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Abstract This paper deals with the jamming attack which may hinder the
cognitive radio from efficiently exploiting the spectrum. We model the problem
of channel selection as a Markov decision process. We propose a real-time
reinforcement learning algorithm based on Q-learning to pro-actively avoid
jammed channels. The proposed algorithm is based on wideband spectrum
sensing and a greedy policy to learn an efficient real-time strategy. The learning
approach is enhanced through cooperation with the receiving CR node based
on its sensing results. The algorithm is evaluated through simulations and real
measurements with software defined radio equipment. Both simulations and
radio measurements reveal that the presented solution achieves a higher packet
success rate compared to the classical fixed channel selection and best channel
selection without learning. Results are given for various scenarios and diverse
jamming strategies.
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1 Introduction

A cognitive radio (CR) refers to a radio system aware of its RF environment
and capable of learning and adapting its transmission parameters [1–4]. In
addition to the coexistence with incumbents, the system must achieve inter-
ferers awareness and avoidance to provide continuous reliable communication
wherever and whenever needed. CR anti-jamming techniques have recently
attracted research attention since jammers may disturb CR spectral behav-
ior [5–13].

Under the assumption of fixed jamming strategy trying to prevent the CR
from an efficient exploitation of the available channels, the CR has to learn
how to escape from jammed channels without scarifying a long time. Markov
Decision Process (MDP) is a suitable tool to study such problem since it is
a stochastic framework modeling an agent decision problem to optimize its
outcome. In the CR context of dynamic RF environment and imperfect op-
ponent knowledge, the agent may use reinforcement learning (RL) algorithms
to solve the non deterministic MDP and learn the optimal strategy [14]. RL
techniques as the Q-learning algorithm are based on the interaction with the
environment to update the knowledge and estimate the optimal MDP solution.
In [15], a decentralized Q-learning algorithm is proposed to deal with the prob-
lem of aggregated interference generated by multiple CRs at passive primary
receivers. [16], [17] and [18] study the Q-learning algorithm to solve the CR
jamming problem. Differently from works available in literature, we present
an on-line Q-learning algorithm based on wideband spectrum sensing and co-
operation between two CR nodes to pro-actively avoid jammed channels and
overcome hidden jammer problem. Furthermore, we provide both simulation
results and real measurements in terms of Packet Success Rate (PSR). The
proposed dynamic spectrum access (DSA) algorithm significantly improves the
packet success rate compared to both static spectrum access and intelligent
spectrum access without learning.

The rest of this paper is organized as follows: Section 2 describes the MDP
model. Section 3 presents the proposed Q-learning algorithm. Section 4 dis-
cusses the simulation results and section 5 discusses the real measurements
performed by software defined radio equipment. Finally, section 6 summarizes
the conclusions.

2 Markov decision process

A MDP is a discrete-time stochastic control system that models an agent
decision making problem to optimize a final outcome. The agent gets the
optimal strategy through solving the MDP. The problem in this paper consists
in the jamming attack and the solution consists in the adequate decisions to
avoid the jammed channels. The MDP is defined with four components; A
finite set of states {S0, · · · , St}, where t = 0, 1, · · · , N represents a sequence of
time slots. A finite set of actions {a1, · · · , aM}. A state transition probability
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Pa(S, S′) of moving from one state S to another state S′ after executing an
action a. An immediate reward Ra(S, S′) related to the taken decision.

A MDP can be solved through model-based approaches if the transition
probability function is known, otherwise model-free approaches are used to
solve it based on RL algorithms such as Q-learning [19]. The Q-learning model-
free RL algorithm was introduced in [20] as a simple way to learn how to act
optimally by successively improving the actions evaluations. This algorithm
is able to find a suboptimal good strategy through real time interaction with
the environment. The goal is to find a mapping from state/action pairs to
Q-values. This result can be represented by a Q-matrix of N rows and M
columns. At every time step, the agent measures the feedback of trying an
action a in a state S and updates the corresponding Q(S, a) value, using the
following expression:

