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Abstract: Cognitive jammers are able to deploy advanced strategies that degrade the performance
of cognitive radio user communications. In this paper, we study the problem of power allocation in
cognitive radio user and jammer games, over parallel Gaussian channels. We model the interaction
between a communicator (a transmitter-receiver pair) and a jammer using zero-sum games with
continuous action sets; we describe unilateral, Nash and stackelberg games. We compare the
Nash equilibrium, the Stackelberg equilibrium and the minmax/maxmin optimal power allocations
through the simulation of the diverse game scenarios. Finally, we give the theoretical proof of
existence and uniqueness of the Nash equilibrium.

1. Introduction

Cognitive radio (CR) technology is a promising solution to the shortage of the spectrum due to its
capacities of dynamic spectrum access and reconfigurability. A CR device can adjust its operating
parameters (such as the frequency and the power level) intelligently in real time to account for the
wireless environment changes.

Until recently, the problem of optimal power allocation in cognitive radio networks (CRNs) has
been studied to solve either the primary and secondary users (PUs/SUs) coexistence [1, 2, 3, 4],
or the spectrum sharing between the CR users [5, 6]. In [1], the goal is to maximize the weighted
sum effective capacities of the SUs. The authors determined the optimal power allocation through
a convex optimization method using Lagrangian functions with respect to Karush Kuhn-Tucker
(KKT) conditions. The authors in [2] studied the impact of channel correlation on the optimal
power allocation strategy. Multiple input single output antenna techniques and antenna selection
(AS) techniques are studied in [3] to combat the interference constraint and improve the capac-
ity of the SU. The problem in [4], is modeled as a partially observable Markov decision process
(POMDP) and the optimal policy is derived for relay selection, channel access, and power alloca-
tion through a dynamic programming approach. In order to maximize its transmission rate, each
SU in [5] applies a waterfilling scheme and uses the greedy asynchronous distributed interference
avoidance algorithm (GADIA) to solve the mutual interference problem. The approach is based
on the dynamic adjustment of the number of used frequencies by each user. The problem of power
and chunk-based resource allocation is investigated in [6] to maximize the energy efficiency of a
multi-carrier CRN. Using Dinkelbach method from non-linear fractional programming and dual
optimization method, the authors developed an iterative algorithm to optimize both of the power
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allocation and chunk-based resource allocation.
The works above deal with the power allocation problem between CR users having the same

goal which consists in maximizing an objective function (capacity, SINR, spectrum exploitation,
etc) and avoiding interference. However, the CR technology can be exploited by malicious users to
prevent the efficient management of the available frequency bands. A jammer may be able to ad-
just its power allocation across tones in order to cause maximal intentional interference and harm
the communication in the most efficient way. Game theory is usefull in this scenario since it helps
improve decision making in situations where the best course of action depends upon the decisions
made by others. Reference [7], first published in 1997 with substantive revision in 2014, pro-
vides and explains almost all possible game scenarios. Power allocation in non-cooperative games
against a jammer have been studied in some recent works for MIMO radar system [8], wireless
communication networks [9, 10, 11] and cognitive networks [12, 13]. In [8], the interaction be-
tween a smart target and a smart MIMO radar is modeled as a two-person zero-sum game (TPZS).
The unilateral, hierarchical, and symmetric power allocation games are studied based on the infor-
mation set available for each player, and the equilibrium solutions are derived. Altman modeled
in [9] the jamming game in wireless network as a non zero-sum game with transmission cost, for
which he provided analytical expression of the unique Nash equilibrium (NE). Reference [10] can
be considered as a generalization of Altman’s work to a game scenario between K users and a
jammer. The authors develop a generalized version of the iterative waterfilling algorithm (GIWF)
whereby all of the users and also the jammer update their power allocations in a greedy manner in
order to maximize their respective utilities. Considering finite strategy sets for both the transmitter
and the jammer, the authors in [11] prove the existence of NE in pure (deterministic) strategies and
characterize the optimal power allocations in asymptotic regimes over independent parallel Gaus-
sian wiretap channels where a legitimate transmitter and a legitimate receiver communicate in the
presence of an eavesdropper and a jammer. In the context of CRNs, the interaction between a jam-
mer and a CR user is presented in [12] as Colonel Blotto game where the two opponents distribute
limited resources over a number of battlefields with the payoff equal to SINR, and the equilibrium
is derived in terms of mixed (probabilistic) strategy via power randomization. Likewise, the au-
thors in [13] adopt a Bayesian approach in studying the power allocation game between the CR
user and the jammer, and provide the Cumulative Distribution Functions (CDFs) of the transmis-
sion powers that should be adopted by the CR user and the jammer at NE to optimize the utility
function equal to the number of successful transmissions.

