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Abstract: Since the jamming attack is one of the most severe threats in cognitive radio
networks, we study how Q-learning can be used to pro-actively avoid jammed channels.
However, Q-learning needs a long training period to learn the behavior of the jammer.
We take advantage of wideband spectrum sensing to speed up the learning process
and we make advantage of the already learned information to minimize the number of
collisions with the jammer. The learned anti-jamming strategy depends on the elected
reward strategy which reflects the preferences of the cognitive radio. We start with a
reward strategy based on the avoidance of the jammed channels, then we propose an
amelioration to minimize the number of frequency switching. The effectiveness of our
proposal is evaluated in the presence of different jamming strategies and compared to
the original Q-learning algorithm. We compare also the anti-jamming strategies related
to the two proposed reward strategies.

Keywords: Cognitive radio network; jamming attack; Markov decision process; Q-
learning algorithm.

1 Introduction

Cognitive Radio (CR) technology is recognized as a
promising solution to overcome the problems of scarcity
and inefficient utilization of the radio spectrum. The
CR associates learning and reconfigurability abilities
in order to perform a real time adaptation to the
environment modifications Mitola and Maguire (1999);
Mahmoud (2007); Raval et al. (2014).

However, in addition to common wireless
communication vulnerabilities, the cognitive radio

networks (CRNs) are susceptible to other kinds of
threats related to the intrinsic characteristics of this
technology Alhakami et al. (2014); El-Saleh et al. (2011);
Yang et al. (2013). Recently, research works have been
done in the area of CRN security and especially the
topic of opportunistic spectrum access in the presence
of jammers.

The jamming attack is one of the major threats in
CRNs because it can lead to network degradation and
even denial of service (DoS). Furthermore, the jammer
doesn’t need to be a member of the network or to collect
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information about it to launch such attack. The jammers
can be classified according to the following criteria:

1.1 Spot/Sweep/Barrage jamming

Spot jamming consists in attacking a specific frequency,
while a sweep jammer will sweep across an available
frequency band. A barrage jammer will jam a range of
frequencies at once.

1.2 Single/Collaborative jamming

The jamming attack can be done by a single jammer or
in a coordinated way between several jammers to gain
more knowledge about the network and to efficiently
reduce the throughput of the cognitive users.

1.3 Constant/Random jamming

The jammer can either send jamming signals
continuously on a specific channel or alternate between
jamming and sleeping.

1.4 Deceptive/Reactive jamming

A deceptive jammer continuously transmits signals in
order to imitate a legitimate or primary user. A reactive
jammer transmits only when it detects busy channel to
cause collisions.

More details about the classification of CRN
jamming strategies are given in Pietro and Oligeri
(2013). This reference deals with the problem of
spectrum coordination between CRs in the presence
of jammers. CRNs are characterized by dynamic
spectrum access (DSA) and by mainly distributed
architectures which make it difficult to implement
effective jamming countermeasures. Therefore, some
coding techniques have been developed to mitigate
the effects of this attack in the transmitted signal.
For example, the authors in Asterjadhi and Zorzi
(2010) combine random linear network coding with
random channel hopping sequences to overcome the
jamming effect on the transmitted control packets. Their
proposed algorithm is called jamming evasive network
coding neighbor discovery algorithm (JENNA). Another
coding approach is presented in Balogun (2014), it
consists in a hybrid forward error correction (FEC) code
to mitigate the jamming impact on the transmitted
data. The code is a concatenation of the raptor code
to recover data loss due to jamming, and the secure
hash algorithm (SHA-2) to verify the integrity of the
received data. Instead of using coding technique to
repair the already jammed data, an approach presented
in Wang et al. (2013) consists in a multi-tier proxy based
cooperative defense strategy. It exploits the time and
spatial diversity of the CRs to deal with collaborative

jamming attack in an infrastructure based centralized
CRN. Furthermore, the concept of honeynode has been
shown in Bhunia et al. (2014) to be effective in deceiving
jammers about the transmitting nodes. In this reference,
a single honeynode is dynamically selected for each
transmitting period, to act as a normal transmitting CR
in order to attract the jammer to a specific channel.

