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C The value of the transmission capacity.
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L The Lagrangian expression.

M The number of available channels.
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Nk The fictive noise over channel k.

P The CR’s total power.

Q The Q-matrix of the learning algorithm.

R The reward function.

S The state.

α The learning factor.

β Coefficient of proportionality.

ε Convergence tolerance.

γ The discount factor.

λ KKT multiplier.

µ KKT multiplier.

∇ The gradient vector.

G The Jacobian.

GT The transpose of matrix G.

gr The pseudo-gradient vector.
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j The jammer’s vector of powers over the M channels.

p The CR’s vector of powers over the M channels.

a The action.

c The column index.

f The central frequency of the considered channel.

gk The gain of channel k for the jammer.

hk The gain of channel k for the CR.

jk The jammer’s power over channel k.

k The channel index.

l The row index.

nk The noise variance over channel k.
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Résumé

La croissance importante de services de communication avec des besoins spectrales
plus élevés a révélé le problème de pénurie de spectre. Ce shortage est due à la
technique d’allocation statique des bandes de fréquences. Cependant, des mesures
de l’occupation spectrale ont prouvé qu’une large bande de fréquences est sous-
utilisée en fonction du temps et de l’espace. Les techniques de gestion dynamique
du spectre et les terminaux radio cognitives constituent une solution prometteuse
pour améliorer l’utilisation du spectre radio. En revanche, due aux caractéristiques
spécifiques de la radio cognitive, des mesures de sécurité doivent être developpées
pour se protéger des attaques.

Dans cette dissertation, nous exploitons la théorie des jeux et la capacité
d’apprentissage de la radio cognitive afin de se défendre du brouillage et d’accéder
aux opportunités spectrales efficacement. Une plateforme cognitive a été utilisée
pour développer, tester et valider les solutions proposées.

Dans une phase préliminaire, nous discutons les différentes attaques et leurs
contre-mesures proposées dans la littérature, avec projection sur le contexte mili-
taire. Nous suggérons d’étudier le brouillage considéré parmi les menaces graves
dans les réseaux cognitives, en particulier lorsque le brouilleur est équipé d’un
terminal intelligent. En première partie, nous analysons le brouillage en terme
d’allocation de puissance entre plusieurs canaux. Nous utilisons le modèle de
jeu à somme nulle et nous montrons sa convergence. Les allocations opti-
males de puissance, pour la radio cognitive et le brouilleur, sont déterminées
sous l’hypothèse d’information complète. Ensuite, nous proposons une version
modifiée de l’algorithme d’apprentissage Q-learning pour résoudre le problème
sans avoir accès aux informations nécessaires concernant l’environnement et le
brouilleur. Nous commençons par appliquer l’algorithme proposé en terme de
sélection de canal de transmission avant de le généraliser pour résoudre le jeu
d’allocation de puissance. Dans la première application, il permet à l’équipement
radio d’apprendre à éviter les canaux brouillés. Dans le contexte multi-canaux,
la stratégie apprise est comparée à la solution obtenue avec information complète.
Enfin, nous nous abordons le problème de brouilleur caché de l’émetteur ainsi que
le scénario réel de brouilleur asynchrone. Nous présentons un modèle approprié
pour le problème de sélection de canal et nous améliorons l’algorithme proposé
via la coopération entre deux radios cognitives. Nous fournissons les résultats de
simulation et les mesures réelles à l’aide de plateforme radio programmable.

La solution proposée peut s’appliquer non seulement pour éviter les
brouilleurs, mais aussi pour la coexistence de radio cognitive avec les titulaires
des bandes spectrales.
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Abstract

During the last century, the growing number of communication services with
higher spectral requirements revealed the problem of spectrum scarcity. The short-
age is due to the frequency allocation based on exclusive licensing. However, mea-
surements of the spectral occupancy showed that a large portion of the assigned
spectrum are under-utilized. Dynamic spectrum management (DSM) models and
cognitive radio (CR) technology are presented as promising solutions to this im-
balance between scarcity and under-utilization. However, the CR security threats
emerge as a challenging issue for its military and commercial deployment.

In this dissertation, we aim at enabling the CR efficient exploitation of the
spectrum in the presence of jamming attack. For that purpose, we use game theory
models and the learning capacity of the CR. A Software Defined Radio/Cognitive
Radio test bed architecture is used to develop, test and validate the proposed solu-
tions.

In a preliminary part, we discuss the CR attacks and their potential countermea-
sures with the focus on military context. We chose to focus on the jamming attack,
one of the most severe threats in cognitive radio networks especially when the jam-
mer has the cognitive features. Firstly, we analyze the jamming attack in terms of
multi-channel power allocation. We model the interaction between the CR and the
jammer using zero-sum game. We prove its convergence to the pure strategy Nash
equilibrium. We provide the optimal jamming and anti-jamming power allocations
under the assumption of complete information. Secondly, we propose a modified
version of the Q-learning algorithm to overcome the lack of information about
the environment and the jamming tactics. The proposed algorithm is applied in
terms of one channel selection, then it is adapted to solve the multi-channel power
allocation game. In the first application, it enables the CR to pro-actively avoid
the jammed channels. In the multi-channel application, we compare the learned
strategy to the case of complete information. Finally, we address hidden jammer
problem and real scenario of asynchronous jammer. We present a suitable model
to the channel selection problem and we enhance the proposed algorithm through
the cooperation between two cognitive radio nodes. We provide both simulation
results and real measurements using software defined radio platforms.

The proposed solution may be applicable not only to avoid jammers, but also
for the CR coexistence with incumbents.



Chapter 1

Introduction

Recently, there have been an excessive devise of communication technologies and
new wireless services with significant growth of bandwidth requirements. This de-
velopment is threatened by spectrum scarcity since, unlike wired communications
using dedicated connections, wireless communications share a common connec-
tion medium. The spectral shortage is due to the traditional spectrum management
based on exclusive licensing. Historically, regulators have assigned frequencies by
issuing licenses to specific users specifying what equipment to use, where and at
what power level it can be used. The goal of this rigid spectrum allocation was to
ensure secure and reliable wireless communication, when the wireless technology
was limited. But, measurements indicate that a large portion of the assigned spec-
trum is used only sporadically by the licensees, therefore leading to temporal and
spatial spectrum under-utilization. This imbalance between scarcity and under-
utilization requires striving for efficient spectrum allocation techniques ensuring
that sufficient amounts of spectrum are available and accessible for current and
future needs. The former technique of fixed spectrum allocation is giving way in
many countries to DSM models improving the efficiency of spectrum use. The key
technology enabling the DSM techniques is the CR technology build on software
defined radio platform [1]. This concept was introduced by Joseph Mitola III in [2]
to describe a conscious, intelligent and flexible radio. The CR is able to make
autonomous decisions and adapt its characteristics according to the environment
variations.

The following sections discuss CR security problem, subject of the thesis, and
highlight the main contributions before detailing the roadmap of this dissertation.

1.1 Problem statement and motivations

One of the major issues in military and commercial deployment of cognitive ra-
dio technology is security, since its flexibility and dynamic access capacity lead to
potential communication resource misuses and security threats [3]. In addition to
common wireless security problems like eavesdropping and information tamper-
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ing, cognitive radio networks (CRNs) introduce new classes of security threats due
to the following specific characteristics [4]:

• High sensing sensitivity
It is an intrinsic characteristic of CR technology to detect even low signals to
avoid interference with legacy users. However, it may lead to false detections
resulting in inefficient use of the spectrum.

• Hidden terminal problem:
This problem occurs when the CRN can’t detect the communication of a non
cognitive radio by sensing the medium. Therefore, a CR can start transmis-
sion and interfere with the legacy user.

• Synchronization requirement:
The CRs involved in cooperative spectrum sensing have to sense the spec-
trum periodically and transfer sensing reports to a fusion center (FC), which
takes the decision about the spectrum exploitation. This process requires the
synchronization between the cooperative CRs.

• Lack of common control channel (CCC)
In military communication system, a common control channel is often
avoided because it is a signal point of failure. This means that the network
needs to search for control signals across the entire spectral band.

An attack in CRNs can be defined as a use of these reliability issues and may result
in denial of service, unacceptable interference to the non cognitive user and missed
opportunities for cognitive users, which threats the radio spectrum sharing policy
used to manage the spectrum access. Even more, the cognitive radio technology
may constitute a double-edged sword in the communication electronic warfare. Its
cognitive capabilities along with its self-reconfiguration abilities aid in the devel-
opment of advanced security measures and may also be exploited by malicious
users to deploy advanced attacks. Recent tactical military scenarios require inter-
operability among different military services and allied forces, as well as among
military and civil authorities.

Therefore, the CR threats emerge as a challenging issue for advanced defense
applications, and have to be resolved to enhance the deployment of CRNs. The
work presented in this thesis studies jamming and anti-jamming tactics using cog-
nitive radio technology with the focus on military context. This research is mainly
based on game theory models and the Q-learning artificial intelligence algorithm
to deal with diverse jamming tactics. A Software Defined Radio/Cognitive Radio
test bed architecture is used to develop, test and validate the proposed solutions.

1.2 Research contributions

The main contributions of this thesis are summarized below.



CHAPTER 1. INTRODUCTION 5

• A comprehensive review and classification of the main security issues re-
lated to cognitive radios and the potential countermeasures with projection
on military context.

• Diverse game-theoretical scenarios are presented to analyze cognitive radio
jamming/anti-jamming strategies in terms of multi-channel power allocation
over parallel Gaussian channels. We give the theoretical proof of existence
and uniqueness of the equilibrium in pure strategies and we develop the an-
alytical expression of the saddle-point.

• Proposition of a real-time reinforcement learning algorithm denoted on-
policy synchronous Q-learning (OPSQ-learning). Its application to solve
the jamming attack in terms of one channel selection and its generalization
to multi-channel power allocation.

• Enhancing the developed OPSQ-learning solution through the cooperation
between two cognitive radio nodes, and detailing the corresponding imple-
mentation on the test bed architecture. We provide high fidelity simulation
results and real measurements using software defined radio platforms.

1.3 Thesis document organization

This dissertation is composed of six chapters that are based on a number of jour-
nals and conference papers. The next chapter is dedicated to outline the dynamic
spectrum management techniques and present the cognitive radio technology com-
ponents and its main functions.

Chapter 3 provides a comprehensive review of the literature related to common
CR attacks and their potential countermeasures with the focus on military context.
The classification of attacks is based on the four main functions of the cognitive
radio, not according to the layers of the OSI model as usually done. Through
this classification, we try to provide directions for related researches to discern
which cognitive function has to be insured against each threat. We compare the CR
attacks in terms of harmfulness and required knowledge. We opt for the study of the
jamming attack since it is easy to happen and hard to mitigate. It is one of the most
severe threats in cognitive radio networks especially when the jammer has the same
cognitive features as the CR nodes. CRNs are characterized by dynamic spectrum
access (DSA) and by mainly distributed architectures which make it difficult to
implement effective jamming countermeasures.

The developed work in the remaining chapters is based on game theory mod-
els and the CR learning capacity to propose solutions for CR jamming attacks.
Cognitive jammers are able to deploy advanced strategies and adapt their tactics to
degrade the performance of cognitive radio communication, through injecting the
total power to one channel or sharing it between multiple channels. We start by an-
alyzing the problem of power allocation in cognitive radio user and jammer games,
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over parallel Gaussian channels, in chapter 4. We model the interaction between
a transmitter-receiver pair and a jammer using zero-sum games with continuous
action sets; we describe unilateral, Nash and Stackelberg games. We compare the
Nash equilibrium, the Stackelberg equilibrium and the minmax/maxmin optimal
power allocations through the simulation of the diverse game scenarios. Further-
more, we give the theoretical proof of existence and uniqueness of the equilibrium
in pure strategies and we develop the analytical expression of the saddle-point.

Chapter 5 presents a real-time learning algorithm to overcome the lack of infor-
mation about the environment and the jamming tactics. The proposal is applied in
terms of one channel selection, then it is adapted to solve the multi-channel power
allocation game studied in chapter 4. In the first application, we model the jamming
scenario as a Markov decision process (MDP) and discusses how Q-learning can
be used to pro-actively avoid the jammed channels. Since, Q-learning needs a long
training period to learn the behavior of the jammer, wideband spectrum sensing is
considered to speed up the learning process and the already learned information
are exploited to minimize the number of collisions with the jammer. The learned
anti-jamming strategy depends on the chosen reward function which reflects the
preferences of the cognitive radio. We define reward values based on the avoidance
of the jammed channels and we compare the result to the original Q-learning algo-
rithm. The effectiveness of our proposal is evaluated in the presence of different
jamming strategies which reveals some limits. In the multi-channel application,
we start by comparing the learned anti-jamming power allocation strategy to the
common waterfilling technique. Then, we consider the power allocation game us-
ing Q-learning for both the cognitive radio and the jammer. The learned strategies
will be compared to the Nash equilibrium found under the assumption of complete
information.

Chapter 6 generalizes the proposed OPSQ learning algorithm for asynchronous
jammer scenario. We define a suitable state space modeling and a more significant
reward function related to the detected energy during the sensing period. Moreover,
we enhance the proposed solution through the cooperation between two cognitive
radio nodes to overcome the hidden jammer problem and to defeat various jamming
strategies. We describe the simulation setup and detail the test-bed implementation
of the proposed anti-jamming channel selection algorithm in the universal software
radio peripheral (USRP) platform. Both high fidelity simulations and real USRP
measurements reveal that the presented solution achieves a higher packet success
rate compared to both the classical fixed channel selection and the best channel
selection based only on sensing. Results are given for various scenarios and diverse
jamming strategies.

Finally, we conclude the presented work, highlight the contributions and out-
comes, and discuss possible future extensions.



Chapter 2

Dynamic spectrum management
and cognitive radio technology

2.1 Introduction

This chapter starts by the definition of the dynamic spectrum management concept
recognized as a promising solution to the imbalance between spectrum scarcity
and under-utilization. Section 2.3 defines the cognitive radio technology enabling
the implementation of the dynamic spectrum management techniques. We start
by presenting the technology evolution from hardware to software until cognitive
radio before defining its main functions: spectrum sensing, decision, sharing and
mobility.

2.2 Dynamic spectrum management

DSM is a set of theoretical techniques developed to manage spectrum sharing to
improve the network performance. As represented in figure 2.1, the DSM concept
defines three main techniques: exclusive use, shared use and commons [5].

Figure 2.1: Dynamic Spectrum Management

7
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2.2.1 Exclusive-Use

In this model, spectrum bands are licensed to serve for exclusive use and the rules
of spectrum users are clearly governed by a central management body. This method
solves the problem of interference between legitimate users. However, it can no
longer respond to the increased demand of radio spectrum.

2.2.2 Shared-Use of Licensed Spectrum

A frequency band is simultaneously shared between two categories of users; a li-
censed user known as primary user (PU) and multiple non licensed users denoted as
secondary users (SUs). The SUs utilize underlay or overlay approaches to exploit
the spectrum without interfering with the PUs.

• Spectrum Underlay:
The SUs use ultra wideband (UWB) techniques to transmit simultaneously
with the PUs over the same channels. A spectral mask is applied to sec-
ondary signal so that the interference is below the acceptable level of the
PU’s signal.

• Spectrum Overlay:
The SU is allowed to utilize licensed bands in opportunistic way by identify-
ing and exploiting spatial and temporal unused radio spectrum called white
space. The spectrum overlay technique was first denoted by Mitola as spec-
trum pooling technique and later called opportunistic spectrum access (OSA)
in DARPA XG program. To apply spectrum overlay access, the SU should
be able to detect continuously the state of the spectrum in order to exploit
the idle frequency bands and to vacate the bands whenever requested by the
PU.

2.2.3 Commons

According to this scheme, the spectrum bands are equitably and fairly accessible
to every user and no body can claim exclusive use. The commons model has three
variants:

• Uncontrolled Commons:
Each user has open spectrum access to a common band and can have many
devices operating in it. But, the participating devices have to conform to a
maximum transmit power.

• Managed Commons:
These commons are controlled jointly by a group of users with restrictions
on who, when and how the resource is used, defined by the controller of
the commons. The use of managed commons requires a good management
protocol that encapsulates technology agnostic rules together with reliable



CHAPTER 2. DYNAMIC SPECTRUM MANAGEMENT AND COGNITIVE RADIO TECHNOLOGY9

and scalable mechanisms that quantify rule on performance of participating
devices.

• Private Commons:
This model consists in licensed bands access at the discretion of license hold-
ers. It is like managed commons but the ultimate ownership of the licensed
spectrum is still centralized with the license holder who offers either private
commons service or spectrum access.

Since countries have diverse spectrum access regulations and recently military op-
erations are often conducted in coalitions, the application of DSM in future military
networks will most probably be based on the shared use of licensed spectrum and
commons models [6]. Therefore, we will not use the classical PU/SU denomina-
tion, but in a more general way we classify the users as: non-cognitive legacy users
having priority to access the spectrum; and cognitive users having to periodically
scan and identify the vacant channels in the spectrum to communicate without in-
terfering the non-cognitive user.

The DSM models need to be linked to the new CR technological capabilities
to overcome the spectral scarcity.

2.3 Cognitive radio technology

The CR concept, introduced by Mitola, defines a radio that can be programmed
and configured dynamically according to the environment changes [2]. It enables
DSM techniques through its capacities of idle channels detection, learning and
reasoning. The CR is built on the software defined radio (SDR) technology which
is the result of an evolutionary process from purely hardware-based equipment to
software-based equipment [1]. The CR can be divided into two units as given
by figure 2.2; the SDR unit and an intelligence unit, which is commonly denoted
cognitive engine, that adds the cognition capacity to the radio and manipulates
the SDR’s operating state. The cognitive engine includes a knowledge base that
stores the predicates collected by the SDR unit and evolved through learning. It
also stores the available actions and rules based on reasoning [7]. The operating
parameters of the SDR unit (such as the frequency range, the modulation type and
the maximum transmission power) can be dynamically adjusted by software [8, 9].
We start by presenting the evolution from hardware to SDR technology, then we
define the cognitive engine and detail the main functions of a CR.

2.3.1 From hardware to software defined radio

Unlike, conventional fully hardware radios which are commonly based on ap-
plication specific integrated circuit (ASIC) devices, a software radio (SR) is a
transceiver which communication functions (e.g. amplifiers, mixers, filters, mod-
ulators/demodulators) are realized as programs running on a suitable digital pro-
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Figure 2.2: SDR and cognitive engine components within a CR

cessor. Different software transmitter/receiver algorithms, usually known as trans-
mission standards, can be implemented on the same hardware. This evolution from
hardware to software radios results from the need of serving wide variety of chang-
ing radio protocols in real time, such as for the military and cell phone services. A
SR is said to be ideal if it directly samples the antenna output. A practical version
of a SR, in which the received signals are sampled after a suitable band selection
filter, is known as SDR [1].

Several SDR platforms [10] (e.g. BladeRF, HackRF, USRP) are available in
the market, they are reconfigurable and reprogrammable with adjustable front-end
which operates with different carrier frequency, signal bandwidth, variable trans-
mit powers and different modulation types with different symbol rates. These plat-
forms are also characterized by flexibility for different layers (forward error cor-
rection, data framing, multiplexing and scheduling), making them suitable for CR
implementation. A SDR transceiver is given in figure 2.3.

The transmission parameters of the SDR can be reconfigured according to the
cognitive engine decision depending on the surrounding spectrum conditions.

2.3.2 Cognitive engine

The cognitive engine (CE) analyzes the surrounding spectral information and takes
the decision about its spectrum access. A cognitive engine may include a Database,
a reasoning unit and a learning unit. The Database can store the historical spec-
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Figure 2.3: A SDR transceiver [1]

tral information and taken decisions. The reasoning unit is a set of logical rules
mapping known spectral states to radio configurations (decisions). The learning
unit allows creation of new rules and update of existing ones through trying ra-
dio configurations, observing and analyzing the performance in order to optimize
the decisions. It makes the CR able to handle new situations using learning algo-
rithms [11–14].

A great number of cognitive architecture frameworks (e.g. ACT-R, Soar and
Clarion) have been presented in [15] as basis for implementation of cognitive en-
gines for cognitive radio. [16] discussed desired properties for a cognitive engine
in a complex unpredictable radio environment such as in a military ad hoc deploy-
ment. Such scenarios may include malicious activity like spoofing and jamming,
which make simple spectrum access algorithms vulnerable and transparent for at-
tackers. The requirements for these scenarios are as follows:

• Fast reactive response

• Compile new fast reactive responses through learning and reasoning: to com-
plement initial fast reactive responses with new patterns of learnt settings

• Reactive response through reasoning and problem solving

• Continuous learning due to the environment and the radio sets changing over
time

• Proactivity and planning of action strategies

• Interaction and communication to benefit from knowledge learned by other
cognitive radios
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• Metacognition for reasoning about which type of cognitive processes to use
(e.g. when to use reactive reasoning and when to use a plan)

• Implementable on limited-resource embedded platforms for handheld and
portable devices, the CE must be able to run on low-power processors.

Based on the two previous references, we can conclude that the framework
that constituted the best match to military scenarios is connectionist learning with
adaptive rule induction on-line (CLARION). A prototype CE made using CLAR-
ION framework is tested in [16] towards a simplified, simulated environment with
spectrum occupation and reactive jamming. It is seen to learn how to behave in
both non-jammed and jammed environments.

2.3.3 Cognitive Radio Functions

Figure 2.4 gives the cognition cycle as introduced by Mitola. This cycle describes
how a cognitive radio interacts with the environment. The four major functions of
this cycle are: spectrum sensing, spectrum decision, spectrum sharing and spec-
trum mobility.