Q(S, a)← (1− α)Q(S, a) + α [Ra(S, S′) + γmaxxQ(S′, x)] (1)

where 0 < α ≤ 1 is the learning rate that controls how quickly new estimates
are blended into the old ones. 0 ≤ γ ≤ 1 is the discount factor that controls
how much effect future rewards have on the optimal decisions. Equation (1)
is repeated for all visited pairs (S, a) until the convergence to almost fixed
Q values. The optimal strategy is met when all the different possibilities are
infinitely visited during the training period. After this period, the agent starts
the exploitation of the solution which corresponds to choosing the action hav-
ing the maximum Q value in each state: maxxQ(S, x). This standard version of
the Q-learning algorithm is said to be asynchronous since at each time step the
agent updates a single Q value [21]. It is also called OFF-policy since it allows
arbitrary experimentation during the training period [22]. The learning agent
applying this algorithm should wait until the convergence to start exploiting
the optimal policy which is not suitable in hostile and dynamic environment.

3 Cooperative learning algorithm

We consider a fixed jamming strategy trying to prevent the CR from an effi-
cient exploitation of M available channels. As a defense strategy, the CR has to
learn how to escape from jammed channels without scarifying a long training
period. The state of the CR is defined by three parameters: S = {fTX , n, fJX},
where fTX is its current operating frequency and n is the number of succes-
sive time slots using this frequency. We opt for mixing spatial and temporal
properties in the state space definition to consider the CR staying in the same
channel more than one time. To take into consideration the asynchronous
jammer behavior, including its random starting time and its unknown current
channel, we introduce fJX as the worst (or jammed) frequency to the defini-
tion of the state. We consider that at each time slot the CR does wideband
spectrum sensing [23] to detect the worst and the best channels. At every
state, the CR should choose an action to move to another state. We define its
possible actions as a set of M actions, which are the M available channels:
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{a1, · · · , aM} = {f1, · · · , fM}. We define a reward function related to the result
of the WBSS done every time by the CR node before selecting an action:

Rf (S, S′) = 1− E(f)

ET
, (2)

E(f) is the energy measured over the channel f and ET is the total energy
measured over the M channels. Such reward function adapts the CR chan-
nel selections to the real time spectrum occupancy, which allows a pro-active
collision avoidance.

In order to adapt the Q-learning algorithm to the jamming scenario, we
extend the on-line algorithm denoted as ON-Policy Synchronous Q-learning
(OPSQ-learning) of [18] by adding cooperation between two CR nodes. OPSQ-
learning allows the CR to keep learning and choosing the best decisions in real
time. It consists in replacing the OFF-policy with ON-policy by selecting the
best action instead of trying random actions to minimize the wrong decisions.
Furthermore, the CR is able to do a synchronous update of all the Q val-
ues related to the current state Q(S, :) by doing wideband spectrum sensing
(WBSS) before the action selection. The OPSQ algorithm allows on-line learn-
ing during real-time communication without going through a training before
an exploitation period. To overcome the problem of hidden jammer that may
interfere the transmitted packets without being detected by the learning node,
the transmitter may cooperate with the node receiving the packets. This latter
transmits the acknowledgment including its own sensing results. The learning
node updates the Q values based on both its sensing and the received sensing
results which gives more vision about the actual and the previous channels
occupancy. The proposed solution is described in algorithm 1, using Rl

a(S, S′)
to denote the local reward measured by the learning node in the current state
S for each possible action a that results in a next state S′. Likewise, Rr

a(Sp, S
′

p)
represents the received reward measured by the cooperative node during the
reception of the previous packet. We are considering in this paper one jammed
channel, but the proposed learning algorithm, based on wideband energy de-
tection, allows the detection of the jammer even attacking multiple channels.