Another class of anti-jamming approaches is based
on the CR ability of changing its operating frequency
while maintaining continuous and proper operation.
This ability can be exploited to overcome jamming
attacks since the CR can hop to avoid jammed channels.
In this context, markov decision process (MDP) has
been widely exploited as a stochastic tool to model the
CR decision making problem in jamming scenarios with
fixed strategy, i.e. assuming that the jammer preserves
the same tactic. The CR may use reinforcement learning
(RL) algorithms to solve the MDP by learning how
to take the best decisions to keep its communication
unjammed. The Q-learning is the most common RL
algorithm applied in CRN jamming study to deal with
imperfect knowledge about the environment and the
jammer’s behavior. However, the application of this
technique should go through two phases: the first one
is a training phase during which the agent runs the Q-
learning algorithm and waits until its convergence to
get the optimal defense strategy. The next phase is the
exploitation of the learned strategy during the real time
working of the agent. An off-line application of this
technique seems to be inefficient for the CR, because
until the convergence of the Q-learning algorithm other
jammers may emerge and legacy spectrum holders
(primary users) activity may change. During the
training phase of the Q-learning algorithm, the CR can
already exploit the communication link, denoted as on-
line learning, but it may lose many data packets because
of the random learning trials.

The work developed in this paper is mainly based
on Wu et al. (2010) and Chen et al. (2013). In the
first paper, the authors start by deriving a frequency
hopping defense strategy for the CR using an MDP
model under the assumption of perfect knowledge, in
terms of transition probabilities and rewards. Further,
they propose two learning schemes for CRs to gain
knowledge of adversaries to handle cases of imperfect
knowledge: maximum likelihood estimation (MLE), and
an adapted version of the Q-learning algorithm. However
the modified Q-learning algorithm is given without
discussion or simulation results. The second paper gives
an MDP model of the CRN jamming scenario and
proposes a modified Q-learning algorithm to solve it.
Again, as in the previous reference no details are given
on how to implement the described theoretical anti-
jamming scheme.

In this paper, we aim to provide a modified version
of the Q-learning algorithm to speed up the training
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period and to make it appropriate for on-line learning.
We start in the next section by explaining how the
markov decision process (MDP) can model the scenario
of CRN under fixed jamming strategy. In section III,
we present the standard Q-learning algorithm and we
discuss its application to find an anti-jamming strategy.
In the remainder of this paper, we propose an MDP
model to the CRN jamming scenario and we present a
modified Q-learning version. During learning, the CR
tries to maximize its long term return which combines
into the Q-values, the sequence of rewards related to
the visited states and taken actions. So, the learned
anti-jamming strategy depends on the definition of the
reward strategy. In this paper, we propose two reward
strategies. The first strategy gives a negative reward
to the frequency on which a collision between the CR
and the jammer occurs. In addition to this penalty,
the second reward strategy accords a negative reward
when the CR does unnecessary frequency switching;
i.e. it switches to another frequency and the previous
frequency still not jammed. The goal is to stay as longer
as possible in the same frequency before the jammer
comes to attack it, since at every handoff the CR needs
to stop transmitting, do spectrum sensing, he requires
also handshake and synchronization with the other
side to restart transmitting, among other consequence
of frequent handoff is new session every time and so
new encryption keys. We evaluate the effectiveness of
the modified Q-learning algorithm in the presence of
different jamming strategies. The simulation results are
compared to the original Q-learning algorithm applied
to the same scenarios. We present and compare also
the learned anti-jamming strategies related to the two
proposed reward strategies.

2 The Markov decision process

The markov decision process (MDP) is a discrete time
stochastic control process. It provides a mathematical
framework to model the decision problem faced by an
agent to optimize his outcome. The goal of solving the
MDP is to find the optimal strategy for the considered
agent. In CRN jamming scenario, it means finding the
best actions (to hop or to stay) for the CR to avoid the
jammed frequency.
An MDP is defined by four essential components:

• A finite set of states S.

• A finite set of actions A.

• Pa(s, s′) = Pr(st+1 = s′|st = s, at = a) the
transition probability from an old state s to a new
state s′ when taking action a.

• Ra(s, s′) the immediate reward after transition to
state s′ from state s when taking action a.