Figure 2.4: The cognition cycle [2]

• Spectrum sensing

Spectrum sensing is the first function in the cognition cycle, it consists in de-
tecting available portions of the spectrum. Then, CRs can temporarily transmit
over these spectrum holes without creating interference to the legitimate users.
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Moreover, it has to periodically sense the spectrum to detect the presence of in-
cumbents and quit the band once detected. The CR first gathers (observe) informa-
tion about its external electromagnetic environment to detect the unused spectrum
bands called white spaces. Then, this information is evaluated (orient) to know its
significance and to determine the features of each band. To improve the detection
performance, cognitive nodes may collaborate to combat sensing issues such as
the problem of hidden transmitting nodes. Cooperative uses various data fusion
schemes which can be classified mainly into hard fusion when the fusion center
(FC) collects the local decisions of cognitive nodes, and soft fusion if it collects
the local detected signal of each node. [17] gives a comparison between the three
main spectrum sensing techniques: energy detection, matched filtering and cyclo-
stationarity. Energy detection method consists in detecting the incumbent presence
based on the sensed energy. It is the most popular spectrum sensing technique
since it is simple and does not need a priori information. After filtering the de-
tected signal, its integral over time is compared to a predefined threshold to decide
if an incumbent signal exists. Matched filtering is based on a designed filter that
depends on prior knowledge of the incumbent signal. Cyclostationary spectrum
sensing looks for periodic statistics, characterizing cyclostationary signals, based
also on prior information about the incumbent signal.

• Spectrum management known as spectrum decision

Based on the evaluation of SS report taken into account the information from
policy Database (knowledge base), the CR determines (plan) its alternatives to meet
user communication requirements. Then, it chooses (decide) the most appropriate
frequency band. In cooperative CRN, the spectrum decision is taken by the FC
through combining either local decisions or local detected signals received from
cognitive nodes. In [18], the authors present a simulation comparison of six fusion
rules: likelihood ratio combining, soft optimal linear combining, soft equal weight
combining, hard decision combining using the OR/AND/Majority counting rules.

• Spectrum sharing

Spectrum sharing techniques manage the allocation of available frequency
bands to provide a fair spectrum scheduling among the users and to avoid the inter-
ference. The spectrum sharing function includes channel and power allocation to
prevent both interference with incumbent users and CRs collision in overlapping
portions of the spectrum. A CCC facilitates the spectrum sharing challenge, but
fixed CCC implementation is infeasible because every channel must be vacated
when it is solicited by the incumbent user. The spectrum sharing techniques can be
applied inside a CRN (intra-network spectrum sharing) or among multiple coexist-
ing CRNs (inter-network spectrum sharing) [19].

• Spectrum mobility

It is known as spectrum handoff and defined as the process where the cognitive
user changes its frequency of operation or vacate it to the incumbent user. Dur-
ing this operation, the transmission of the CR is interrupted and its packets wait
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in the transmission buffer. The communication can be resumed only when the
connection between the transmitter and the receiver is successfully restored in a
new channel. [20] has proposed spectrum handoff approaches for CRNs in order to
support delay sensitive applications.

2.4 Conclusion

This chapter defines the DSM techniques that manage spectrum coexistence of
non-cognitive legacy users having priority to access the spectrum; and cognitive
users having to periodically scan and identify the vacant channels in the spectrum to
communicate without interfering the non-cognitive user. We have defined the CR
technology composed of software defined unit and cognitive unit. We have detailed
the CR main functions: spectrum sensing, decision, sharing and mobility. Based
on sensing, the CR detects the available portions of the spectrum. It evaluates the
sensing report taken into account the information from knowledge base to decide its
alternatives to meet user communication requirements. Spectrum sharing manages
the allocation of available frequency bands to provide a fair spectrum scheduling
among the users and to avoid the interference. Through spectrum mobility, the
CR changes its frequency of operation to vacate it for the incumbent user. In the
next chapter, we will provide a review of the CR threats and solutions through a
classification based on the four functions.



Chapter 3

Threats in Cognitive Radio
Context

3.1 Introduction

The decisions made by each CR or the decision made by the fusion center of a
centralized CRN depend on; (i)the incumbent users’ activities, (ii) malicious users’
behaviors and (iii) wireless channels’ characteristics. These three factors constitute
sources of uncertainty and unreliability to the CR about its surrounding environ-
ment. This chapter reveals how malicious users threaten the efficient exploitation
of cognitive radio technology. It provides a comprehensive review of common CR
attacks and their potential countermeasures. We choose to rank specific cognitive
attacks according to the four main functions of the CR to better evaluate its impacts
and to discern which cognitive function has to be insured against each threat which
may provide directions for related researches. Section 3.2 provides related works.
It is followed by a review of studies and existing solutions to the attacks of each CR
function, separately. In section 3.7, we compare the harmfulness of the presented
attacks and reveal the attack chosen to be studied in this thesis.

3.2 Related works

Table 3.1 presents diverse classifications used in related surveys to describe the
CRN attacks. Most of the papers opt the OSI model layer classification (physical,
link, network, transport and cross-layer attacks). Some works use a classification
according to the steps of the cognition cycle. However these papers sometimes
misclassify certain attacks, such as the spectrum sensing data falsification (SSDF)
attack which happens during the decision function but usually defined as a spec-
trum sensing attack. Furthermore, these papers do not detail the consequences of
given attacks on the cognition cycle. We provide in the following sections the CR
attacks classified according to its main functions (spectrum sensing, spectrum de-
cision, spectrum sharing and spectrum mobility), to discern which function should

15
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be enhanced against which threat.

CRN attack classification Related paper
Cognition cycle steps [21, 22]
Inside/outside the CRN [23]
OSI layer classification [24–26]
Nature of manipulation (sensor, belief,
control...)

[27]

Attacker type: malicious/greedy [28]
CR components [29]

Table 3.1: Classifications of CR attacks

3.3 Spectrum Sensing Attacks and countermeasures

The sensing information can be falsified by malicious users. The most common
attack threatening the function of SS is the primary user emulation (PUE) attack
described in figure 3.1.

Figure 3.1: The PUE attack

In this attack, a malicious user emulates the signal of incumbent user during the
spectrum sensing period to get the priority, since other cognitive users will falsely
sense that the frequency is in use by a legitimate user and vacate it. In commons
DSM model, we don’t have the concept of primary/secondary user, so it is better to
call this attack as incumbent emulation (IE) attack to cover different DSM models
mainly in military scenarios. A variety of IE attack solutions are presented in
the review [30]. The author enlisted various methods but without details. The
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paper doesn’t discern between techniques used just to detect an IE attacker and
techniques used as countermeasure.

In the next paragraph, we present the common detection methods followed by
some possible defensive techniques along with related references.

3.3.1 Detection of incumbent emulation attack

The CR has the challenge of distinction between the legacy incumbent node and
the imitating attacker. To overcome this issue, the CR can localize the transmit-
ting node and compare its position with known legacy users positions. It can also
determine the characteristics of the detected signal and compare it with incumbent
signals. We explain in table 3.2 common detection techniques and we refer to some
papers.

Detection
method

Technique description Related paper

Transmitter ver-
ification

-Distance difference and distance ratio to
verify the transmitter location (DDT &
DRT)
-RSS, or ToA to determine the character-
izations of the detected signal
-LocDef combining location and charac-
terization previous techniques

[31]

Analytical
detection model

Fenton Approximation Method to deter-
mine the mean and the variance of the de-
tected signal

+

Markov inequality or Weighted Sequen-
tial Probability Ratio Test (WSPRT) to
determine a threshold on the probability
of a successful IE attack

[32], [33]

Signal activity
Pattern Ac-
quisition and
Reconstruction
System

Reconstruction of the observed signal ac-
tivity pattern (such as the ON/OFF peri-
ods) through spectrum sensing.

+

Examination of the reconstruction error
to distinguish incumbent user’s signal ac-
tivity pattern from attacker’s one.

[34]

Table 3.2: Detection techniques of IE attacker
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3.3.2 Defense against incumbent emulation attack

After identifying the IE attacker, the CR can either avoid or counteract the attacker.
The first approach consists in avoiding the channels used by the IE attacker. The
CR can use game theory and learning algorithms, such as the Q-learning algorithm,
in order to learn how to avoid jammed channels. For example, a defense scheme
is proposed in [35] and called dogfight in spectrum. The scenario is modeled as a
zero sum game between the IE attacker and defending CRs. It is based on randomly
choosing a channel to sense and transmit at each time so as to avoid the IE attack
statistically.

A countermeasure proposed in [36], assigns weights to the local detected ener-
gies to eliminate the malicious signal sent by the IE attacker. The problem is solved
in [37] by using spatial correlation based user selection to choose the members tak-
ing part in cooperative spectrum sensing, and the maximum-minimum eigenvalue
(MME) based detection mechanism to perform the cooperation. A technique of
belief propagation of location information, presented in [38], enables not only de-
tecting but also mitigating the IE attack. In this approach, each cognitive sensor
calculates the location information based on RSS measurements and exchanges
messages with the neighbors to detect the IE attacker according to the mean of the
final beliefs based on a belief threshold. Then, a broadcast message informs all
cognitive users about the characteristics of the malicious signal to avoid it in the
future sensing period, thus the IE attacker will no longer falsify the sensing results.

3.4 Spectrum Decision Attacks and countermeasures

In cooperative cognitive radio network, each CR senses the spectrum periodically
and reports the measurement results to the FC node, which combines the data and
makes the final decision of whether the incumbent user is present or not. However,
this result is based on the assumption that all users sending the sensing reports are
honest and there is no malicious entity that can manipulate the spectrum decision
process. This defect leads to several attacks by malicious nodes inside the CRN.
The common threats to the spectrum decision function are the spectrum sensing
data falsification (SSDF) and the objective function attacks.

3.4.1 Spectrum sensing data falsification attack

In cooperative spectrum sensing process, malicious user inside the CRN can mis-
lead the final result by sending false information such as reporting the presence of
legacy user to occupy the spectrum himself, or hiding the existence of legacy user
to cause collision. This attack is known as SSDF attack or Byzantine attack, it is
described by figure 3.2.

Almost all related papers classify this issue as a sensing attack, but we consider
it as a decision attack because it threatens the decision process after receiving the
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Figure 3.2: The SSDF attack

sensing reports. We present in the following paragraph the proposed solutions
which can be classified into three categories, along with some related works:

3.4.1.1 Reputation based Approaches

These approaches consist in assigning suspicion levels to the cognitive nodes. If
the suspicion level of any node exceeds a certain threshold, it is marked as mali-
cious and removed from decision process. However, this method assumes that the
base station has prior knowledge about the activities of attackers which is not very
common. Without such information, the thresholds are approximated, resulting in
significant false detections of attackers. In table 3.3, we present and discuss diverse
proposed approaches to solve this problem.

3.4.1.2 Data Mining Approaches

Using these approaches, the fusion center have to intuitively interpret the received
sensing report to decide to discard it if it is from a stealthy attacker. An abnormality
detection in the reported data mining is used in [46] as approach to detect indepen-
dent attackers. This approach starts by representing the history of reports of each
CR by a point in the space. Then, it calculates the Hamming distance between each
pair of two CRs and declares the presence of attackers when the distance deviates
from a normal level. However, when attackers collaborate, they can successfully
evade this detection approach.

More robust approaches can analyze particular pieces of sensing reports using
a biweight estimate and median absolute deviation to calculate magnitudes, which
are then compared against thresholds to identify the attackers [47]. The proposed
method increases missed detections when using incorrect static thresholds because
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inaccurately identified CRs could be excluded from the decision process. The cor-
rect setting of the detection thresholds can only be achieved with prior knowledge
of attacker distribution which is unlikely to be available.

The detection of abnormal sensing reports can be combined with the verifica-
tion of CRs locations, as proposed in [48]. In this reference, spatial correlation of
the received signal strength among CRs is exploited to get the evidence whether the
received signal strength is consistent with the location from where it is generated.
Then, Dempster-Shafer theory is used to filter out abnormal reports by combin-
ing the evidence collected from the spatial correlation algorithm in each sensing
period.

3.4.1.3 Artificial Intelligence Approaches

The decision process is susceptible to long-term manipulations caused by the ex-
tension of malicious inaccurate information which become a historical fact. To
avoid the propagation of corrupted reports, learned values should be updated auto-
matically by certain level of common sense. The authors in [7] proposed the use of
swarm behavior in determining a global decision on whether a sensed signal was
actually generated by a malicious user, along with a trust-based scheme.
The SSDF attack requires sending a falsified sensing report to the FC leading to
wrong decision, but an attacker can also maximize his own gain (in the transmis-
sion power or in the spectrum access) by a simple manipulation of his utility func-
tion, as described in the following attack.

3.4.2 Biased utility function attack

The CR should adjust its transmission parameters according to the environment,
such as its center frequency, bandwidth, power, modulation type, coding rate, chan-
nel access protocol, encryption type and frame size. According to [49], the radio
might have three goals: low energy consumption, high data rate, and high secu-
rity. Each of these goals has a different weight, which leads to a different objective
function for each application.

The strategy of the biased utility function attack is the following: a malicious
user can manipulate the transmission parameters to make the FC decision biased
towards its benefit. For example, if a malicious user tweaks its utility function
to transmit at higher power, it will result in other users getting less bandwidth.
Some CRs may not even get to transmit. A scenario presented in [49] consists
in an objective function composed of transmission rate (R) and security (S). An
attacker may reduce the transmission rate by launching a jamming attack and hence
reducing the overall objective function. Then, the CR will be forced to use a low
security level and therefore it will be easily hacked. This attack is also known as
objective function attack and belief-manipulation attack.

Game theory can be exploited to model utility function problems. For example,
in [50], the authors propose an objective function to adjust CRs transmission power
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with the constraint that the interference temperature due to the CRN transmissions
on the incumbent receivers is below a given threshold. The problem is formulated
as a public game and nash equilibrium solutions for a global optimum determines
the transmit powers of the CRs.

There have been only few effective methods of mitigating objective function
attacks. The paper [51] suggested defining thresholds for each of the adjustable
parameters, so communications would be prevented when one or more of the pa-
rameters does not respect its predefined threshold. A secure spectrum decision
protocol for a clustered infrastructure based network is proposed in [52]. In this
solution, the spectrum decisions are made periodically and independently in each
cluster. The suggested protocol consists of three steps: (1) Each node should com-
municate with the cluster head (CH) to join the decision process. It generates a
sequence of symmetric keys using iterative application of a hash function to some
initial value. The CH checks the authenticity of the message using the public key
related to each node, then it stores the identity of the node and the related informa-
tion if the verification is successful. The CH sends back a signed message including
information about communication parameters such as the time/frequency schedule
for submitting sensing data and available channels for ordinary communication.
(2) The accepted nodes in each cluster send their spectrum sensing data to the CH
using the key chain generated in the joining operation to protect the authenticity of
the sensing information. The CH verifies the authenticity of the received messages
to use it in the final decision. (3) The CH makes the decision and sends back the
final channel assignment to the nodes of its cluster.

In this section, we have reviewed the common attacks to the spectrum decision
function in cooperative CRNs. These attacks are harmful to cooperative military
CRNs, such as in a scenario with coalition forces. It can lead to interferences
with incumbent transmitters and prevent the efficient and secure spectrum access
because of wrong decisions.

3.5 Spectrum Sharing Attacks and countermeasures

Generally, the management of the spectrum needs CCCs to coordinate the DSA
and to exchange control messages such as local sensing reports. However, military
CRNs may operate in dynamic spectrum-scarce and hostile environment. There-
fore, CCCs could not be constantly availables to CRs for control message exchange
and could be susceptible to malicious behavior such the jamming and saturation at-
tacks.

3.5.1 Common Control Channel jamming attack

Cooperative CRNs use common control channels to achieve spectrum sharing.
However, this channel is susceptible to jamming and saturation attacks. Jamming
the control channel can disrupt the communication among CRs, resulting in packet
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losses and sensing delays which may degrade the system performance. It can even
lead to DoS, once the CCC is saturated by attackers. Among common approaches
to mitigate CCC jamming attack, we find cross-channel control messages, random
key distribution, channel hopping, intrusion defense strategies and game theory
based solutions.

3.5.1.1 Cross-channel control messages

Using this defense approach, CRs continue to transmit on the jammed channel
under interference to deceive the attacker and notify others about the new CCC for
receiving control messages. As a result, the channels for transmitting and receiving
control messages can be different to maintain the control message exchange with
neighbors under jamming [53].

3.5.1.2 Random key distribution to hide CCC locations

Each CR has a valid key to be able to locate the allocated CCCs by using keyed
hash functions. Any compromised node having only partial keys in the key space
will not be able to jam all the CCCs. The random CCC key assignment reduces the
risks of learning the key assignment structure from the attackers [53].

3.5.1.3 Channel hopping

The cluster heads are responsible of predetermining the hopping sequences for
common control within the clusters. During the jamming attack, CRs hop on dif-
ferent sequences and communicate throw the predetermined CCC in the designated
time slots without knowing the hopping sequences of others [54].

3.5.1.4 Intrusion defense strategies

Diverse intrusion detection techniques are exploited to mitigate the CCC jamming
attack [55]. Here some examples:
(a) Action Strategy Coordination (ASC)
This technique is used to coordinate the action strategies among the CRs to es-
tablish a CCC by the exchange of a short control message including coordination
parameters (current state, selected action and learning rate). The CRs update their
action selection strategy with their own coordination parameters and those received
from their neighbors. Such strategy increases the probability of selecting com-
monly available channels as control channels.
(b) Best-Effort Cooperative Sensing (BCS)
This technique can combat jamming attacks and enhance jamming resilience by
reducing sensing errors. BCS is a distributed cooperative sensing scheme that CRs
make the best efforts to share local sensing data with neighbors by using control
links established in the previous stage yet still valid in the current stage, and in-
dividually make sensing decisions based on any collected sensing data. Unlike
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conventional distributed sensing schemes, BCS does not require the participation
of all neighbors or multiple iterations of message exchanges.
(c) Deployment Density and Scalability
It means the deployment of CRs in a given area. Increasing the deployment den-
sity in the jamming region leads to decrease of the average distance between the
CRs while the average distance between the attacker and victims remains the same.
This results in better SINR and less effective jamming perceived at the CRs.

3.5.1.5 Game theory exploitation

The interaction between the CCC jammer and the CRs can be modeled as a game
and an optimal anti-jamming strategy may be found when the game reaches the
Nash equilibrium. For example, the authors in [55] model the interactions of intel-
ligent jammers and CRs as a stochastic general-sum game, called jamming-resilient
control channel (JRCC) game. In this scenario, the CRN selects the optimal control
channel allocation strategy by using an enhanced multiagent reinforcement learn-
ing (MARL) algorithm along with cooperative intrusion defense strategies.

Even, during a communication session, a jammer can intentionally and con-
tinuously transmit packets to prevent the CRs from exploiting the shared spec-
trum.This attack is known as intentional jamming attack.

3.5.2 Intentional Jamming attack

Malicious attackers may jam the current CR channel to make its signal-to-
interference-plus-noise ratio (SINR) below the required threshold and to prevent
it from an efficient exploitation of the spectrum. This attack can be amplified by
jamming with high power in several spectral bands. Intentional jamming is one of
the most easy attacks to happen in CRNs and can hinder both cognitive and non
cognitive network communications. It can be a dangerous attack to CR military
networks because it presents many challenges, such as the time taken to detect the
malicious user and to mitigate the attack which effects severely the network perfor-
mance and reliability. This attack can be carried out in several ways, and jammers
can be classified according to the following criteria:

• Spot/Sweep/Barrage jamming:Spot jamming consists in attacking a specific
frequency, while a sweeping jammer sweeps across an available frequency
band and a barrage jammer will jam a range of frequencies at once.

• Single/Collaborative jamming:The jamming attack can be done by a sin-
gle jammer or in a coordinated way between several jammers to gain more
knowledge about the network and to efficiently reduce the throughput of the
cognitive users.

• Constant/Random jamming:The jammer can either send jamming signals
continuously on a specific channel or alternate between jamming and sleep-
ing.
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• Deceptive/Reactive jamming:A deceptive jammer continuously transmits
signals in order to imitate a legitimate user. A reactive jammer transmits
only when it detects busy channel to cause collisions.

• Power-Fixed/Adaptive jamming: A power-fixed attack has an invariable pre-
defined power level regardless of the actual cognitive signal power and the
surrounding radio environment. An adaptive jammer can employ estimation
techniques and learning methods to adapt its transmitting power to the CR
and channel parameters.

• Static/Mobile jamming: Static jammer has a fixed location, which can be
revealed by using positioning techniques such as and ToA. A mobile jammer
constantly changes its location to escape from localization.

More details about the classification of CRN jamming strategies are given in [56].
This reference deals with the problem of spectrum coordination between CRs in
the presence of jammers.

The traditional anti-jamming solutions used in wireless networks consist in
spread spectrum techniques by the use of either frequency hopping (FH) or direct-
sequence spread spectrum (DS-SS) methods [57]. These solutions may be en-
hanced to mitigate the jamming attack in CRNs.

3.5.2.1 Frequency hopping

The CR is characterized by its ability of dynamic spectrum access which allows
opportunistic use of the spectrum. This ability can be exploited to overcome jam-
ming attacks since the CR can change its operating frequency to avoid the jammers.
However, the exploitation of frequency hopping in CRN anti-jamming approaches
present a trade-off between the resource consumption every time the CR hops from
a jammed frequency and the jamming impact if the CR keeps using the same fre-
quency even jammed.

Recently, diverse CRN frequency hopping defense strategies, were analyzed
in [58]. It presented proactive or impetuous hopping (selecting a new set of fre-
quencies at every slot, irrespective of the jamming) and reactive or conservative
hopping (unjammed users keep the same frequencies for the next slot, while the
jammed users choose a set of new unused frequencies that exclude the jammed
ones). The authors proposed a multi-tier proxy based cooperative defense strategy,
in which users form tiers to exploit the temporal and spatial diversity to avoid jam-
ming. The jammer’s success was based on selecting a channel to jam, that is in use
by a regular node. To increase its chances of success, it might use the approach
of equal power partial band spoofing, by distributing its transmit power budget
among multiple randomly selected channels. The authors started by computing the
effect of a single jammer on a single receiver, then summed the jamming signal
strengths to compute the total interference as the collaborative jammers distribute
their transmit power budget over multiple channels.
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The behaviors of the CR, doing transitions between available frequencies, and
the jammer, trying to prevent it from efficiently utilizing the spectrum, can be mod-
eled using game theory. In this context, several works have been using game mod-
els and learning algorithms to find optimal anti-jamming strategy for the CR. For
example in [59], the authors model the CRN jamming scenario as zero-sum game
because of the opposite CR and jammer objectives. Furthermore, they implement
the minimax-Q learning algorithm to find the optimal defense policy. Recently,
the problem is formulated as a non-zero-sum game in [60], by taking into account
different hopping and transmission costs, as well as diverse reward factors for both
the transmitter and the jammer side. Authors make use of fictitious play learning
algorithm to learn optimal defense strategy.