In this paper, we model the interaction between a CR communicator (a transmitter-receiver
pair) and a jammer using zero-sum game scenarios, with the transmission capacity as the objective
function. We consider that the actions of both players can be selected from continuous sets, since
the allocated power to each channel can take any decimal value with possible infinite sequence of
digits to the right of the decimal point. In section 3, we solve the two unilateral games indepen-
dently. In each game, we consider one player as the unique decision maker and the other player
having a fixed power allocation. In section 4, we consider the Nash game in which some player
moves first, the other player observes the choice made and then adapts his power allocation. We
determine for that scenario the pure strategy Nash equilibrium through simulation of an iterative
algorithm of the unilateral games. Then, we study Stackelberg game in section 5 where the first
player (the leader) has knowledge of the follower’s reaction function and makes the optimal deci-
sion reaching the Stackelberg equilibrium. Furthermore, we determine the maxmin and minmax
optimal power allocations for the CR user and the jammer under complete knowledge in finite
action subsets. The simulation results give equality of the Nash equilibrium, the Stackelberg equi-
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librium and the minmax/maxmin optimal power allocations. Finally, we theoretically prove the
existence and uniqueness of this equilibrium.

2. System model

We consider that the CR user has the capacity of accessing multiple frequency bands at the same
time with a limited power budget, this scenario is possible for example by using the OFDM modu-
lation. Each jammer is also assumed to be able to inject interference to all channels which is known
as barrage jamming. The scenario is given in Figure 1. The CR user adopts the ’listen-before-talk’

Fig. 1: Scenario of CR jamming attack

rule, that is, sensing for spectrum opportunities at the beginning of each timeslot. On finding M
available channels, it allocates power pk ≥ 0 to a channel k ∈ [1,M ] such that:

M∑
k=1

pk ≤ P (1)

An action of the CR user is designed by the vector p = (p1, · · · , pk, · · · , pM) in order to maximize
its transmission capacity subject to (1) with P as the total power. At the same time, the jammer
injects power jk ≥ 0 to the channel k such that:

M∑
k=1

jk ≤ J (2)

An action of the jammer is designed by the vector j = (j1, · · · , jk, · · · , jM) in order to minimize
the transmission capacity of the CR user, subject to (2) with J as the total power.
nk is the noise variance of channel k, hk and gk are the gains of channel k for the CR user and the
jammer respectively. In this paper, we assume that all channel gains are common knowledge to
both players, and we consider that the M channels are parallel Gaussian channels.

The Shannon capacity is proportional to

f(p, j) =
M∑
k=1

log2(1 +
|hk|2pk

|gk|2jk + nk
). (3)

We consider f(p, j) (−f(p, j)) the utility function of the CR user (the jammer). The CR user is
trying to maximize its total transmission capacity over the available channels and the jammer is
trying to minimize this capacity, so their interaction can be seen as a two person zero-sum game.
In game theory, a zero-sum game is a situation in which one player’s gain is equivalent to another’s
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loss. Provided that each element of the vectors p and j can take any value in [0, P ] and [0, J ], we
have continuous set of actions for the two players.

In the remainder of this paper, we will study diverse scenarios of the game between the two
players to find the optimal power allocations. The simulation results will be given in section 7.

3. Unilateral games

We start by considering the extreme cases where only a player has to decide how to allocate his
total power against an opponent having a fixed strategy.