Algorithm 1 pseudocode for OPSQ-learning
Select a random initial state S = S0

while true do
The learning node does WBSS and checks for acknowledgment reception
Update all Q values at the current state S based on the local WBSS and the previous
state Sp based on the received WBSS results using,∀a:

Q(S, a) = (1− α)Q(S, a) + α(Rl
a(S, S′) + δmaxxQ(S

′
, x))

Q(Sp, a) = (1− α)Q(Sp, a) + α(Rr
a(Sp, S

′
p) + δmaxxQ(S

′
p, x))

Select an action a with max Q value

Take a and observe next state S
′

Sp = S

S = S
′

end while
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Figure 1-(a) details the tasks performed by the learning node. The first
step consists in gathering the IQ samples through wideband reception over
the considered M channels. Then the rewards associated to all the possible
actions are calculated using equation 2 based on energy detection to perform
WBSS. During this processing step, the learning node looks blindly for an
acknowledgment over the M considered channels without a rendez-vous or a
signaling channel. If an acknowledgment is received over a channel fack, the
reward calculated for that channel carrying the acknowledgment should not
keep its low value (since it has high energy E(fack)) to not falsify the decisions
and be considered as a jammed channel. For that, the learning node associates
to this channel the maximum reward that he has calculated. The next step
consists in deciding which is the jammed channel and which is the best one
(having the maximum reward). To evaluate the proposed algorithm, we have
compared four channel selection strategies; The first strategy is the classical
fixed channel selection that consists in transmitting over the same channel
all the time with neither sensing nor learning. The second one is based on
sensing without learning. It consists in the selection of the channel having
the minimum energy in each time step, it is denoted as the best channel
selection. In the third strategy, the learning node applies the proposed OPSQ-
learning algorithm but without cooperation, which means updating just the
Q values related to the actual state Q(S, :). The action having the maximum
Q value, a = max index(Q(S, :)), is selected to transmit the packets. The
last strategy consists in cooperating with the node receiving the packets to
have more knowledge. So, the learning node updates the actual state as in
the third strategy and he updates also the previous state based on the reward
values extracted from the acknowledgment. The received rewards are related to
the previous time step when the destination node has received the transmitted
packet. If the learning node does not receive the acknowledgment, he considers
that the response was jammed or lost and considers null received rewards.
Finally, the learning node selects the channel having maximum Q value. For
each of the four strategies, the packet is sent over the selected channel.

Figure 1-(b) describes the operations of the CR node receiving the trans-
mitted packets. After a wideband reception of the IQ samples, the channels
rewards are calculated based on the detected energies through WBSS. This
node looks blindly for the packet over the considered channels and performs
the cyclic redundancy check (CRC). If the packet is received correctly over a
channel fpacket, the CR node decides to send a positive acknowledgment. He
also corrects the reward that he calculated for that channel to the maximum
reward since it is not a jammed one. If the CRC is false, a negative acknowl-
edgment is sent. In both cases, he selects the best channel having maximum
reward to send the ACK sign and the rewards if we have selected the cooper-
ative strategy.
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(a) The learning node (b) The cooperative node

Fig. 1: Descriptive diagrams of the learning and cooperative nodes processes

4 Simulation results and discussion

This section concerns MATLAB simulation of the considered four channel se-
lection strategies: (1) the classical fixed one, (2) the sensing based best selec-
tion, (3) OPSQ-learning based strategy, (4) cooperative OPSQ-learning based
channel selection. We have opt for a high fidelity simulation which provides
the flexibility to adjust the CR configurable parameters according to the cho-
sen strategy and to the electromagnetic environment without abstractions of
the physical layer [24]. Furthermore, this allows going down to the level of IQ
samples and includes signal processing details such as spectrum sensing, frame
construction and real modulation & demodulation.

After presenting the simulation model, we will provide the results found
considering Additive White Gaussian Noise (AWGN) as statistical channel
model. Since this channel includes only the white noise without considering
the losses present in a wireless link, we discuss in the last paragraph of this
section how the fading could impact the learning process.
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Fig. 2: Simulation scenario

4.1 Simulation model

We are considering four channels (M = 4), a learning rate α = 0.1 and
a discount factor γ = 0.1. The two CR nodes transmit binary phase shift
keying (BPSK) modulated signals of 12KHz bandwidth (packets sent by
the learning node and acknowledgments sent by the cooperative node) and
perform WBSS. The reception period is equal to the transmission period
TRX = Tpacket = TACK = 0.98ms. The node receiving the packets and per-
forming CRC measures the packet success rate (PSR) for the four channel
selection strategies as given in table 1. The four strategies corresponds to the
four rows of the table. The columns of the table corresponds to two scenarios
depending on the visibility of the jammer to the learning node. The PSRs are
given for 1000 transmitted packets.

