Jamming mitigation in cognitive radio networks using a modified Q-learning algorithm

Feten Slimeni†, Bart Scheers†, Zied Chtourou* and Vincent Le Nir†
*VRT Lab - Military Academy of Tunisia, Nabeul, Tunisia
†CISS Departement - Royal Military Academy (RMA), Brussels, Belgium
Email: {feten.slimeni, ziedchtourou}@gmail.com, {bart.scheers, vincent.lenir}@rma.ac.be

Abstract—The jamming attack is one of the most severe threats in cognitive radio networks, because it can lead to network degradation and even denial of service. However, a cognitive radio can exploit its ability of dynamic spectrum access and its learning capabilities to avoid jammed channels. In this paper, we study how Q-learning can be used to learn the jammer strategy in order to pro-actively avoid jammed channels. The problem with Q-learning is that it needs a long training period to learn the behavior of the jammer. To address the above concern, we take advantage of the wideband spectrum sensing capabilities of the cognitive radio to speed up the learning process and we make advantage of the already learned information to minimize the number of collisions with the jammer during training. The effectiveness of this modified algorithm is evaluated by simulations in the presence of different jamming strategies and the simulation results are compared to the original Q-learning algorithm applied to the same scenarios.

Keywords—Cognitive radio network, jamming attack, markov decision process, Q-learning algorithm

I. INTRODUCTION

Cognitive Radio (CR) technology is recognized as a promising solution to overcome the problems of scarcity and inefficient utilization of the radio spectrum. The CR associates learning and reconfigurability abilities in order to perform a real time adaptation to the environment modifications [1], [2].

However, in addition to common wireless communication vulnerabilities, the cognitive radio networks (CRNs) are susceptible to other kinds of threats related to the intrinsic characteristics of this technology [3]. Recently, research works have been done in the area of CRN security and especially the topic of opportunistic spectrum access in the presence of jammers.

The jamming attack is one of the major threats in CRNs because it can lead to network degradation and even denial of service (DoS). Furthermore, the jammer doesn’t need to be a member of the network or to collect information about it to launch such attack. The jammers can be classified according to the following criteria:

1) Spot/Sweep/Barrage jamming:

Spot jamming consists in attacking a specific frequency, while a sweep jammer will sweep across an available frequency band. A barrage jammer will jam a range of frequencies at once.

2) Single/Collaborative jamming:

The jamming attack can be done by a single jammer or in a coordinated way between several jammers to gain more knowledge about the network and to efficiently reduce the throughput of the cognitive users.

3) Constant/Random jamming:

The jammer can either send jamming signals continuously on a specific channel or alternate between jamming and sleeping.

4) Deceptive/Reactive jamming:

A deceptive jammer continuously transmits signals in order to imitate a legitimate or primary user. A reactive jammer transmits only when it detects busy channel to cause collisions.

More details about the classification of CRN jamming strategies are given in [4]. This reference deals with the problem of spectrum coordination between CRs in the presence of jammers. CRNs are characterized by dynamic spectrum access (DSA) and by mainly distributed architectures which make it difficult to implement effective jamming countermeasures. Therefore, some coding techniques have been developed to mitigate the effects of this attack in the transmitted signal. For example, the authors in [5] combine random linear network coding with random channel hopping sequences to overcome the jamming effect on the transmitted control packets. Their proposed algorithm is called jamming evasive network coding neighbor discovery algorithm (JENNA). Another coding approach is presented in [6], it consists in a hybrid forward error correction (FEC) code to mitigate the jamming impact on the transmitted data. The code is a concatenation of the raptor code to recover data loss due to jamming, and the secure hash algorithm (SHA-2) to verify the integrity of the received data. Instead of using coding technique to repair the already jammed data, an approach presented in [7] consists in a multi-tier proxy based cooperative defense strategy. It exploits the time and spatial diversity of the CRs to deal with collaborative jamming attack in an infrastructure based centralized CRN. Furthermore, the concept of honeynode has been shown in [8] to be effective in deceiving jammers about the transmitting nodes. In this reference, a single honeynode is dynamically selected for each transmitting period, to act as a normal transmitting CR in order to attract the jammer to a specific channel.