3.1. CR user Unilateral Game

If the jammer’s strategy is fixed, the game degenerates to a classical power allocation problem
where the CR user chooses its power according to the noise plus jamming level in order to max-
imize the capacity. Mathematically, it can be formulated as the following nonlinear optimization
problem:

maximize
p

M∑
k=1

log2(1 +
|hk|2pk

|gk|2jk + nk
)

subject to
M∑
k=1

pk ≤ P

(4)

Allowing inequality constraints, the Karush-Kuhn-Tucker (KKT) approach generalizes the method
of Lagrange multipliers to nonlinear programming. The Lagrangian is then,

L(p, j, λ) =
M∑
k=1

log2(1 +
|hk|2pk

|gk|2jk + nk
)− λ(

M∑
k=1

pk − P ) (5)

Since L is separable in pk, we can separately optimize each term.

∂L

∂pk
=

|hk|2

|hk|2pk + |gk|2jk + nk
− λ (6)

The optimal solution of this optimization problem yields the following strategy

p∗k = (
1

λ
−Nk)

+ (7)

known as waterfilling strategy, where 1
λ

is the waterlevel. The KKT multiplier λ > 0 can be found
by bisection and should satisfy ∑

k

(
1

λ
−Nk)

+ = P, (8)

where (x)+ = max(0, x) and Nk is the fictive noise power on each channel given as

Nk =
|gk|2j∗k + nk
|hk|2

(9)
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3.2. Jammer Unilateral Game

On the other hand, suppose that the CR user has a fixed power allocation strategy. The game
degenerates to a jamming unilateral optimization, as the CR user is not aware of this. In such a
circumstance, the jammer will allocate its jamming power to minimize the total capacity. Mathe-
matically, this is expressed as the following minimizing problem

minimize
j

f(p, j)

subject to
M∑
k=1

jk ≤ J
(10)

We can write the Lagrangian as

L(j, µ) = −f(p, j)− µ(
M∑
k=1

jk − J) (11)

Since L is separable in jk, we can separately minimize each term as shown below

∂L

∂jk
=

|gk|2|hk|2pk
(|hk|2pk + |gk|2jk + nk)(|gk|2jk + nk)

− µ (12)

After solving the resulting second order equation in jk, we get

jk =

(
1

2

√
(
|hk|2pk
|gk|2

)2 + 4
|hk|2pk
|gk|2µ

− |hk|
2pk

2|gk|2
− nk
|gk|2

)+

(13)

where the KKT multiplier µ is the solution of

M∑
k=1

jk ≤ J (14)

and can be found by bisection.
Unlike the CR user who uses the waterfilling strategy, the jammer applies a different strategy to

dynamically allocate its power (as given in equation (13)).

4. Nash game

After solving the optimization problems independently for the CR user and the jammer, we con-
sider here a sequential-moves game in which both the CR user and the jammer make decisions but
sequentially. In game theory, a game is said to be sequential if the players choose their actions
in a consecutive way and the latter player requires information about the former. The main issue
is the convergence of this continuous game to a Nash equilibrium at which no player has interest
in changing the power allocation. The theoretical proof of existence and uniqueness of the NE is
shown in appendix, according to references [14] and [15].

Since p∗ maximizes f(p, j∗) and j∗ minimizes f(p∗, j), we alternatively determine the CR user’s
power for a given jamming action, then compute the minimizing jamming power for the CR user’s
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action. That is starting with an initial value j0, we perform a bisection to determine p. Then for
this p, compute the vector j which minimizes f(p, j) and these two steps will be repeated.

This game implements the two unilateral games presented in section 3 in an iterative way until
convergence to a fixed power allocation per channel within a specific tolerance ε. The CR user ap-
plies the waterfilling strategy, we proceed by bisection until reaching the value of λ corresponding
to the allocation of the total CR user’s power (equation (7)). For the jammer, we exploit another
strategy and we proceed by bisection until reaching the value of µ corresponding to the allocation
of the total jamming power (equation (13)).

5. Stackelberg game

In the previous section, we have considered a sequential-moves game played over time which
is usually applied either when the rules of the game are unknown or when directly solving is
difficult [16]. In this section we will consider a sequential one-shot game known as a Stackelberg
game, in which the leader should anticipate the follower’s reaction function in order to alleviate
the worst case. Subsequently, the follower observes the action taken by the leader and plays an
unilateral game. The solution for this scenario is known as Stackelberg equilibrium and can be
found by backward induction. We start by determining the action of the follower, then we derive
that of the leader. We will start by a scenario in which the jammer is the leader, then we will solve
the game in which the CR user is the leader.

