
Feasibility of STAP for passive GSM-based radar
Xavier Neyt∗, Jacques Raout†, Mireille Kubica∗, Virginie Kubica∗,

Serge Roques‡, Marc Acheroy∗, Jacques G. Verly§
∗ Electrical Engineering Dept., Royal Military Academy, Belgium, xavier.neyt@elec.rma.ac.be

† CREA, Ecole de l’Air, Salon de Provence, France, jraout@cr-ea.net
‡ ONERA, Salon de Provence, France, Serge.Roques@onera.fr

§ Dept. of Electrical Engineering and Computer Science, University of Liège, Belgium,
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Abstract— In this paper, we examine the feasibility of applying
Space-Time Adaptive Processing (STAP) to bistatic passive radars
using illuminators of opportunity. The transmitters considered
are GSM base stations and are non-cooperative. Although STAP
has been extensively applied to signals from pulse-Doppler
radars, it was never applied to arbitrary signals arising from
illuminators of opportunity. We show that by computing the
appropriate mixing product, we essentially convert the signal of
opportunity to a pulse-Doppler like signal, hence making the ap-
plication of STAP to arbitrary signals straightforward. We finally
confirm these theoretical results by using real measurements.

I. INTRODUCTION

Radars using illuminators of opportunity are inherently
passive bistatic radars. The passivity of bistatic radars offers
definitive advantages [1] among which low cost, low weight
and enhanced radar cross-section for certain geometries. More-
over, stealth operations are possible since the receiver is totally
passive.

Radars using illuminators of opportunity have already been
studied. Signals provided by FM radio broadcast [2], satellites
[3], [4], digital video broadcast (DVB-T) [5], and Global
System for Mobile communications (GSM) base stations [6]
have been considered. Arguments for the selection of the
transmitter type include spatial and time coverage, power,
central-frequency and bandwidth of the emitted signal, and
shape of the ambiguity function. The bandwidth dictates the
achievable range-resolution and the shape of the ambiguity
function is decisive in determining the detection performance
of the radar. In particular, signals from digital modulation
(GSM, DVB) have much less range and Doppler ambiguities
than other modulations [7], which makes them more suit-
able for passive radar. In this paper, we will consider GSM
base stations as illuminators of opportunity. They have an
ubiquitous spatial coverage, are permanent in time and have
a thumbtack like ambiguity function due to the noise-like
behavior of the GMSK modulation used. The main drawback
of GSM base station signals is the small bandwidth [8] that
yields a range resolution of about 1.8 km. Thus a GSM-based
radar will only be usable to perform moving target detection.
The Doppler frequency resolution will only depend on the
coherent integration time (CIT). A CIT of a few tenths of a
second is easily achievable and yields a Doppler frequency
resolution of about a few Hz.

Space-Time Adaptive Processing (STAP) is typically used
to filter out (clutter-)interferences in GMTI radars in order
to detect slow-moving targets. STAP offers a benefit over
separate spatial and temporal processing when there is a
coupling between the clutter signal direction of arrival (DOA)
and its Doppler frequency. STAP consists in performing a joint
spatio-temporal optimum filtering of the signal in order to
reject interference (clutter) contributions [9], [10].

In the STAP literature, it is assumed that the available signal
is formed by the echoes from a pulse-Doppler radar. This paper
shows how STAP can be applied to other types of signals and
in particular to the noise-like GSM signals. The acquisition of
a GSM signal and the signal itself are described in Section II.
Section III shows how noise-like signals must be handled in
order to make STAP processing feasible. Section IV details
the issues involved in the estimation of the covariance matrix
required to perform STAP processing and Section V shows
end-to-end results for real signals.

II. SIGNAL ACQUISITION AND PRE-PROCESSING

A block diagram of a passive GSM-based radar receiver
is depicted in Fig. 1. We use a two-channel receiver, the
two antennas being arranged to form an array. The array
is oriented such that the broadside direction is pointing to
the targets. After amplification by the low noise amplifier
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Fig. 1. Block diagram of the receiver.

(LNA) and filtering by the band pass filter (BPF) to keep
only the GSM downlink band, the signal is down-converted
to intermediate frequency and sampled. Once sampled, the
received signal is further down-converted using digital down-
conversion (DDC). Performing the last down-conversion step



numerically eliminates imbalances between the in-phase and
the in-quadrature channels.

