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Abstract—In cognitive radio, spectrum sensing is one of the 

most important tasks. In this article, a blind spectrum sensing 

method based on goodness-of-fit (GoF) test using likelihood 

ratio (LLR) is studied. In the proposed method, a chi-square 

distribution is used for GoF testing. The performance of the 

method is evaluated through Monte Carlo simulations. It is 

shown that the proposed spectrum sensing method outperforms 

the GoF test using Anderson Darling (AD) and the conventional 

energy detection (ED) in case of a limited number of received 

samples and low signal to noise ratio (SNR). We also evaluate 

the proposed method in case of a non-Gaussian noise and in case 

of noise uncertainty. It is shown that the GoF based spectrum 

sensing methods are less sensitive to both impairments, than the 

conventional ED. Finally, this paper investigates the influence of 

the number of samples on the detection performance. The 

performance difference between the GoF based sensing (LLR 

and AD) and ED increases with decreasing number of samples 

for sensing, which makes the proposed method very effective in 

CR systems with short sensing periods. 

Keywords—Cognitive Radio; Spectrum Sensing; Goodness of 

Fit test; Likelihood Ratio; Mixture Gaussian Noise. 

 

I.  INTRODUCTION  

One of the most important task in cognitive radio (CR) is 
spectrum sensing. The main function of spectrum sensing is to 
detect the presence of other users utilizing the same 
frequencies, in order to access the channel without causing 
interference [1].  

Spectrum sensing methods are classified into two 
categories, coherent sensing methods and blind sensing 
methods. In coherent sensing methods, such as 
Cyclostationary, matched filtering and waveform-based 
sensing [2] [3], the CR node uses a priori knowledge of the 
waveform of the considered signal. In case of blind sensing 
methods, the CR node does not require any prior knowledge 
of the transmitted waveform. Some examples are Energy 
Detection (ED) [4] and Goodness of Fit (GoF) tests [5]. Due 
to its low complexity, the ED is the most common method for 
spectrum sensing in CR. Nevertheless, the performance of the 
ED is deeply affected by noise uncertainty at low signal to 
noise ratio (SNR) [8]. 

The GoF test is a blind nonparametric hypothesis test 
problem which can be used to detect the presence of signals in 
noise by determining whether the received samples are (are 
not) drawn from a distribution with a Cumulative Distribution 
Function (CDF) F0, representing the noise distribution. The 
hypothesis to be tested can be formulated as follows: 

𝐻0: 𝐹𝑛 𝑥 = 𝐹0 𝑥                                   (1) 

 𝐻1: 𝐹𝑛 𝑥 ≠ 𝐹0 𝑥  

 

where 𝐹𝑛 𝑥   is the empirical CDF of the received sample 
and can be calculated by: 

𝐹𝑛 𝑥 =   𝑖: 𝑥𝑖 ≤ 𝑥, 1 ≤ 𝑖 ≤ 𝑛 /𝑛 ,              (2) 

where  ∎  indicates cardinality,  𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛  are the 

samples under test and n represents the total number of 

samples. 
 

A. Related Work 

       There have been many goodness of fit test based 

spectrum sensing proposed in literature. The most important 

ones are the Kolmogorov- Smirnov test [6], the Cramer-Von 

Mises test [9], the Anderson-Darling test [5] and order 

statistics [7]. All these tests are based on the hypothesis test 

as formulated in (1), but differ in the way the distance 

between the empirical cumulative distribution of the 

observations made locally at the CR user and the noise 

distribution is calculated. The calculated distance is compared 

with a threshold to decide whether the signal is present or not, 

given a certain probability of false alarm.  