Another class of anti-jamming approaches is based on the CR ability of changing its operating frequency while maintaining continuous and proper operation. This ability can be exploited to overcome jamming attacks since the CR can hop
to avoid jammed channels. In this context, markov decision process (MDP) has been widely exploited as a stochastic tool to model the CR decision making problem in jamming scenarios with fixed strategy, i.e. assuming that the jammer preserves the same tactic. The CR may use reinforcement learning (RL) algorithms to solve the MDP by learning how to take the best decisions to keep its communication unjammed. The Q-learning is the most common RL algorithm applied in CRN jamming study to deal with imperfect knowledge about the environment and the jammer’s behavior. However, the application of this technique should go through two phases: the first one is a training phase during which the agent runs the Q-learning algorithm and waits until its convergence to get the optimal defense strategy. The next phase is the exploitation of the learned strategy during the real time working of the agent. An off-line application of this technique seems to be inefficient for the CR, because until the convergence of the Q-learning algorithm other jammers may emerge and legacy spectrum holders (primary users) activity may change. During the training phase of the Q-learning algorithm, the CR can already exploit the communication link, denoted as on-line learning, but it may lose many data packets because of the random learning trials.

The work developed in this paper is mainly based on [9] and [10]. In the first paper, the authors start by deriving a frequency hopping defense strategy for the CR using an MDP model under the assumption of perfect knowledge, in terms of transition probabilities and rewards. Further, they propose two learning schemes for CRs to gain knowledge of adversaries to handle cases of imperfect knowledge: maximum likelihood estimation (MLE), and an adapted version of the Q-learning algorithm. However the modified Q-learning algorithm is given without discussion or simulation results. The second paper gives an MDP model of the CRN jamming scenario and proposes a modified Q-learning algorithm to solve it. Again, as in the previous reference no details are given on how to implement the described theoretical anti-jamming scheme.

In this paper, we aim to provide a modified version of the Q-learning algorithm to speed up the training period and to make it appropriate for on-line learning. We start in the next section by explaining how the markov decision process (MDP) can model the scenario of CRN under fixed jamming strategy. In section III, we present the standard Q-learning algorithm and we discuss its application to find an anti-jamming strategy. In the remainder of this paper, we propose an MDP model to the CRN jamming scenario and we present a modified Q-learning version. Simulation results are given under different jamming strategies and compared to the original Q-learning algorithm implemented in the same scenario.

II. THE MARKOV DECISION PROCESS

The markov decision process (MDP) is a discrete time stochastic control process. It provides a mathematical framework to model the decision problem faced by an agent to optimize his outcome. The goal of solving the MDP is to find the optimal strategy for the considered agent. In CRN jamming scenario, it means finding the best actions (to hop or to stay) for the CR to avoid the jammed frequency.

An MDP is defined by four essential components:

- A finite set of states \(S \).
- A finite set of actions \(A \).
- \(P_\alpha(s, s') = Pr(s_{t+1} = s'|s_t = s, a_t = \alpha) \) the transition probability from an old state \(s \) to a new state \(s' \) when taking action \(\alpha \).
- \(R_\alpha(s, s') \) the immediate reward after transition to state \(s' \) from state \(s \) when taking action \(\alpha \).

The process is played in a sequence of stages (timesteps). At every stage, the agent is in one state and at the end of that stage he selects an action, then the process moves to a new random state with the corresponding transition probability. The agent receives a payoff, also called reward, which depends on the current state and the taken action. He continues to play stages until finding the optimal policy, which is the mapping from states to actions that maximizes the state values. The standard family of algorithms used to calculate this optimal policy requires storage of two arrays indexed by state:

- State value \(V(s) \), which contains a real value corresponding to the discounted sum of the rewards received when starting from each state.
- Policy \(\pi(s) \) which gives the action taken in every state.

Every MDP has at least one optimal policy \(\pi^* \) that is stationary and deterministic. \(\pi^* \) is called stationary since it does not change as a function of time and it is called deterministic since the same action is always chosen whenever the agent is in one state \(s \). At the end of the algorithm, \(\pi^* \) will contain the optimal solution and \(V(s) \) will contain the discounted sum of the rewards to be earned by following that policy from state \(s \).