4.2 Simulation results

We started considering a slow sweeping jammer with a dwell time TJX =
2.28ms on each channel, which corresponds to TJX ≈ 2.3Tpacket as represented
in figure 2.

In the first scenario corresponding to a jammer detectable by both of the
CR nodes (column 1), learning with cooperation (row 4) outperforms learning
without cooperation (row 3) since the cooperative node gives more informa-
tion to the learning node about the jammer that may be not detected during
its sensing period but appears during the transmission of the packet. The
channel selection based on OPSQ-learning (row 3) is better than selecting
the best channel without learning (row 2) since the learning decision is not
only based on the actual information but also on the past learned information
((1− α)Q(S, a)) and on the future expectation (αγmaxxQ(S′, x)) as given in
equation (1) of Q value updates. The best channel selection based just on spec-
trum sensing (row 2) gives higher success rate than the fixed channel selection
(row 1) since this latter is a blind selection staying on the same channel all
the time without any information about the channels occupancy.

Choosing the best channel with or without learning (row 2 or row 3) are
similar to staying in the same channel (row 1) when the jammer is hidden
to the learning node (column 2) since both best channel selections are based
only on its sensing result. If the destination node cooperates with the learning



8 Feten Slimeni et al.

node (row 4), the PSR increases since the cooperative node gives an infor-
mation about the channel used for the previous packet transmission: packet
success implies the jammer absence and packet failure means collision with
the jammer.

Figure 3 gives the channels occupancy for each of the learning node and
the sweeping jammer over time for both the second and the third strategies.
The best channel selection without learning, given in subfigure (a), results in
loosing more packets than the strategy based on OPSQ-learning presented in
subfigure (b). For example, we consider packet number seven as indicated in
the figure. The wideband spectrum sensing gives the following reward vector
for both of the strategies: reward = (0.4145; 0.9982; 0.9981; 0.5892), the best
channel selection strategy results in the selection of the second channel re-
sulting in collision with the jammer. However, the on-line learning algorithm
calculates the Qvalues = (0.0228; 0.1896; 0.1898; 0.1679). Applying the pro-
posed learning algorithm, the third channel having the maximum Q value is
selected, as presented in subfigure (b).

According to the presented results, the cooperative OPSQ-learning (row 4)
outperforms learning without cooperation. Moreover, a CR applying the pro-
posed OPSQ-learning succeeds better than a CR just sensing the spectrum
to select the best channel, if the jammer is detectable. However, these success
rates depend on the jammer’s period and tactic. In terms of the jamming
period, we have considered a faster jammer with a dwell time larger than
the sensing period but lower then the sensing plus transmission periods of
the learning node. The simulation results, given in table 2, give the same
conclusions as the results against the slow sweep jammer. The noteworthy
difference concerns the best channel selection without learning (row 2) which
gives lower PSR than the three other strategies even the fixed channel selec-
tion. This is due to the fast sweep jammer which may be detected by the CR
node in one channel during the sensing period but moves to another channel
during the transmission period. In terms of the jamming tactic, we have
applied the proposed solution against both a pseudo random jammer and a
reactive one, the results are given in tables 3 and 4. Concerning the pseudo
random jammer, we have considered a sweep over a sequence of six channels
{f1, f4, f3, f3, f2, f4}. Concerning the reactive jammer, we have considered an
intelligent jammer who is capable to do spectrum sensing to jam the detected
occupied channel. We assumed that this jammer needs a duration of two time
slots before jamming the detected frequency, because it has to do the spectrum
sensing, then make the decision and finally hop to the detected frequency. The
results of tables 3 and 4 against pseudo random and reactive jammers confirm
the same conclusions as the results of table 1 against a sweeping jammer; The
channel selection based on the cooperative OPSQ-learning algorithm outper-
forms the three other considered channel selection strategies for both scenarios
of visible and hidden jammer. Furthermore, in the first scenario of detectable
jammer, the OPSQ-learning strategy without cooperation outperforms the
best channel selection strategy without learning which also outperforms the
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Jammer detectable by the learning node Jammer hidden to the learning node