3.5.2.2 Direct-sequence spread spectrum (DSSS)

This spread spectrum technique consists in spreading the signal over several pieces
of non-overlapping channels. It can be exploited as an anti-jamming technique be-
cause the jammer will have to choose either to jam a large number of channels with
negligible jamming effect in each one or to jam only few channels with important
effect. The authors, in [61], proposed an uncoordinated spread spectrum technique
that enables anti-jamming broadcast communication without predefined shared se-
crets. They aimed to improve the common spread spectrum which depends on
secret pairwise or group keys shared between the sender and the receivers before
the communication, to adapt it for critical applications such as emergency alert
broadcasts and military communications.

A random channel sharing was proposed, in [62], for broadcast CR commu-
nication to mitigate the insider jamming attack which resist to spread spectrum
techniques. Spread spectrum has long been an effective technique to mitigate jam-
ming attacks. However, in broadcast communication characterized by many re-
ceivers, once the attacker compromises a single receiver, he can discover which
channels are in use and directly block those channels. The proposed idea is to
organize receivers into multiple broadcast classified trusted/suspicious groups and
use different channels for different groups. This ensures that a compromised re-
ceiver can only affect the members of the group it has been assigned to. A ’divide
and conquer’ strategy is then used to isolate malicious receivers. The receivers are
adaptively regrouped if the attacker launches a jamming attack so that the benign
nodes are more likely to be merged into the trusted group, and the traitors are more
likely to be included in a number of smaller suspicious groups. The random chan-
nel sharing improve the group-based approach by dynamically assign channels to
groups such that different groups will randomly share their assigned channels. The
data sent over the shared channel can reach more than one group, saving substan-
tial communication cost. The receivers themselves do not know if their channels
are shared with other receivers. Therefore, if a given channel is jammed and this
channel is only assigned to one receiver, that receiver will be considered as one of
the insiders. Thus, no matter when the insider chooses to jam the channel, there
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is a chance that he will be detected and removed from future channel assignments.
This scheme requires each receiver to listen to one channel at a time, instead of
multiple channels.

3.5.2.3 Other anti-jamming techniques

In addition to approaches trying to evade the jammers, the CR can use coding tech-
niques to mitigate the effect of the jamming attack on the transmitted signal. For
example in [63, 64], a hybrid jamming mitigating approach is proposed to better
handle the effect of malicious jamming nodes in the context of fault model classi-
fications (including transmissive and omissive value faults due to the jamming at-
tack) and their respective fault handling. A transmissive fault results from delivery
of erroneous value to one or more receivers, and omissive fault results from failure
to deliver any value to one or more receiver. The presented approach is based on a
hybrid forward error correction (FEC) code defined by the concatenation of Raptor
codes (used to regain lost data due to Omissive faults through data redundancy)
and SHA-2 hash function (used to handle transmissive faults). Another coding
approach is presented in [65], the authors combine random linear network coding
with random channel hopping sequences to overcome the jamming effect on the
transmitted control packets. Their proposed algorithm is called jamming evasive
network coding neighbor discovery algorithm (JENNA).

Instead of using coding technique to repair the already jammed data, the con-
cept of honeynode has been shown in [66] to be effective in deceiving jammers
about the transmitting nodes. In this reference, a single honeynode is dynamically
selected for each transmitting period, to act as a normal transmitting CR in order
to attract the jammer to a specific channel.

Closed-form expressions to the jamming probabilities and the throughput of
the CRN under various jamming attack models, was determined in [67] using the
concept of Markov chain. Furthermore, the authors calculated the minimum and
the maximum CRN throughput expressions under jamming, along with optimiza-
tion of important anti-jamming parameters.

The authors in [59, 68, 69] use game theory to model the CRN jamming attack
and apply reinforcement learning algorithms to learn how to avoid jammed chan-
nels. Other than learning anti-jamming channel selection, the authors in [70, 71]
propose learning algorithms joining one channel selection and power control as
anti-jamming strategy. Anti-jamming strategy based on multi-channel power allo-
cation is studied in [72] using Colonel Blotto game and in [73] using a Bayesian
approach.

The jamming attack has been widely exploited as strategic maneuver in mili-
tary wireless communications. This problem has been intensively researched for
traditional wireless networks but it is still a challenging issue in CRNs.



CHAPTER 3. THREATS IN COGNITIVE RADIO CONTEXT 27

3.6 Spectrum Mobility Attacks and countermeasures

The CR have to vacate the current channel whenever it detects an activity of the
incumbent user in the same channel. In order to establish smooth communication
as soon as possible, the CR needs to select a new appropriate channel, and move
immediately. This process is called spectrum mobility or hand-off.

An attack during spectrum mobility consists in forcing the CR to do handoff in
wrong moment disturbing higher layers functions like routing protocols or security
mechanisms. This problem is still less researched and most works are based on the
assumption of successful handoffs. In this section, we enlist the common spectrum
mobility attacks and we propose directions to future countermeasures.

3.6.1 Routing information Attack

A routing information attack is initiated when a malicious node causes spectrum
handoff in the victim node just before it exchanges the routing information. During
spectrum mobility, the victim node stops all ongoing communication, vacates the
spectral band, opportunistically selects a new spectrum for transmission, scans the
entire spectrum band to identify the neighboring nodes and informs them of the
new frequency. Only, after all these operations, the CR can exchange the updated
routing information with its neighbors. Until this period any path that goes through
the victim node and its neighbors uses stale routing information.

One proposed solution to this attack is collision-free resident channel selection
based solution. It consists in selecting a resident channel by each node from the
available channel set during network initialization. It then broadcasts this selection
with its neighbors. Nodes are expected to receive any updates on the resident
channel. However, this protocol requires that each cognitive node is equipped with
two half duplex transceivers with one waiting on the resident channel for a request
of control message exchange, and the other using the data transmission channel
[74].

3.6.2 Key Depletion Attack

Despite cryptographic measurements, the security of military CRNs could be de-
graded significantly with the important number of handoffs due to malicious issues.
Frequent spectrum handoffs result in multiple sessions needed for any given appli-
cation, and hence large number of cryptographic keys is used at the beginning of
every transport layer session. Therefore, the probability of using the same key
twice will increase. Key repetitions can be exploited to break the cipher system.

For example, the wired equivalent privacy and the temporal key integrity pro-
tocols used in IEEE 802.11 link layer are vulnerable to key repetition attacks [75].
The counter cipher mode with block chaining message authentication code proto-
col is designed to exponentially delay key repetitions. It offers enhanced security
compared to TKIP by using 128-bit keys with a 48-bit initialization vector. It takes



CHAPTER 3. THREATS IN COGNITIVE RADIO CONTEXT 28

128 bit key blocks of data through the AES encryption standard and uses WPA1
and WPA2 to allow for a quick handoff cipher block [76].

The security of the spectrum mobility function is still a challenging issue and
an interesting road of research. Other security measurements should be added to
the cryptographic algorithms to enhance the resistance against the handoff process
attacks.

3.7 Discussion

The exploitation of CRs in complex scenarios such as in a military ad hoc deploy-
ment requires a high focus on the cognitive engine, since simple spectrum access
algorithms may be vulnerable to malicious activities such as IE attack during SS,
FC attacks for centralized spectrum decision, spectrum handoff attacks and the
jamming attack. According to the bibliographic study presented in this chapter,
game theory has been exploited to model the interaction between the attacker and
the CR and helps to find a solution to each attack.

Let us compare the presented attacks in terms of both harmfulness of each at-
tack and knowledge requirements to launch the malicious activity:
1-The IE attack requires knowledge about the incumbent user to succeed in its em-
ulation, without such knowledge the attacker is said to be a jammer since it will
transmit its own jamming signal. It is said to be a selfish user if it aims to increase
its share of the spectrum resource, and a malicious attacker if on top of being self-
ish it aims also to interrupt the CRN current service.
2-The FC attacks such as SSDF and objective function attacks require that the at-
tacker is a member of the CRN (inside the network) to be able to send an acceptable
SS report to the FC or to alter the objective function.
3-The Spectrum handoff attacks are results of forcing the CR to do frequency hop-
ping, which may also results from the jamming attack, so solving the jamming
attack may reduce handoff decisions.
4-The jamming attack is easy to implement because a jammer doesn’t need to be
member of the existing network or to gather information neither about the incum-
bent network nor the CRN. The jamming attack may result in many troubles in
military CRNs, not only for the spectrum sharing function, but also for the other
steps of the cognition cycle. The potential consequences and impacts on each step
are:

• Sensing step
Through periodic spectrum sensing, the CRs are able to exploit frequency
white spaces. However, jammers may steal these resources.

• Decision step
It is not always possible to identify correctly the true legitimate user from the
jammer which leads to wrong decisions and interferences with other users.
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• Sharing step
Jammers may inject interference signal to disturb on-going communications
and may saturate the common control channel which can lead to denial of
service (DoS).

• Mobility step
Jammers may force CRs to change the operating channels, which can lead
to frequent spectrum handoff inducing QoS degradation and increasing con-
nection unreliability.

Generally, the attacker must have some information (such as the protocol or
architecture) about the network or even be part of it to carry out its attack. Since
this is difficult for the case of military communications, the choice of attack may
be reduced to the jamming attack. For that and for its harmful impacts, we choose
to work on it. The jamming attack can be also exploited in order to disturb enemy
communications or to deceive eavesdroppers.

3.8 Conclusion

In this chapter, we tried to give a broad comprehensive review of CRN attacks
along with related works with the focus on tactical military applications. We have
differently classified intrinsic CR threats according to the main functions of the
CR (sensing, decision, sharing and mobility) to better understand the effect of each
attack. Finally, we have compared the threats in terms of harmfulness and required
information, to explain our choice of studying the jamming attack.

In the reminder of this thesis, we model the interaction between the CR and a
jammer as a game. In the next chapter, we develop the optimal power allocation
for both of the players under complete information then we propose a learning
algorithm to solve real scenarios.
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Approach Description Paper
Onion peeling Reputation values based on estimations

or Bayesian statistics
[39], [40]

Weighted
sequential prob-
ability ratio
test

-Combines reputation and SPRT to iden-
tify malicious nodes
-Outperforms standard FC decision mak-
ing strategies (e.g. OR, AND) in both
minimizing missed detections and max-
imizing the correct sensing ratio.

[41]

Game theory -Zero-sum game between attackers and
the FC
-Use of minimax approach to find opti-
mal defense strategy
-KLD and error probability at the FC con-
sidered as performance metrics to charac-
terize detection performance.
-Performance limits boundaries are es-
tablished for independent and coopera-
tive attackers

[42]

Dempster-
Shafer

The trust value is based on direct and in-
direct users observations
-Degrade the impact of malicious entities
during distributed cooperative spectrum
sensing

[43]

Adaptative
reputation
based clustering
algorithm

-Clustering the nodes according to the
sensing history and initial reputations.
-Then each node is assigned a positive or
negative share based on its participation
in the final decision to adjust its reputa-
tion.
-The adjusted reputations are used to ad-
just the number of clusters for the next
step.

[44]

SVDD algo-
rithm

-SVDD is a kind of one-class classifica-
tion method based on Support Vector Ma-
chine and described by a few target ob-
jects, known as support vectors.
-It tries to construct the boundary around
the target data enclosed within a mini-
mum hyper-sphere.
-Then the algorithm votes between
trusted nodes to decide whether the spec-
trum is empty.

[45]

Table 3.3: SSDF reputation based countermeasures



Chapter 4

Optimal power allocation in
cognitive radio and jammer
games

4.1 Introduction

A cognitive radio device can adjust its power level intelligently in real time ac-
cording to the wireless environment changes. Until recently, the problem of op-
timal power allocation in CRNs has been studied to solve either the primary and
secondary users (PUs/SUs) coexistence, or the spectrum sharing between the CR
users. In both scenarios, the nodes have the same goal which consists in maxi-
mizing the same utility function (capacity, SINR, spectrum exploitation, etc) and
avoiding unintentional interference. However, the CR technology can be exploited
by malicious users to prevent the efficient management of the available frequency
bands. A jammer may be able to adjust its power allocation across tones in order
to cause maximal intentional interference and harm the communication in the most
efficient way. Game theory is a suitable model to this scenario since it studies deci-
sion making where the best course of a player’s action depends upon the decisions
made by others. Power allocation games against a jammer have been studied in
some recent works for both wireless communication networks and cognitive net-
works. Most of related papers proved the existence and uniqueness of the pure
strategy Nash equilibrium (NE) considering finite action sets without dealing with
analytic computation of the optimal strategies.

In this chapter, we start by the key terms definition and the related works. In
section 4.4, we model the interaction between a CR pair (a transmitter-receiver
pair) and a jammer as a two players zero-sum game with the transmission capacity
as the utility function. We consider that the actions of both players can be selected
from continuous sets. In section 4.5, we consider no interaction between jammer
and CR and we model their actions as two unilateral games. In each unilateral
game, we consider only one player as the unique decision maker. The other player

31
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has a fixed strategy. In section 4.6, we consider the Nash game in which some
player moves first, the other player observes the choice made and then adapts his
power allocation. The game consists in playing the two unilateral games alter-
nately until reaching the Nash equilibrium. We determine this equilibrium in terms
of pure strategy. Then, we study Stackelberg game in section 4.7 where the first
player (the leader) has knowledge of the follower’s reaction function and makes
the optimal decision reaching the Stackelberg equilibrium. Furthermore, we deter-
mine the maxmin and minmax optimal power allocations for the CR user and the
jammer under complete knowledge in finite action subsets. The simulation results
give equality of the Nash equilibrium, the Stackelberg equilibrium and the min-
max/maxmin optimal power allocations. In section 4.9, we theoretically prove the
existence and uniqueness of this equilibrium which gives the saddle point of the
considered two-person zero-sum game. In section 4.10, we derive the analytical
expressions for the optimal strategies characterizing the saddle point, under the as-
sumption that all the channels are exploited by both players. Finally, we provide
and discuss all the simulation results in section 4.11.

4.2 Key terms

This chapter is based on game theory and uses key terms such as waterfilling that
will be defined as follows.

• Game theory

It provides mathematical models of both conflict and cooperation between ra-
tional decision makers where the outcome of one player depends on the others’
actions. The model includes: the players, the actions (or strategies) set and the util-
ity function of each player. Cooperative games deal with logical decision making
between allied players to gain collective payoffs. Non-cooperative games model
individual participants’ payoffs analyzing Nash equilibrium which corresponds to
the solution of the game and specifies the equilibrium strategies of the players. The
NE corresponds to a stable state in which no player can gain from unilaterally de-
viating from its strategy. A pure strategy NE is a deterministic NE that specifies
the optimal action for each player among its set of actions, but a mixed strategy
NE assigns a probability to the available actions of each player. When the gain of
one player results in loss for the other one, the model is said to be zero-sum game.
When players may choose a strategy from continuous strategy sets, the game is said
to be continuous. More details about game categories are given in [77]. We adopt a
non cooperative game-theoretic model to study the power allocation problem since
the CR users and the jammer are rational and selfish, each player is interested in
maximizing its own utility. A pure strategy NE to the power allocation CR and
jammer game should specify the optimal power allocation for each player.
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• Waterfilling

It is an optimal multi-channel power allocation technique providing closed
form solution for capacity maximization [78]. The term waterfilling is used since
the communication medium looks like a water container with an uneven bottom
and each channel is like a container section having its own depth. Power allocation
over the available channels is similar to water pouring into the container, as given
in figure 4.1. The allocated power to each channel depends on its noise level with
respect to the total power defining the water level.

Figure 4.1: Waterfilling definition

4.3 Related works

Diverse works deal with the power allocation problem in cognitive radio networks
without considering malicious users; In [79], the goal is to maximize the weighted
sum effective capacities of the SUs in the presence of PUs. The authors deter-
mined the optimal power allocation through a convex optimization method using
Lagrangian functions with respect to Karush Kuhn-Tucker (KKT) conditions. The
authors in [80] studied the impact of channel correlation on the optimal power
allocation strategy. Multiple input single output antenna techniques and antenna
selection techniques are studied in [81] to combat the interference constraint and
improve the capacity of the SU. The problem in [82], is modeled as a partially
observable Markov decision process (POMDP) and the optimal policy is derived
for relay selection, channel access, and power allocation through a dynamic pro-
gramming approach. In order to maximize its transmission rate, each SU in [83]
applies a waterfilling scheme and uses the greedy asynchronous distributed inter-
ference avoidance algorithm to solve the mutual interference problem. The ap-
proach is based on the dynamic adjustment of the number of used frequencies by
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each user. The problem of power and chunk-based resource allocation is inves-
tigated in [84] to maximize the energy efficiency of a multi-carrier CRN. Using
Dinkelbach method from non-linear fractional programming and dual optimiza-
tion method, the authors developed an iterative algorithm to optimize both of the
power allocation and chunk-based resource allocation.

Considering non-cooperative game against a jammer, the power allocation
problem has been studied in [85] for MIMO radar system and in [86–90] for
wireless communication networks with diverse utility functions such as the SINR,
transmission capacity and number of successful channel access. In [85], the in-
teraction between a smart target and a smart MIMO radar is modeled as a two-
person zero-sum game. The unilateral, hierarchical, and symmetric power alloca-
tion games are studied based on the information set available for each player, and
the equilibrium solutions are derived. In [86] and [87], Altman proved the existence
and uniqueness of NE considering the transmission capacity as the utility function.
To develop the closed form analytic expressions of the optimal power allocations,
in the first paper [86] he proposed an algorithm based on the bisection method. In
the second paper [87], he converted the problem to a minimax problem since the
NE strategy of a zero-sum game is equal to the optimal minimax strategy [91], and
he considered the particular case of proportional channel fading coefficients faced
by both the jammer and the transmitter. [89] paper can be considered as a gen-
eralization of Altman’s work to a game scenario between K users and a jammer.
The authors develop a generalized version of the iterative waterfilling algorithm
whereby all of the users and also the jammer update their power allocations in a
greedy manner in order to maximize their respective utilities. Considering finite
strategy sets for both the transmitter and the jammer, the authors in [90] prove
the existence of NE in pure (deterministic) strategies and characterize the optimal
power allocations in asymptotic regimes over independent parallel Gaussian wire-
tap channels where a legitimate transmitter and a legitimate receiver communicate
in the presence of an eavesdropper and a jammer.

The power allocation interaction between a jammer and a CR user were studied
in [72, 73, 92]. The problem is presented in [72] as Colonel Blotto game where
the two opponents distribute limited resources over a number of battlefields with
the payoff equal to SINR, and the equilibrium is derived in terms of mixed (prob-
abilistic) strategy via power randomization. Likewise, the authors in [73] adopt
a Bayesian approach in studying the power allocation game between the CR user
and the jammer, and provide the Cumulative Distribution Functions (CDFs) of the
transmission powers that should be adopted by the CR user and the jammer at NE
to optimize the utility function equal to the number of successful transmissions.

4.4 System model

We consider that the CR user has the capacity of accessing multiple frequency
bands at the same time with a limited power budget. This scenario is possible
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for example by using the OFDM modulation. Each jammer is also assumed to
be able to inject interference to all channels which is known as barrage jamming.
The scenario is given in figure 4.2. The CR user adopts the ’listen-before-talk’

Figure 4.2: Scenario of CR jamming attack

rule, that is, sensing for spectrum opportunities at the beginning of each time slot.
We consider M available channels, it allocates a power pk ≥ 0 to each channel
k∈ [1,M ] such that:

M∑
k=1

pk ≤ P (4.1)

An action of the CR user is designed by the vector p= (p1, · · · , pk, · · · , pM ) in
order to maximize its transmission capacity subject to (4.1) with P as the total
power. At the same time, the jammer injects power jk ≥ 0 to the channel k such
that:

M∑
k=1

jk ≤ J (4.2)

An action of the jammer is designed by the vector j= (j1, · · · , jk, · · · , jM ) in
order to minimize the transmission capacity of the CR user, subject to (4.2) with
J as the total power. We use nk to denote the noise variance of channel k, hk
and gk to denote the complex gains of channel k for the CR user and the jammer
respectively. We assume that all channel gains are common knowledge to both
players, and we consider that the M channels are parallel Gaussian channels.
The Shannon capacity is proportional to

F (p, j) =
M∑
k=1

log2(1 +
|hk|2pk

|gk|2jk + nk
). (4.3)

We consider F(p, j) (−F (p, j)) the utility function of the CR user (the jammer).
The CR user is trying to maximize its total transmission capacity over the available
channels and the jammer is trying to minimize this capacity, so their interaction
can be seen as a two person zero-sum game. Provided that each element of the
vectors p and j can take any value in [0, P ] and [0, J ], we have continuous set of
actions for the two players.
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In the remainder of this chapter, we will study diverse scenarios of the game
between the two players to find the optimal power allocations. All simulations are
grouped in section 4.11.

4.5 Unilateral games

We start by considering the two following extreme cases where only a player (the
CR or the jammer) has to decide how to allocate his total power against an opponent
having a fixed strategy.