Markov decision processes can be solved via dynamic programming (DP) when we have perfect knowledge about transition probabilities and the reward of every action. However, in real situations of dynamic environment and imperfect knowledge about transition probabilities and rewards, MDP is solved using reinforcement learning (RL) algorithms [11].

Dynamic programming (DP) techniques require an explicit, complete model of the process to be controlled. It is known as model based techniques, since we have to reconstruct an approximate model of the MDP and then solve it to find the optimal policy. The most popular DP techniques is the value iteration algorithm which consists in solving the following Bellman equation until convergence to the optimal values \(V^\pi(s) \), from which we can derive the corresponding optimal policy:

\[
Q(s, a) = R_\alpha(s, s') + \gamma \sum_{s'} P_\alpha(s, s')V^\pi(s') \tag{1}
\]

\[
V^\pi(s) = \max_a Q(s, a) \tag{2}
\]

where \(\gamma \) is the discount factor that controls how much effect future rewards have on the optimal decisions. Small values of \(\gamma \) emphasizing near-term gain and larger values giving significant weight to later rewards. Equation (1) is repeated for all possible actions in each state \(s \). It calculates the sum of the immediate reward \(R_\alpha(s, s') \) of the taken action and the expected sum of rewards over all future steps. Then, equation (2) gives the optimal action which corresponds to the maximum \(V(s) \) value. The value iteration algorithm reaches convergence when
Algorithm. Each episode starts from a random initial state through many episodes (trials) until convergence to optimal new estimates are blended into old estimates. This goes from state to another and updates the corresponding distribution of states that have been reached as the process unfolds. The goal is finding a mapping from state/action pairs to Q-values. This result can be represented by a matrix of which gives:

$$V_n(s) = V_n(s) + \alpha [R(s, s') + \gamma \max_a Q(s', a) - V_n(s)]$$

which gives:

$$Q[s, a] \leftarrow Q[s, a] + \alpha [R_a(s, s') + \gamma \max_a Q(s', a) - Q[s, a]]$$

(3)

where 0 < \alpha ≤ 1 is a learning rate that controls how quickly new estimates are blended into old estimates.

The Q-value is a prediction of the sum of the discounted reinforcements (rewards) received when performing the taken action and then following the given policy thereafter. It can be considered as a measure of the goodness of that action choice.

The Q-learning algorithm updates the values of $Q(s, a)$ through many episodes (trials) until convergence to optimal Q^* values; this is known as the training/learning stage of the algorithm. Each episode starts from a random initial state s_1 and consists on a sequence of timeslots during which the agent goes from state to another and updates the corresponding Q value. Each time the agent reaches the goal state, which have to be defined depending on the scenario, the episode ends and he starts a new trial. The convergence to the optimal Q^* matrix requires visiting every state-action pair as many times as needed. In simulation, this problem is known as the exploration issue. Random exploration takes too long to focus on the best actions which leads to a long training period of many episodes. Furthermore, it does not guarantee that all states will be visited enough, as a result the learner would not expect the trained Q function to exactly match the ideal optimal Q^* matrix for the MDP [14]. The training phase of the Q-learning process is described in algorithm 1 [15].

Two main characteristics of the standard Q-learning algorithm are: (i) it is said to be an asynchronous process since at each timeslot the agent updates a single $Q(s, a)$ value (one matrix cell), corresponding to his current state s (line s) and his action a (column a) taken at this timeslot [16]. (ii) The Q-learning method does not specify what action a the agent should take at each timeslot during the learning period, therefore it is called OFF-policy algorithm allowing arbitrary experimentation until convergence to stationary Q values [17]. The optimal Q^* matrix resulting from the learning period will be exploited by the agent as the best policy. During the exploitation phase, when he is in a state s, he has to take the action corresponding to the maximum value in the matrix line $Q^*(s,:)$.