Classical fixed channel selection 66.6% 66.6%

Best channel selection without learning 80% 66.6%

Learning without cooperation 82.8% 66.6%

Learning with cooperation 96.8% 84.4%

Table 1: Simulation results: Packet Success Rate against slow sweep jammer

Jammer detectable by the learning node Jammer hidden to the learning node

Classical fixed channel selection 73.3% 73.3%

Best channel selection without learning 65.5% 73.3%

Learning without cooperation 77.3% 73.3%

Learning with cooperation 86% 88.7%

Table 2: Simulation results: Packet Success Rate against fast sweep jammer

Jammer detectable by the learning node Jammer hidden to the learning node

Classical fixed channel selection 53.7% 53.7%

Best channel selection without learning 77.6% 53.7%

Learning without cooperation 89.5 % 53.7%

Learning with cooperation 99.4 % 74.5 %

Table 3: Simulation results: Packet Success Rate against pseudo random jam-
mer

fixed channel selection. The three strategies gives the same packet success rate
if the jammer is hidden to the learning node.

4.3 Discussion of the fading impact

We have presented results found under the assumption of simple AWGN chan-
nels. However the received energy could be affected not only by the jamming
signal but also by the fading present in wireless channels.

Fading may affect both spectrum sensing and packet transmission, as fol-
lows:
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Jammer detectable by the learning node Jammer hidden to the learning node

Classical fixed channel selection 1% 1%

Best channel selection without learning 96% 1%

Learning without cooperation 97% 1%

Learning with cooperation 97.6% 66.9%

Table 4: Simulation results: Packet Success Rate against reactive jammer

Fig. 3: Best channel selection based on sensing (a) versus channel selection
based on learning (b) against a sweeping jammer

– Depending on the coherence time and the spectrum sensing time, fading
can influence the rewards measured by the learning node, which affects the
Q matrix and may lead to more collisions with the jammer (so decrease of
the PSR)

– A lost packet or a drop of the received energy due to fading will falsify
the Q matrix in the case of cooperative learning since the learning node
updates the Q values based on rewards measured by the receiver node.