The process is played in a sequence of stages (timesteps).
At every stage, the agent is in one state and at the end of
that stage he selects an action, then the process moves
to a new random state with the corresponding transition
probability. The agent receives a payoff, also called
reward, which depends on the current state and the
taken action. He continues to play stages until finding
the optimal policy, which is the mapping from states to
actions that maximizes the state values. The standard
family of algorithms used to calculate this optimal policy
requires storage of two arrays indexed by state:

• State value V (s), which contains a real value
corresponding to the discounted sum of the
rewards received when starting from each state.

• Policy π(s) which gives the action taken in every
state.

Every MDP has at least one optimal policy π∗ that
is stationary and deterministic. π∗ is called stationary
since it does not change as a function of time and it
is called deterministic since the same action is always
chosen whenever the agent is in one state s. At the end
of the algorithm, π∗ will contain the optimal solution
and V (s) will contain the discounted sum of the rewards
to be earned by following that policy from state s.

Markov decision processes can be solved via dynamic
programming (DP) when we have perfect knowledge
about transition probabilities and the reward of
every action. However in real situations of dynamic
environment and imperfect knowledge about transition
probabilities and rewards, MDP is solved using
reinforcement learning (RL) algorithms Szepesvri and
Littman (1996).

Dynamic programming (DP) techniques require an
explicit, complete model of the process to be controlled.
It is known as model based techniques, since we have to
reconstruct an approximate model of the MDP and then
solve it to find the optimal policy. The most popular
DP techniques is the value iteration algorithm which
consists in solving the following Bellman equation until
convergence to the optimal values V ∗(s), from which we
can derive the corresponding optimal policy:

Q(s, a) = Ra(s, s′) + γ
∑
s′

Pa(s, s′)V ∗(s′) (1)

V ∗(s) = maxaQ(s, a) (2)

where γ is the discount factor that controls how much
effect future rewards have on the optimal decisions.
Small values of γ emphasizing near-term gain and
larger values giving significant weight to later rewards.
Equation (1) is repeated for all possible actions in each
state s. It calculates the sum of the immediate reward
Ra(s, s′) of the taken action and the expected sum of
rewards over all future steps. Then, equation (2) gives
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the optimal action which corresponds to the maximum
V (s) value. The value iteration algorithm reaches
convergence when |Vn+1(s)− Vn(s)| < ε is met for all
states s, where Vn(s) corresponds to the calculated V (s)
value at timeslot n.

However, in real scenarios the CR is acting in
hostile and dynamic environment without complete
information. It doesn’t know either the resulting new
state after taking an action or the reward/cost of its
action. For example, hopping to another frequency may
lead to jamming situation or successful transmission.
This situation can be defined as a reinforcement learning
(RL) problem, in which an agent wanders in an unknown
environment and tries to maximize its long term return
by performing actions and receiving rewards Henrique
and Ribeiro. Therefore, the CR should use learning
algorithms to learn PU’s and jammer’s activities. After
learning the jammers policy, it can predict the next
action of the jammer and plan its next course of action
to avoid jammed channels.

3 The Q-learning algorithm

Learning algorithms can be used as a model-free
simulation tool for determining the optimal policy
π∗ without initially knowing the action rewards
and the transition probabilities. Autonomous RL is
completely based on interactive experience to update
the information step by step, and based on this derive
an estimate to the optimal policy. The most popular
RL method is the Q-learning algorithm, which is an
extension to the value iteration algorithm to be applied
in non deterministic markov decision processes.

As first introduced in Watkins (1989), the Q-learning
algorithm is a simple way for agents to learn how to act
optimally by successively improving its evaluations of
the quality of different actions at every state. It consists
in approximating the unknown transition probabilities
by the empirical distribution of states that have been
reached as the process unfolds. The goal is finding a
mapping from state/action pairs to Q-values. This result
can be represented by a matrix of Ns lines, where Ns is
the number of states s, and Na columns corresponding
to possible actions a. The Bellman equation (1) is
replaced in this algorithm by an iterative process; at
every timeslot the algorithm measures the feedback
rewards of taking an action a in a state s, and updates
the corresponding Q(s, a):

Q[s, a]← Q[s, a] + α [Ra(s, s′) + γ maxaQ(s′, a)−Q[s, a]](3)

which gives:

Q[s, a]← (1− α)Q[s, a] + α [Ra(s, s′) + γ maxaQ(s′, a)](4)

where 0 < α ≤ 1 is a learning rate that controls how
quickly new estimates are blended into old estimates.