In previous sections, we have explained the MDP and the Q-learning algorithm tools commonly used to model and solve the CRN scenario under static jamming strategy. The CR can apply the Q-learning algorithm to learn the jammer’s behavior, but it have to wait for a long training period before getting the optimal anti-jamming strategy. Moreover, as the CR has to try random actions before the convergence of the Q-learning algorithm, it is not suitable to do learning in an operational communication link because the CR may lose many transmitted packets. As a solution to these challenges, we propose in the next section a modified version of the Q-learning algorithm, and we will denote this version as ON-policy synchronous Q-learning (OPSQ-learning) algorithm.

Algorithm 1 Pseudocode of the Q-learning algorithm

Set the γ parameter, and the matrix R of environment rewards.
Initialize the matrix Q as a zero matrix.
for each episode do
Select a random initial state $s = s_1$.
while the goal state hasn’t been reached do
Select one action a among all possible actions for the current state.
Using this possible action, consider going to the next state s'.
Get maximum Q value for this next state based on all possible actions $\max_a Q(s', a)$.
Compute: $Q(s, a) = R_a(s, s') + \gamma \max_a Q(s', a)$
Set the next state as the current state $s = s'$.
end while
end for
IV. THE ON-POLICY SYNCHRONOUS Q-LEARNING ALGORITHM

We will start by defining a markov decision process to model the CR’s available states and actions, with the consideration of unknown transition probabilities and unknown immediate rewards of the taken actions. Then, we will present a modified version of the Q-learning algorithm that we have implemented to solve the defined MDP model.

A. Markov decision process model

We consider a fixed jamming strategy to solve the decision making problem from the side of the CR trying to find an anti-jamming strategy.

Assume there are M available channels for the CR and there is a jammer trying to prevent it from an efficient exploitation of these channels. As a defense strategy, the CR have to choose at every timeslot either to keep transmitting over the same channel or to hop to another one. The challenge is to learn how to escape from jammed channels without sacrificing a long training period to learn the jammer’s strategy. Lets define the finite set of possible states, the finite set of possible actions at each state and the resultant rewards after taking these actions.

The state of the CR is defined by a pair of parameters: its current operating frequency and the number of successive timeslots staying in this frequency. Therefore, its state at a timeslot i is represented by the pair $s_i = (f_i, k)$, where f_i is its operating frequency at this timeslot i and k is the number of successive timeslots using this frequency. We have opt for mixing spatial and temporal properties in the state space definition to get a Markovian evolution of the environment.

At every state, the CR should choose an action to move to another state, which means that it has to choose its future frequency. Therefore, we define its possible actions as a set of M actions, which are the M available channels: $\{f_1, f_2, ..., f_M\}$. An example of the Q matrix composed by these states and actions is given in Table I.

Assume the reward is zero $R_a(s, s') = 0$ whenever the new frequency after choosing the action a is not jammed, and $R_a(s, s') = -1$ when the CR takes an action a resulting to a jammed frequency. We consider the jammed state as a failure and a situation that should be avoided.

B. The learning process

We present in algorithm 2, a modified version of the Q-learning process denoted as the ON-policy synchronous Q-learning (OPSQ-learning), because of the two following modifications: (i) We have replaced the OFF-policy characterizing the standard Q-learning algorithm by an ON-policy; i.e. at each timeslot, the CR follows a greedy strategy by selecting the best action corresponding to $\max_a Q(s, a)$ instead of trying random action. (ii) We have exploited the CR ability of doing wideband spectrum sensing, to do synchronous update of M Q-values instead of the asynchronous update of only one cell in the Q matrix, i.e. the CR after going to a next state can, using its wideband sensing capability, detect the frequency of the jammer at that moment and hence do an update of all state-action pairs, corresponding to the possible actions which can be taken from its previous state s (update of all columns of the Q matrix line $Q(s,:)$). Due to the second modification (the synchronous Q-values update), the modified Q-learning algorithm is no longer a model-free technique but it can be seen as a model-based technique, i.e. the CR can learn without actually apply the action. To evaluate the effectiveness of the proposed solution, we have applied both the standard version of the Q-learning algorithm (characterized by OFF-policy and asynchronous update) and the modified ON-policy synchronous Q-learning algorithm to the described MDP model. Note that in this algorithm, our episode starts from a random frequency, going from one state to another by taking the best action at every timeslot, and ends whenever the CR goes to a jammed frequency. The next section presents the simulation results in the presence of various jamming strategies.