       The GoF test based spectrum sensing was first presented 

in [5]. It is based on the Anderson-Darling GoF test to decide 

whether the received samples are drawn from the noise 

distribution F0 (Gaussian distribution) or an alternative 

distribution. Authors in [5], show by simulations that AD-

sensing outperforms the ED-sensing at low SNR. In [6], 

authors propose a new spectrum sensing method based on KS 

GoF test, and it is shown that the proposed method provides 

much higher sensitivity than the ED and it requires less 

pectrum Sensing Method Based 
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samples of the received signal. Another blind spectrum 

sensing method using GoF is proposed in [7] based on Order 

Statistics (OS). It is shown that OS based sensing 

outperforms both AD and ED-sensing in AWGN channel and 

lower SNR. In [10], the authors reformulate the spectrum 

sensing into a Student’s t-distribution testing problem and 

propose a blind spectrum sensing method which does not 

require any knowledge of the transmitted signal. The 

performance of the proposed method is better than ED-

sensing but less than AD-sensing proposed in [5]. In [11], 

authors propose a spectrum sensing method based on KS 

two-sample test in which the sensing problem is formulated 

as a two-sample GoF test. Recently, detection methods based 

on Tietjen-Moore (TM) and Shapiro-Wilk (SW) tests are 

proposed to detect and suppress spectrum sensing data 

falsification (SSDF) attacks by malicious user in cooperative 

spectrum sensing [12].  

All above mentioned methods take as noise CDF F0 for 

the GoF test, a CDF of a normal distribution, meaning that 

they all assume that the samples of the received signal are 

real valued. However, in CR spectrum sensing this is a 

limitation, as a radio receives complex valued IQ samples. 

In this paper, we overcome this problem by considering 

the energy of the received samples and test them against a 

chi-square distribution under hypothesis H0. Further, we will 

evaluate the performance of a more recent GoF test, i.e. the 

likelihood ratio (LLR) test, in the application of GOF based 

spectrum sensing. The simulation results illustrate that the 

proposed LLR-GoF method is performing better than the one 

based on AD test and ED spectrum sensing methods. 

The main contributions of this work include: 

 The proposition of a more realistic model based on 

the energy of the received samples, instead of the 

model of [5] in which they assume a static and real 

received signal. 

 The study of a spectrum sensing method based on 

goodness of fit test using likelihood ratio test, and 

comparison of its performance with the AD-GoF test 

and the ED spectrum sensing. 

 The evaluation of the GoF based spectrum sensing 

(LLR and AD) in non-Gaussian noise and in case of 

noise uncertainty. The Gaussian mixture (GM) noise 

is used to model a non Gaussian noise. To the best 

of our knowledge, there is no previous work on this 

topic. 

 

The paper is organized as follows. Section II describes the 

powerful GoF test based on likelihood ratio (LLR). Section 

III presents the system model for spectrum sensing and the 

steps of the proposed LLR-GoF based sensing. Next, in 

section IV, the GoF based spectrum sensing is investigated 

under non Gaussian noise and the effect of noise uncertainty 

is studied. The impact of the number of samples on the 

detection performance is evaluated in section V. In parallel, 

simulation results and discussions are presented. Finally, we 

conclude the paper in section VI. 

II. LIKELIHOOD BASED GOODNESS OF FIT TEST 

In [13], the authors propose a new approach of 
parameterization to construct a general GoF test. With this 
approach, they could generate the traditional GoF tests 
including KS, CM and AD test. Moreover, they provided also 
a new, more powerful GoF test, based on likelihood ratio. 

The authors in [13] formulated the hypothesis test as 

follows: 

𝐻0:  𝐻0 𝑡 : 𝐹𝑛 𝑡 = 𝐹0 𝑡   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈  −∞,∞          (3) 

𝐻1:  𝐻1 𝑡 : 𝐹𝑛 𝑡 ≠ 𝐹0 𝑡   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ (−∞, ∞) 

Meaning that testing H0 versus H1 is equivalent to testing 

H0(t) versus H1(t) for every 𝑡 ∈ (−∞, ∞). 

  

Two types of statistic for testing H0 versus H1 were 

proposed: 

𝑍 =  𝑍𝑡  𝑑𝑤(𝑡)
∞

−∞
                                  (4) 

 

𝑍𝑚𝑎𝑥 = sup
𝑡∈(−∞ ,∞)

 𝑍𝑡  𝑤 𝑡                                 (5) 

 

with Zt  a statistic for testing H0(t) versus H1(t) and w(t) 

some weight function. Large values of Z or Zmax will reject a 

null hypothesis H0. In [13], authors present two natural 

candidates for Zt, the Pearson 
2
 test statistic and the 

likelihood ratio (LLR) test statistic. The LLR test statistic is 

given by: 

  

𝐺𝑡
2 = 2𝑛[ 𝐹𝑛 𝑡 log  

𝐹𝑛  𝑡 

𝐹0 𝑡 
 +  1 − 𝐹𝑛 𝑡   log  

1−𝐹𝑛  𝑡 

1−𝐹0 𝑡 
 ]      (6) 

where Fn(t) is the empirical distribution function of the 

received samples. 