The Q-value is a prediction of the sum of the
discounted reinforcements (rewards) received when
performing the taken action and then following the given
policy thereafter. It can be considered as a measure of
the goodness of that action choice.

The Q-learning algorithm updates the values
of Q(s, a) through many episodes (trials) until
convergence to optimal Q∗ values; this is known as the
training/learning stage of the algorithm. Each episode
starts from a random initial state s1 and consists on a
sequence of timeslots during which the agent goes from
state to another and updates the corresponding Q value.
Each time the agent reaches the goal state, which have to
be defined depending on the scenario, the episode ends
and he starts a new trial. The convergence to the optimal
Q∗ matrix requires visiting every state-action pair as
many times as needed. In simulation, this problem is
known as the exploration issue. Random exploration
takes too long to focus on the best actions which leads to
a long training period of many episodes. Furthermore, it
does not guarantee that all states will be visited enough,
as a result the learner would not expect the trained Q
function to exactly match the ideal optimal Q∗ matrix
for the MDP Tesauro (2003). The training phase of the
Q-learning process is described in algorithm 1 Sutton
and Barto (1998).

Two main characteristics of the standard Q-learning
algorithm are: (i) it is said to be an asynchronous
process since at each timeslot the agent updates a single
Q(s, a) value (one matrix cell), corresponding to his
current state s (line s) and his action a (column a)
taken at this timeslot Abounadi et al. (2002). (ii) The
Q-learning method does not specify what action a the
agent should take at each timeslot during the learning
period, therefore it is called OFF-policy algorithm
allowing arbitrary experimentation until convergence to
stationary Q values Even-Dar and Mansour (2003). The
optimal Q∗ matrix resulting from the learning period
will be exploited by the agent as the best policy. During
the exploitation phase, when he is in a state s, he has
to take the action corresponding to the maximum value
in the matrix line Q∗(s, :).

In previous sections, we have explained the MDP
and the Q-learning algorithm tools commonly used to
model and solve the CRN scenario under static jamming
strategy. The CR can apply the Q-learning algorithm
to learn the jammer’s behavior, but it have to wait
for a long training period before getting the optimal
anti-jamming strategy. Moreover, as the CR has to
try random actions before the convergence of the Q-
learning algorithm, it is not suitable to do learning
in an operational communication link because the CR
may loss many transmitted packets. As a solution to
these challenges, we propose in the next section a
modified version of the Q-learning algorithm, and we
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Algorithm 1 Pseudocode of the Q-learning algorithm

Set the γ parameter, and the matrix R of environment
rewards.
Initialize the matrix Q as a zero matrix.
for each episode do

Select a random initial state s = s1.
while the goal state hasn’t been reached do

Select one action a among all possible actions for
the current state.
Using this possible action, consider going to the
next state s′.
Get maximum Q value for this next state based
on all possible actions maxa(Q(s′, a)).
Compute: Q(s, a) = Ra(s, s′) + γ maxa(Q(s′, a))

Set the next state as the current state s = s′.
end while

end for

will denote this version as ON-policy synchronous Q-
learning (OPSQ-learning) algorithm.

4 The On-policy synchronous Q-learning
algorithm

We will start by defining a markov decision process to
model the CR’s available states and actions, with the
consideration of unknown transition probabilities and
unknown immediate rewards of the taken actions. Then,
we will present a modified version of the Q-learning
algorithm that we have implemented to solve the defined
MDP model.

4.1 Markov decision process model

We consider a fixed jamming strategy to solve the
decision making problem from the side of the CR trying
to find an anti-jamming strategy.

Assume there are M available channels for the CR
and there is a jammer trying to prevent it from an
efficient exploitation of these channels. As a defense
strategy, the CR have to choose at every timeslot either
to keep transmitting over the same channel or to hop
to another one. The challenge is to learn how to escape
from jammed channels without scarifying a long training
period to learn the jammer’s strategy. Lets define the
finite set of possible states, the finite set of possible
actions at each state and the resultant rewards after
taking these actions.

The state of the CR is defined by a pair of
parameters: its current operating frequency and the
number of successive timeslots staying in this frequency.
Therefore, its state at a timeslot i is represented
by the pair si = (fi, k), where fi is its operating

frequency at this timeslot i and k is the number of
successive timeslots using this frequency. We have opt
for mixing spatial and temporal properties in the state
space definition to get a Markovian evolution of the
environment.