5.1. The jammer as the leader

In this scenario, the jammer knows the reaction function of the CR user which is given in equa-
tion (7), and he should use it to substitute pk in his minimizing problem (equation (10)) to find his
optimal power allocation.

Replacing pk with the expression (7), we get:

log2(1 +
|hk|2pk

|gk|2jk + nk
) = log2(1 +

|hk|2
λ
− |gk|2jk − nk
|gk|2jk + nk

)

= log2(
|hk|2

λ(|gk|2jk + nk)
)

(15)

We should get the expression of λ as a function of jk. For that, the jammer have to consider the
following constraint:

M∑
k=1

pk = P, (16)

which results in,
M∑
k=1

(
1

λ
− |gk|

2jk + nk
|hk|2

) = P. (17)

So, we obtain

λ =
M

P +
∑

k

g2kjk+nk

h2k

, (18)
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and the minimizing problem of the jammer becomes

minimize
j

M∑
k=1

log2(
|hk|2(P +

∑
k

g2kjk+nk

h2k
)

M(|gk|2jk + nk)
)

subject to
M∑
k=1

jk ≤ J

(19)

Since the utility function is no longer separable in jk, we can no longer derive the Lagrangian
expression independently for each jk. To solve this optimization problem, the jammer can apply
a one dimensional exhaustive search over his possible power allocations to find the optimal vector
j minimizing this new capacity expression, since it is no longer function of (p, j), it is only a
function of j. Then, the CR user (as follower) has to exploit the available information about the
jammer’s power allocation in order to maximize his total capacity. Hence, he plays the unilateral
game described in subsection 3.1.

5.2. The CR as the leader

In this scenario, the CR user knows the reaction function of the jammer which is given in equa-
tion (13), and he should use it to replace jk in his maximizing problem (4) to find the optimal
power allocation.

To simplify, we replace jk with U(pk) which is equal to the expression (13):

U(pk) =
1

2

√
(
|hk|2pk
|gk|2

)2 + 4
|hk|2pk
|gk|2µ

− |hk|
2pk

2|gk|2
− nk
|gk|2

. (20)

Subsequently, we get as new utility function:

log2(1 +
|hk|2pk

|gk|2jk + nk
) = log2(1 +

|hk|2pk
|gk|2U(pk) + nk

). (21)

In U(pk) we have a Lagrangian parameter which is µ that depends in pk and we should determine
its closed form expression. For that, we have to solve the equation

M∑
k=1

U(pk) = J (22)

Even it is a complicated equation especially because µ is inside the square root, we can remark
that µ is function of all the pk, ∀ k ∈ [1,M ] so the utility function of the CR user is not separable
in pk and we can’t derive it with respect to each pk independently.

The maximizing problem (4) of the CR user becomes

maximize
p

M∑
k=1

log2(1 +
|hk|2pk

|gk|2U(pk) + nk
)

subject to
M∑
k=1

U(pk) = J

subject to
M∑
k=1

pk ≤ P

(23)
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We solve this maximizing problem through exhaustive search over all possible power allocations p
that respect the second constraint. We start by determining µ for each possible p through bisection
with respect to the first constraint, then using this µ value we calculate the corresponding utility
function. The optimal power allocation p∗ corresponds to the maximizer of this function. For the
jammer (as follower), we implement the expression (13) found in the jammer unilateral game since
he can observe the CR user’s power allocation.

6. Optimal solution: minmax/maxmin strategies

Here we consider the perfect scenario of complete knowledge and we define finite action sets
for the two players. The minmax search is especially known for its usefulness in calculating the
best move in two-player games where all the information is available. Each player in this game,
knows that its strategy will be intercepted by its opponent. By considering conservativeness and
rationality assumptions of the minmax theorem [17], each player may adopt the strategy which
can alleviate the worst case. This means that the strategy of the jammer is the minimizer to the
maximum payoff of the CR user, it is also the minimizer to his own maximum loss (since the game
is zero-sum). likewise, the CR user’s strategy is the maximizer to the worst case (i.e. maximize
the minimum payoff of the CR user). So, neither the CR user nor the jammer will profit when
changing its strategy and moving from the equilibrium.