4.5.1 CR user Unilateral Game

If the jammer’s strategy is fixed, the game degenerates to a classical power allo-
cation problem where the CR user chooses its power according to the noise plus
jamming level in order to maximize the capacity. Mathematically, it can be formu-
lated as the following nonlinear optimization problem:

maximize
p

M∑
k=1

log2(1 +
|hk|2pk

|gk|2jk + nk
)

subject to
M∑
k=1

pk ≤ P

(4.4)

Allowing inequality constraints, the KKT approach generalizes the method of
Lagrange multipliers to nonlinear programming. The Lagrangian is then,

L(p, j, λ) =
M∑
k=1

log2(1 +
|hk|2pk

|gk|2jk + nk
)− λ(

M∑
k=1

pk − P ) (4.5)

Since L is separable in pk, we can separately optimize each term.

∂L

∂pk
=

|hk|2

|hk|2pk + |gk|2jk + nk
− λ (4.6)

The optimal solution of this optimization problem yields the following strategy

p∗k = (
1

λ
−Nk)

+ (4.7)

known as waterfilling strategy, where 1
λ is the waterlevel. The KKT multiplier

λ> 0 can be found by bisection and should satisfy∑
k

(
1

λ
−Nk)

+ = P, (4.8)
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where (x)+ = max(0, x) and Nk is the fictive noise power on each channel given
as

Nk =
|gk|2j∗k + nk
|hk|2

(4.9)

Note that to find the optimal solution, the CR needs to know the channel gain gk
between the jammer and the receiver CR. In practical cases, this information is not
known. This remark is valid for all the following sections.

4.5.2 Jammer Unilateral Game

On the other hand, suppose that the CR user has a fixed power allocation strategy.
The game degenerates to a jamming unilateral optimization, as the CR user is not
aware of this. In such a circumstance, the jammer will allocate its jamming power
to minimize the total capacity. Mathematically, this is expressed as the following
minimizing problem

minimize
j

F (p, j)

subject to
M∑
k=1

jk ≤ J
(4.10)

We can write the Lagrangian as

L(j, µ) = −F (p, j)− µ(
∑M

k=1 jk − J) (4.11)

Since L is separable in jk, we can separately minimize each term as shown below

∂L

∂jk
=

|gk|2|hk|2pk
(|hk|2pk + |gk|2jk + nk)(|gk|2jk + nk)

− µ (4.12)

After solving the resulting second order equation in jk, we get the optimal solution

j∗k
=

(
1

2

√
(
|hk|2pk
|gk|2

)2 + 4
|hk|2pk
|gk|2µ

− |hk|
2pk

2|gk|2
− nk
|gk|2

)+

(4.13)

where the KKT multiplier µ is the solution of

M∑
k=1

j∗k ≤ J (4.14)

and can be found by bisection.
Unlike the CR user who uses the waterfilling strategy, the jammer applies a

different strategy to dynamically allocate its power (as given in equation (4.13)).
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4.6 Nash game

After solving the optimization problems independently for the CR user and the
jammer, we consider here a sequential-moves game in which both the CR user and
the jammer make decisions but sequentially. In game theory, a game is said to be
sequential if the players choose their actions in a consecutive way and the latter
player requires information about the former. The main issue is the convergence
of this continuous game to a Nash equilibrium at which no player has interest in
changing the power allocation. The theoretical proof of existence and uniqueness
of the NE is shown in section 4.9, according to references [93] and [94].

Since p∗ maximizes F (p, j∗) and j∗ minimizes F (p∗, j), we alternatively deter-
mine the CR user’s power for a given jamming action, then compute the minimiz-
ing jamming power for the CR user’s action. That is starting with an initial value
j0, we perform a bisection to determine p. Then for this p, compute the vector j
which minimizes F (p, j) and these two steps will be repeated.

This game implements the two unilateral games presented in section 4.5 in an
iterative way until convergence to a fixed power allocation per channel within a
specific tolerance ε. The CR user applies the waterfilling strategy, we proceed by
bisection until reaching the value of λ corresponding to the allocation of the total
CR user’s power (equation (4.7)). For the jammer, we exploit another strategy
and we proceed by bisection until reaching the value of µ corresponding to the
allocation of the total jamming power (equation (4.13)).

4.7 Stackelberg game

In the previous section, we have considered a sequential-moves game played over
time which is usually applied either when the rules of the game are unknown or
when directly solving is difficult [95]. In this section we will consider a sequential
one-shot game known as a Stackelberg game, in which the leader should anticipate
the follower’s reaction function in order to alleviate the worst case. Subsequently,
the follower observes the action taken by the leader and plays an unilateral game.
The solution for this scenario is known as Stackelberg equilibrium and can be found
by backward induction. We start by determining the action of the follower, then
we derive that of the leader. We will start by a scenario in which the jammer is the
leader, then we will solve the game in which the CR user is the leader.

4.7.1 The jammer as the leader

In this scenario, the jammer knows the reaction function of the CR user which is
given in equation (4.7), and he should use it to substitute pk in his minimizing
problem (equation (4.10)) to find his optimal power allocation.
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Replacing pk with the expression (4.7), we get:

log2(1 +
|hk|2pk

|gk|2jk + nk
) = log2(1 +

|hk|2
λ − |gk|2jk − nk
|gk|2jk + nk

)

= log2(
|hk|2

λ(|gk|2jk + nk)
)

(4.15)

We should get the expression of λ as a function of jk. For that, the jammer have to
consider the following constraint:

M∑
k=1

pk = P, (4.16)

which results in,

M∑
k=1

(
1

λ
− |gk|

2jk + nk
|hk|2

) = P. (4.17)

So, we obtain

λ =
M

P +
∑

k
g2kjk+nk

h2k

, (4.18)

and the minimizing problem of the jammer becomes

minimize
j

M∑
k=1

log2(
|hk|2(P +

∑
k
g2kjk+nk

h2k
)

M(|gk|2jk + nk)
)

subject to
M∑
k=1

jk ≤ J

(4.19)

Since the utility function is no longer separable in jk, we can no longer derive
the Lagrangian expression independently for each jk. To solve this optimization
problem, the jammer can apply a one dimensional exhaustive search over his pos-
sible power allocations to find the optimal vector j minimizing this new capacity
expression, since it is no longer function of (p, j), it is only a function of j. Then,
the CR user (as follower) has to exploit the available information about the jam-
mer’s power allocation in order to maximize his total capacity. Hence, he plays the
unilateral game described in subsection 4.5.1.

4.7.2 The CR as the leader

In this scenario, the CR user knows the reaction function of the jammer which
is given in equation (4.13), and he should use it to replace jk in his maximizing
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problem (4.4) to find the optimal power allocation.
To simplify, we replace jk with U(pk) which is equal to the expression (4.13):

U(pk) =
1

2

√
(
|hk|2pk
|gk|2

)2 + 4
|hk|2pk
|gk|2µ

− |hk|
2pk

2|gk|2
− nk
|gk|2

. (4.20)

Subsequently, we get as new utility function:

log2(1 +
|hk|2pk

|gk|2jk + nk
) = log2(1 +

|hk|2pk
|gk|2U(pk) + nk

). (4.21)

In U(pk) we have a Lagrangian parameter which is µ that depends in pk and we
should determine its closed form expression. For that, we have to solve the equa-
tion

M∑
k=1

U(pk) = J (4.22)

Even it is a complicated equation especially because µ is inside the square root, we
can remark that µ is function of all the pk, ∀ k ∈ [1,M ] so the utility function of
the CR user is not separable in pk and we can’t derive it with respect to each pk
independently.
The maximizing problem (4.4) of the CR user becomes

maximize
p

M∑
k=1

log2(1 +
|hk|2pk

|gk|2U(pk) + nk
)

subject to
M∑
k=1

U(pk) = J

subject to
M∑
k=1

pk ≤ P

(4.23)

We solve this maximizing problem through exhaustive search over all possible
power allocations p that respect the second constraint. We start by determining
µ for each possible p through bisection with respect to the first constraint, then
using this µ value we calculate the corresponding utility function. The optimal
power allocation p∗ corresponds to the maximizer of this function. For the jammer
(as follower), we implement the expression (4.13) found in the jammer unilateral
game since he can observe the CR user’s power allocation.

4.8 Optimal solution: minmax/maxmin strategies

Here we consider the perfect scenario of complete knowledge and we define finite
action sets for the two players. The minmax search is especially known for its use-
fulness in calculating the best move in two-player games where all the information
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is available. Each player in this game, knows that its strategy will be intercepted
by its opponent. By considering conservativeness and rationality assumptions of
the Minimax theorem [96], each player may adopt the strategy which can alleviate
the worst case. This means that the strategy of the jammer is the minimizer to the
maximum payoff of the CR user, it is also the minimizer to his own maximum loss
(since the game is zero-sum). likewise, the CR user’s strategy is the maximizer to
the worst case (i.e. maximize the minimum payoff of the CR user). So, neither the
CR user nor the jammer will profit when changing its strategy and moving from
the equilibrium.

4.8.1 The CR user’s maxmin strategy

Consider that the jammer is able to sense the CR user’s power allocation and that
the CR user is aware of it. Then, a conservative CR user may select its strategy
based on the following optimization problem:

maximize
p

minimize
j

F (p, j)

subject to
M∑
k=1

pk ≤ P,

M∑
k=1

jk ≤ J,

p > 0, j > 0,

(4.24)

to maximize the capacity in the worst case (i.e. in the situation where the jammer
plays the strategy which cause the greatest harm to the CR user).

4.8.2 The jammer’s minmax strategy

The CR device possesses sufficient interception capacity that it can sense inter-
ference, due to its wideband spectrum sensing capacity. If the jammer behaves
in a conservative way, he will distribute his power as to minimize the possible
maximum capacity, which corresponds to solving the two-stage optimization prob-
lem [97],

minimize
j

maximize
p

F (p, j)

subject to
M∑
k=1

pk ≤ P,

M∑
k=1

jk ≤ J,

p > 0, j > 0

(4.25)
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We implemented this scenario using exhaustive search over a finite set of pos-
sible power allocations. We calculate a matrix of capacity values, its rows are the
possible jammer’s power allocations and its columns are the CR user’s power al-
locations. For the CR user’s maxmin, we determine a row of minimum capacity
values over all the rows, and finally we determine the column corresponding to
the maximum value in this row of minimums. And for the jammer’s minmax, we
determine a column of maximum capacity values over all the columns, and finally
we determine the row corresponding to the minimum value in this column of max-
imums.

We have presented the jamming game in diverse scenarios (unilateral, Nash,
Stackelberg, minmax/maxmin) and studied the equilibrium of each one. Before
providing the simulation results (section 4.11), we will prove theoretically the ex-
istence and uniqueness of the pure strategy equilibrium for this game (section 4.9)
and give its closed form expression (section 4.10).

4.9 Proof of the existence and uniqueness of the equilib-
rium in pure strategies

In this section, the jamming scenario is described as a two-player zero-sum game
with continuous action sets. The existence of Nash Equilibrium can be proved from
the properties of the action sets and the utility functions:

• The action sets, [0, P ]M and [0, J ]M are non-empty convex and compact.

• The utility functions are continuous in (p, j).

So, this game is said to be a continuous game for which the NE is guaranteed [98],
but we have to determine if the NE exists in pure strategies or mixed strategies.

4.9.1 Existence of Nash equilibrium in pure strategies

According to the definition of quasi-convex and quasi-concave utility functions
given in [99], the utility function F (p, j) is quasi-concave in p and quasi-convex in
j.

We can conclude that we have a non-empty compact convex action sets and
the utility function is continuous, quasi-concave in p and quasi-convex in j. Then
according to [98, 100],

supp∈Ainfj∈BF (p, j) = infj∈Bsupp∈AF (p, j), (4.26)

which is equal to the optimal value of the game. So, this game has a Nash equilib-
rium in pure strategies.

The uniqueness of the NE issue with continuous action sets will be proved by
verifying the sufficient condition of diagonally strictly concavity, given in [93].
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4.9.2 Uniqueness of the Nash equilibrium in pure strategies

Let’s define the pseudo-gradient vector [101]

gr(p, j) =
[
∇puCR(p, j),∇juJx(p, j)

]T (4.27)

Where, uCR and uJx are respectively the utility functions of the CR user and the
jammer verifying: uCR = −uJx = F (p, j) and their gradient vectors are

∇puCR(p, j) = ∇pF (p, j) =

[
∂F

∂p1
, · · · , ∂F

∂pk
, · · · , ∂F

∂pM

]T
(4.28)

and

∇juJx(p, j) = −∇jF (p, j) = −
[
∂F

∂j1
, · · · , ∂F

∂jk
, · · · , ∂F

∂jM

]T
(4.29)

Let G(p, j) denote the Jacobian of the pseudo-gradient gr(p, j). To justify the
diagonally strictly concavity (DSC) condition, we have to prove that the symmetric
matrix (G(p, j) + GT (p, j)) is negative definite for all possible (p, j), which is a
sufficient condition [93], GT is the transpose of the matrix G.

G(p, j) is 2M ∗2M matrix, in which the firstM columns are the partial deriva-
tives of gr(p, j) with respect to the M elements of the vector p and the second M
columns are its partial derivatives with respect to the vector j, so we can represent
the matrix G = (glc)1≤l,c≤2M using four M ∗M sub-matrices

G(p, j) =

[
[A][B]
[C][D]

]
(4.30)

let’s give the expressions of these sub-matrices, using l to denote the row index and
c for the column index

• ∀1 ≤ l, c ≤M , (the submatrix A)

glc = alc =
∂2F (p, j)
∂pl∂pc

=

 −
(

h2l
h2l pl+g

2
l jl+nl

)2
if c = l

0 else

(4.31)

• ∀M + 1 ≤ l, c ≤ 2M , let’s x = l −M and y = c−M , (the submatrix D)

glc = dxy = −
∂2F (p, j)
∂jx∂jy

=

{
−h2xg

2
xpx(2g

2
x(g

2
xjx+nx)+h2xg

2
xpx)

(h2xpx+g
2
xjx+nx)2(g2xjx+nx)2

if x = y

0 else

(4.32)
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• ∀M + 1 ≤ l ≤ 2M and 1 ≤ c ≤M , let’s x = l −M , (the submatrix C)

glc = cxc = −
∂2F (p, j)
∂jx∂pc

=

{
h2xg

2
x

(h2xpx+g
2
xjx+nx)2

if c = x

0 else

(4.33)

• ∀1 ≤ l ≤M and M + 1 ≤ c ≤ 2M , let’s y = c−M , (the submatrix B)

glc = bly =
∂2F (p, j)
∂pl∂jy

=

 −
h2l g

2
l

(h2l pl+g
2
l jl+nl)2

if y = l

0 else

(4.34)

As we can see from these expressions, all the four sub-matrices are diagonal ma-
trices, we also have B = −C < 0, A < 0 and D < 0. Now we can calculate
the symmetric matrix (G(p, j)+GT (p, j)) and determine if it is a negative definite
matrix.

G(p, j) + GT (p, j) =

[
[2A] [B + C]

[B + C] [2D]

]
=

[
[2A] [0]
[0] [2D]

]
(4.35)

Since the diagonal sub-matrices A and D are negative definite, we can conclude
that (G(p, j) + GT (p, j)) is a negative definite matrix, which is sufficient to prove
the condition of diagonally strictly concavity. So, this game has a unique NE.

In two-person zero-sum game, this unique equilibrium equals the Saddle Point
of the game [102], which is the subject of the following section.

4.10 Closed form Expression of the Saddle Point

The saddle point is so called because if we represent the payoff values as a matrix,
the equilibrium value is the minimum in its row and the maximum in its column,
this value is the value of the game, and the players’ actions are the row and column
that intersect at that point. This description of the saddle-point refers to a saddle sit
on a horse’s back at the lowest point on its head-to-tail axis and highest point on its
flank-to flank axis [103]. As example, we determine in figure 4.6 the saddle point
of this game over two flat fading channels.

The saddle point of this game corresponds to the optimal power allocations for
both the jammer and the CR. The explicit solution to this game allows the CR to
study the jamming strategy and to proactively use the corresponding optimal anti-
jamming power allocation. Computing the closed form of the saddle point through
exhaustive search over all the possible power allocations of the two players turns
out to be hard to do in terms of resource and time consumption. It turns out that
it is possible to develop its analytical expression under certain condition, we will
start by the general case before presenting the conditions.
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4.10.1 General case

Based on the equations (4.6) and (4.12) given to solve each player’s decision prob-
lem, a vector of powers (p, j) constitutes the saddle point if and only if there are
KKT multipliers λ and µ such that [104]:

∂F

∂pk
=

|hk|2

|hk|2pk + |gk|2jk + nk
= λ (4.36)

and

∂(−F )
∂jk

=
|gk|2|hk|2pk

(|hk|2pk + |gk|2jk + nk)(|gk|2jk + nk)
= µ (4.37)

Equation (4.36) gives the expression of pk as

pk =
1

λ
− nk + |gk|2jk

|hk|2
(4.38)

Now we replace pk in (4.37) by the expression (4.38) to find jk

jk =
|hk|2

λ|gk|2 + µ|hk|2
− nk
|gk|2

(4.39)

If jk ≥ 0, we can replace jk in (4.38) to get the expression of pk

pk =
µ

λ

|hk|2

λ|gk|2 + µ|hk|2
(4.40)

So, we can give the equilibrium strategies closed forms for k ∈ [1,M ]

pk =


µ
λ

|hk|2
λ|gk|2+µ|hk|2

if nk
|hk|2

< |gk|2
λ|gk|2+µ|hk|2

1
λ −

nk
|hk|2

if |gk|2
λ|gk|2+µ|hk|2

≤ nk
|hk|2

< 1
λ

0 if nk
|hk|2

> 1
λ

(4.41)

and

jk =


|hk|2

λ|gk|2+µ|hk|2
− nk
|gk|2

if nk
|h|2 <

|gk|2
λ|gk|2+µ|hk|2

0 if nk
|hk|2

≥ |gk|2
λ|gk|2+µ|hk|2

(4.42)

To simplify and explain these power allocation expressions, we define a new pa-
rameter τk = λ+ µ |hk|

2

|gk|2
. We get ∀k ∈ [1,M ]

pk =


µ
λ

|hk|2
λ|gk|2+µ|hk|2

if nk
|hk|2

< 1
τk

1
λ −

nk
|hk|2

if 1
τk
≤ nk
|hk|2

< 1
λ

0 if nk
|hk|2

> 1
λ

(4.43)
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and

jk =

{
|hk|2
|gk|2

(
1
τk
− nk
|hk|2

)
if nk

|h|2 <
1
τk

0 if nk
|hk|2

≥ 1
τk

(4.44)

We can draw the following three cases controlled by the three power levels: 1
λ

related to the CR, 1
τk

related to the jammer and nk
|hk|2

related to the noise:

• (a) Since 1
τk
< 1

λ , ∀k ∈ [1,M ], a bad channel for the CR ( nk
|hk|2

> 1
λ ) is also

a bad channel for the jammer ( nk
|hk|2

> 1
τk

). The jammer does not attack a
channel which is not occupied by the CR, i.e. if pk = 0 then jk = 0

• (b) In channels verifying 1
τk
≤ nk
|hk|2

< 1
λ , the CR succeeds to transmit

without being jammed; i.e. pk > 0 and jk = 0, these channels are considered
unfavorable for the jammer. It avoids these channels may be because of low
gk values which may force it to send with very high power to achieve the
CR attack. A solution for the jammer to minimize the number of channels
verifying this condition (since it can be considered as favorable opportunity
for the CR), is to be close to the receiver node in order to get high gk values
and so 1

τk
≈ 1

λ .

• (c) If nk
|hk|2

< 1
τk

, the channel is considered good for the two players and so
occupied by both the CR and the jammer.

We provide in figure 4.7 an example covering these three situations.

4.10.2 Case all channels are used by both the CR and the jammer

Under the assumption that the jammer and the CR use all the channels (pk, jk >
0, ∀ k ∈ [1,M ]), which means |gk|2

λ|gk|2+µ|hk|2
≥ nk
|hk|2

, then we can give the power
allocation closed forms at the NE for k ∈ [1,M ] pk = µ

λ
|hk|2

λ|gk|2+µ|hk|2

jk = |hk|2
λ|gk|2+µ|hk|2

− nk
|gk|2

(4.45)

The power allocations should respect the conditions (4.1) and (4.2) which give
µ
λ

∑M
k=1

|hk|2
λ|gk|2+µ|hk|2

= P∑M
k=1

|hk|2
λ|gk|2+µ|hk|2

−
∑M

k=1
nk
|gk|2

= J
(4.46)

it gives the following relation between λ and µ

λ

µ
=
J +

∑M
k=1

nk
|gk|2

P
(4.47)
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so, we can replace µ in pk, and λ in jk to get
pk = 1/λ

(
1 + |gk|2

|hk|2
J+
∑ nk

|gk|2

P

)
jk = 1/µ

1 + |gk|2
|hk|2

(
J+
∑ nk

|gk|2

)
P

− nk
|gk|2

(4.48)

Using the conditions (4.1) and (4.2), we get the closed form expressions of λ and
µ 

λ =
∑M

k=1 1/
(
P + |gk|2

|hk|2

(
J +

∑ nk
|gk|2

))
µ = 1

J+
∑ nk

|gk|2

∑M
k=1 1/

1 + |gk|2
|hk|2

(
J+
∑ nk

|gk|2

)
P

 (4.49)

Finally, replacing λ and µ in (4.48) gives the closed form expressions of the power
allocations at the NE, and the following relation

jk =
J +

∑ nk
|gk|2

P
pk −

nk
|gk|2

(4.50)

This analytical result will be compared in section 4.11 with the NE found by sim-
ulation through playing iteratively the unilateral games.