At every state, the CR should choose an action to
move to another state, which means that it has to choose
its future frequency. Therefore, we define its possible
actions as a set of M actions, which are the M available
channels: {f1, f2, ..., fM}. An example of the Q matrix
composed by these states and actions is given in Table 1.

Assume the reward is zero Ra(s, s′) = 0 whenever
the new frequency after choosing the action a is not
jammed, and Ra(s, s′) = −1 when the CR takes an
action a resulting to a jammed frequency. We consider
the jammed state as a failure and a situation that should
be avoided.

4.2 The learning process

We present in algorithm 2, a modified version of
the Q-learning process denoted as the ON-policy
synchronous Q-learning (OPSQ-learning), because of
the two following modifications: (i) We have replaced
the OFF-policy characterizing the standard Q-learning
algorithm by an ON-policy, i.e. at each timeslot, the CR
follows a greedy strategy by selecting the best action
corresponding to maxaQ(s, a) instead of trying random
action. (ii) We have exploited the CR ability of doing
wideband spectrum sensing, to do synchronous update
of M Q-values instead of the asynchronous update
of only one cell in the Q matrix, i.e. the CR after
going to a next state can, using its wideband sensing
capability, detect the frequency of the jammer at that
moment and hence do an update of all state-action pairs,
corresponding to the possible actions which can be taken
from its previous state s (update of all columns of the Q
matrix line Q(s, :)). Due to the second modification (the
synchronous Q-values update), the modified Q-learning
algorithm is no longer a model-free technique but it can
be seen as a model-based technique, i.e. the CR can learn
without actually apply the action.

We assume that the CR and the jammer are
time synchronized. Also, we have to mention that
we are assuming perfect spectrum sensing and
full observations for simplicity. But we cite some
interesting references dealing with the influence of
the radio channel in the estimation of the detected
signal. For example, Arokkiaraj and Jayasankar (2014)
develops and analyzes an adaptive spectrum sensing
scheme according to the variation of time-varying
channels, Kyperountas et al. studies the cooperative
spectrum sensing for a cognitive radio system operating
in AWGN, correlated/uncorrelated shadowing, and in
channels featuring composite large-scale and small
scale fading. Also, Molisch et al. (2009) provides a
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Algorithm 2 Pseudocode of ON-policy synchronous Q-
learning

Set γ and ε values.
Initialize matrix Q1 to zero matrix.
Select a random initial state s = s1
Set n=1, timeslot=1
while n<Nepisodes do
Qn−1 = Qn, Ra(s, s′) = 0 ∀ a,s,s′

Calculate the learning coefficient α = 1/timeslot
Select an action a verifying maxaQn−1(s, a)
Taking a, go to the new state s′ at frequency f ′

Find the new jammed frequency fjam %(due to
wideband spectrum sensing)
Update all Qn values of the previous state s by
doing:
for i = 1 : M do

observe the fictive state stmp of taking fictive
action fi
if fi = fjam then
Rfi(s, stmp) = −1

else
Rfi(s, stmp) = 0

end if
Compute Qn(s, fi) = (1− α)Qn−1(s, fi) +
α[Rfi(s, stmp) + γ maxaQn−1(stmp, a)]

end for
if f ′ = fjam %(end of episode) then

n=n+1
timeslot=1
Select a random initial state s = s1

else
s = s′

timeslot=timeslot+1
end if
if (abs(Qn(s, a)−Qn−1(s, a)) < ε) ∀ s,a then

break
end if

end while

comprehensive overview of the propagation channel
models that will be used for the design of cognitive
radio systems and deals with the time variations of the
channel response which determine how often potential
interference levels have to be estimated and, thus, how
often transmission strategies may have to be adapted.

To evaluate the effectiveness of the proposed
solution, we have applied both the standard version
of the Q-learning algorithm (characterized by OFF-
policy and asynchronous update) and the modified
ON-policy synchronous Q-learning algorithm to the
described MDP model. Note that in this algorithm, our
episode starts from a random frequency, going from one
state to another by taking the best action at every
timeslot, and ends whenever the CR goes to a jammed
frequency.

The next subsection presents the simulation results
in the presence of various jamming strategies.