6.1. The CR user’s maxmin strategy

Consider that the jammer is able to sense the CR user’s power allocation and that the CR user is
aware of it. Then, a conservative CR user may select its strategy based on the following optimiza-
tion problem:

maximize
p

minimize
j

f(p, j)

subject to
M∑
k=1

pk ≤ P,

M∑
k=1

jk ≤ J,

p > 0, j > 0,

(24)

to maximize the capacity in the worst case (i.e. in the situation where the jammer plays the strategy
which cause the greatest harm to the CR user).

6.2. The jammer’s minmax strategy

The CR device possesses sufficient interception capacity that it can immediately sense interference,
due to its wideband spectrum sensing capacity. If the jammer behaves in a conservative way, he
will distribute his power as to minimize the possible maximum capacity, which corresponds to
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solving the two-stage optimization [18],

minimize
j

maximize
p

f(p, j)

subject to
M∑
k=1

pk ≤ P,

M∑
k=1

jk ≤ J,

p > 0, j > 0

(25)

We implemented this scenario using exhaustive search over a finite set of possible power al-
locations. We calculate a matrix of capacity values, its rows are the possible jammer’s power
allocations and its columns are the CR user’s power allocations. For the CR user’s maxmin, we de-
termine a row of minimum capacity values over all the rows, and finally we determine the column
corresponding to the maximum value in this row of minimums. And for the jammer’s minmax, we
determine a column of maximum capacity values over all the columns, and finally we determine
the row corresponding to the minimum value in this column of maximums. The simulation results
are given in the next section.

7. Simulation results and discussion

In the following simulations, we consider the game scenario described in section 2. We suppose
that there is M = 4 available channels, the noise level vector equals n = (0.25, 0.75, 0.9, 1.1),
P = 10 and J = 10 are the total power respectively for the CR user and the jammer, the channel
coefficients are given by h = (0.9, 1.1, 1.2, 1.3) and g = (0.7, 0.8, 1, 1.2).

7.1. CR user unilateral game

To implement the solution of the CR user unilateral game described in subsection 3.1, we consider
the fictive noise level in every channel as given by the expression (9). We proceed by bisection
until reaching the maximum water level corresponding to the allocation of the total power of the
CR, as illustrated by Figure 2-(a).

As a fixed jamming action, we consider j = (2.5, 2.5, 2.5, 2.5). The waterfilling strategy of the
CR user results in p∗ = (2.9053, 2.7842, 2.3652, 1.9453) and a capacity C = 4.4254. Figure 2-
(b) gives the total received power per channel (k ∈ [1, 4]) in terms of noise (nk), jamming signal
(|gk|2jk) and CR user’s signal (|hk|2pk).

Let us compare the total transmission capacity resulting from the application of the waterfilling
strategy to the result of using flat power allocation. If the CR user assigns a power level pk = P

M
to

each channel k ∈ [1,M ], the total capacity will be equal to C = 4.4073 which results in a payoff
loss compared to the optimal waterfilling strategy.

7.2. Jammer unilateral game

To implement the jammer unilateral game described in subsection 3.2, we proceed by bisection
and we calculate the sum of the allocated powers to all the channels (using equation (13)) until
reaching the value of µ corresponding to the allocation of the total jamming power J .
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(a) Waterfilling (b) The received power

Fig. 2: CR user unilateral game

Fig. 3: Jammer unilateral game

Under the same conditions as the above simulation, we consider that the CR user’s power alloca-
tion is fixed to p = (1, 2, 3, 4). The reaction of the jammer is given by j∗ = (2.0723, 2.2849, 2.7064, 2.9364)
and the resulting capacity is equal to C = 4.0979. From this result, note that the jammer pursues
the CR user in terms of power allocation. It assigns a higher power to the channels having higher
CR user’s power. The received power per channel is given in Figure 3.

Under the scenario of imperfect knowledge of the opponent’s strategy and the channels gain
coefficients, the trivial solution for the jammer would be a flat power allocation. The resulting
capacity for the CR user will be C = 4.1217 which is higher than the result of applying the
described technique based on bisection. Hence, the jammer using flat power allocation loses in
terms of payoff since his goal is to minimize the CR user’s total transmission capacity.

7.3. Nash game

The Nash game scenario between the CR user and the jammer, described in section 4, consists
in playing iteratively the two unilateral games presented in section 3 until convergence to almost
fixed power allocation per channel within a specific tolerance ε = 1e− 15.