To correct for possible asymmetry between the two chan-
nels, a calibration step is required. The calibration is also used
to measure the phase center of the antennas in order to extract
correct direction information from the measurements.

Since the bandwidth of the receiver is much larger than
that of one GSM channel, the signals from several GSM
base stations can be received at once. A typical spectrum of
the acquired signal is depicted in Fig. 2. The different GSM
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Fig. 2. Spectrum of the received signal

downlink channels are clearly visible. The two most powerful
channels, located around 0Hz and −600kHz, correspond to
two different base stations.

The received signal contains the direct signal coming from
the GSM base-station transmitter and the echoes of the GSM
base-station signal backscattered by the vegetation, buildings
and targets. To be able to perform the coherent processing, it
is fundamental to know the reference signal broadcast by the
GSM base-station. [11] describes a method able to blindly
extract the reference signal from an array of sensors. The
method uses adaptive beamforming. Indeed, to avoid artifacts,
it is essential that the reference signal does not contain any
echoes from any target. If the reference signal would contain
echoes from targets, the concerned targets would be attenuated
by the echo cancellation processing. In the remaining of this
paper, we will assume that the reference signal, denoted xref ,
is available.

III. GENERALIZATION OF STAP TO NOISE-LIKE SIGNALS

The detection of targets in echo signals is typically per-
formed by using a matched filter. The matched filtering can
be generalized in the form of the range-Doppler diagram [12],
[13]

χ(νd, n) =
∑

k

x(k)x∗
ref(k − n)e−j2πνdk (1)

where x(k) are the samples of the signal containing echoes
from the potential target, the clutter, and the direct path signal;

n denotes the range at which the correlation is computed; and
νd is the reduced Doppler frequency. As noted in [13], [14],
this can be seen as the Fourier transform of the mixing product

xm(k) = x(k)x∗
ref(k − n). (2)

This mixing can be seen as a generalization of the usual
heterodyne down-mixing. In this way, the random phase
variation of x(k) along k due to the emitted signal xref(k−n)
is removed. Further, this formulation is useful to implement
adaptive filtering instead of the classical Fourier-based filter
banks [11].

To perform STAP, measurements obtained from N different
channels are required. Let us denote by x(k) the vector
containing the N signal samples at time kTs where Ts = 1/fs

is the temporal sampling interval and fs is the temporal
sampling frequency. Let the mixing product resulting from
mixing the signal from each channel with a time-delayed
version of the reference signal xref(k − n) be denoted by

xm(k; n) = x(k) ◦ (1 ⊗ xref(k − n))∗ (3)

where 1 is a N × 1 column vector with unit elements, ⊗
denotes the Kronecker product and ◦ the Hadamar (element-
wise) product. Since the targets of interest induce a Doppler
frequency that is much smaller than the sampling frequency
fs, the signal xm(k) can be low-pass filtered and subsampled
as suggested in [14]. Note that this subsampling does not affect
the range-resolution of the radar.

Let us denote by

xs(n) = [xT
m(0; n),xT

m(S; n),xT
m(2S; n), . . . ,

xT
m((M − 1)S; n)]T (4)

the lexically ordered subsampled signal, where S is the sub-
sampling factor. The number of temporal samples M depends
on the CIT and on the subsampling factor S. A typical value
is M = 256. The temporal Fourier transform processing that
was applied to single-channel signals in eq. (1) can also be
generalized to the spatial domain and applied to xs yielding

ym(νs, νd; n) = v†(νs, νd)xs(n) (5)

where v is the spatio-temporal steering vector

v(νs, νd) = a(νs) ⊗ b(νd). (6)

In the case of an uniform linear array (ULA), the spatial
steering vector is

a(νs) = [1, ej2πνs , . . . , ej2πνs(N−1)]T (7)

where νs = d
λ sin θ is the reduced spatial frequency with d

the inter-element spacing, λ the carrier wavelength and θ the
incidence angle. The temporal steering vector is given by

b(νd) = [1, ej2πνd , . . . , ej2πνd(M−1)]T . (8)

where νd = fDS
fs

is the reduced Doppler frequency with fD the
Doppler frequency of the target and fs the sampling frequency
of the acquisition. The size of the spatio-temporal steering
vector depends on the number of channels N and on the



number of temporal samples M considered in the subsampled
signal.