4.10.3 Case of proportional fading channels

Now, let’s consider the particular case studied in [87] of proportional fading coef-
ficients,

gk = βhk,∀k ∈ [1,M ] (4.51)

we define

τ = λβ+ µ (4.52)

So, the expression of λ in (4.49) becomes

λ =
M

P + β(J +
∑M

k=1
nk
|gk|2

)
(4.53)

Replacing λ in (4.48) results in pk = P
M

jk =
J+
∑M

k=1
nk

|gk|2

M − nk
|gk|2

(4.54)

which brings us to the same conclusion as [87] about uniform power allocation; i.e.
if the jammer tries to jam all the channels, then the optimal anti-jamming strategy
for the CR is to allocate its power equally over the channels, under the assumption
of proportional fading coefficients.
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4.11 Simulation results and discussion

In the following simulations, we consider the system model of section 4.4 and the
game scenarios respectively described in the previous sections (unilateral, Nash,
Stackelberg, minmax/maxmin). Furthermore, we compare the simulation results
to the analytical expression and we end the section by the saddle point illustra-
tion. We suppose that there are M = 4 available channels, the noise level vector
equals n = (0.25, 0.75, 0.9, 1.1), P = 10 and J = 10 are the total power re-
spectively for the CR user and the jammer, the channel coefficients are given by
h = (0.9, 1.1, 1.2, 1.3) and g = (0.7, 0.8, 1, 1.2).

4.11.1 CR user unilateral game

To implement the solution of the CR user unilateral game described in subsec-
tion 4.5.1, we consider the fictive noise level in every channel as given by the
expression (4.9). We proceed by bisection until reaching the maximum water level
corresponding to the allocation of the total power of the CR, as illustrated by fig-
ure 4.3-(a).

As a fixed jamming action, we consider j = (2.5, 2.5, 2.5, 2.5). The waterfill-
ing strategy of the CR user results in p∗ = (2.9053, 2.7842, 2.3652, 1.9453) and
a capacity C= 4.4254. Figure 4.3-(b) gives the total received power per channel
(k ∈ [1, 4]) in terms of noise (nk), jamming signal (|gk|2jk) and CR user’s signal
(|hk|2pk).

Let us compare the total transmission capacity resulting from the application
of the waterfilling strategy to the result of using flat power allocation. If the CR
user assigns a power level pk = P

M to each channel k ∈ [1,M ], the total capacity
will be equal to C = 4.4073 which results in a payoff loss compared to the optimal
waterfilling strategy.

(a) Waterfilling (b) The received power

Figure 4.3: CR user unilateral game
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4.11.2 Jammer unilateral game

To implement the jammer unilateral game described in subsection 4.5.2, we pro-
ceed by bisection and we calculate the sum of the allocated powers to all the chan-
nels (using equation (4.13)) until reaching the value of µ corresponding to the
allocation of the total jamming power J .

Under the same conditions as the above simulation, we consider that the CR
user’s power allocation is fixed to p = (1, 2, 3, 4). The reaction of the jammer is
given by j∗ = (2.0723, 2.2849, 2.7064, 2.9364) and the resulting capacity is equal
toC = 4.0979. From this result, note that the jammer pursues the CR user in terms
of power allocation. It assigns a higher power to the channels having higher CR
user’s power. The received power per channel is given in figure 4.4.

Under the scenario of imperfect knowledge of the opponent’s strategy and the
channels gain coefficients, the trivial solution for the jammer would be a flat power
allocation. The resulting capacity for the CR user will be C = 4.1217 which
is higher than the result of applying the described technique based on bisection.
Hence, the jammer using flat power allocation loses in terms of payoff since his
goal is to minimize the CR user’s total transmission capacity.

Figure 4.4: Jammer unilateral game

4.11.3 Nash game

The Nash game scenario between the CR user and the jammer, described in sec-
tion 4.6, consists in playing iteratively the two unilateral games presented in sec-
tion 4.5 until convergence to almost fixed power allocation per channel within a
specific tolerance ε = 1e− 15.

Considering the same conditions as the previous games, we find at
the convergence to the NE j∗ = (2.9625, 2.5073, 2.3574, 2.1729), p∗ =
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(2.602, 2.7568, 2.4407, 2.2005) and C = 4.4017. Figure 4.5 gives the received
power per channel, at the NE. Contrary to the CR user who allocates higher power
to the less occupied channels, the jammer allocates higher power to the more oc-
cupied channels since he tries to minimize the CR user’s payoff.

Figure 4.5: The strategies at the NE

4.11.4 Stackelberg game: Jammer as the leader

As described in subsection 4.7.1, we consider that the jammer is the leader and
knows the explicit expression of the CR user’s reaction function. To implement this
game, the jammer does one dimensional exhaustive search over its possible power
allocations to find the optimal power allocation j∗ which minimizes the CR user’s
transmission capacity. The CR user, playing as follower, determines its optimal
power allocation p∗ by using equation (4.7) found in the CR user unilateral game
since he can observe the jammer’s startegy. We found the same power allocations
and the same capacity value as for the NE. Hence, the jammer playing as a leader
with knowledge about the reaction function of the opponent finds the same optimal
jamming strategy compared to the scenario of playing in iterative way by only
observing the instantaneous action of the opponent.

4.11.5 Stackelberg game: CR user as the leader

We consider the Stackelberg game described in subsection 4.7.2. The CR user is
the leader and knows the reaction function of the jammer. Hence, the CR user does
exhaustive search over all its possible power allocations p to find the optimal power
allocation p∗ maximizing its transmission capacity. The jammer, as follower, uses
the expression (4.13) found in the jammer unilateral game since it can observe
the CR user’s power allocation. Also for this scenario, we find the same power
allocations and the same capacity value as the result found at the NE.
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According to the simulation results of both Stackelberg games (with the jam-
mer or the CR user as the leader), neither the leader wins due to the knowledge of
the opponent’s reaction nor the follower loses compared to the Nash game.

4.11.6 Minmax/maxmin optimal solutions

We consider the same parameters considered in the previous simulations to find
the NE and the SE. Here, we determine the optimal solutions with the help of the
characteristics of the solution found at the NE, otherwise the exhaustive search
will be difficult to launch in continuous action sets. We limit the research to the
interval [2, 3] where we have found the NE and we consider a step of 0.01. We
found the maxmin CR user’s power allocation: pmaxmin = (2.6, 2.76, 2.44, 2.2)
with Cmaxmin = 4.4017, and the minmax jammer’s power allocation jminmax =
(2.96, 2.51, 2.36, 2.17) with the capacity Cminmax = 4.4017.

Comparing the simulation results, we can note that the optimal values found by
exhaustive search under the assumption of finite action subsets and a step of 0.01,
give a very near approximation to the power allocations at the NE found in the
continuous action sets. Accordingly, the power allocations at the Nash equilibrium
and at the Stackelberg equilibrium are equal to the optimal minmax/maxmin power
allocations.

4.11.7 Comparing analytical saddle point to the NE

Let’s start by replacing the parameters (|h|2, |g|2,n, P, J,M) in the analytical ex-
pressions of subsection 4.10.2. According to the optimal power allocations given
by the expressions (4.48) and (4.49), we get j = (2.9625, 2.5073, 2.3574, 2.1729)
and p = (2.602, 2.7568, 2.4407, 2.2005). Which results in a payoff value of
C = 4.4017. This analytical result equals the simulation result of the Nash game.

4.11.8 Saddle point example

Just to illustrate the concept of saddle-point, we consider M = 2 flat fading chan-
nels with gain coefficients hk = gk = 1, ∀k ∈ [1,M ]. We choose P = 30 and
J = 20 as the total power for the CR and the jammer respectively. We consider
only finite sets of power allocations with steps of 1, so pk ∈ {0, 1, 2, · · · , P} and
jk ∈ {0, 1, 2, · · · , J}. We have implemented this scenario in Matlab using the
exhaustive search over the finite set of possible power allocations. We calculated a
matrix of capacity values, its rows are the possible jammer’s power allocations and
its columns are the CR’s power allocations. We found the optimal maxmin CR’s
power allocation: p∗ = (15, 15) corresponding to the column number 16, and op-
timal minimax jammer’s power allocation j∗ = (10, 10) corresponding to the row
11. Figure 4.6 illustrates this saddle point given by the indexes of p∗ and j∗.
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Figure 4.6: The saddle point for two channels

4.11.9 Nash equilibrium in the general case

To cover the general case detailed in subsection 4.10.1, we consider the system
model described in figure. 4.2 with M = 4 parallel Gaussian channels, P = 10
and J = 10 as the total CR’s and jammer’s powers in watts, the background noise
over the four channels n = (2, 0.75, 0.9, 1.1) and the channel gain coefficients
h = (0.1, 1.1, 1.2, 1.3), g = (0.7, 0.8, 0.1, 1.2).

After convergence of the iterative game to almost fixed power alloca-
tions with tolerance ε= 1e − 10, we get j = (0, 5.704, 0, 4.296) and p =
(0, 2.5543, 5.5661, 1.8797). Which results in a payoff value of C = 4.5978 with
1
λ = 6.1911 and µ = 0.06. Figure 4.7 gives the received power due to the noise,
jammer and CR’s powers in each channel at the NE.

We can see that in channel 1, pk = jk = 0 since n1
|h1|2 >

1
λ which corresponds

to the case (a) in paragraph 4.10.1. Channel 3 receives pk > 0 but jk = 0, since
1
τ3
< n3
|h3|2 <

1
λ which corresponds to case (b). Channels 2 and 4 corresponds to

case (c) since nk
|hk|2

< 1
τk

which results in pk > 0 and jk > 0.

4.12 Conclusion

In this chapter, we have exploited the CR capacities of simultaneous multi-
frequency access and dynamic power allocation as the anti-jamming strategy. We
have modeled the interaction between the two players, using different strategies to
dynamically update their power allocations, as a zero-sum game with continuous
action sets. Then, we have considered different game scenarios, for which we have
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Figure 4.7: The strategies at the NE in general case

determined the NE, SE and the optimal minmax/maxmin power allocations. The
simulation results have given equality between the solutions of all the considered
game scenarios. We have proved theoretically that this game has a unique equilib-
rium which is equal to the saddle point given in closed form, under the assumption
that both the CR and the jammer are using all the channels (i.e. pk, jk > 0, ∀
k ∈ [1,M ]).

To solve the presented game and find the optimal power allocation strategies,
we have considered complete information for both the CR and the jammer. Un-
der this assumption, each player has all relevant information with which to make
a decision in each step of the game. But in real scenario the players has no in-
formation about the required parameters to calculate their optimal strategies. To
overcome this problem, in the next chapter we exploit the CR capacity of learning
and reasoning to develop an anti-jamming technique under incomplete informa-
tion. The proposed learning algorithm will be applied as a jamming solution in
terms of channel selection before adapting it to the multi-channel power allocation
game.



Chapter 5

Learning based anti-jamming
technique

5.1 Introduction

The cognitive radio capacities of sensing and learning can be exploited to deal
with the lack of information required to make suitable decisions. The Q-learning
is a common model-free reinforcement learning (RL) algorithm applied in CRN
jamming study to deal with incomplete knowledge about the environment [105–
107]. Differently from work available in literature, we aim to provide a modified
version of the Q-learning algorithm to speed up the training period and to make
it appropriate for on-line learning. The proposed anti-jamming algorithm will be
applied for one channel selection, then generalized for the the multi-channel game
presented in the previous chapter.

We start by defining the key terms: Markov Decision Process (MDP) and
Q-learning algorithm, before providing the proposed learning algorithm in sec-
tion 5.3. The channel selection application is presented in section 5.4. We present
each component of the MDP modeling the problem in the presence of fixed jammer
and we adapt the proposed algorithm to solve it. During learning, the CR tries to
maximize its long term return which combines, into the Q-values, the sequence of
rewards related to the visited states and taken actions. In section 5.5, we propose an
ameliorated reward function to stay as long as possible in the same channel without
being jammed.We evaluate the effectiveness of the modified Q-learning algorithm
in the presence of different jamming strategies. We present and compare also the
learned anti-jamming strategies related to the two proposed reward functions. In
section 5.6, the proposed learning algorithm is adapted to the multi-channel power
allocation game. We start by considering fixed jamming strategy to compare the
learned anti-jamming strategy to the solution of chapter 4, based on waterfilling.
Then, we will consider the scenario of a jammer using Q-learning algorithm to
minimize the total transmission capacity of the CR. We compare the result with
the Nash game of the previous chapter obtained under the assumption of complete

54
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channel information for both of the CR transmitter and the jammer.

5.2 Key terms

5.2.1 The Markov decision process

The MDP is a discrete time stochastic control process. It provides a mathemat-
ical framework to model the decision problem faced by an agent to optimize his
outcome. The goal of solving the MDP is to find the optimal strategy for the con-
sidered agent. In CRN jamming scenario, it means finding the best actions (to hop
to a different channel or to stay) for the CR to avoid the jammed frequency.
A MDP is defined by four essential components:

• A finite set of states {S0, · · · , SN}.

• A finite set of actions {a1, · · · , aM}.

• Pa(S, S′) = Pr(St+1 = S′|St = S, at = a) the transition probability from
an old state S to a new state S′ when taking action a.

• Ra(S, S′) the immediate reward after transition to state S′ from state S when
taking action a.

The process is played in a sequence of time slots t= 0, 1, 2, · · · . At every slot,
the agent being in one state selects an action to move to a new state with the cor-
responding transition probability. The agent receives a payoff, also called reward,
which depends on the current state and the taken action. He continues to play until
finding the optimal policy, which is the mapping from states to actions that max-
imizes the state values. The standard family of algorithms used to calculate this
optimal policy requires storage of two arrays indexed by state:

• State value V (S), which contains a real value corresponding to the dis-
counted sum of the rewards received when starting from each state.

• Policy π(S) which gives the action taken in every state.

Every MDP has at least one optimal policy π∗ that is stationary and deterministic.
π∗ is called stationary since it does not change as a function of time and it is called
deterministic since the same action is always chosen whenever the agent is in one
state S. At the end of the algorithm, π∗ will contain the optimal solution and V (S)
will contain the discounted sum of the rewards to be earned by following that policy
from state S.

Markov decision processes can be solved via dynamic programming (DP)
when we have complete knowledge about transition probabilities and the reward
of every action. However in real situations of dynamic environment and incom-
plete knowledge about transition probabilities and rewards, MDP is solved using
RL algorithms [105].
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DP techniques require an explicit, complete model of the process to be con-
trolled. It is known as model based techniques, since we have to reconstruct an
approximate model of the MDP and then solve it to find the optimal policy. The
most popular DP techniques is the value iteration algorithm which consists in solv-
ing the following Bellman equation until convergence to the optimal values V ∗(S),
from which we can derive the corresponding optimal policy:

Q(S, a) = Ra(S, S
′) + γ

∑
S′

Pa(S, S
′)V ∗(S′) (5.1)

V ∗(S) = maxaQ(S, a) (5.2)

where γ is the discount factor that controls how much effect future rewards have
on the optimal decisions. Small values of γ emphasizing near-term gain and larger
values giving significant weight to later rewards. Equation (5.1) is repeated for
all possible actions in each state S. It calculates the sum of the immediate re-
ward Ra(S, S′) of the taken action and the expected sum of rewards over all fu-
ture steps. Then, equation (5.2) gives the optimal action which corresponds to the
maximum V (S) value. The value iteration algorithm reaches convergence when
|Vt+1(S)− Vt(S)| < ε is met for all states S, where Vt(S) corresponds to the
calculated V (S) value at time slot t.

However, in real scenarios the CR is acting in hostile and dynamic environment
without complete information. It doesn’t know either the resulting new state after
taking an action or the reward/cost of its action. For example, hopping to another
frequency may lead to jamming situation or successful transmission. This situa-
tion can be defined as a RL problem, in which an agent wanders in an unknown
environment and tries to maximize its long term return by performing actions and
receiving rewards [106]. Therefore, the CR should use learning algorithms to learn
incumbent user’s and jammer’s activities. After learning the jammers’ policy, it
can predict the next action of the jammer and plan its own next course of action to
avoid jammed channels.

5.2.2 The Q-learning algorithm

Learning algorithms can be used as a model-free simulation tool for determining
the optimal policy π∗ without prior information about the action rewards and the
transition probabilities. Autonomous RL is completely based on interactive expe-
rience to update the information step by step and derive an estimate of the optimal
policy. The most popular RL method is the Q-learning algorithm, which is an ex-
tension to the value iteration algorithm to be applied in non deterministic Markov
decision processes.

As first introduced in [107], the Q-learning algorithm is a simple way for agents
to learn how to act optimally by successively improving its evaluations of the qual-
ity of each action. It consists in approximating the unknown transition probabilities
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by the empirical distribution of states that have been reached as the process unfolds.
The goal is finding a mapping from state/action pairs to Q-values. This result can
be represented by a Q-matrix of N rows, where N is the number of states S, and
M columns corresponding to possible actions a. The Bellman equation (5.1) is
replaced in this algorithm by an iterative process; at every time slot the algorithm
measures the feedback rewards of taking an action a in a state S, and updates the
corresponding Q(S, a):

Q(S, a)← Q(S, a) + α
[
Ra(S, S

′) + γ maxxQ(S′, x)−Q(S, a)
]

(5.3)

which gives:

Q(S, a)← (1− α)Q(S, a) + α
[
Ra(S, S

′) + γ maxxQ(S′, x)
]

(5.4)

where 0 <α ≤ 1 is a learning rate that controls how quickly new estimates are
blended into old estimates. The Q-value is a prediction of the sum of the dis-
counted reinforcements (rewards) received when performing the taken action and
then following the given policy thereafter. It can be considered as a measure of the
goodness of that action choice.

The Q-learning algorithm updates the values ofQ(S, a) through many episodes
(trials) until convergence to stationaryQ∗ values (|Qt+1(S, a)−Qt(S, a)| < ε, for
all state S and action a); this is known as the training/learning stage of the algo-
rithm. Each episode starts from a random initial state S0 and consists of a sequence
of time slots during which the agent goes from state to another and updates the cor-
responding Q value. Each time the agent reaches the goal state, which have to be
defined depending on the scenario, the episode ends and he starts a new trial. The
convergence to the optimal Q∗ matrix requires visiting every state-action pair as
many times as needed. In simulation, this problem is known as the exploration
issue. Random exploration takes too long time to focus on the best actions which
leads to a long training period of many episodes. Furthermore, it does not guaran-
tee that all states will be visited enough, as a result the learner would not expect
the trained Q function to exactly match the ideal optimal Q∗ matrix for the MDP
[108]. The training phase of the Q-learning process is described in algorithm 1
[109].

Two main characteristics of the standard Q-learning algorithm are: (i) it is
said to be an asynchronous process since at each time slot the agent updates a
single Q(S, a) value (one matrix cell), corresponding to his current state S (row
S) and his action a (column a) taken at this time slot [110]. (ii) The Q-learning
method does not specify what action a the agent should take at each time slot during
the learning period, therefore it is called OFF-policy algorithm allowing arbitrary
experimentation until convergence to stationary Q values [111]. The optimal Q∗

matrix resulting from the learning period will be exploited by the agent as the best
policy. During the exploitation phase, when he is in a state S, he has to take the
action corresponding to the maximum value in the matrix line Q∗(S, :).

An off-line application of this technique seems to be inefficient for the CR, be-
cause until the convergence of the Q-learning algorithm other jammers may emerge
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Algorithm 1 Pseudocode of the Q-learning algorithm
1: Set the γ parameter and the matrix R of environment rewards.
2: Initialize the Q matrix to zero matrix.
3: while Not convergence do
4: Select a random initial state S = S0.
5: while The goal state hasn’t been reached do
6: Select one action a among all possible actions for the current state.
7: Using this possible action, consider going to the next state S′.
8: Get maximum Q value for this next state based on all possible actions

maxa(Q(S′, a)).
9: Update the Q(S, a) value using equation (5.4)

10: Set the next state as the current state S = S′.
11: end while
12: end while

and legacy spectrum holders (primary users) activity may change. During the train-
ing phase of the Q-learning algorithm, the CR can already exploit the communica-
tion link, denoted as on-line learning, but it may lose many data packets because
of the random learning trials.

In [112], a decentralized Q-learning algorithm is proposed to deal with the
problem of aggregated interference generated by multiple CRs at passive primary
receivers. Furthermore, it is implemented in the cognitive architecture Clarion to
represent implicit learning and it is also incorporated into the cognitive architec-
ture Soar [15, 16]. Moreover, [68] and [69] study the Q-learning algorithm to
solve the CR jamming problem. In the first paper, the authors start by deriving a
defense strategy for the CR using an MDP model under the assumption of com-
plete knowledge, in terms of transition probabilities and rewards. Further, they
propose two learning schemes for CRs to gain knowledge of adversaries to handle
cases of incomplete knowledge: maximum likelihood estimation (MLE), and an
adapted version of the Q-learning algorithm. However the modified Q-learning al-
gorithm is given without discussion or simulation results. The second paper gives
a MDP model of the CRN jamming scenario and proposes a modified Q-learning
algorithm to solve it. Again, as in the previous reference, no details are given on
how to implement the described theoretical anti-jamming scheme.

We have explained the MDP and the Q-learning algorithm tools commonly
used to model and solve the CRN scenario under static jamming strategy. The
CR can apply the Q-learning algorithm to learn the jammer’s behavior, but it has
to wait for a long training period before getting the optimal anti-jamming strat-
egy. Moreover, as the CR has to try random actions before the convergence of the
Q-learning algorithm, it is not suitable to do learning in an operational commu-
nication link because the CR may lose many transmitted packets. As a solution
to these challenges, we propose in the next section a modified version of the Q-
learning algorithm denoted ON-Policy Synchronous Q-learning (OPSQ-learning)



CHAPTER 5. LEARNING BASED ANTI-JAMMING TECHNIQUE 59

algorithm.

5.3 ON-Policy Synchronous Q-learning (OPSQ-learning)

We present in algorithm 2, a modified version of the Q-learning process denoted
as the OPSQ-learning, because of the two following modifications: (i) We have
replaced the OFF-policy characterizing the standard Q-learning algorithm by an
ON-policy, i.e. at each time slot, the CR follows a greedy strategy by selecting the
best action corresponding tomaxxQ(S, x) instead of trying random action. (ii) We
have exploited the CR ability of doing wideband spectrum sensing [113–115], to
do synchronous update of M Q-values instead of the asynchronous update of only
one cell in the Q matrix, i.e. after moving to a next state, the CR can detect the
frequency of the jammer at that moment, using its wideband sensing capability, and
hence do an update of all state-action pairs, corresponding to the possible actions
which can be taken from its previous state S (update all columns of the Q matrix
line Q(S, :)).