Considering the same conditions as the previous games, we find at the convergence to the NE
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j∗ = (2.9625, 2.5073, 2.3574, 2.1729), p∗ = (2.602, 2.7568, 2.4407, 2.2005) and C = 4.4017.
Figure 4 gives the received power per channel, at the NE. Contrary to the CR user who allocates
higher power to the less occupied channels, the jammer allocates higher power to the more occu-
pied channels since he tries to minimize the CR user’s payoff.

Fig. 4: The strategies at the NE

7.4. Stackelberg game: Jammer as the leader

As described in subsection 5.1, we consider that the jammer is the leader and knows the explicit
expression of the CR user’s reaction function. To implement this game, the jammer does one
dimensional exhaustive search over its possible power allocations to find the optimal power allo-
cation j∗ which minimizes the CR user’s transmission capacity. The CR user, playing as follower,
determines its optimal power allocation p∗ by using equation (7) found in the CR user unilateral
game since he can observe the jammer’s startegy. We found the same power allocations and the
same capacity value as for the NE. Hence, the jammer playing as a leader with knowledge about
the reaction function of the opponent finds the same optimal jamming strategy compared to the
scenario of playing in iterative way by only observing the instantaneous action of the opponent.

7.5. Stackelberg game: CR user as the leader

We consider the Stackelberg game described in subsection 5.2. The CR user is the leader and
knows the reaction function of the jammer. Hence, the CR user does exhaustive search over all its
possible power allocations p to find the optimal power allocation p∗ maximizing its transmission
capacity. The jammer, as follower, uses the expression (13) found in the jammer unilateral game
since it can observe the CR user’s power allocation. Also for this scenario, we find the same power
allocations and the same capacity value as the result found at the NE.

According to the simulation results of both Stackelberg games (with the jammer or the CR user
as the leader), neither the leader wins due to the knowledge of the opponent’s reaction nor the
follower loses compared to the Nash game.
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7.6. Minmax/maxmin optimal solutions

We consider the same parameters considered in the previous simulations to find the NE and the
SE. Here, we determine the optimal solutions with the help of the characteristics of the solution
found at the NE, otherwise the exhaustive search will be difficult to launch in continuous action
sets. We limit the research to the interval [2, 3] where we have found the NE and we consider a step
of 0.01. We found the maxmin CR user’s power allocation: pmaxmin = (2.6, 2.76, 2.44, 2.2) with
Cmaxmin = 4.4017, and the minmax jammer’s power allocation jminmax = (2.96, 2.51, 2.36, 2.17)
with the capacity Cminmax = 4.4017.

Comparing the simulation results, we can note that the optimal values found by exhaustive
search under the assumption of finite action subsets and a step of 0.01, give a very near approxima-
tion to the power allocations at the NE found in the continuous action sets. Accordingly, the power
allocations at the Nash equilibrium and at the Stackelberg equilibrium are equal to the optimal
minmax/maxmin power allocations.

8. Conclusion

The jamming attack is a challenging issue in CRNs since it may inhibit the efficient exploitation
of the free frequency bands. In this paper, we have exploited the CR technology capacities of
simultaneous multi-frequency access and dynamic power allocation as the anti-jamming strategy.
We have modeled the interaction between the two players, using different strategies to dynamically
update their power allocations, as a zero-sum game with continuous action sets. Then, we have
considered different game scenarios, for which we have determined the NE, SE and the optimal
minmax/maxmin power allocations. The simulation results have given equality between the solu-
tions of all the considered game scenarios. Finally, we give the theoretical proof of existence and
uniqueness of this equilibrium.
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11. Appendix

Existence and uniqueness of Nash equilibrium in pure strategies

In this paper, the jamming scenario is described as a two-player zero-sum game with continuous
action sets. The existence of NE can be proved from the properties of the action sets and the utility
functions:

• The action sets, [0, P ]M and [0, J ]M are non-empty convex and compact.

• The utility functions are continuous in (p, j).

So, this game is said to be a continuous game for which the Nash equilibrium (NE) is guaran-
teed [19], but we have to determine if the NE exists in pure strategies or mixed strategies.