Taking in (4) Zt as Gt
2
 and choosing an appropriate weight 

function w(t), produces a powerful goodness of fit tests 

statistic ZA, comparing to the traditional tests. 

ZA = − [
log ⁡{𝐹0 𝑋(𝑖) }

n−i+
1

2

n
i=1 +

log ⁡{1−𝐹0 𝑋(𝑖) }

i−
1

2

]              (7) 

where X(i) are ordered samples:  X(1) < X(2) …. <X(n) 

For the proposed spectrum sensing method in this paper, 

we will use the test statistic ZA as LLR-GoF test and compare 

it with the traditional Anderson Darling test in which the GoF 

test statistic is given by: 

𝐴𝑛
2 = −n −

  2i−1 (ln𝐹0 𝑋 𝑖  +ln 1−𝐹0 𝑋 𝑛+1−𝑖   )n
i=1

n
       (8) 

Ones the test ZA is computed, it will be compared to a 

predefined threshold  and the statistical test reduces to: 

𝐻0: ZA ≤                                   (9) 
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 𝐻1: ZA >         

III. SPECTRUM SENSING MODEL 

As a starting point, we recall the model in [5] in which the 

authors consider an AWGN channel. 
𝐻0: 𝑟𝑖 =  𝑤𝑖                                                    (10) 

 𝐻1: 𝑟𝑖 =    𝑚 +  𝑤𝑖        

where H0 and H1 represent the hypothesis of absence and 

presence of a primary signal, respectively. m represents the 

transmitted signal,  is the signal to noise ratio (SNR), wi is 

the real Gaussian noise with zero mean and unit variance and 

ri are real valued. In [5], the sensing method is based on 

testing the GoF of the received samples compared to the 

Gaussian distribution. 

The authors in [5] assumed that the transmitted signal 

m=1, in other words, the received signal is represented 

as 𝑟𝑖 =    +  𝑤𝑖 . The model in (10) does not reflect a 

realistic scenario for spectrum sensing by a cognitive radio, 

as normally the received signal is complex and varies in time.  

We have proposed in [14] to start from the more general 

model: 

𝐻0: 𝑋𝑖 =  𝑊𝑖                                                    (11) 

 𝐻1: 𝑋𝑖 = 𝑆𝑖 + 𝑊𝑖                     

where Si are the received complex samples of the 

transmitted signal and Wi is the complex Gaussian noise. We 

now consider the random variable 𝑌𝑖 =   𝑋𝑖 
2 which 

corresponds to the received energy. It is known that, if the 

real and the imaginary part of  Xi are normally distributed, 

which is the case under H0 hypothesis, the variable 𝑌𝑖 =
  𝑋𝑖 

2 is chi-squared distributed with 2 degrees of freedom. 

The spectrum sensing problem can now be reformulated 

as an hypothesis represented in (1) where we will test 

whether the received energy 𝑌𝑖 =   𝑋𝑖 
2 are drawn from a chi-

square distribution with 2 degrees of freedom or not. F0, the 

CDF of the chi-square distribution is given by: 

 

𝐹0 𝑦 = 1 − 𝑒−𝑦/2𝜎𝑛
2

  
1

𝑘 !

𝑚−1
𝑘=0 (

𝑦

2𝜎𝑛
2)𝑘 , 𝑦 > 0,          (12) 

with m is the degree of freedom (in our case m=2) and 

𝜎𝑛
2 is the noise power. 

A. The proposed spectrum sensing 

The proposed spectrum sensing method can be 

summarized in the following steps: 

- From the complex received samples 𝑋𝑖 , calculate 

the energy samples 𝑌𝑖 =   𝑋𝑖 
2. 

