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In cognitive radio, spectrum sensing is a challenging task. In this letter,
a new spectrum sensing method is proposed based on Goodness of
Fit test (GoF) of the energy of the received samples with a chi-square
distribution. We derive the test statistic and evaluate the performance of
the proposed method by Monte Carlo simulations. It is shown that our
proposed spectrum sensing method outperforms the conventional energy
detection (ED) without increasing the complexity of the sensing.

Introduction: One of the most important task in cognitive radio (CR) is
spectrum sensing. The main function of spectrum sensing is to detect the
presence of primary users utilizing the channel, in order to access the
channel without causing interference [1].

Spectrum sensing methods are classified into two categories, coherent
sensing methods and blind sensing methods. In coherent sensing methods,
such as Cyclostationarity , matched filtering and waveform-based sensing
[2] [3], the CR node uses a priori knowledge of the waveform of the
primary user (PU). In case of blind sensing methods, the CR node does not
require any prior knowledge of the transmitted waveform. Some examples
are Energy Detection (ED) [4] and Goodness of Fit (GoF) tests such as
Kolmogorov-Smirnov (KS) [5], Anderson Darling (AD) [6] and order
statistics [7]. Due to its low complexity, the ED is the most common
method for spectrum sensing in CR. Nevertheless, the performance of the
ED is deeply affected by noise unceratinty at low signal to noise ratio
(SNR).

The GoF test is a nonparametric hypothesis test problem which can
be used to detect the presence of a PU by determining whether the
received samples are (are not) drawn from a distribution with a Cumulative
Distribution Function (CDF) F0, representing the noise distribution. The
hypothesis to be tested can be formulated as follows:

H0 : Fn(x)∼= F0(x)

H1 : Fn(x)� F0(x),
(1)

where Fn(x) is the empirical CDF of the sample and can be calculated by:

Fn(x) = |{i : xi ≤ x, 1≤ i≤ n}/n|, (2)

where | • | indicates cardinality, x1 ≤ x2 ≤ ....≤ xn are the samples
under test and n represents the total number of samples.

There have been many goodness of fit test proposed in literature. The
most important ones are the Kolmogorov- Smirnov test, the Cramer-von
Mises test, and the Anderson-Darling test. In the following, we recall
briefly these GoF tests.

A. Kolmogorov- Smirnov test (KS test): In this test the distance between
Fn(x) and F0(x) is given by:

Dn =max|Fn(x)− F0(x)|, (3)

where Fn(x) is the empirical distribution which is defined in (2). If the
samples under test are coming from F0(x), then, Dn converges to 0.

B. Cramer-Von Mises (CM test): In this test, the distance between
Fn(x) and F0(x) is defined as:

T 2
n =

∞∫
−∞

[Fn(x)− F0(x)]
2 dF0(x). (4)

According to [8], and by breaking the integral in (5) into n parts, T 2
n can

be writen as:

T 2
n =

n∑
i=1

[zi − (2i− 1)/2n]2 + (1/12n), (5)

with zi = F0(xi)

C. Anderson-Darling test (AD test): This test can be considered as a
weighted Cramer-Von Mises test where the distance between Fn(x) and

F0(x) is given by:

A2
n =

∞∫
−∞

[Fn(x)− F0(x)]
2 dF0(x)

F0(x)(1− F0(x))
. (6)

The expression of A2
n can be also simplified according to [8] to:

A2
n =−n−

n∑
i=1

(2i− 1)(ln zi − ln z(n+1−i))

n
, (7)

with zi = F0(xi).

Goodness of Fit testing for spectrum sensing: As a strarting point, we
recall the model in [5] in which the authors consider an AWGN channel.

H0 : ri = wi

H1 : ri =
√
ρm+ wi,

(8)

where H0 and H1 represent the hypothesis of absence and presence
of a primary signal, respectively. m represents the transmitted signal, ρ is
the signal to noise ratio (SNR), wi is the real Gaussian noise with zero
mean and unit variance and ri are real valued. In [5], the sensing method is
based on testing the GoF of the received samples compared to the Gaussian
distribution.

The authors in [5] assumed that the transmitted signal m=1, in other
words, the data is represented as ri =

√
ρ+ wi. The model in (8) does not

reflect a realistic scenario, as normally the received signal is complex and
can vary in time.

In this letter, we propose to start from the more general hypothesis test:

H0 :Xi = Wi

H1 :Xi = Si +Wi,
(9)

where Si are the received complex samples of the transmitted signal
and Wi is the complex Gaussian noise. We now consider the random
variable Yi = |Xi|2 which corresponds to the received energy. It is proven
that the variable Yi is chi-squared distributed with 2 degree of freedom
under H0 hypothesis.