We have to mention that we are assuming perfect spectrum sensing and full ob-
servations for simplicity. But we cite some interesting references dealing with the
influence of the radio channel in the estimation of the detected signal. For exam-
ple, [116] develops and analyzes an adaptive spectrum sensing scheme according
to the variation of time-varying channels, [18] studies the cooperative spectrum
sensing for a cognitive radio system operating in AWGN, correlated/uncorrelated
shadowing, and in channels featuring composite large-scale and small scale fading.
Also, [117] provides a comprehensive overview of the propagation channel models
that will be used for the design of cognitive radio systems and deals with the time
variations of the channel response which determine how often potential interfer-
ence levels have to be estimated and, thus, how often transmission strategies may
have to be adapted.

In the rest of this chapter, the proposed algorithm will be applied to solve the
jamming attack in terms of channel selection before being generalized to the multi-
channel power allocation game.

5.4 Learning based channel selection

We consider a fixed jamming strategy to solve the decision making problem from
the side of the CR trying to find an anti-jamming strategy. Assume there are M
available channels for the CR and there is a jammer trying to prevent it from an
efficient exploitation of these channels. As a defense strategy, the CR have to
choose at every time slot either to keep transmitting over the same channel or to
hop to another one. The challenge is to learn how to escape from jammed channels
without sacrifying a long training period to learn the jammer’s strategy. We will
start by defining a Markov decision process to model the CR’s available states and
actions, with the consideration of unknown transition probabilities and unknown
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Algorithm 2 Pseudocode of ON-policy synchronous Q-learning (OPSQ-learning)
1: Set the γ parameter and the matrix R of environment rewards.
2: Initialize the Q matrix to zero matrix.
3: while Not convergence do
4: Select a random initial state S = S0
5: while The goal state hasn’t been reached do
6: Select the best action a verifying maxaQ(S, a)
7: Using this action, consider going to the next state S′.
8: Get maximum Q value for this next state based on all possible actions

maxa(Q(S′, a)).
9: Update all the Q(S, :) values using equation (5.4)

10: Set the next state as the current state S = S′.
11: end while
12: end while

immediate rewards of the taken actions. Then, we will adapt the OPSQ-learning
algorithm to solve the defined MDP model.

The state of the CR is defined by a pair of parameters: S = (fTX , n), where
fTX is its operating frequency associated to that state and n is the number of
successive time slots using this frequency. We have opt for mixing spatial and
temporal properties in the state space definition to consider the CR staying in the
same channel more than one time. At every state, the CR should choose an action
to move to another state, which means that it has to choose its future frequency.
Therefore, we define its possible actions as a set of M actions, which are the M
available channels: {a1, a2, ..., aM}={f1, f2, ..., fM}. An example of theQmatrix
composed by these states and actions is given in Table 5.1. Under the assumption
of synchronized jammer and CR (meaning that they have the same notion of time
slot), we give a reward equal to zero Ra(S, S′) = 0 whenever the new frequency
after choosing the action a is not jammed, and Ra(S, S′) = −1 when the CR takes
an action a resulting in a jammed frequency. We consider the jammed state as a
failure and a situation that should be avoided.

We present in algorithm 3, an adaptation of the OPSQ-algorithm to solve the
described MDP model under incomplete information about the jammer. In this sce-
nario, our episode starts from a random frequency, going from one state to another
by taking the best action available at every time slot, and ends whenever the CR
goes to a jammed frequency.

The next subsection presents the simulation results in the presence of various
jamming strategies.

5.4.1 Simulation results

We have considered in the simulations four available frequencies (M = 4) for
the CR. We have implemented both the standard (algorithm 1) and the modified
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Algorithm 3 Channel selection using OPSQ-learning
1: Set the γ parameter and initialize the rewards to zero values.
2: Initialize the Q matrix to zero matrix.
3: while Not convergence do
4: Select a random initial state S = S0 and set timeslot = 1
5: while The goal state hasn’t been reached do
6: Calculate the learning coefficient α = 1/timeslot
7: Select the best action a verifying maxaQ(S, a) and corresponding to fre-

quency f ′.
8: Using this action, consider going to the next state S′.
9: Detect the jammed frequency fJX %(due to wideband spectrum sensing)

10: Update all the Q(S, :) values, associated to the state S, by doing:
11: for i = 1 :M do
12: Observe the fictive state Stmp of taking fictive action fi
13: if fi = fJX then
14: Rfi(S, Stmp) = −1
15: else
16: Rfi(S, Stmp) = 0
17: end if
18: Update Q(S, fi) = (1 − α)Q(S, fi) + α[Rfi(S, Stmp) +

γ maxaQ(Stmp, a)]
19: end for
20: Set the next state as the current state S = S′ and increment timeslot =

timeslot+ 1.
21: end while
22: end while

(algorithm 3) versions of the Q-learning algorithm, under sweeping, reactive and
pseudo random jamming strategies.

We started by the implementation of the standard version of Q-learning al-
gorithm. We found, by averaging over many simulations, that it takes about one
hundred episodes to converge to the matrix Q∗. Then, we have implemented the
modified Q-learning version (OPSQ-learning) and we give the results in the fol-
lowing paragraphs. The following figures display the anti-jamming strategy in the
exploitation phase, after running the learning algorithm. We are using the red color
to indicate the jammed frequencies and the blue color to indicate the CR frequen-
cies.

5.4.1.1 Scenario with a sweeping jammer

As a first scenario, we consider a jammer sweeping over the available spectrum
frequencies by attacking at each time slot one frequency. The OPSQ-learning algo-
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rithm converges after only one or two episodes. TheQ∗ matrix is given in table 5.1.
The strategy given by this resulting Q∗ matrix is shown in figure 5.1 starting from
the frequencies f2 and f3 respectively. Being in f1 for the first time (the first row
of the Q matrix), the CR takes the first action (selects the column) having the max-
imum Q value which results in staying in frequency f1. Due to this decision, the
CR moves to the state (f1, 2) (the second row of the Q matrix). Being in this state,
the best action corresponds to staying in the same frequency and results in the state
(f1, 3). The next best action corresponds to moving to frequency f2, so going to
the state (f2, 1). From this new state, the first maximum Q value corresponds to
frequency f1. So, the CR stays three time slots in frequency f1 before moving to
f2 from which he returns to f1 and so on, as illustrated by figure 5.1.

State \ Action f1 f2 f3 f4
(f1,1) 0 0 -0.8356 0
(f1,2) 0 0 0 -0.6768
(f1,3) -0.5770 0 0 0

...
...

...
...

...
(f2,1) 0 -0.3822 0 0

...
...

...
...

...
(f3,1) 0 -1 0 0

...
...

...
...

...
(f4,1) 0 0 0 0

...
...

...
...

...

Table 5.1: The Q∗ matrix in a sweeping jammer scenario

5.4.1.2 Scenario with a reactive jammer

In this scenario, we consider a reactive jammer. We assume that this jammer needs
a duration of two time slots before jamming the detected frequency, because it
has to do the spectrum sensing, then make the decision and finally hop to the de-
tected frequency. The OPSQ-learning algorithm converges in this scenario after
four episodes. The Q∗ matrix is given in table 5.2. According to the resulting Q∗

matrix, the CR succeeds to learn that it has to change its operating frequency every
two time slots to escape from the reactive jammer. The learned strategy is given in
figure 5.2 when the CR starts respectively from the frequencies f2 and f3 as initial
state S0.

5.4.1.3 Scenario with a pseudo random jammer

In this scenario, we consider a jammer with a pseudo random strategy. We as-
sume that at every time slot, this jammer attacks randomly one of the four fre-
quencies, and after a period T it repeats the same sequence of the attacked fre-
quencies. We started with a period T = 5 during which the random sequence
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(a) S0 = (f2, 1) (b) S0 = (f3, 1)

Figure 5.1: Exploitation of the learned policy against a sweeping jammer

State \ Action f1 f2 f3 f4
(f1,1) 0 -0.8047 0 0
(f1,2) -0.6986 0 0 0

...
...

...
...

...
(f2,1) -1 0 0 0
(f2,2) 0 -0.6861 0 0

...
...

...
...

...
(f3,1) -1 0 0 0

...
...

...
...

...
(f4,1) -1 0 0 0

...
...

...
...

...

Table 5.2: The Q∗ matrix in a reactive jammer scenario

is (f1, f3, f2, f4, f2), we found that the OPSQ-learning algorithm converges in
this scenario after four episodes. Then, we considered a period T = 10 during
which the random sequence is (f1, f1, f4, f3, f2, f1, f3, f3, f4, f2), we found that
the OPSQ-learning algorithm converges in this scenario after five episodes. The
Q∗ matrix is given in table 5.3. The CR succeeds to learn the pseudo random strat-
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(a) S0 = (f2, 1) (b) S0 = (f3, 1)

Figure 5.2: Exploitation of the learned policy against a reactive jammer

egy of the jammer, and the learned anti-jamming strategies are given in figure 5.3
when the periods of the pseudo random jamming sequences are respectively T = 5
and T = 10 time slots.

State \ Action f1 f2 f3 f4
(f1,1) 0 -0.8235 0 -0.0882
(f1,2) 0 -0.1130 0 -0.6610
(f1,3) -0.1100 -0.5602 0 0

...
...

...
...

...
(f2,1) 0 0 -0.3236 0

...
...

...
...

...
(f3,1) -1 0 0 0

...
...

...
...

...
(f4,1) 0 0 -1 0

...
...

...
...

...

Table 5.3: The Q∗ matrix in a pseudo random jammer with a period of 5 time slots

5.4.2 Discussion

The standard Q-learning algorithm converges after about one hundred episodes;
each episode starts from a random frequency, going randomly from one frequency
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(a) T = 5 (b) T = 10

Figure 5.3: Exploitation of the learned policy against a pseudo random jammer

to another taking random decisions until collision with the jammer. The CR ap-
plying this technique have to either wait for all this training period to get an anti-
jamming strategy or to use it during real time communication and sacrifice about
hundred lost packets. The ON-policy synchronous Q-learning algorithm converges
faster than the standard Q-learning algorithm; in the simulated scenarios, it gives
a suitable defense strategy after about four training episodes against sweeping and
reactive jammers. This is due to the synchronous update of all Q-values of possi-
ble actions from a current state, which helps the CR to faster improve its beliefs
about all decisions without trying all of the actions. Furthermore, the choice of
taking at every time slot the best action promotes the real time exploitation of the
OPSQ-learning algorithm during the CR communication. But, We should mention
that the proposed OPSQ-learning algorithm doesn’t optimize the entire matrix Q,
it just optimizes the Q-values of state/action pairs that the CR goes through until
finding an anti-jamming strategy. The CR using the proposed algorithm succeeds
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to learn how to avoid the jammed channels, but as we can see in figures 5.2(b)
and 5.3, the CR does unneeded frequency switching. It means that he learned to
jump from frequency to another even if the first one will not be jammed in the next
time slot, which costs in terms of time, frequency and power consumption. This
disadvantage is due to the elected reward strategy, in which we accord a penalty
of −1 just to the choice of a jammed frequency, otherwise the CR receives zero as
reward. In the next section, we propose an ameliorated reward strategy trying to
find the optimal anti-jamming strategy.

5.5 Ameliorated reward function for channel selection

In this section, we useR1 to denote the reward function defined in the previous sec-
tion and propose another reward function denoted R2 associating a penalty of −1
not only for the choice of a jammed frequency but also for the frequency switching
without having the previous frequency attacked by the jammer. We integrate this
new reward strategy in the OPSQ algorithm given by the pseudocode 3 to get the
new learning algorithm is given by pseudocode 4.

5.5.1 Simulation results

We have implemented this new algorithm considering the same simulation param-
eters as given in subsection 5.4.1. Against a sweeping jammer we get the same
simulation results as the results given in the previous section. But against reactive
and pseudo random jammers, the CR succeeds to avoid the jammed channels with
the minimum number of frequency switching.

5.5.1.1 Scenario with a reactive jammer

The CR succeeds to learn not only that it has to change its operating frequency
every two time slots to escape from the reactive jammer, but also that starting from
frequency f3 he doesn’t need to hop to the frequency f2 as he does in figure 5.2(b).
The Q∗ matrix is given in table 5.4 and the ameliorated learned strategy is given in
figure 5.4 when the CR starts from f3.

5.5.1.2 Scenario with a pseudo random jammer

In this scenario, we consider jammers with the same pseudo random strategies
as the previous section: the same random sequence (f1, f3, f2, f4, f2) of period
T = 5 and the same random sequence (f1, f1, f4, f3, f2, f1, f3, f3, f4, f2) of pe-
riod T = 10. The CR succeeds not only to learn the pseudo random strategies of
the jammers, but with the minimum number of frequency switching actions com-
pared to figure 5.3. The Q∗ matrix is given in table 5.5. The learned anti-jamming
strategies are given in figure 5.5 when the periods of the pseudo random jamming
sequences are respectively T = 5 and T = 10 time slots.
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Algorithm 4 Channel selection using OPSQ-learning with modified reward func-
tion

1: Set the γ parameter and initialize the rewards to zero values.
2: Initialize the Q matrix to zero matrix.
3: while Not convergence do
4: Select a random initial state S = S0 and set timeslot = 1
5: while The goal state hasn’t been reached do
6: Calculate the learning coefficient α = 1/timeslot
7: Select the best action a verifying maxaQ(S, a) and corresponding to fre-

quency f ′.
8: Using this action, consider going to the next state S′.
9: Detect the jammed frequency fJX %(due to wideband spectrum sensing)

10: Update all the Q(S, :) values, associated to the state S, by doing:
11: for i = 1 :M do
12: observe the fictive state Stmp of taking fictive action fi
13: if fi = fJX then
14: Rfi(S, Stmp) = −1 % (jammed)
15: else
16: if fi = f then
17: Rfi(S, Stmp) = 0
18: else
19: if f = fJX then
20: Rfi(S, Stmp) = 0
21: else
22: Rfi(S, Stmp) = −1 % (unneeded hop)
23: end if
24: end if
25: end if
26: Compute Q(S, fi) = (1 − α)Q(S, fi) + α[Rfi(S, Stmp) +

γ maxxQ(Stmp, x)]
27: end for
28: Set the next state as the current state S = S′ and increment timeslot =

timeslot+ 1.
29: end while
30: end while

5.5.2 Comparison in terms of reward per trial

Until the convergence of the algorithm, we calculate for each trial (sequence of
time slots that ends if there is collision with the jammer) the sum of reward values
associated to each time slot. We calculate the average reward per trial for one hun-
dred executions. The OPSQ algorithm learning a safe strategy (it takes the action
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State \ Action f1 f2 f3 f4
(f1,1) 0 -0.727 -0.727 -0.727
(f1,2) -0.6287 0 0 0

...
...

...
...

...
(f2,1) -1 0 -1 -1
(f2,2) 0 -0.4164 0 0

...
...

...
...

...
(f3,1) -1 -1 0 -1
(f3,1) -1 -1 0 -1
(f3,2) 0 0 -0.75 0

...
...

...
...

...
(f4,1) -1 -1 -1 0

...
...

...
...

...

Table 5.4: The Q∗ matrix against a reactive jammer with the ameliorated reward
function

Figure 5.4: Exploitation of the optimal policy against a reactive jammer with the
ameliorated reward function

selection method into account when learning) receives a higher average reward per
trial than Q-learning as given in figure 5.6. Concerning the new reward strategy
(reward R2) with two penalties (one for being jammed and the other for extra fre-
quency switching), it results in reaching later the maximum level reward = 0 than
the algorithm using the simple reward strategy (R1: according a penalty just for be-
ing jammed), but it results in gain in terms of frequency hopping as explained in
the simulation results.
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State \ Action f1 f2 f3 f4
(f1,1) -0.4334 -0.996 -1.2795 -1.2748
(f1,2) -0.3871 -1.052 -0.9825 -0.7728
(f1,3) -0.1482 -0.7613 -0.9579 -0.9555
(f1,4) -0.6294 -0.2356 -0.1793 -0.1727

...
...

...
...

...
(f2,1) -0.643 -0.5728 -0.4717 -0.6321

...
...

...
...

...
(f3,1) -1.4148 -1.0277 -0.3695 -1.3616
(f3,2) -1.028 -1.397 -0.4091 -1.3918
(f3,3) -0.4521 -0.4877 -0.9343 -0.4569

...
...

...
...

...
(f4,1) -1.4152 -1.4481 -1 -0.3657
(f4,2) -1.3753 -0.9765 -1.3048 -0.3504
(f4,3) -0.415 -0.4296 -0.3436 -1

...
...

...
...

...

Table 5.5: The Q∗ matrix in a pseudo random jammer (5TS) with the ameliorated
reward function

(a) T = 5 (b) T = 10

Figure 5.5: Exploitation of the optimal policy against pseudo random jammers
with the ameliorated reward function



CHAPTER 5. LEARNING BASED ANTI-JAMMING TECHNIQUE 70

Figure 5.6: Comparison between the reward functions

5.5.3 Discussion

The MDP model presented in this chapter limits the convergence of the proposed
OPSQ-learning algorithm to the scenario of a synchronized jammer in terms of
time slot duration and starting time, as illustrated in all the previous figures. This
is mainly due to the state definition which is related just to the CR node and is
independent of the jammer’s behavior. The spatio-temporal state definition allows
the learning CR to stay the longest time in the same channel, but assumes that each
time the CR revisit a state, the jammer will be in the same channel for the same
period as during previous visits. Furthermore, the learning node may not detect the
jammer that may be hidden and succeeds in jamming the packets. These limits will
be addressed in the next chapter. In the next section, the proposed algorithm will
be ameliorated and adapted to the multi-channel power allocation game studied in
the previous chapter.

5.6 Learning based multi-channel power allocation game

We generalize the proposed OPSQ-learning algorithm to the multi-channel power
allocation scenario, as given by algorithm 5. We will start by considering fixed
jamming strategy (e.g. sweeping, pseudo random) before dealing with a smart
jammer using the standard version of the Q-learning algorithm.

5.6.1 CR using OPSQ-learning against fixed jamming strategy

We consider a fixed jamming strategy, which means that the jammer doesn’t change
its jamming policy during the game. Precisely, we are considering a sweeping
jammer which allocates its total power to one channel each time. We consider
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that the CR’s power pk over each channel k can be selected from K levels. The
multi-channel power allocation problem can be then modeled as a MDP with in-
complete information about the jammer and the environment. The CR is using
OPSQ-learning to learn the optimal strategy which gives the optimal power allo-
cation that it should choose in each state. We define the state by the pair (fJX ,
nb) with fJX the jammed frequency detected through wideband spectrum sensing
(WBSS) and nb the parameter indicating the number of successive occurrence of
this jammed frequency. We have opted for mixing spatial and temporal properties
in the state space definition to take into consideration a jammer staying more than
one time in the same channel.

In each time slot, the CR chooses the action a (its power allocation vector p)
which corresponds to the maximum Q value in the current state. This action is
given by the column having the maximum Q value in the row corresponding to the
current state. The CR transmits with the power levels given by the chosen action
a = p, observes the new state S′, cooperates with the receiver node to measure
the fictive noiseNk corresponding to the normalized interference and noise in each
channel

Nk =
nk + |gk|2jk
|hk|2

, (5.5)

and calculates the reward defined by the expression (5.6) inspired from the maxi-
mization problem of the previous chapter (section 4.5) to allow the comparison of
the results. The reward corresponds to the total transmission capacity

Ra(S, S
′) =

∑
k

Fk(p, j) (5.6)

where

Fk(p, j) = log2(1 +
pk
Nk

). (5.7)

Having the value of Nk, ∀k, the CR is able to do synchronous update of all the Q
values in the row corresponding to the current state S, as follows

Q(S, a) = (1− α)Q(S, a) + α[Ra(S, S
′) + γ maxxQ(S′, x)] (5.8)

5.6.2 Both the CR and the jammer using Q-learning

We consider that the powers pk, jk , for both of the CR and the jammer, in each
channel k can be selected from K levels. Their interaction in terms of multi-
channel power allocation can be modeled as a stochastic game which is a general-
ization of MDP [118]. The CR is using the OPSQ-learning as given by algorithm 5
against a jammer who is using an adapted version of the Q-learning as given by
algorithm 6. Since the jammer interacts with the CR and changes its jamming
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Algorithm 5 Multi-channel anti-jamming power allocation using OPSQ-learning
Set γ and α parameters.
Initialize the Q matrix to zero matrix.
Select a random initial action and observe the associated state S
while Not convergence do

Select the best action a verifying maxaQ(S, a) and corresponding to the
power allocation p.
Measure the fictive noise Nk in each channel by (5.5)
Transmit using the power levels of the chosen action, measure the immediate
reward as given by (5.6) and consider going to the next state S′.
Update all the Q(S, :) values, associated to the state S, by doing:
for i ∈ {the action set of the CR} do

Observe the subsequent fictive state Stmp of taking fictive action i
Observe the fictive reward Ri(S, Stmp) as given by (5.6)
Update Q(S, i) = (1− α)Q(S, i) + α[Ri(S, Stmp) + γ maxxQ(Stmp, x)]

end for
Set the next state as the current state S = S′

end while

strategy, we define the state of this interactive game by the pair (p, j) of the actions
taken by the CR and the jammer.

In each time slot, the CR chooses the action (the power allocation vector p)
which corresponds to the maximum Q value in the current state and the jammer
chooses the action (the power allocation vector j) which corresponds to the mini-
mum Q value in the current state. The two players transmit with the corresponding
powers in each channel, observe the new state S′ and calculate the immediate re-
ward given by equation (5.6). Having the value of Nk, the CR updates all the Q
values in the row corresponding to the current state S.