- Sort the sequence 𝑌𝑖   in increasing order such as: 

𝑌1 ≤ 𝑌2 …… ≤ 𝑌𝑛  

- Calculate the test 𝑍𝐴 according to (7), with 

𝐹0  given in (12). 

- Find the threshold  for a given probability of 

false alarm such that: 

𝑃𝑓𝑎 = 𝑃{ZA > |H0} 

- Accept the null hypothesis H0 if ZA ≤ . 

Otherwise, reject H0 in favour of the presence of 

the primary user signal 

 

To find , it is worth to mention that the distribution of ZA  

under H0 is independent of the F0(y) [5] [16]. The value of  

is determined for a specific value of 𝑃𝑓𝑎. A table listing 

values of corresponding to different false alarm probabilities 

𝑃𝑓𝑎 is given in [13]. Otherwise, these values can be 

computed by Monte Carlo approach.  

Figure 1 presents the detection probability as a function of 

the false alarm probability (ROC curves) of the proposed 

LLR-GoF based spectrum sensing method compared to the 

AD-GoF based sensing and the energy detection (ED). 

 

The results are obtained by 10000 Monte-Carlo 

simulations. For the AD-GoF method, the same 5 steps as for 

the LLR-GoF are followed, except for step 3 in which we 

took as a test statistic 𝐴𝑛
2  as given in (8). 

  

The simulations are performed using only 20 samples of 

the received signal with a signal to noise ratio (SNR) equal to 

-6 dB. It can be seen in figure 1 that the proposed LLR-GoF 

based sensing outperforms both AD-GoF based sensing and 

ED. For example, for Pfa=0.2, the probability of detection Pd 

for the ED sensing equals 0.392, for AD based sensing  Pd 

equals  0.695.   However, for the proposed LLR-GoF sensing,  

Pd equals 0.745. 

  

In figure 2, the values of the detection probability versus 

SNR are plotted for the three sensing methods. 

The Pfa is set to 0.05 and the SNR varies from -20 dB to 10 

dB, keeping the number of samples n to 20 samples. It can be 

seen that the proposed LLR-GoF based sensing has almost 1 

dB gain over AD based sensing and almost 5dB over ED 

sensing with Pd = 0.8 and Pfa=0.05, hence the performance 

of the proposed LLR based sensing is indeed better than that 

of AD based sensing and ED sensing. 

IV. SPECTRUM SENSING UNDER NON GAUSSIAN NOISE AND 

NOISE UNCERTAINTY 

A. Non Gaussian noise (GM Model) 

It is worth to mention that the existing works on GoF for 

spectrum sensing [5] [6] [7] [10] is focusing on detecting a 

signal in white Gaussian noise. In our paper, we will also 

focus on detecting signals in white non-Gaussian noise. In 

literature, a lot of models are proposed to pattern a non 

Gaussian noise. The most used models are the Gaussian 

Mixture model (GM) and the generalized Gaussian model 

(GG). For our spectrum sensing model, we will work with the 

GM model [17], as it has been used in practical applications 

in [18] and in radio signal detection applications in [19].  To 

apply the GoF test for spectrum sensing, we need the 

Cumulative distributed function (CDF) of the non Gaussian 

490

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090401

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

www.ijert.org


noise (GM CDF). The pdf of GM noise has three parameters 

α, β, and σ and is defined as [19]: 

 

 
Figure 1. ROC curves over AWGN channel with SNR=-6dB and n=20 

samples 

 

 
Figure 2. Detection probability versus SNR over AWGN channels with 

Pfa=0.05 and n=20 samples 

 

 

𝑓𝑤 𝑤 =
𝑐

𝜎 2𝜋
[𝛼 exp  −

𝑐2𝑤2

2𝜎2  +
1−𝛼

𝛽
exp  −

𝑐2𝑤2

2𝜎2𝛽2 ]  (14) 

 

where   𝑐 =  𝛼 + (1 − 𝛼)𝛽2  

Figure 3 depicts a probability distribution function (pdf) 

of a white non Gaussian noise (GM) with the following 

selected parameters  𝛼=0.9, β =5 and =1. 

