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Goodness-of-Fit (GoF) testing is a promising approach for blind

spectrum sensing in cognitive radio (CR) applications. In this paper, we

present a modification on the Anderson-Darling detector by taking into

account the physical characteristics of spectrum sensing, resulting in a

reduction of the false alarm rate by a factor of two for a given detection

threshold in the binary hypothesis test.

Introduction: A GoF test is a blind non parametric hypothesis test which

can be used to detect the presence of signals in noise by determining

whether the received samples are (are not) drawn from a distribution with

a Cumulative Distribution Function (CDF) F0, representing the noise

CDF [1, 2, 3]. The hypothesis to test whether or not a signal is present

can be formulated as follows:

�

H0 : Fn(x) = F0(x)

H1 : Fn(x) 6= F0(x),
(1)

where F0 represents the hypothesized noise CDF. Fn(x) is the empirical

CDF of the received sample and can be calculated by:

Fn(x) = |{i : x(i) ≤ x, 1≤ i≤ n}/n|, (2)

where |.| indicates cardinality, x(i) are the ordered samples under test

(x1 ≤ x2 ≤ ....≤ xn) and n represents the total number of samples.

In statistics, the aim of GoF is to test the hypothesis that samples

have been drawn from a population with a specified continuous CDF

F0(x). This means that in the H1 hypothesis, for a given value of x,

the discrepancy between Fn(x) and the hypothetical F0(x) can either

be positive or negative (the empirical CDF Fn(x) can be left or right

from F0(x) in a graphical representation). However, in the application

of spectrum sensing this is not necessarily true, as will be shown in this

paper.

The remainder of this paper is organized as follows. In the next

section, the Anderson-Darling (AD) test statistic is detailed, along with

a description of how the AD detector can be used for spectrum sensing.

In the following section, the shortcoming of the AD test for spectrum

sensing is highlighted. In the fourth section, a modification on the AD

detector is proposed, taking into account the physical characteristics of

spectrum sensing. Finally the performance of the modified detector will

be evaluated by simulations.

The Anderson-Darling test: The commonly used test statistic to perform

GoF testing was proposed by T. W. Anderson and D. A. Darling in 1952

[5].

1

n
A2

n =

�1

0

[Fn(x)− F0(x)]
2ψ[F0(x)]dF0(x), (3)

This test statistic is based on the Von Mises criterion, which is an

average of the squared discrepancy [Fn(x)− F0(x)]2 , weighted by

the increase in F0(x). The authors in [5] proposed an extra weighting

function ψ(F0(x)) to give more importance to the tails of the CDF.

ψ[F0(x)] =
1

F0(x)[1− F0(x)]
(4)

The test statistic given in (3) can be numerically calculate as [6]

A2
n =−n−

n
�

i=1

(2i− 1)(lnF0(x(i)) + ln(1− F0(x(n+1−i))))

n
. (5)

In Software Defined Radio technology, the received baseband samples

in the digital domain are complex in nature. In this case, the most

practical approach to apply the AD test for spectrum sensing is to

consider the squared magnitude of the complex samples (i.e. energy of

the samples) and test their empirical distribution against the hypothetical

noise energy distribution [3]. The sensing method can be summarized as

follows: Consider the classical binary hypothesis test

�

H0 : xi = wi

H1 : xi = ri + wi,
(6)

where ri are the received complex samples of the transmitted signal,

filtered by the channel, and wi is the complex noise. We now consider

the non-negative random variable Yi = |xi|
2 which corresponds to the

received energy and construct the empirical CDF Fn as given in (2). We

assume that F0, representing the hypothetical noise energy distribution,

is known or can be estimated. Next, the test statistic A2
n is calculated by

(5). Once A2
n is computed, it will be compared to a predefined threshold

λ:
�

H0 :A2
n ≤ λ

H1 :A2
n > λ,

(7)

The value of λ is determined for a specific value of Pfa. A table listing

values of λ corresponding to different false alarm probabilities Pfa is

given in [4]. Otherwise, these values can be computed in advance by

Monte Carlo approach. Note that the distribution of A2
n, and hence the

value of λ is independent of the noise distribution represented by F0.

Problem statement: The problem with the AD test (and also with the

Von Mises test) is that the deviation of the empirical CDF Fn(x) to the

reference CDF F0(x) can be either to the left or to the right as the tests

are based on the square of the difference [Fn(x)− F0(x))]2 . For most

statistical tests, this is convenient, but it is not the case for the application

of spectrum sensing.

To illustrate this, let us consider the following simple example.

Suppose we want to detect a signal in Gaussian noise. In this case, as

the test is performed on the squared values of the received signal, F0 will

be the CDF of the χ2
2 distribution.