In this work, we consider that the jammer can measure the SINR value resulting
from its action by observing the acknowledgment packets exchanged between the
transmitter-receiver pair [119]. Then, it is able to calculate the immediate reward
and the Q value related just to the current taken actions pk and jk; i.e. even having
the capacity of WBSS, the jammer can not get the required information to update
more than one Q value.

In real scenario, the jammer doesn’t have the required information either to
apply the Q-learning algorithm or to play the Nash game (described in chapter 4).
According to its power allocation expression (4.13), the jammer needs to estimate
the CR’s power allocation pk and make assumptions about the parameters nk, hk
and gk.

A trivial solution for the jammer would be to make the assumption of flat fading
channels, otherwise he has to estimate the different channel coefficients which re-
quires extra resources. Let hk = h and gk = g, ∀k. He may consider g = 1, which
corresponds to the scenario of being near the receiver node. Also, he may neglect
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Algorithm 6 Multi-channel jamming power allocation using Q-learning
Set γ and α parameters.
Initialize the Q matrix to zero matrix.
Select a random initial action and observe the associated state S
while Not convergence do

Select the action a verifying minaQ(S, a)
Observe the immediate reward
Observe the subsequent state S′

Update the Q value: Q(S, a) = (1 − α)Q(S, a) + α[Ra(S, S
′) +

γ minxQ(S′, x)]
Set the next state as the current state S = S′

end while

the noise n. Furthermore, the jammer may consider that what he detects through
spectrum sensing is equal to transmission power p multiplied by the channel gain
h.

5.6.3 Simulation and discussion

We provide the power allocation results against a fixed jamming strategy and a
smart interactive jammer with both complete and incomplete information.

5.6.3.1 OPSQ-learning against fixed jamming strategies

In this scenario, we consider fixed jamming strategy and we will compare the anti-
jamming strategy of the CR applying the proposed OPSQ-learning to the waterfill-
ing strategy.

Let’s considerM = 3 channels. The action set of a sweeping jammer is defined
by Aj = {(J, 0, 0), (0, J, 0), (0, 0, J)} with J as the total jamming power. To
apply the OPSQ-learning algorithm, we consider four power levels for the CR:{
0, P, P2 ,

P
3

}
with P as its maximum power, so the CR may use one/two or the

three available channels and its action set is,

Ap = {(P, 0, 0), (0, P, 0), (0, 0, P ),

(
P

2
,
P

2
, 0), (

P

2
, 0,

P

2
), (0,

P

2
,
P

2
),

(
P

3
,
P

3
,
P

3
)

We consider P = J = 10 as the total CR’s and jammer’s power, the discount
factor gamma = 0.95, the learning rate α = 0.1. We will compare the learned
solution to the waterfilling solution in both flat and selective fading channels. Also,
we provide the learned solutions against other fixed jamming strategies.
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a- Comparison between OPSQ-learning and waterfilling in flat fading
channels scenario

As first case, we consider flat fading channels for both the CR and the jammer with
equal channel gain coefficients g = h = (1, 1, 1) and we consider also the same
noise level in all the channels n = (1, 1, 1). We present in figure 5.7 the average
payoff fluctuations during learning. Figure 5.8 gives the CR’s actions resulting
from the application of the learning algorithm against the sweeping jammer. The
action indexes are varying from 1 to 7 as given in the action set Ap of the CR.
According to these figures, after some collisions (in time slots 1 and 4) and some
successful transmissions during about 12 time slots, the CR learns to follow the
optimal strategy as given by table 5.6. For each action of the sweeping jammer,
we mention the index of the CR optimal action and the corresponding power allo-
cation found at the convergence of the OPSQ-learning algorithm. As given in this
table, the power allocation resulting from the waterfilling strategy equals the power
allocation learned using the proposed algorithm.

Figure 5.7: The transmission capacity over flat fading channels in the presence of
sweeping jammer
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Jx index 1 2 3

power (10,0,0) (0,10,0) (0,0,10)

OPSQ-learning index 6 5 4

power (0, 5, 5) (5, 0, 5) (5, 5, 0)

waterfilling (0, 5, 5) (5, 0, 5) (5, 5, 0)

Capacity 5.1699 5.1699 5.1699

Table 5.6: CR using OPSQ-learning/waterfilling against sweeping jammer over
flat fading channels

Figure 5.8: The learned anti-jamming strategy against sweeping jammer over flat
fading channels

b- Comparison between OPSQ-learning and waterfilling in selective
channels scenario

In this scenario, we consider selective channels for both the CR and the jammer
with the channel gain coefficients g = h = (2, 1, 3) and we consider the noise
vector n = (2, 3, 1). We have chosen these values to make channel 3 better than
channel 1 which is better than channel 2, for both the CR and the jammer.

Figure 5.9 gives the CR’s actions applying the OPSQ-learning algorithm. After
some collisions (in time slots 1 and 4) and some successful transmissions during
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about 6 time slots, the CR learns to follow the optimal strategy as given by table 5.7.
Considering the same parameters, the waterfilling solution against each action of
the jammer results in a power allocation close to the solution found by using the
OPSQ-learning algorithm; the two solutions avoid almost the same channels but
differs slightly in the allocated power levels and the payoff values. This difference
is due to the number of possibilities (i.e. the power levels) which is infinite for the
waterfilling strategy and finite for the proposed algorithm.

Jx index 1 2 3

power (10,0,0) (0,10,0) (0,0,10)

OPSQ-learning index 6 5 4

power (0, 5, 5) (5, 0, 5) (5, 5, 0)

Capacity (OPSQ) 6.9386 8.983 4.8745

waterfilling (0, 3.5556, 6.4444) (4.8056, 0, 5.1944) (6.25, 3.75, 0)

Capacity (waterfilling) 7.0104 8.9849 4.9248

Table 5.7: CR using OPSQ-learning/waterfilling against sweeping jammer over
selective channels

c- OPSQ-learning against other fixed jamming strategies

Applying the proposed learning algorithm, the CR succeeds to learn anti-jamming
power allocations against a sweeping jammer staying in the same channel for two
and three time slots, as given by figure 5.10.

5.6.3.2 OPSQ-learning against a jammer using Q-learning

In this scenario, we consider the same previous simulation parameters. Here, the
CR applies the OPSQ-learning as given by algorithm 5 and the jammer uses the
Q-learning algorithm 6. We consider that the jammer has the same action set as the
CR:Aj = Ap. We will compare the strategies learned by the CR and the jammer to
the optimal strategies found at the convergence of the Nash game under complete
information which is detailed in chapter 4.

Figure 5.11 gives the payoff fluctuations during learning. After about 13000
time slots, the CR’s and the jammer’s actions (power allocations) are no longer
fluctuating and the transmission capacity reaches the fixed value C = 2.4859. The
jammer’s final power allocation is j = (5, 0, 5) and the CR’s final power allocation
is p = (103 ,

10
3 ,

10
3 ).
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Figure 5.9: The learned anti-jamming strategy against sweeping jammer over
selective channels

Figure 5.10: The learned anti-jamming strategies against sweeping jammer
attacking the same channel for 2 TSs and 3 TSs

In the Nash game, the CR uses the waterfilling expression (4.7) and pro-
ceeds by bisection until reaching the value of λ corresponding to the alloca-
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Figure 5.11: The transmission capacity over selective channels against a jammer
using Q-learning

tion of the total power. The jammer proceeds by bisection and calculates the
sum of the allocated powers to all the channels using the expression (4.13) un-
til reaching the value of µ corresponding to the allocation of the total jamming
power. At the NE of the described game, we get (after 37 iterations) the jam-
mer’s power allocation j = (4.0370, 1.5370, 4.4259) and the CR’s power alloca-
tion p = (3.3333, 3.3333, 3.3333) with the transmission capacity C = 2.384, as
given by figure 5.12. This result is close to the result found using OPSQ-learning
for the CR and Q-learning for the jammer.

5.6.3.3 The game against a jammer with incomplete information

We consider the Nash game in two scenarios; (1) the jammer has complete infor-
mation, (2) the jammer does the assumptions of flat fading channels, being near
the receiver node and neglected noise level. We present in table 5.8 a comparison
between the NEs of the two scenarios.

These results corresponds to the channel coefficients |h| =
(1.9821, 0.9848, 3.3178) and |g| = (0.533, 0.0985, 1.1683). Hence, the
jammer having complete information avoids bad channels (e.g. channel two since
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Figure 5.12: The jamming and anti-jamming strategies at the NE

it has low gain coefficient) even if it used by the CR. This allows the jammer
to attack the other channels with higher powers which reduces the total channel
capacity of the CR. Without complete information, the jammer occupies all the
channels with almost the same power level which results in a limited payoff gain
for the CR (i.e. limited loss in the effectiveness of the jamming attack).

NE under perfect knowledge NE under imperfect knowledge

p (3.3184, 3.5958, 3.0858) (3.3316, 3.4675, 3.2009)

j (4.9801, 0, 5.0198) (3.4679, 3.2153, 3.3167)

Capacity 10.8422 11.4391

Table 5.8: Knowledge effect on the NE
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5.7 Conclusion

In this chapter, we have proposed a modified Q-learning algorithm to solve the
jamming attack. The proposed algorithm is based on wideband spectrum sensing
and in a greedy policy which allow its real-time application. It is denoted OPSQ-
learning algorithm. In a first time, the proposed solution was applied in terms of
one channel selection to learn how to pro-actively avoid the jammed channels. In a
second part time, it was adapted to solve the multi-channel power allocation game.
In the first application, we have modeled the scenario of fixed jamming strategy as
a MDP model. To learn the optimal anti-jamming strategy, we have ameliorated
the reward function in order to stay as longer as possible in the same frequency
and minimize the number of frequency switching. We have presented the simula-
tion results against sweeping, reactive and pseudo random jamming strategies. We
can conclude that the OPSQ-learning version speeds up the learning period and the
ameliorated reward strategy optimizes the number of channel switching which en-
hance its application during CRN real time communication. For the multi-channel
application, we have started by a fixed jamming strategy and found that the learned
solution almost equals the common explicit waterfilling solution. Furthermore, we
considered a smart jammer using the Q-learning algorithm. The learned jamming
and anti-jamming power allocation strategies are almost equal to the optimal Nash
equilibrium strategies found under the assumption of complete information, stud-
ied in the previous chapter. Finally, we studied the real scenario when the jammer
has incomplete information about the CR user and the channel gain coefficients.
Under this condition, the jammer occupies all the channels with almost the same
power level which results in a limited payoff gain for the CR.

The presented MDP and the proposed OPSQ-learning algorithm, for channel
selection, present limits in terms of synchronization requirement with the jammer
and do not solve the scenario of hidden jammers.

The next chapter presents an enhanced version of the proposed OPSQ-learning
algorithm to overcome hidden jammer problem and take into consideration asyn-
chronous jammer behavior, in terms of channel selection. Furthermore, the amelio-
rated OPSQ-learning algorithm will be tested in real environment using a software
defined radio platform.



Chapter 6

Cooperative learning based
anti-jamming technique

6.1 Introduction

the OPSQ-learning algorithms presented in previous chapter assumed both CR and
jammer are synchronous and able to perform accurate WBSS. In this Chapter we
propose realistic versions and implement them on state of art SDR platforms in real
scenarios. We solve practical problems like asynchronous CR/JX behavior, realis-
tic reward function based on real time WBSS results and hidden node problem. We
start by performing high-fidelity simulations with fine time granularity and down
to the level of IQ to allow realistic sensing. These simulations are used as reference
for evaluation of SDR implementation performance. We provide both simulation
results and real measurements in terms of packet success rate (PSR). The proposed
DSA algorithm significantly improves the packet success rate compared to both
static spectrum access and intelligent spectrum access without learning.

The rest of this chapter is organized as follows: Section 6.2 describes the
new MDP model and presents the cooperative Q-learning algorithm. Section 6.3
details the programming setup and discusses the simulation results. Section 6.4
presents the hardware environment and discusses the real measurements. Finally,
section 6.5 summarizes the conclusions.

6.2 Cooperative learning algorithm

This section presents the new choices in terms of state & reward definition and the
enhanced version of the learning algorithm. We will explain how these modifica-
tions solve the practical problems like the synchronization between CR & jammer
and hidden node problem.

81
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6.2.1 State definition

In the previous chapter, the state of the CR was defined by a pair of parameters;
(1) For channel selection against fixed synchronized jammer in 5.4, the definition
S = (fTX , n) reflects just the CR behavior where fTX is its current operating
frequency and n is the number of successive time slots using this frequency, (2)
to find the optimal power allocation in the presence of a fixed jammer attacking a
single channel each time in 5.6.1, the definition S = (fJX , nb) is related to the
occurrences of the jamming frequency, (3) to find the optimal power allocation in
the presence of an interactive jammer in 5.6.2, the definition S = (p, j) reflects
the interaction in terms of power allocation. In order to take into consideration the
asynchronous jammer behavior, including its random starting time and its unknown
channel occupancy, we define the state with the triplet S = {fTX , n, fJX} where
fTX is the best idle channel, fJX is the worst jammed channel and n is the number
of successive occurrences of fTX for the same fJX . This new definition covers the
real scenario of a jammer attacking any channel any time and for any period. We
consider that, at each time slot, the CR is able to do wideband spectrum sensing
to detect the worst (jammed fJX ) and the best (idle) channels among M channels
defined as the possible actions: {a1, · · · , aM} = {f1, · · · , fM}.

6.2.2 Reward function

We used either basic reward functions (in algorithms 3 and 4), assuming a jammer
in one channel at a time, or ideal one (equation 5.6) assuming accurate evaluation
of noise, fading and jamming power. Here we consider a realistic reward based on
spectrum sensing result:

Rf (S, S
′) = 1− E(f)

ET
, (6.1)

where E(f) is the energy measured over the channel f and ET is the total energy
measured over theM channels. Such realistic reward function adapts the CR chan-
nel selection to the real time spectrum occupancy and allows a pro-active collision
avoidance; i.e. an occupied or jammed channel will carry high energy which cor-
responds to low reward and an idle channel having low energy will be assigned a
high reward.

6.2.3 Learning through cooperation

In our previous channel selection technique, the learning algorithm depends only
on the sensing results of one CR node, i.e. the learning node. This reveals the
problem of hidden jammers that may interfere the transmitted packets without be-
ing detected. We enhance the proposed solution via the cooperation with the node
receiving the packets. This latter transmits the acknowledgment including its sens-
ing results. This feedback about both the packet success and the spectral occupancy
may correct the learned strategy since the learning node updates the Q values based
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on both its sensing and the received sensing results which gives more vision about
the actual and the previous channels occupancy. The proposed solution is described
in algorithm 7, using Rla(S, S

′) to denote the local reward Ra(S, S′) measured by
the learning node in the current state S for each possible action a that results in
a next state S′. Likewise, Rra(Sp, S

′)
p represents the received reward Ra(Sp, S

′
p)

measured by the cooperative node during the reception of the previous packet.

Algorithm 7 pseudocode of cooperative OPSQ-learning
Select a random initial state S = S0
while true do

The learning node does WBSS and checks for acknowledgment reception
Update all Q values at the current state S based on the local WBSS and the
previous state Sp based on the received WBSS results using,∀a:
Q(S, a) = (1− α)Q(S, a) + α(Rla(S, S

′) + δmaxxQ(S
′
, x))

Q(Sp, a) = (1− α)Q(Sp, a) + α(Rra(Sp, S
′
p) + δmaxxQ(S

′
p, x))

Select an action a with max Q value
Take a and observe next state S

′

Sp = S
S = S

′

end while

Figure 6.1-(a) details the tasks performed by the learning node. The first step
consists in gathering the IQ samples through wideband reception over the con-
sidered M channels. Then the rewards associated to all the possible actions are
calculated using equation 6.1 based on energy detection to perform WBSS. During
this processing step, the learning node looks blindly for an acknowledgment over
the M considered channels without a rendez-vous or a signaling channel. If an ac-
knowledgment is received over a channel fack, the reward calculated for that chan-
nel carrying the acknowledgment should not keep its low value (since it has high
energy E(fack)) to not falsify the decisions and be considered as a jammed chan-
nel. For that, the learning node associates to this channel the maximum reward that
he has calculated. The next step consists in deciding which is the jammed channel
and which is the best one (having the maximum reward). If we opt for channel se-
lection based on sensing without learning (denoted as the best channel selection),
the learning node selects the channel having the minimum energy in each time slot.
If we opt for the proposed OPSQ-learning algorithm without cooperation with the
receiving node, the transmitter updates just the Q values related to the actual state
Q(S, :). The action having the maximum Q value a = max index(Q(S, :)) is
selected to transmit the packets. The last channel selection strategy consists in co-
operating with the node receiving the packets to have more knowledge. So, the
learning node updates not only the actual state but also the previous state based
on the reward values extracted from the acknowledgment. The received rewards
are related to the previous time slot when the destination node has received the
transmitted packet. If the learning node does not receive the acknowledgment, he
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(a) The learning node (b) The cooperative node

Figure 6.1: Cooperation diagrams

considers that the response was jammed or lost and considers null received rewards.
Finally, the learning node selects the channel having maximum Q value. For each
of the channel selection strategies, the packet is sent over the selected channel.

Figure 6.1-(b) describes the operations of the CR node receiving the transmitted
packets. After a wideband reception of the IQ samples, the channels rewards are
calculated based on the detected energies through WBSS. This node looks blindly
for the packet over the considered channels and performs the cyclic redundancy
check (CRC). If the packet is received correctly over a channel fpacket, the CR
node decides to send a positive acknowledgment. He also corrects the reward that
he calculated for that channel to the maximum reward since it is not a jammed one.
If the CRC is false, a negative acknowledgment is sent. In both cases, he selects
the best channel having maximum reward to send the ACK sign and the rewards if
we have selected the cooperative strategy.
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6.3 Simulation setup and results

To evaluate the proposed algorithm, we have compared four channel selection
strategies; The first strategy is the classical fixed channel selection that consists in
transmitting over the same channel all the time with neither sensing nor learning.
The second one is the best channel selection based on sensing without learning.
The third strategy is based on the proposed OPSQ-learning algorithm but without
cooperation. The last strategy consists in learning with the cooperation of the node
receiving the packets. This section concerns MATLAB simulation of the consid-
ered four channel selection strategies, it starts by detailing the simulation setup
before discussing the results.

6.3.1 Simulation setup

We have opted for a high fidelity simulation which provides the flexibility to ad-
just the CR configurable parameters according to the chosen strategy and to the
electromagnetic environment without abstractions of the physical layer [120]. In
layer 1, we manipulate the CR parameters such as the frequency, the bandwidth,
the power, and we make the choices of energy detection as the spectrum sensing
technique, dynamic spectrum access in overlay mode and binary phase shift key-
ing (BPSK) as modulation scheme. In layer 2 (data link layer), our media access
control (MAC) is based on time division multiple access (TDMA). We have also
flexibility in terms of the jammer parameters and higher time granularity to intro-
duce asynchronous behavior and to have a kind of reference for the comparison
with real measurements on SDR platform. Furthermore, this allows going down
to the level of IQ samples and includes signal processing details such as spectrum
sensing, frame construction and real modulation & demodulation. The simulation
setup is given in table 6.1.

For the transmission side, the modulated signal is upsampled and filtered using
a root raised Cosine (RRC) pulse shaping filter. Then, the baseband pulse train is
multiplied by a sinusoidal carrier considering the chosen frequency among the four
available frequencies. The BPSK modulated signal is transmitted over an AWGN
channel. At the reception side, the received BPSK signal is blindly downconverted
to baseband considering each time one of the four channels, since the receiver does
not know the chosen transmitting channel. After checking for the preamble (of
the packet or the acknowledgment), the baseband signal carrying the preamble is
downsampled and filtered by a RRC receiving filter equal to the RRC transmitting
one. The samples are finally passed to the BPSK demodulator to take decisions
about the received bits.

In the following results, the reception period is equal to the transmission pe-
riod TRX = Tpacket = TACK = 0.98ms. We will start by considering a slow
sweeping jammer with a dwell time of TJX = 2.28ms which corresponds to
TJX ≈ 2.3Tpacket as represented in figure 6.2.
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Parameter Value

Modulation BPSK

Bandwidth of the transmitted signal (packet/acknowledgment) 12KHz

Number of channels 4

Maximum successive occurrences of the same channel 10

Size of the Q matrix 10 ∗ 4 ∗ 4 = 160 rows and 4 columns

Learning rate α 0.1

Discount factor γ 0.1

Table 6.1: Simulation setup

Figure 6.2: Simulation scenario

6.3.2 Simulation results

The node receiving the packets and performing CRC measures the PSR for the four
channel selection strategies as given in table 6.2. The four strategies corresponds
to the four rows of the table. The columns of the table corresponds to two scenarios
depending on the visibility of the jammer to the learning node. The PSRs are given
for 1000 transmitted packets.

In the first scenario (column 1 corresponding to a jammer detectable by both
of the CR nodes), considering the slow sweep jammer, we get that the best chan-
nel selection based just on spectrum sensing (row 2) gives higher success rate than
the fixed channel selection (row 1) since this latter is a blind selection staying on
the same channel all the time without any information about the channels occu-
pancy. Then, the channel selection based on OPSQ-learning (row 3) is better than
selecting the best channel without learning (row 2) since the learning decision is
not only based on the actual information but also on the past learned information
((1− α)Q(S, a)) and on the future expectation (αγmaxxQ(S′, x)) as given in the
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Jammer detectable by the learning node Jammer hidden to the learning node

Classical fixed channel selection 66.6% 66.6%

Best channel selection without learning 80% 66.6%

Learning without cooperation 82.8% 66.6%

Learning with cooperation 96.8% 84.4%

Table 6.2: Simulation results: Packet Success Rate against slow sweep jammer

Figure 6.3: Simulation of best channel selection based on sensing (a) versus
channel selection based on learning (b) against a sweeping jammer

expression of Q value update. Finally, learning with cooperation (row 4) outper-
forms learning without cooperation (row 3) since the cooperative node gives more
information to the learning node about the jammer that may be not detected during
its sensing period but appears during the transmission of the packet.