11.1. Existence of Nash equilibrium in pure strategies

According to the definition of quasi-convex and quasi-concave utility functions given in [20], the
utility function f(p, j) is quasi-concave in p and quasi-convex in j.

We can conclude that we have a non-empty compact convex action sets and the utility function
is continuous, quasi-concave in p and quasi-convex in j. Then according to [21] and [19],

supp∈Ainfj∈Bf(p, j) = infj∈Bsupp∈Af(p, j), (11.1)

which is equal to the optimal value of the game. So, this game has a Nash equilibrium in pure
strategies.

The uniqueness of the NE issue with continuous action sets, can be dealt by verifying Rosen’s
sufficient condition of diagonally strictly concavity, given in [14].

11.2. Uniqueness of the Nash equilibrium in pure strategies

Let’s define the pseudo-gradient vector [22]

gr(p, j) = [∇puCR(p, j),∇juJx(p, j)]T (11.2)

Where, uCR and uJx are respectively the utility functions of the CR user and the jammer verifying:
uCR = −uJx = f(p, j) and their gradient vectors are

∇puCR(p, j) = ∇pf(p, j) =

[
∂f

∂p1
, · · · , ∂f

∂pk
, · · · , ∂f

∂pM

]T
(11.3)

and

∇juJx(p, j) = −∇jf(p, j) = −
[
∂f

∂j1
, · · · , ∂f

∂jk
, · · · , ∂f

∂jM

]T
(11.4)
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Let G(p, j) denote the Jacobof the pseudo-gradient gr(p, j). To justify the diagonally strictly con-
cavity (DSC) condition, we have to prove that the symmetric matrix (G(p, j)+GT (p, j)) is negative
definite for all possible (p, j), which is a sufficient condition [14].

G(p, j) is 2M ∗ 2M matrix, in which the first M columns are the partial derivatives of gr(p, j)
with respect to theM elements of the vector p and the secondM columns are its partial derivatives
with respect to the vector j, so we can represent the matrix G = (glc)1≤l,c≤2M using four M ∗M
sub-matrices

G(p, j) =
[
[A][B]
[C][D]

]
(11.5)

let’s give the expressions of these sub-matrices, using l to denote the row index and c for the
column index

• ∀1 ≤ l, c ≤M , (the submatrix A)

glc = alc =
∂2f(p, j)
∂pl∂pc

=

{
−
(

h2l
h2l pl+g

2
l jl+nl

)2
if c = l

0 else

(11.6)

• ∀M + 1 ≤ l, c ≤ 2M , let’s x = l −M and y = c−M , (the submatrix D)

glc = dxy = −
∂2f(p, j)
∂jx∂jy

=

{
−h2xg

2
xpx(2g

2
x(g

2
xjx+nx)+h2xg

2
xpx)

(h2xpx+g
2
xjx+nx)2(g2xjx+nx)2

if x = y

0 else

(11.7)

• ∀M + 1 ≤ l ≤ 2M and 1 ≤ c ≤M , let’s x = l −M , (the submatrix C)

glc = cxc = −
∂2f(p, j)
∂jx∂pc

=

{
h2xg

2
x

(h2xpx+g
2
xjx+nx)2

if c = x

0 else

(11.8)

• ∀1 ≤ l ≤M and M + 1 ≤ c ≤ 2M , let’s y = c−M , (the submatrix B)

glc = bly =
∂2f(p, j)
∂pl∂jy

=

{
− h2l g

2
l

(h2l pl+g
2
l jl+nl)2

if y = l

0 else

(11.9)

As we can see from these expressions, all the four sub-matrices are diagonal matrices, we also have
B = −C < 0, A < 0 and D < 0. Now we can calculate the symmetric matrix (G(p, j)+GT (p, j))
and determine if it is a negative definite matrix.

G(p, j) + GT (p, j) =
[

[2A] [B + C]
[B + C] [2D]

]
=

[
[2A] [0]
[0] [2D]

]
(11.10)
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Since the diagonal sub-matrices A and D are negative definite, we can conclude that (G(p, j) +
GT (p, j)) is a negative definite matrix, which is sufficient to prove the condition of diagonally
strictly concavity. So, this game has a unique NE.

In this appendix, we have proved that the described two-person zero-sum game between the
jammer and the CR user with continuous action sets, has a unique NE in terms of pure strategies.
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