| Algorithm 2: Pseudocode of ON-policy synchronous Q-learning |
| Set γ and ϵ values. |
| Initialize matrix Q to zero matrix. |
| Select a random initial state $s = s_1$ |
| Set $n=1$, timeslot=1 |
| while $n < \text{Nepisodes}$ do |
| $Q_{n-1} = Q_n$, $R_a(s, s') = 0 \forall a, s, s'$ |
| Calculate the learning coefficient $\alpha = 1/\text{timeslot}$ |
| Select an action a verifying $\max_a Q_{n-1}(s, a)$ |
| Taking a, go to the new state s' at frequency f' |
| Find the new jammed frequency f_{jam} % (due to wideband spectrum sensing) |
| Update all Q_n values of the previous state s by doing: |
| for $i = 1 : M$ do |
| observe the fictive state s_{tmp} of taking fictive action f_i |
| if $f_i = f_{\text{jam}}$ then |
| $R_{f_i}(s, s_{\text{tmp}}) = -1$ |
| else |
| $R_{f_i}(s, s_{\text{tmp}}) = 0$ |
| end if |
| Compute $Q_n(s, f_i) = (1 - \alpha)Q_{n-1}(s, f_i) + \alpha[R_{f_i}(s, s_{\text{tmp}}) + \gamma \max_a Q_{n-1}(s_{\text{tmp}}, a)]$ |
| end for |
| if $f' = f_{\text{jam}}$ % (end of episode) then |
| $n = n+1$ |
| timeslot=1 |
| Select a random initial state $s = s_1$ |
| else |
| $s = s'$ |
| timeslot=timeslot+1 |
| end if |
| if $\text{abs}(Q_n(s, a) - Q_{n-1}(s, a)) < \epsilon \forall s, a$ then |
| break |
| end if |
| end while |

V. SIMULATION RESULTS

We have considered in the simulations four available frequencies ($M = 4$) for the CR. We have implemented both the standard and the modified versions of the Q-learning algorithm, under sweeping and reactive jamming strategies.

We started by the implementation of the standard version of
Q-learning algorithm. We found, by averaging over many simulations, that it takes about one hundred episodes to converge to the matrix Q^*. Then, we have implemented the modified Q-learning version (OPSQ-learning) and we give the results in the following paragraphs. The following figures display the anti-jamming strategy in the exploitation phase, after running the learning algorithm. We are using the red color to indicate the jammed frequencies and the blue color to indicate the CR frequencies for an exploitation period of twenty timeslots.

A. Scenario with a sweeping jammer

As a first scenario, we consider a jammer sweeping over the available spectrum frequencies by attacking at each timeslot one frequency. The OPSQ-learning algorithm converges after only one or two episodes depending on the initial state. The Q^* matrix is given in Table I. The strategy given by this resulting Q^* matrix is shown in Fig. 1, when the CR starts as initial random state s_1 from the frequencies f_2 and f_3 respectively.

<table>
<thead>
<tr>
<th>State \ Action</th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(f_1,1)$</td>
<td>0</td>
<td>0</td>
<td>-0.8356</td>
<td>0</td>
</tr>
<tr>
<td>$(f_1,2)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.6768</td>
</tr>
<tr>
<td>$(f_1,3)$</td>
<td>-0.5770</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(f_1,1)$</td>
<td>0</td>
<td>-0.3822</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(f_1,1)$</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(f_1,1)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(f_1,1)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE I: The Q^* matrix in a sweeping jammer scenario

We consider in this scenario a jammer with a slower sweeping rate, e.g. a sweeping jammer attacking the same frequency for two successives timeslots. We get with the OPSQ-learning that the CR always succeeds after three or four episodes to learn how to avoid the jammed frequencies, by following the policies illustrated in Fig. 2 if he starts respectively from the frequencies f_2 and f_3 as initial state s_1.