4.3 Simulation results

We have considered in the simulations four available
frequencies (M = 4) for the CR. We have implemented
both the standard and the modified versions of the Q-
learning algorithm, under sweeping, reactive and pseudo
random jamming strategies.

We started by the implementation of the standard
version of Q-learning algorithm. We found, by averaging
over many simulations, that it takes about one hundred
episodes to converge to the matrix Q∗. Then, we have
implemented the modified Q-learning version (OPSQ-
learning) and we give the results in the following
paragraphs. The following figures display the anti-
jamming strategy in the exploitation phase, after
running the learning algorithm. We have considered
a discount factor γ = 0.95 and ε = 10−2 for the
convergence condition. We are using the red color to
indicate the jammed frequencies and the blue color to
indicate the CR frequencies for an exploitation period
of twenty timeslots.

4.3.1 Scenario with a sweeping jammer

As a first scenario, we consider a jammer sweeping
over the available spectrum frequencies by attacking
at each timeslot one frequency. The OPSQ-learning
algorithm converges after only one or two episodes
depending on the initial state. The Q∗ matrix is given in
Table 1. The strategy given by this resulting Q∗ matrix
is shown in Fig. 1, when the CR starts as initial random
state s1 from the frequencies f2 and f3 respectively.

Table 1 The Q∗ matrix in a sweeping jammer scenario

State \ Action f1 f2 f3 f4
(f1,1) 0 0 -0.8356 0
(f1,2) 0 0 0 -0.6768
(f1,3) -0.5770 0 0 0

...
...

...
...

...

(f2,1) 0 -0.3822 0 0
...

...
...

...
...

(f3,1) 0 -1 0 0
...

...
...

...
...

(f4,1) 0 0 0 0
...

...
...

...
...

4.3.2 Scenario with a reactive jammer
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(a) s1 = (f2, 1)

(b) s1 = (f3, 1)

Figure 1: Exploitation of the learned policy against a
sweeping jammer

In this scenario, we consider a reactive jammer.
We suppose that this jammer needs a duration of
two timeslots before jamming the detected frequency,
because it has to do the spectrum sensing, then make
the decision and finally hop to the detected frequency.
The OPSQ-learning algorithm converges in this scenario
after four episodes. The Q∗ matrix is given in Table 2.

According to the resulting Q∗ matrix, the CR
succeeds to learn that it has to change its operating
frequency every two timeslots to escape from the
reactive jammer. The learned strategy is given in Fig. 2
when the CR starts respectively from the frequencies f2
and f3 as initial state s1.

Table 2 The Q∗ matrix in a reactive jammer scenario

State \ Action f1 f2 f3 f4
(f1,1) 0 -0.8047 0 0
(f1,2) -0.6986 0 0 0

...
...

...
...

...
(f2,1) -1 0 0 0
(f2,2) 0 -0.6861 0 0

...
...

...
...

...

(f3,1) -1 0 0 0
...

...
...

...
...

(f4,1) -1 0 0 0
...

...
...

...
...

4.3.3 Scenario with a pseudo random jammer

(a) s1 = (f2, 1)

(b) s1 = (f3, 1)

Figure 2: Exploitation of the learned policy against a
reactive jammer

In this scenario, we consider a jammer with a pseudo
random strategy. We suppose that at every timeslot, this
jammer attacks randomly one of the four frequencies,
and after a period T it repeats the same sequence of the
attacked frequencies. We started with a period T = 5
during which the random sequence is (1, 3, 2, 4, 2), we
found that the OPSQ-learning algorithm converges in
this scenario after four episodes. Then, we considered
a period T = 10 during which the random sequence
is (1, 1, 4, 3, 2, 1, 3, 3, 4, 2), we found that the OPSQ-
learning algorithm converges in this scenario after five
episodes. The Q∗ matrix is given in Table 3.

The CR succeeds to learn the pseudo random
strategy of the jammer, and the learned anti-jamming
strategies are given in Fig. 3 when the periods of the
pseudo random jamming sequences are respectively T =
5 and T = 10 timeslots.

Table 3 The Q∗ matrix in a pseudo random jammer with
a period of 5 timeslots

State \ Action f1 f2 f3 f4
(f1,1) 0 -0.8235 0 -0.0882
(f1,2) 0 -0.1130 0 -0.6610
(f1,3) -0.1100 -0.5602 0 0

...
...

...
...

...

(f2,1) 0 0 -0.3236 0
...