This is illustrated on Fig. 3, where the matched filter
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Fig. 3. Matched filter output on a signal containing simulated targets.

output ym of a simulated signal is shown. The signal was
generated by adding simulated targets to real clutter mea-
surements. The spatial (direction) ambiguities results from the
use of a 2-elements antenna array with a distance of about
0.8λ between the two elements. The targets are simulated
by adding time-delayed and frequency-delayed versions of
the reference signal to the signals from the spatial chan-
nels. Targets all have the same amplitude except the last
one with half this amplitude and are located at (νs, νd) =
{(0.3,−0.4), (−0.2, 0.2), (0.1, 0.08)}. Note that in addition to
the targets, a relatively strong direct path signal is present at
(νs, νd) = (−0.2, 0).

Similarly, we can apply an adaptive filter

y(νs, νd; n) = w†(νs, νd)xs(n) (9)

where y is the output of the filter at these frequencies, and
the filter w that rejects the interferences and the noise in an
optimum way is given by [9], [15]

w(νs, νd) = R−1v(νs, νd) (10)

where R is the covariance matrix of the interference-plus-noise
data and v the spatio-temporal steering vector (6).

IV. ESTIMATION OF THE COVARIANCE MATRIX

The interference covariance matrix R required to compute
the optimum filter (10) is defined as

R = E[xsi+nx†
si+n

] (11)

where xsi+n is the mixed, low-pass filtered, subsampled
and lexically ordered signal, containing only interference and
noise.

The expectation operator E is typically replaced by a sum
over data samples taken at different ranges [16], i.e. the sample
covariance matrix (SCM). The estimation obtained will be un-
biased only if the averaged data samples are independent and

identically distributed. In bistatic configurations, the clutter
power spectrum locus is known to exhibit a range-dependency.
Hence, independently of possible clutter inhomogeneities, the
conditions for unbiased estimation are typically not verified.
However, in the configuration considered here, i.e. a static
transmitter and a receiver located on the ground, it was shown
in [17] that the clutter power spectrum locus is independent
of the range. This means that in the considered configuration,
no geometry-induced range dependence of the clutter statistics
will be present.

To obtain a useful estimation, a relatively large number
of samples needs to be averaged [16]. Taking into account
an optimistic reach of about 20km and a range-resolution
of 2km, only 10 independent samples are available. Note
that this is an overly optimistic figure since it does not take
into account range inhomogeneities. To cope with the low
number of samples available, diagonal loading (DL) is typi-
cally performed, leading to the so-called SCM+DL estimation
method. The low-rank nature of R can be exploited to further
reduce the number of samples required to perform a useful
estimation. In particular, a method based on the extraction of
the principal components of R was proposed [18]. The method
was subsequently enhanced [18] by taking into account the
modeling of decorrelation effects due, for instance, to internal
clutter motion (ICM) using a covariance matrix taper (CMT).
This yields the PC+CMT+DL method. Although many other
estimation methods exist, a complete discussion of covariance
matrix estimation methods applicable in the current scenario is
outside the scope of this paper and we will limit ourself to the
methods described above. Figure 4 presents the performances
of the estimation methods discussed above in terms of SINR
loss [19]. These results were obtained by using real data (the
actual scenario considered is detailed in section V). The refer-
ence for comparison is a theoretical covariance matrix model
obtained by assuming a zero-Doppler clutter with a small
amount of ICM. As can be seen, the SINR loss corresponding
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Fig. 4. Comparison of the performance of various covariance matrix
estimation methods (cut at zero spatial frequency νs = 0).

to the SCM+DL covariance matrix estimation is relatively high



even at non-zero Doppler frequencies. This is due partly to
the low number of data samples available and partly to the
Doppler sidelobes of the ambiguity function inherent to the
noise-like signal used. Although the PC+CMT+DL estimation
method performs better, the increase in minimum detectable
velocity is only marginally better. It should further be noted
that while it is desirable to remove estimation artifacts due to
a low number of data samples, the effect of Doppler sidelobes
should be kept and will impact detection performance. Other
methods, such as CLEAN-based methods [11], [20] suffer less
from the sidelobes of the ambiguity function.

V. END-TO-END PERFORMANCE

End-to-end performance results are obtained by computing
y(νs, νd; n) for a particular range n and for all possible spatial
and temporal frequencies νs and νd.

