacube for a particular BS configuration. The results
are shown in Table 1. The successive data columns correspond
to the parameters RTR, θ, φ, vT , αR, δ, the RMS distance J be-
tween the estimated 3D PS locus and the peaks, and the value Jm

of the cost function defined above. For this particular BS confi-

Method RTR θ φ vT αR δ J Jm

1 mean 96.2 12.1 13.3 83.45 13.0 69.9 17.3 9.3
stddev 1.2 0.7 1.0 0.21 1.9 0.3 1.3 1.3

2 mean 100.6 0.1 90.0 76.76 10.3 69.6 44.8 59.0
stddev 0.9 0.1 0.0 0.81 2.8 0.4 0.5 0.8

3 mean 113.4 1.2 1.2 79.27 9.9 69.2 26.0 26.3
stddev 0.6 0.1 0.1 0.34 0.1 0.1 0.6 0.3

Best mean 96.2 12.1 13.3 83.45 13.0 69.9 17.3 9.3
stddev 1.2 0.7 1.0 0.21 1.9 0.3 1.3 1.3

True 96.4 12.0 32.0 90.00 35.0 60.0

Table 1: Estimated parameters for a particular BS configuration.
The indicated values for J and Jm must be multiplied by 10−3 .

guration, Method 1 always provides the best estimates. This can
be deduced from the fact that, for that method, the mean value of
Jm is the lowest. Each submethod consistently provides similar
results for the different STAP datacube realizations, which is re-
flected in the low standard-deviation value for all parameters and
all submethods. The estimates are, however, less accurate for αR

and δ. This is due to the relative lack of sensitivity of the cost func-
tion w.r.t. these two parameters taken independently. This lack of
sensitivity to the individual parameters αR and δ is due to the fact
that the physical quantity that influences the spatial frequency is
their sum, i.e., αR +δ, which is the angle between the antenna and
the Tx velocity vector.

5.2. Clutter PS locus estimation

Although the method we propose is capable of estimating the BS
configuration parameters, our main objective is to estimate the
clutter PS locus to perform a compensation of the variation of that
locus with range. Figure 10 compares the true and the estimated
clutter PS loci at a specific range and in the case of omnidirectional
antennas. The results are quite satisfying. Figure 11(a) shows the
corresponding plots for a directive Tx antenna with a sinc-shaped
antenna diagram (6 elements). The corresponding true clutter PS
is depicted in Fig. 11(b). The fact that there is only a partial match
between the curves of Fig. 11(a) can be explained by the fact that
the clutter energy is concentrated in a relatively limited region
along the true locus. It is thus impossible for the method to es-
timate the complete PS locus. However, a good match is achieved
where energy is present. As we shall see below, this is sufficient to
perform range-dependence compensation. Once again, we do not
have for ultimate goal to get an accurate estimate of θ.
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Figure 10: Comparison between the estimated (dashed) and the
true (solid) clutter PS locus for omnidirectional Tx and Rx anten-
nas.
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Figure 11: (a) Comparison between the estimated (dashed) and the
true (solid) clutter PS locus for a sinc-shaped Tx-antenna diagram.
(b) Corresponding true clutter PS and true clutter PS locus.

5.3. SINR loss

To test the real potential of the method, we used it in conjunction
with the range-compensation method described in [1]. The perfor-
mance of the method is compared with the performance obtained
with the so-called TP method, where the configuration parame-
ters are assumed to be known. The optimum processor, computed
from the true I+N covariance matrix is used as a reference. A fur-
ther comparison point is given by the straight-averaging processor,
where the estimate of the I+N covariance matrix is obtained by
averaging the sample covariance matrix of all snapshots.

Figure 12(a) shows cuts in the SINR loss surface for the case
of omnidirectional antenna patterns. Figure 12(b) shows the corre-
sponding graph for the case of a Tx antenna with a sinc-shaped
pattern. One can see that the performances of the EP range-
compensation method are undistinguishable from those of the TP
method.

6. CONCLUSIONS AND FUTURE WORK

We proposed a new method for estimating the clutter PS lo-
cus given single-realization snapshots at a series of ranges. The
method is shown to provide reliable estimates of the configuration
parameters when the antennas have omnidirectional patterns. If
directional antenna patterns are considered, the estimated parame-
ters values differ from the true values, but the clutter PS locus is
still correctly estimated in areas where the clutter PS is not zero.
Fortunately, in our intended application, obtaining correct parame-
ters values is irrelevant; all we care about is obtaining the shape of
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Figure 12: Cuts of SINR loss at νs = −0.2 in the case of (a) om-
nidirectional antenna patterns and of (b) a sinc-shaped Tx-antenna
pattern. The dash-dotted line corresponds to the optimal processor
(OP), the dotted line to the straight-averaging processor (SAP),
the dashed line to the range compensation performed using the
true parameters (TP), and the solid line to the range compensation
performed using the estimated parameters.

the clutter PS locus where energy is present. Once the clutter PS
locus is obtained, it can be used to perform a range compensation
of the clutter PS in order to estimate the clutter covariance matrix.
The performance of the estimation method in terms of SINR losses
was shown, both for omnidirectional antennas and for directional
antennas.

By construction, the method is very robust to isolated scatter-
ers such as targets. However, several issues remain to be inves-
tigated: (1) the performance in the presence of barrage jamming,
(2) the performance in case of nonideal clutter (decorrelation ef-
fects, nonflat terrain, etc) and (3) the relation between the sample
support size and the accuracy of the clutter PS locus estimation.
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