Proof:
Let Z1, Z2 · · · Zn be real independent random variable with Zi vN(0, 1).

If Y =
n∑

i=1

Z2
i then Y follows the chi-square distribution with n degrees of

freedom, and denoted as Y v χ2
n. In our case, we consider Zi complex

normal distributed variable and Yi = |Zi|2 = α2
i + β2

i , where αi and βi

are real and imaginary part of Zi which are normal distributed variable.
Therefore Yi is chi-square distributed variable with 2 degree of freedom
under hypothesis H0.
The spectrum sensing problem can be transformed to testing the GoF of
the received energy compared to the chi-square distribution. The CDF of
the chi-square distribution is given by:

F0(y) = 1− e−y/2σ2
n

m−1∑
k=0

1

k!
(

y

2σ2
n

)k, y > 0, (10)

with m is the degree of freedom (in our case m=2).

As a GoF test, we apply the Anderson-Darling test in (6) or (7) on the
energy samples Yi.

A2
n =−n−

n∑
i=1

(2i− 1)(ln zi − ln z(n+1−i))

n
, (11)

with zi = F0(yi). zi can be retrieved using the expression in (10) for
m=2.

The proposed sensing method

The spectrum sensing problem is formulated as:
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H0 :A2
n ≤ λ

H1 :A2
n >λ,

(12)

where λ is a threshold. The proposed spectrum sensing method can be
summarised in the following steps:

Step1 from the complex received samples Xi, calculate the energy samples
Yi = |Xi|2

Step2 Sort the sequence {Yi} in increasing order such as Y1 ≤ Y2 ≤ · · · ≤ Yn

Step3 Calculate A2
n according to (11)

Step4 Find the threshold λ for a given probability of false alarm such that:

Pfa= P{A2
n >λ|H0}. (13)

Step5 Accept the null hypothesis H0 if A2
n ≤ λ . Otherwise, reject H0 in

favour of the presence of the primary user signal.

To find λ, it is worth to mention that the distribution of A2
n under H0

is independent of the F0(y) [5],[9]. The value of λ is determined for a
specific value of Pfa. A table listing values of λ corresponding to different
false alarm probabilities Pfa is given in [8]. For example, for Pfa=0.05, the
value of λ equals 2.492.

Simulation Results: In this section, simulation results are presented
to show the sensing performance of the proposed spectrum sensing
method compared to ED. Figure 1 shows the ROC (Receiver Operating
Characteristic) curves (detection probability versus false alarm probability)
of the two spectrum sensing methods: ED and the spectrum sensing
method based on GoF using chi-square. Both methods perform sensing
on 20 samples of the received signal with a signal to noise ratio (SNR)
equal to −6dB. The ROC curves were obtained for 10000 Monte-Carlo
simulations. The detection probability for the proposed sensing method is
given by:

Pd= P{A2
n >λ|H1}. (14)

From Fig. 1, it can be seen that the proposed spectrum sensing method
outperforms the ED spectrum sensing algorithm. It is also clear that the
probability of detection goes to 1 much faster in the case of our proposed
method comparing to the ED spectrum sensing method. For example, for
Pfa= 0.2, the probabilities of detection of the ED sensing can achieve
0.492 only, while for the proposed sensing method Pd equals 0.815.

In Figure 2, the values of the detection probability versus SNR are
plotted for the two sensing methods.

The Pfa is set to 0.05 and the SNR varies from −20dB to 10dB, keeping
the number of samples n to 20 samples. It can be seen that the proposed
sensing has almost 5dB gain over ED sensing with Pd= 0.8 and Pfa=

0.05, hence the performance of the proposed sensing is indeed better than
that of ED sensing.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm probability

D
e
te

c
ti
o
n
 p

ro
b
a
b
ili

ty

 

 

proposed spectrum sensing
ED spectrum sensing

Fig. 1 Detection probability versus false alarm probability over AWGN
channels with SNR=-6 dB and n=20 samples
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Fig. 2 Detection probability versus SNR over AWGN channels with Pfa=0.05
and n=20 samples

Conclusion: In this letter, a spectrum sensing method based on goodness
of fit testing using chi-square distribution is proposed. We consider the
energy of the received samples and apply the GoF test to compare its CDF
with a chi-square CDF with 2 degree of freedom. Simulations have been
performed to compare the ED sensing method with the proposed one. It is
shown that the proposed sensing method outperforms ED sensing method
by 5 dB at Pd = 0.8 and Pfa = 0.05. It is worth noting that the ED sensing
and the proposed sensing method present similar complexity. Our future
works will focus on the case where the noise is not Gaussian. A future
work is to extend the proposed method to cooperative spectrum sensing.
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