...
...

...
...

(f3,1) -1 0 0 0
...

...
...

...
...

(f4,1) 0 0 -1 0
...

...
...

...
...
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(a) T = 5

(b) T = 10

Figure 3: Exploitation of the learned policy against a
pseudo random jammer

4.4 Discussion

The standard Q-learning algorithm converges after
about one hundred episodes; each episode starts from a
random frequency, going randomly from one frequency
to another taking random decisions until collision with
the jammer. The CR applying this technique have
to either wait for all this training period to get an
anti-jamming strategy or to use it during real time
communication and sacrifice about hundred lost packets.

The ON-policy synchronous Q-learning algorithm
converges faster than the standard Q-learning
algorithm; it gives a suitable defense strategy after
about four training episodes against sweeping and
reactive jammers. This is due to the synchronous
update of all Q-values of possible actions from a current
state, which helps the CR to faster improve its beliefs
about all decisions without trying all of the actions.
Furthermore, the choice of taking at every timeslot the
best action (until the actual moment) promotes the
real time exploitation of the OPSQ-learning algorithm
during the CR communication. Because the OPSQ
algorithm learns the safe strategy (it takes the action
selection method into account when learning), it receives
a higher average reward per trial than Q-learning as
given by Fig. 4. But, We should mention that the
proposed OPSQ-learning algorithm doesn’t optimize
the entire matrix Q, it just optimizes the Q-values
of state/action pairs that the CR goes through until
finding an anti-jamming strategy. The CR using the
proposed algorithm succeeds to learn how to avoid the
jammed channels, but as we can see in figures 2(b)
and 3, the CR does unneeded frequency switching. It

Figure 4: Comparison between Q-learning and OPSQ-
learning

means that he learned to jump from frequency to an
another even if the first one will not be jammed in the
next timeslot, which costs in terms of time, frequency
and power consumption. This disadvantage is due to
the elected reward strategy, in which we accord −1
just to the choice of a jammed frequency, otherwise
the CR receives zero as reward. In the next section, we
propose an ameliorated reward strategy trying to find
the optimal anti-jamming strategy.

5 Changing the reward strategy to optimize
the anti-jamming strategy

In this section, we propose another reward strategy
according a penalty ofR2 = −1 not only for the choice of
a jammed frequency but also for the frequency switching
without having the previous frequency attacked by the
jammer. We integrate this new reward strategy in the
OPSQ algorithm given by the pseudocode 2 , and the
new learning algorithm is given by pseudocode 3.

We have implemented this new algorithm
considering the same simulation parameters as given in
subsection 4.3 with the previous simple reward strategy
(penalty of −1 just for being jammed). Against a
sweeping jammer we get the same simulation results as
the results given in the previous section. But against
reactive and pseudo random jammers, the CR succeeds
to avoid the jammed channels with the minimum
number of frequency switching.

5.1 Scenario with a reactive jammer

The CR succeeds to learn not only that it has to change
its operating frequency every two timeslots to escape
from the reactive jammer, but also that starting from
frequency f3 he doesn’t need to hop to the frequency
f2 as he does in Fig. 2(b). The Q∗ matrix is given in
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Algorithm 3 Pseudocode of OPSQ-learning with
modified reward strategy

Set γ and ε values.
Initialize matrix Q1 to zero matrix.
Select a random initial state s = s1 at a frequency f
Set n=1, timeslot=1
while n<Nepisodes do
Qn−1 = Qn, R2a(s, s′) = 0 ∀ a,s,s′

Calculate the learning coefficient α = 1/timeslot
Select an action a verifying maxaQn−1(s, a)
Taking a, go to the new state s′ at frequency f ′

Find the new jammed frequency fjam %(due to
wideband spectrum sensing)
Update all Qn values of the previous state s related
to the previous frequency f by doing:
for i = 1 : M do

observe the fictive state stmp of taking fictive
action fi
if fi = fjam then
R2fi(s, stmp) = −1 % (jammed)

else
if fi = f then
R2fi(s, stmp) = 0

else
if f = fjam then
R2fi(s, stmp) = 0

else
R2fi(s, stmp) = −1 % (unneeded hop)

end if
end if

end if
Compute Qn(s, fi) = (1− α)Qn−1(s, fi) +
α[R2fi(s, stmp) + γ maxaQn−1(stmp, a)]

end for
if f ′ = fjam %(end of episode) then

n=n+1
timeslot=1
Select a random initial state s = s1

else
s = s′

timeslot=timeslot+1
end if
if (abs(Qn(s, a)−Qn−1(s, a)) < ε) ∀ s,a then

break
end if

end while

Table 4 and the ameliorated learned strategy is given in
Fig. 5 when the CR starts f3 as initial state s1.