B. Scenario with a sweeping jammer attacking the same frequency for two successives timeslots

We consider in this scenario a jammer with a slower sweeping rate, e.g. a sweeping jammer attacking the same frequency for two successives timeslots. We get with the OPSQ-learning that the CR always succeeds after three or four episodes to learn how to avoid the jammed frequencies, by following the policies illustrated in Fig. 2 if he starts respectively from the frequencies f_2 and f_3 as initial state s_1.

(a) $s_1 = (f_2, 1)$

(b) $s_1 = (f_3, 1)$

Fig. 2: Exploitation of the learned policy against a jammer attacking the same frequency for two timeslots

(a) $s_1 = (f_2, 1)$

(b) $s_1 = (f_3, 1)$

Fig. 3: Exploitation of the learned policy against a jammer attacking the same frequency for three timeslots

(a) $s_1 = (f_2, 1)$

(b) $s_1 = (f_3, 1)$
C. Scenario with a sweeping jammer attacking the same frequency for three successives timeslots

We consider now a jamming scenario with a larger sweeping period, e.g., a sweeping jammer attacking the same frequency for three successives timeslots. We get with OPSQ-learning that the CR succeeds after three or four episodes to learn how to avoid the jammed frequencies, by following the policies illustrated in Fig. 3 starting respectively from the frequencies f_2 and f_3 as initial state s_1.

D. Scenario with a reactive jammer

In this scenario, we consider a reactive jammer. We suppose that this jammer needs a duration of two timeslots before jamming the detected frequency, because it has to do the spectrum sensing, then make the decision and finally hop to the detected frequency. The OPSQ-learning algorithm converges in this scenario after four episodes. The Q^* matrix is given in Table II.

According to the resulting Q^* matrix, the CR succeeds to learn that it has to change its operating frequency every two timeslots to escape from the reactive jammer. The learned strategy is given in Fig. 4 when the CR starts respectively from the frequencies f_2 and f_3 as initial state s_1.

![Fig. 4: Exploitation of the learned policy against a reactive jammer](image)

TABLE II: The Q^* matrix in a reactive jammer scenario

<table>
<thead>
<tr>
<th>State \ Action</th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(f_1, 1)$</td>
<td>0</td>
<td>-0.6986</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(f_1, 2)$</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$(f_2, 1)$</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(f_2, 2)$</td>
<td>0</td>
<td>-0.6861</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(f_3, 1)$</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(f_3, 2)$</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$(f_4, 1)$</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(f_4, 2)$</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

E. Discussion

The standard Q-learning algorithm converges after about one hundred episodes; each episode starts from a random frequency, going randomly from one frequency to another taking random decisions until collision with the jammer. The CR applying this technique have to either wait for all this training period to get an anti-jamming strategy or to use it during real time communication and sacrifice about hundred lost packets.

The ON-policy synchronous Q-learning algorithm converges faster than the standard Q-learning algorithm; it gives a suitable defense strategy after about four training episodes against sweeping and reactive jammers. This is due to the synchronous update of all Q-values of possible actions from a current state, which helps the CR to faster improve its beliefs about all decisions without trying all of the actions. Furthermore, the choice of taking at every timeslot the best action (until the actual moment) promotes the real time exploitation of the OPSQ-learning algorithm during the CR communication. We should mention that the proposed OPSQ-learning algorithm doesn’t optimize the entire matrix Q, it just optimizes the Q-values of state/action pairs that the CR goes through until finding an anti-jamming strategy.

VI. Conclusion

In this work, we have discussed the exploitation of the MDP model and the Q-learning algorithm to find an anti-jamming strategy in CRNs. We have modeled the scenario of fixed jamming strategy as an MDP model. Then, we have proposed a modified Q-learning algorithm to solve it, we call the proposed algorithm as the ON-policy synchronous Q-learning (OPSQ-learning) algorithm. We have presented the simulation results of the application of both the standard Q-learning and the OPSQ-learning algorithm under sweeping and reactive jamming strategies. We can conclude that the OPSQ-learning version speeds up the learning period and can be applied during CRN real time communication. As future work, the presented solution will be tested in real environment considering multiple jammers and primary users.

REFERENCES