A. Simulated data

In this section we present results based on simulated data.
The scenario considered is depicted in Fig. 5 and involves a
static GSM base station and a receiver moving at a speed of
10m/s. The receiving array is an λ/2-spaced 8-elements ULA
and is oriented to be forward-looking. The transmit and the
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Fig. 5. Scenario considered with the isorange considered drawn as a solid
line.

receive antennas have an omnidirectional radiation pattern to
exacerbate the influence of the clutter. In practice, the radiation
pattern of GSM base-stations is far from omnidirectional.

Bistatic scenarios typically involve a geometry-induced
range-dependence of the clutter statistics. However, this par-
ticular case where the transmitter is static and the receiver is
located on the ground does not exhibit any geometry-induced
range-dependence as shown in [17]. This is illustrated in Fig. 6
where the clutter power spectrum locus is depicted for different
ranges.

Figure 7 depicts the power spectrum of the mixed signal
xm at the range of interest. The clutter power spectrum locus
is plot as a thin line. The contribution of the clutter along the
clutter power spectrum locus is clearly visible.

We considered a modeled interference-plus-noise covariance
matrix for the computation of the adapted matched filter.
The power spectrum of the considered covariance matrix
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Fig. 6. Clutter power spectrum locus in function of the range.

ν
d

ν s

−0.5 0 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5 −40

−35

−30

−25

−20

−15

−10

−5

0

5

10

Fig. 7. Matched filter output and clutter power spectrum locus.

is illustrated in Fig. 8. Again, the power spectrum of the
covariance matrix is located along the clutter power spectrum
locus.

The result y of the application of the optimum filter to the
mixed signal xm is illustrated in Fig. 9, the thin solid line
being the clutter power spectrum locus. As can be seen, the
clutter contribution is filtered out, leaving the target standing
out at (νs, νd) = (0.4, 0.4).

B. Measured data

The results presented here correspond to real measurements.
The geometric configuration of the transmitter, receiver and
target is illustrated in Fig. 10. The receiving antenna array
is static and has 2 elements separated by about 0.8λ. The
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Fig. 9. Adapted matched filter output and clutter power spectrum locus.

scenario involves a cooperative vehicle (a small van) approach-
ing the receiver and yielding a Doppler frequency of about
−40Hz. With this Doppler frequency and taking into account
the frequency resolution, the vehicle signature is buried in
the sidelobes of the (untapered) matched filter w = v.
A tapered matched filter yields the classical angle-Doppler
diagram of Fig. 11. By using the proposed STAP approach, the
contributions due to clutter (including both the static part and
the small ICM components) can be removed, leaving the target
echo standing out as can be seen at (νs, νd) = (0.4,−0.07)
in Fig. 12; the other signatures are due either to reflexions or
to other (uncooperative) targets. The adapted filter is obtained
from (10) using a modeled covariance matrix involving ICM.

Figure 13 presents a cut along νs = 0.4 in the angle-Doppler
diagrams presented in Fig. 11 and Fig. 12. As can be seen,
the effect of the adapted filter is essentially to remove the
components due to clutter, located around zero-Doppler. The
amplitude of the signature of the vehicle at νd = −0.07 is
smaller for the tapered matched filter than for the (untapered)
adapted filter. This is due to the tapering losses.

target
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Fig. 10. Geometric configuration for the real measurement.
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It should be noted that, since the transmitter and the receiver
are both static, the clutter angle-Doppler diagram does not
exhibit the classical coupling. Hence space-time processing is,
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in this particular scenario, not really required and a temporal
processing would be sufficient. This can nevertheless be seen
as a degenerate case of joint space-time processing.

VI. CONCLUSION

In this paper, we propose a generalization of space-time
adaptive processing to noise-like signals. We show that the
estimation of the covariance matrix of the interference-plus-
noise samples is challenging due to the presence of range and
Doppler ambiguities. Finally, we show the applicability of this
generalization to a passive radar using GSM base stations as
illuminators of opportunity. The results obtained on real data
show that the proposed method effectively filters out the clutter
signal.

The computation of the optimum filter requires an estimate
of the interference plus noise covariance matrix. Obtaining
an accurate estimate of this matrix from noise-like signals is,
however, still challenging.
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