5 USRP measurements

We have implemented the physical layer signal processing steps and the four
channel selection strategies described previously using Qt Creator/C++
development environment and the Universal Software Peripheral Radio
platforms USRP E110 and B205mini. The physical layer is based on BPSK
modulation over the four channels: (432.94; 432.98; 433.02; 433.06)MHz.
Without loss of generality, we have opted for the stop and wait scheme
described in figure 4, but the presented study can be applied to any time
division multiplexing (TDM) scheme. The learning node does wideband
reception of the IQ samples during the reception period TRX detecting
acknowledgment (ACK) and jamming signals. The time needed to do blind
search of the ACK (for the learning node) or the packet (for the cooperative
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node) over the M channels is denoted Tprocess. After sending the packet,
the learning node waits until the end of the cooperative node processing
before returning to the reception step. The cooperative node respects the
same doctrine to keep synchronized with the learning node. We call radio
period the sum of the reception, transmission and packet/ack processing
periods: Tradio = TRX+2∗Tprocess+TTX . Figure 7 describes the alternation
between the packet and the acknowledgment transmissions by USRP nodes.
The packet success rate (PSR) measured by the CR receiving the packets
is given in table 5 for the four considered strategies in both scenarios of a
jammer detectable (scenario 1) or hidden (scenario 2) to the learning node.
The tests were performed in the Royal Military Academy (RMA) where the
USRP platforms were placed in different buildings as described in figures 5
and 6. The jammer was running standalone at start up of USRP E110, the
reporting node code was transferred to an Odroid-U3+ connected to one
of the two used USRP B205mini, and the learning node was running on a
laptop connected to the other USRP B205mini platform.
The real measurements show that the cooperation ameliorates the PSR for
both scenarios since the learning node receives the sensing result measured
by the cooperative node which helps in learning the jammer’s behavior.
Without cooperation, the learning node gains in terms of PSR only if he
detects the jammer since the proposed learning algorithm is based on the
sensing results. Otherwise, the learned strategy has the same PSR as the
fixed and the sensing based strategies. Figure 8 gives the best channel se-
lection based on sensing (a) and the channel selection based on learning
(b) in the presence of the sweeping jammer. Based just on sensing, the
strategy presents wrong decisions due to the asynchronous jammer behav-
ior. This latter may be detected in a channel during the sensing period,
but it moves to another channel during the packet transmission period
which leads to repeated collisions if this behavior is not learned to pro-
actively avoid the jammed channels. Furthermore, the CR based just on
sensing without learning may move from channel to another without avoid-
ing uneeded frequency alteration. However, the learning node ameliorates
its behavior over time based on the goodness measures of the available
decisions. The Q values are updated based not only on the sensing results
but also on the past learned information and the future expectation to take
the best decision avoiding collisions.
Tests using real radio equipments were also performed against pseudo ran-
dom and reactive jammers. The measured results confirm the same conclu-
sions as simulation results; The channel selection based on the proposed
cooperative algorithm outperforms learning without cooperation which also
outperforms the best channel selection without learning. However, the real
USRP measurements are not equal to MATLAB simulation values. This
is due to the implemented time division multiplexing scheme that needs a
processing time for the blind reception of the packets or the acknowledg-
ments. In MATLAB, the simulation time is different from the real time and
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neither the CR nodes nor the jammers need a processing time as presented
in figure 2.

Fig. 4: Cooperation based on stop and wait protocol

Jammer detectable by the learning node Jammer hidden to the learning node

Classical fixed channel selection 69% 69%

Best channel selection without learning 76% 69%

Learning without cooperation 87% 69%

Learning with cooperation 94% 82%

Table 5: Implementation results: Packet Success Rate against a sweeping jam-
mer



Cooperative Q-learning based channel selection for cognitive radio networks 13

Fig. 5: Scenario1

Fig. 6: Scenario2

6 Conclusion

In this paper, we have modeled the cognitive radio jamming attack as
a Markov decision process with unknown transition probabilities and re-
wards. We have proposed an on-policy synchronous Q-learning algorithm
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Fig. 7: Cooperation spectrum

(a) (b)

Fig. 8: Best channel selection based on sensing (a) versus channel selection
based on learning (b) against a sweeping jammer

based on wideband spectrum sensing and greedy policy to pro-actively
avoid the jammed channels. The wideband spectrum sensing speeds up the
learning process and the greedy channel selection reduces the packet loss
rate. We have proposed an enhancement of the proposed learning algo-
rithm based on the cooperation with the receiving cognitive radio. This
latter acknowledges each packet reception and transmits its sensing results
to the CR learning node who exploits this information in the update of the
Q values.
Simulation results and measurements using real radio equipment are given
in terms of packet success rate. We have considered sweeping, pseudo ran-
dom and reactive jammers. This latter is able to do spectrum sensing in
order to detect and interfere the channel carrying the packet. For the real
measurements, we have used the universal software defined radio (USRP)
platform and Qt Creator/C++ development environment. The results have
shown that the channel selection based on the proposed learning algorithm
achieves a higher packet success rate than the best channel selection based
just on sensing. The results are even better when the learning CR cooper-
ates with the CR receiving the packets to detect the jammer and update
the Q values. The proposed solution is applicable not only to avoid ma-
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licious interferes and provide continuous reliable communication, but also
for the CR coexistence with incumbents.
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