In the second scenario (column 2 corresponding to a jammer hidden from the
learning node), choosing the best channel with or without learning (row 2 or row 3)
are similar to staying in the same channel (row 1) since both best channel selections
are based only on the sensing result of the learning node. When the destination
node cooperates with the learning node (row 4), the PSR increases since the coop-
erative node gives an information about the channel used for the previous packet
transmission: packet success implies the jammer absence and packet failure means
collision with the jammer.



CHAPTER 6. COOPERATIVE LEARNING BASED ANTI-JAMMING TECHNIQUE88

Figure 6.3 gives the channels occupancy for each of the learning node and
the sweeping jammer over time for both the second and the third strategies. The
best channel selection without learning, given in subfigure (a), results in losing
more packets than the strategy based on OPSQ-learning presented in subfigure
(b). For example, we consider packet number seven as indicated in the figure.
The wideband spectrum sensing gives the following reward vector for both of
the strategies: reward = (0.4145; 0.9982; 0.9981; 0.5892), the best channel se-
lection strategy results in the selection of the second channel resulting in col-
lision with the jammer. However, the on-line learning algorithm calculates the
Qvalues = (0.0228; 0.1896; 0.1898; 0.1679). Applying the proposed learning al-
gorithm, the third channel having the maximum Q value is selected, as presented
in subfigure 6.3-(b).

According to the presented results, the cooperative OPSQ-learning (row 4) out-
performs learning without cooperation. Moreover, a CR applying the proposed
OPSQ-learning succeeds better than a CR just sensing the spectrum to select the
best channel, if the jammer is detectable. However, these success rates especially
for the cooperative learning strategy depends on the jammer’s period and tactic. In
terms of the jamming period, we have considered a faster jammer with a dwell
time larger than the sensing period but lower then the sensing plus transmission
periods of the learning node. The simulation results, given in table 6.3, give the
same conclusions as the results against the slow sweep jammer. The noteworthy
difference concerns the best channel selection without learning (row 2) which gives
lower PSR than the three other strategies even the fixed channel selection. This is
due to the fast sweep jammer which may be detected by the CR node in one chan-
nel during the sensing period but moves to another channel during the transmission
period.

Jammer detectable by the learning node Jammer hidden to the learning node

Classical fixed channel selection 73.3% 73.3%

Best channel selection without learning 65.5% 73.3%

Learning without cooperation 77.3% 73.3%

Learning with cooperation 86% 88.7%

Table 6.3: Simulation results: Packet Success Rate against fast sweep jammer

In terms of the jamming tactic, we have applied the proposed solution against
both a pseudo random jammer and a reactive one as described in figures 6.4 and 6.5.
The packet success rates are given in tables 6.4 and 6.5. Concerning the pseudo
random jammer, we have considered a sweep over a sequence of six channels
{f1, f4, f3, f3, f2, f4}. We present a detailed example in figure 6.4 to compare
between the OPSQ-learning strategy without (a) and with cooperation (b). Packet



CHAPTER 6. COOPERATIVE LEARNING BASED ANTI-JAMMING TECHNIQUE89

number 19 is lost using learning without cooperation and received successfully
when the learning node cooperates with the receiving node. Using learning with-
out cooperation, the learning node stayed in channel 1 since he calculates the Q
values (0.1017; 0.0624; 0.0997; 0.04). But, when cooperating with the destination
node, he calculates the Q values (0.1844; 0.1717; 0.1925; 0.0705), so he takes the
decision to use channel 3 for packet 19. There are other collisions like for packet 20
which are not avoided even through the cooperation, because the Q values correc-
tions will be considered when the states (from which wrong decisions were taken)
are revisited. Concerning the reactive jammer, we have considered an intelligent
jammer which is capable to do spectrum sensing to jam the detected occupied
channel. We assumed that this jammer needs a duration of two time slots before
jamming the detected frequency, because it has to do the spectrum sensing, then
make the decision and finally hop to the detected frequency. Against such jammer
when hidden to the learning node and detected just by the packet receiver node,
the three first strategies gives a PSR of 1% saving just the first packet as repre-
sented in figure 6.5-(a). The last strategy based on learning and cooperating gives
a higher PSR as illustrated by figure 6.5-(b). Without the cooperation, the learning
node updates the Q-matrix based only on the local sensing results, which results in
staying in the same channel with the reactive non detected jammer. Figure 6.5-(b)
illustrates the reactive behavior of the jammer who starts in channel 1 then jams
two times channel 4 since he detects two transmissions over this channel, and so
on.

The results of tables 6.4 and 6.5 against pseudo random and reactive jammers
confirm the same conclusions as the results of table 6.2 against a sweeping jammer;
The channel selection based on the cooperative OPSQ-learning algorithm outper-
forms the three other considered channel selection strategies for both scenarios
of visible and hidden jammer. Furthermore, in the first scenario of detectable jam-
mer, the OPSQ-learning strategy without cooperation outperforms the best channel
selection strategy without learning which also outperforms the fixed channel selec-
tion. The three strategies gives the same packet success rate if the jammer is hidden
to the learning node.

Jammer detectable by the learning node Jammer hidden to the learning node

Classical fixed channel selection 53.7% 53.7%

Best channel selection without learning 77.6% 53.7%

Learning without cooperation 89.5 % 53.7%

Learning with cooperation 99.4 % 74.5 %

Table 6.4: Simulation results: Packet Success Rate against pseudo random jammer
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Figure 6.4: Simulation of channel selection based on learning (a) versus channel
selection based on cooperative learning (b) against a pseudo random jammer

Jammer detectable by the learning node Jammer hidden to the learning node

Classical fixed channel selection 1% 1%

Best channel selection without learning 96% 1%

Learning without cooperation 97% 1%

Learning with cooperation 97.6% 66.9%

Table 6.5: Simulation results: Packet Success Rate against reactive jammer

6.4 Experimental setup and measurements

This section details the programming setup and describes the hardware environ-
ment. Furthermore, it discusses and compares the real measurements to the simu-
lation results presented in the previous section.

6.4.1 Software development and hardware environment

We have implemented the physical layer signal processing steps and the four chan-
nel selection strategies described previously using Qt Creator/C++ development
environment and the Universal Software Peripheral Radio platforms USRP E110
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Figure 6.5: Simulation of channel selection based on learning (a) versus channel
selection based on cooperative learning (b) against a hidden reactive jammer

and B205mini, see figure 6.6. The physical layer is based on BPSK modulation

Figure 6.6: Experimental environment

over the four channels: (432.94; 432.98; 433.02; 433.06)MHz. Without loss of
generality, we have opted for the stop and wait scheme described in figure 6.7,
but the presented study can be applied to any time division multiplexing (TDM)
scheme. The learning node does wideband reception of the IQ samples during
the reception period TRX detecting acknowledgment and jamming signals. The
time needed to do blind search of the ACK (for the learning node) or the packet
(for the cooperative node) over the M channels is denoted Tprocess. After send-
ing the packet, the learning node waits until the end of the cooperative node pro-
cessing before returning to the reception step. The cooperative node respects the
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same doctrine to keep synchronized with the learning node. We call radio pe-
riod the sum of the reception, transmission and packet/ack processing periods:
Tradio = TRX + 2 ∗ Tprocess + TTX . Figure 6.8 describes the alternation between
the packet and the acknowledgment transmissions by USRP nodes.

Figure 6.7: Cooperation based on stop and wait protocol

Figure 6.8: Cooperation spectrum

The packet and acknowledgment structures are given in figures 6.9 and 6.10
respectively. The transmitted data is delimited by a preamble and an end delimiter.
After the addresses of the transmitter (@Source) and the receiver (@Destination),
we mention the number of the transmitted packet or the acknowledgment. As a part
of the payload in the transmitted acknowledgment, we find the ACK sign which is
the character ’+’ or ’-’ and we find also the vector of four reward values calculated
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by the cooperative node. Before the end delimiter, we have the CRC field of 32
bits. To deal with signal impairments due to the transmission in real environment
and real conditions, we have used the synchronizer MPSK Receiver which is a
GNU Radio C++ signal processing block. This block performs carrier frequency
and phase synchronization as well as symbol timing recovery.

Figure 6.9: Packet structure

Figure 6.10: Acknowledgment structure

We have considered two scenarios; scenario 1 of a jammer detectable by both
the learning node & the receiving node and scenario 2 of a jammer hidden from the
learning node. The tests were performed in the Royal Military Academy (RMA) in
Brussels where the USRP platforms were placed in different buildings as described
in figures 6.11 and 6.12. The jammer was running standalone at start up of USRP
E110, the reporting node code was transferred to an Odroid-U3+ connected to one
of the two used USRP B205mini, and the learning node was running on a laptop
connected to the other USRP B205mini platform. To connect to the USRP plat-
forms and adjust its parameters, we use the C++ application programming interface
(API) provided by the USRP hardware driver (UHD).

6.4.2 Software defined radio measurements

The PSR measured by the CR receiving the packets is given in table 6.6 for the
four considered strategies in both scenarios of a jammer detectable (scenario 1) or
hidden (scenario 2) from the learning node.

The real measurements show that the cooperation ameliorates the PSR for both
scenarios since the learning node receives the sensing result measured by the co-
operative node which helps in learning the jammer’s behavior. Without coopera-
tion, the learning node gains in terms of PSR only if he detects the jammer since
the proposed learning algorithm is based on the sensing results. Otherwise, the
learned strategy has the same PSR as the fixed and the sensing based strategies.
Figure 6.13 gives the best channel selection based on sensing (a) and the channel
selection based on learning (b) in the presence of the sweeping jammer. Based just
on sensing, the strategy presents wrong decisions due to the asynchronous jammer
behavior. This latter may be detected in a channel during the sensing period, but
it moves to another channel during the packet transmission period which leads to
repeated collisions if this behavior is not learned to pro-actively avoid the jammed
channels. Furthermore, the CR based just on sensing without learning may move
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Figure 6.11: Scenario1

Figure 6.12: Scenario2

from channel to another without avoiding uneeded frequency alteration. However,
the learning node ameliorates its behavior over time based on the goodness mea-
sures of the available decisions. The Q values are updated based not only on the
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sensing results but also on the past learned information and the future expectation
to take the best decision avoiding collisions.

Jammer detectable by the learning node Jammer hidden from the learning node

Classical fixed channel selection 69% 69%

Best channel selection without learning 76% 69%

Learning without cooperation 87% 69%

Learning with cooperation 94% 82%

Table 6.6: USRP implementation results: Packet Success Rate against a sweeping
jammer

(a) (b)

Figure 6.13: USRP implementation of best channel selection based on sensing (a)
versus channel selection based on learning (b) against a sweeping jammer

Tests using real radio equipments were also performed against pseudo random
and reactive jammers. For the pseudo random jammer, we have considered the
same sequence of channels used in MATLAB simulation, as given in figure 6.14.
Figure 6.15 presents a first reactive jammer staying in the previous detected chan-
nel if there is no new detected transmission. Figure 6.16 describes a second reactive
jammer that does not jam if there is no detected transmission. The measured PSR
is given in table 6.7 against the pseudo random jammer, and in table 6.8 against
the second reactive jammer. For this latter, we have considered equal receiving and
jamming periods of TRX = TJX = 0.512s which are different from the receiving
and transmission periods of the CR nodes (TRX = TTX = 0.409s). Both tables
confirm that the channel selection based on learning and cooperation outperforms
the other strategies. Against the considered reactive jammer, the cooperation re-
sults in a PSR of 65% if the CR transmitting the packets detects the jammer and
60% if not. Furthermore, the learned channel selection without cooperation gives
the same packet success rate as the best selection based only on sensing. Finally,
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transmitting over the same channel gives 32% of correct packets in the presence
of the described reactive jammer. This is due the asynchronous jamming behavior.
The successful packets may be transmitted during the sensing period of the jammer
or even during its frequency alteration process.

The measured results confirm the same conclusions as simulation results; The
channel selection based on the proposed cooperative algorithm outperforms learn-
ing without cooperation which also outperforms the best channel selection without
learning. However, the real USRP measurements are different from MATLAB sim-
ulation values. This is due to the implemented time division multiplexing scheme,
in the USRP, that needs a processing time for the blind reception of the packets
or the acknowledgments. The simulation time is different from the real time and
neither the CR nodes nor the jammers need a processing time as presented in fig-
ure 6.2.

Jammer detectable by the learning node Jammer hidden from the learning node

Classical fixed channel selection 59% 59%

Best channel selection without learning 80% 59%

Learning without cooperation 89% 59%

Learning with cooperation 92% 74%

Table 6.7: USRP implementation results: Packet Success Rate against a pseudo
random jammer

Jammer detectable to the learning node Jammer hidden from the learning node

Classical fixed channel selection 32% 32%

Best channel selection without learning 65% 32%

Learning without cooperation 65% 32%

Learning with cooperation 65% 60%

Table 6.8: USRP implementation results: Packet Success Rate against a reactive
jammer
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Figure 6.14: USRP implementation of channel selection based on learning against
a pseudo random jammer

Figure 6.15: USRP implementation of channel selection based on learning against
the first reactive jammer

6.5 Conclusion

In this chapter, we have proposed an enhancement of the proposed learning algo-
rithm to go towards a realistic Q-learning algorithm solving the practical problems
of synchronization requirement and hidden node problem. For that purpose, we
have defined a realistic reward function based on the sensing results and we have
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Figure 6.16: USRP implementation of channel selection based on learning against
the second reactive jammer

considered the cooperation with the receiving cognitive radio. The cooperative
node acknowledges each packet reception and transmits its sensing results to the
CR learning node who exploits this information to update the Q values.

Simulation results and measurements using real radio equipment are given in
terms of packet success rate. In MATLAB simulation, we have considered sweep-
ing, pseudo random and reactive jammers. This latter is able to do spectrum sens-
ing in order to detect and interfere the channel carrying the packet. For the real
measurements, we have used the USRP platform and Qt Creator/C++ development
environment. The results have shown that the channel selection based on the pro-
posed learning algorithm achieves a higher packet success rate than the best chan-
nel selection based just on sensing. The results are even better when the learning
CR cooperates with the CR receiving the packets to detect the jammer and update
the Q values. The proposed solution is applicable in practice in real radios to avoid
malicious interferes, even when hidden or not synchronized.
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Conclusions

From civilian side, the emergence of new wireless services, such as 4G LTE and
5G mobile networks that are predicted to meet consumer and business growing de-
mands, is creating a spectrum shortage problem. Moreover, the current technique
of static frequency allocation leads to inefficiency utilization of the available spec-
trum. From military side, recently tactical military missions are characterized by
the coexistence of multiple heterogeneous wireless networks in the same geograph-
ical area, which leads to the problems of interferences and malicious users. Fur-
thermore, growing military wireless services are continuously increasing the spec-
trum requirements and reveal the problem of bandwidth shortage. The investment
of CR technology with the implementation of efficient DSM, may respond to the
civilian requirements and may mitigate the military tactical problems. Cognitive
radio and DSM concepts, aim to solve this imbalance between scarcity and under
utilization of the spectrum by dynamically using the frequency bands. However,
the CR technology introduces new vulnerabilities and opportunities for malicious
users compared to traditional wireless networks due to its intrinsic characteristics.
To enhance military and commercially CR investment, security challenges should
be resolved which is the subject of this thesis report.

In the first chapter, we defined the cognitive radio technology that enables the
implementation of dynamic spectrum management techniques to solve the imbal-
ance between spectrum scarcity and under-utilization. We have detailed the CR
main functions: spectrum sensing, decision, sharing and mobility. Based on sens-
ing, the CR detects the available portions of the spectrum. It evaluates the sensing
report taken into account the information from knowledge base to decide its al-
ternatives to meet user communication requirements. Spectrum sharing manages
the allocation of available frequency bands to provide a fair spectrum scheduling
among the users and to avoid the interference. Through spectrum mobility, the CR
changes its frequency of operation to vacate it for the incumbent user.

In chapter 3, we presented a comprehensive review of common CR attacks and
their potential countermeasures with projection on military radio networks. We
classified the attacks based on the four main functions of the cognitive radio, not
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according to the layers of the OSI model as usually done. Through this classifica-
tion, we tried to provide directions for related researches to discern which cognitive
functionality has to be insured against each threat. The exploitation of CRs in com-
plex scenarios such as in a military ad hoc deployment requires a high focus on the
cognitive engine, since simple spectrum access algorithms may be vulnerable to
malicious activities such as IE attack during SS, FC attacks for centralized spec-
trum decision, spectrum handoff attacks and the jamming attack. Moreover, we
have compared the presented threats in terms of harmfulness and required infor-
mation to accomplish each attack. We have explained how the jamming attack
is easy to happen and can threaten the CR technology in all its cognition func-
tionalities (spectrum sensing, decision, sharing and mobility), especially when the
jammer is also equipped with the same technology. Radio jamming is a challenging
attack in CRNs since (i) it may prevent CRs from detecting an available spectrum
band during spectrum sensing by keeping the wireless spectrum busy, (ii) it may
inject interference during an ongoing communication, so that the signal to SINR
deteriorates heavily and no data can be received correctly and (iii) it may corrupt
control packets by attacking a common control channel to disrupt the totality of the
network. CRNs are characterized by DSA and by mainly distributed architectures
which make it difficult to implement effective jamming countermeasures.

In chapter 4, we have exploited the CR capacities of simultaneous multi-
frequency access and dynamic power allocation as the anti-jamming strategy. We
have modeled the interaction between the two players, using different strategies to
dynamically update their power allocations, as a zero-sum game with continuous
action sets. Then, we have considered different game scenarios, for which we have
determined the NE, SE and the optimal minmax/maxmin power allocations. The
simulation results have given equality between the solutions of all the considered
game scenarios. We have proved theoretically that this game has a unique equilib-
rium which is equal to the saddle point given in closed form, under the assumption
that both the CR and the jammer are using all the channels (i.e. pk, jk > 0, ∀
k ∈ [1,M ]). To solve the presented game and find the optimal power allocation
strategies, we have considered complete knowledge for both the CR and the jam-
mer. Under this assumption, each player has all relevant information with which
to make a decision in each step of the game. But in real scenario the players has
no information about the required parameters to calculate their optimal strategies.
In chapter 5, we exploit the CR capacity of learning and reasoning to develop an
anti-jamming technique under incomplete information. The proposed solution is
a modified version of the Q-learning algorithm. We call the proposed algorithm
as the OPSQ-learning algorithm, it is based on widebend spectrum sensing and on
a greedy policy even during learning. The OPSQ-learning algorithm is applied in
terms of channel selection before adapting it to the multi-channel power allocation
game. We have modeled the channel selection, in the presence of fixed jamming
strategy, as a MDP process. Then, we have adapted the proposed algorithm to
learn the optimal anti-jamming strategy. We have ameliorated the reward func-
tion in order to stay as longer as possible in the same frequency and minimize
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the number of frequency switching. We have presented the simulation results un-
der sweeping, reactive and pseudo random jamming strategies. We can conclude
that the OPSQ-learning version speeds up the learning period and the ameliorated
reward strategy optimizes the number of channel switching which enhance its ap-
plication during CRN real time communication. However, the presented MDP
and the proposed OPSQ-learning algorithm, for channel selection, present limits
in terms of synchronization requirement with the jammer and do not solve the sce-
nario of hidden jammers. For the multi-channel application, we have adapted the
modified version of the Q-learning algorithm (OPSQ-learning) to learn an anti-
jamming power allocation strategy. Against fixed jamming strategies, the learned
solution almost equals the common explicit waterfilling solution. Furthermore,
we considered a smart jammer using the Q-learning algorithm. The learned jam-
ming and anti-jamming power allocation strategies are almost equal to the optimal
Nash equilibrium strategies found under the assumption of complete information,
presented in chapter 4. Finally, we studied the real scenario when the jammer has
incomplete information about the CR user and the channel gain coefficients. Under
this condition, the jammer occupies all the channels with almost the same power
level which results in a limited payoff gain for the CR.

In chapter 6 we have proposed an enhancement of the presented learning algo-
rithm to go towards a realistic Q-learning algorithm, one that can be implemented
in a real scenario with real hardware. To solve all practical problems like the syn-
chronization between CR & jammer and hidden jammer problem, we have consid-
ered (1) a spatio-temporal state definition including CR and jammer channels, (2) a
realistic reward function based on the sensing results and (3) a cooperative process
between the learning and the receiving nodes. The cooperative node acknowledges
each packet reception and transmits its sensing results to the CR learning node who
exploits this information to update the Q values. To do this, we performed first a
detailed simulation, with a smaller time granularity and down to the level of IQ
to allow a realistic sensing. The high-fidelity simulation served as a reference for
the implementation results on USRP platform. Simulation results and real radio
measurements are given in terms of packet success rate. In MATLAB simulation,
we have considered sweeping, pseudo random and reactive jammers. This latter is
able to do spectrum sensing in order to detect and interfere the channel carrying
the packet. For the real measurements, we have used the USRP platform and Qt
Creator/C++ development environment. The results have shown that the channel
selection based on the proposed learning algorithm achieves a higher packet suc-
cess rate than the best channel selection based just on sensing. The results are even
better when the learning CR cooperates with the CR receiving the packets to de-
tect the jammer and update the Q values. The measured results confirm the same
conclusions as simulation results, but the measurements are different from simu-
lation values. This is due to the implemented time division multiplexing scheme
that needs a processing time for the blind reception of the packets or the acknowl-
edgments. The simulation time is different from the real time and neither the CR
nodes nor the jammers need a processing time.
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The proposed solution can be ameliorated if applied to an optimized time divi-
sion multiplexing scheme that deal with the processing time limitation, which may
give better results. Furthermore, OPSQ-learning can be used in practice with real
radios and may be applied not only to avoid malicious interferes but also for the
CR coexistence with incumbents, even when incumbents/jammers are hidden or
not synchronized. As future work, we suggest trying other reward functions and
implementing the OPSQ-learning algorithm at the fusion center of a centralized
cognitive radio network to manage spectrum sharing in the presence of an incum-
bent network and more than one jammer.
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