5.2 Scenario with a pseudo random jammer

In this scenario, we consider jammers with the same
pseudo random strategies as the previous section: the
same random sequence (1, 3, 2, 4, 2) of period T = 5
and the same random sequence (1, 1, 4, 3, 2, 1, 3, 3, 4, 2)

Table 4 The Q∗ matrix in a reactive jammer with new
reward function

State \ Action f1 f2 f3 f4
(f1,1) 0 -0.727 -0.727 -0.727
(f1,2) -0.6287 0 0 0

...
...

...
...

...

(f2,1) -1 0 -1 -1
(f2,2) 0 -0.4164 0 0

...
...

...
...

...
(f3,1) -1 -1 0 -1

(f3,1) -1 -1 0 -1
(f3,2) 0 0 -0.75 0

...
...

...
...

...

(f4,1) -1 -1 -1 0
...

...
...

...
...

Figure 5: Exploitation of the optimal policy against a
reactive jammer

of period T = 10. The CR succeeds not only to learn
the pseudo random strategies of the jammers, but with
the minimum number of frequency switching actions
compared to Fig. 3. The Q∗ matrix is given in Table 5.

The learned anti-jamming strategies are given in
Fig. 6 when the periods of the pseudo random jamming
sequences are respectively T = 5 and T = 10 timeslots.

5.3 Comparison in terms of reward per trial

According to Fig. 7, we can conclude that using the
new reward strategy with two penalties (one for being
jammed and the other for extra frequency switching)
reaches later the level reward = 0 than the algorithm
using the simple reward strategy (according a penalty
just for being jammed), but the difference is negligible
compared to the gain in terms of frequency hopping.
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Table 5 The Q∗ matrix in a pseudo random jammer
(5TS), with new reward function

State \ Action f1 f2 f3 f4
(f1,1) -0.4334 -0.996 -1.2795 -1.2748
(f1,2) -0.3871 -1.052 -0.9825 -0.7728
(f1,3) -0.1482 -0.7613 -0.9579 -0.9555
(f1,4) -0.6294 -0.2356 -0.1793 -0.1727

...
...

...
...

...

(f2,1) -0.643 -0.5728 -0.4717 -0.6321
...

...
...

...
...

(f3,1) -1.4148 -1.0277 -0.3695 -1.3616
(f3,2) -1.028 -1.397 -0.4091 -1.3918
(f3,3) -0.4521 -0.4877 -0.9343 -0.4569

...
...

...
...

...

(f4,1) -1.4152 -1.4481 -1 -0.3657
(f4,2) -1.3753 -0.9765 -1.3048 -0.3504
(f4,3) -0.415 -0.4296 -0.3436 -1

...
...

...
...

...

(a) T = 5

(b) T = 10

Figure 6: Exploitation of the optimal policy against a
pseudo random jammer

6 Conclusion

In this work, we have discussed the exploitation of
the MDP model and the Q-learning algorithm to find
an anti-jamming strategy in CRNs. We have modeled
the scenario of fixed jamming strategy as an MDP
model. Then, we have proposed a modified Q-learning
algorithm to solve it, we call the proposed algorithm as
the ON-policy synchronous Q-learning (OPSQ-learning)
algorithm. To learn the optimal anti-jamming strategy,
we have ameliorated the reward strategy in order to
stay as longer as possible in the same frequency and

Figure 7: Comparison between OPSQ-learning with
different reward strategies

minimize the number of frequency switching. We have
presented the simulation results of the application of
both the standard Q-learning and the OPSQ-learning
algorithm under sweeping, reactive and pseudo random
jamming strategies. We can conclude that the OPSQ-
learning version speeds up the learning period and the
ameliorated reward strategy optimizes the number of
channel switching which enhance its application during
CRN real time communication. As future work, the
presented solution will be tested in real platform and
real environment, considering multiple jammers and
primary users.
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