The CDF F0 of the energy of the non-Gaussian noise 

samples under H0 hypothesis can be derived from the GM's 

pdf. For that we have: if Y=X
2
 and X is GM noise with CDF 

FX(x), 

𝐹0 𝑦 = 𝑃 𝑌 ≤ 𝑦 = 𝑃 − 𝑦 ≤ 𝑋 ≤  𝑦         (15)

= 𝐹𝑋  𝑦 − 𝐹𝑋 − 𝑦  

 

 
Figure 3. Probability distribution function (pdf) of GM noise 𝛼=0.9, β =5 

and =1 

 

Once we get the CDF of the non Gaussian noise, we apply 

our proposed algorithm of subsection (III.A). Note that the 

knowledge of F0 is required to apply the GoF test; therefore, 

if the parameters of the GM model are unknown, they must 

be estimated first.  

To evaluate the effect of a non Gaussian noise on the 

sensing performance, we have performed simulations with 

the selected GM noise. We set the parameters of the non 

Gaussian noise as: 𝛼=0.9, β =5 and =1. All other 

simulation parameters are the same as in section III. Figure 4 

presents results of the AD-GoF based sensing under Gaussian 

noise and non Gaussian noise. It is shown that the effect of 

considering a non Gaussian noise decrease slightly the 

performance of the AD-GoF based sensing. Figure 5 shows 

the results of the LLR-GoF based sensing. Just as in the AD-

GoF based sensing, our proposed method is slightly degraded 

under non Gaussian noise. However, it can be seen in figure 6 

that the performance of the ED is significantly influenced by 

the considered non Gaussian noise. It has to be noted that the 

considered non Gaussian noise (𝛼=0.9, β =5 and =1) is 

very unfavorable for ED. In order to obtain a Pfa=0.05, the 

threshold  in the binary hypothesis test needs to be shifted 

rightly at certain level. Anyway, GoF based spectrum sensing 

is less effected by the non Gaussian noise, as the test is 

performed on the mismatch between the measured CDF and 

the reference CDF F0. 

B. Noise uncertainty 

One of the main issues with ED or with blind detection 

methods in general, is the impact of noise uncertainty on the 

detection performance. It is shown in [8] [21] that ED is very 

sensitive to noise uncertainty. The aim of this subsection it to 

study the effect of noise uncertainty on GoF based spectrum 

sensing compared to ED. 

Through simulation, we have compared the impact of 

noise uncertainty on both methods, ED based spectrum 

sensing and GoF test based spectrum sensing. 
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Figure 4. Detection probability versus SNR under Gaussian and non 

Gaussian noise for AD-GoF, with Pfa=0.05 and n=20 samples. 

 

 
Figure 5. Detection probability versus SNR under Gaussian and non 

Gaussian noise for LLR-GoF, with Pfa=0.05 and n=20 samples. 

 

The noise uncertainty is modeled by letting the actual 

noise variance be limited within a set given by a nominal 

noise variance and an uncertainty parameter   such that: 

 𝜎𝑛
2 ∈ [

1


𝜎2, 𝜎2] . 

There is a fundamental difference between ED and GoF 

based sensing when it comes to noise uncertainty. The energy 

detector suffers under noise uncertainty because computing 

the threshold  for the binary test requires knowledge of the 

underlying noise variance. In order to guarantee a given false 

alarm rate Pfa, the threshold  will be calculated for the worst 

case, i.e. a noise variance of  𝜎2 [21], leading to higher 

values of  and hence to a decrease in detection probability.  

In GoF based sensing, the distribution of the test statistic 

G
2
t or A

2
n under the H0 hypothesis is independent of the noise 

distribution. As a consequence, the value of the threshold  

for the GOF binary test will not be influenced by the noise 

uncertainty. However, the calculation of the test statistic (G
2
t 

or A
2
n) requires the exact knowledge of the underlying  

 

 
Figure 6. Detection probability versus SNR under Gaussian and non 

Gaussian noise for ED, with Pfa=0.05 and n=20 samples. 

 

theoretical noise CDF F0. In summary, for GOF sensing, 

noise uncertainty will, via F0,  indirectly affect the value of 

the  test statistic, but not the detection threshold. For the 

simulation of the GoF based spectrum sensing under noise 

uncertainty, we will also follow a worst case approach, by 

considering a reference noise CDF F0 given in (12) based on 

the highest noise variance 𝜎2, which will eventually lead to 

a reduction of the detection probability.  

In figure 7, we have plotted the detection probability 

versus SNR for several values of noise uncertainty (0 dB, 0.5 

dB, 2 dB, 4 dB) in the case of the ED spectrum sensing 

method. It is shown that the performance of the ED is 

significantly decreasing when the noise uncertainty level is 

increasing. In similar way, in figure 8, we have plotted the 

detection probability as a function of SNR when considering a 

noise uncertainty for GoF based spectrum sensing. It can be 

seen that under uncertainty in the noise statistic of the CDF 

under hypothesis H0 (F0), the impact on the performance of 

the GoF based spectrum sensing is significantly less than the 

impact on energy detection. Intuitively, this can be explained 

by the fact that in ED, the value of Pfa and Pd are directly 

affected by the noise uncertainty. In case of GoF based 

sensing the test statistic ZA (or An
2
) is indirectly affected by 

the noise uncertainty via the CDF F0 under hypothesis H0.  

Note also that, in figure 7, for high values of noise 

uncertainty the Pd drops to 0. This effect is known as the SNR 

wall [20]. This effect is not observed in GoF based spectrum 

sensing for the given simulation parameters.  

V.  IMPACT OF SAMPLE SIZE ON SENSING PERFORMANCE 

In this section we try to evaluate the influence of the 

number of sample on the detection performances of the 

considered spectrum sensing methods, GoF based sensing 

and ED based sensing. It is known from literature that the 

GoF tests have merit to perform well under small sample 

sizes [5]. 
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Figure 7. Impact of noise uncertainty on ED with Pfa=0.05 and n=20 

samples. 

 

 
Figure 8. Impact of noise uncertainty on GoF test based sensing with 

Pfa=0.05 and n=20 samples. 

 

The impact of the sample sizes on the GoF based sensing and 

ED sensing methods is presented in figure 9. The Pfa is set to 

0.01 and the SNR varies from -20 dB to 10 dB for different 

sample sizes (40 100 160 and 400 samples). It can be seen 

that the GoF based sensing outperforms ED sensing under a 

limited number of samples and that the ED based sensing 

yields the same performance as GoF based sensing in terms 

of detection probability if the sample size is approximately 

2.5 times the sample size used for GoF based sensing. 

Therefore, GoF based sensing can be an appropriate sensing 

methods in applications where the sensing time is limited. 

VI. CONCLUSION 

In this paper, we have proposed a blind spectrum sensing 

method based on GoF test. The novelty in the proposed 

spectrum sensing method was to consider the energy of the 

received samples and test them against a chi-square 

distribution under hypothesis H0 using the likelihood ratio 

test statistic. The LLR test statistic presents better 

performance compared to the other often used test statistics, 

like AD.  It  

 
Figure 9. Detection probability versus SNR for different sample sizes 

(40 100 160 and 400 samples) with Pfa=0.01. 

 

was shown by Monte-Carlo simulations that the proposed 

LLR-GoF sensing method outperforms both AD-GoF based 

sensing and ED based sensing, particularly for limited 

number of samples and low SNR values. We have also 

studied some typical impairment for spectrum sensing, i.e. 

the effect of a non Gaussian noise and noise uncertainty on 

the performance of GoF based sensing. As a model for the 

non Gaussian noise, we used the Gaussian mixture (GM). It 

was observed that a non Gaussian noise can affect noticeably 

the performance of ED, but has only a limited influence on 

the performance of the GoF based sensing methods. The 

same conclusion can be drawn for the noise uncertainty. This 

is mainly due to the fact that the test statistics in GoF testing 

is based on the difference of the measured CDF and the 

reference CDF and hence only indirectly influenced by noise 

parameters. Finally, it was shown that the LLR-GoF based 

sensing, AD-GoF based sensing and ED present similar 

performance in terms of detection probability for large 

number of samples. However, the proposed LLR-GoF 

sensing method, as well as AD based sensing method, 

perform well with a limited number of samples, hence they 

can be an appropriate methods in any cognitive radio system= 

with short sensing time.  
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