In figure 1 the result of 1000 Monte-Carlo simulations is shown

under the H0 hypothesis (no signal present). For each simulation the

binary test (7) is performed with λ= 3.89, corresponding to a false

alarm rate Pfa = 0.01. The empirical CDFs that are found in the H0

hypothesis are represented in blue. The reference CDF F0 for the GoF test

corresponding to a χ2
2 CDF is represented in green. The empirical CDFs

that are found in the H1 hypothesis are in red and represent false alarms.

As one can see, in total there are nine false alarms, which corresponds

approximately to the pre-setted Pfa. Out of the nine, five false alarms are

situated to the left of the reference CDF F0 and four to the right.
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Fig. 1 Empirical CDFs of Gaussian noise realisations: in blue the empirical

CDFs found to be in the H0 hypothesis, in red the empirical CDFs in the H1

hypothesis. The reference CDF F0 is represented in green.

In case of the proposed AD detector, Yi = |xi|
2 is a non-negative

random variable. From statistics, it is known that the expected value

of a non-negative random variable can be written as E[Y ] =
�
∞

0
(1−

FY (x))dx. As the received signal {xi} has zero means, E[Y ] =
E[|xi|

2] = σ2
x also represents the received signal power. Hence, we find

σ2
x =

�
∞

0

(1− FY (x))dx. (8)
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In other words, the received signal power equals the area of the region

lying above the CDF FY (x) and below the line at height 1 to the right

of the origin. Based on the same reasoning, we can state that the noise

power σ2
w equals the area above F0. This can be seen by replacing in (8)

the signal xi by wi and FY by the expected noise CDF F0

Coming back to figure 1, five empirical CDFs to the left of F0 are

found to be in the H1 hypothesis by the AD detector. However, the area

above these five empirical CDFs is inferior to the area above F0. This

means that for these empirical CDFs, the power in the received samples

xi is less than the noise power. In the H1 hypothesis, according to the

Bienayme’s formula, the power of the received signal σ2
x = σ2

r + σ2
w , is

always larger than the noise power, as signal and noise are uncorrelated.

In other words, the five empirical CDFs to the left of F0 that are found

to be in the H1 hypothesis can be excluded as false alarms. Tagging an

empirical CDF left of Fo as a possible signal has no physical meaning

as it indicates that, according to (8), the power in the received samples

would be less than the expected noise power. As signal and noise are

uncorrelated, this is impossible.

Enhancement on the AD test statistic for Spectrum sensing: In order to

take into account the observation stated in previous section, we modify

the binary test given in (7) by adding a second condition to the H1

hypothesis

�

H1 :A2
n > λ and σ2

x > σ2
w,

H0 : otherwise
(9)

In [5] it is shown that under the H0 hypothesis, the random variable

[Fn(x)− Fo(x)] approaches a k-variate normal distribution as n→∞
with E(Fn(x)− Fo(x)) = 0. This means that in the H0 hypothesis, for a

given value of x, statistically half of the empirical CDFs Fn(x) will pass

above Fo(x) and half will pass underneath. Hence, statistically half of

the false alarms are generated by empirical CDFs representing samples

xi with a signal power σ2
x less than the expected noise power (i.e. CDFs

mainly left of or above F0) and half by empirical CDFs for which σ2
x is

larger than the expected noise power (i.e. CDFs mainly to the right of F0).

By excluding in the modified binary test (9) the empirical CDFs which

are to the left of F0, i.e. empirical CDFs for which σ2
x > σ2

w from the H1

hypothesis, the false alarm rate will be reduced by a factor of 2.

Simulation: To visualise this gain by a factor of 2 in Pfa, we compare in

figure 2 the detection performance of both the classical and the modified

AD detector as a function of SNR in the range −20dB to 5dB. For the

simulation, λ is set to 2.495 for both detectors. The number of received

samples n to calculate the test statistics equals 40. For very small values

of SNR, the probability of detection Pd will yield the value of Pfa.

For the AD detector, according to [4], this value of λ corresponds to

a Pfa = 0.05, which can be verified on figure 2. For the modified AD

detector Pd tends to 0.025 for low SNR values, which is half of the pre-

setted value of Pfa. We also observe that for higher values of SNR, the

detection probability of both detectors are equal.

In figure 3 the receiver operating characteristic (ROC) curves of both

detectors are represented for an SNR value of −3dB and n= 40. Also

in these ROC-curves, the gain by the factor of 2 in Pfa is very clear.

For a given value of Pd, the modified AD detector, based on binary

test (9) yields a Pfa which is only half the Pfa of the classic AD

detector based on binary test (7). Vice-versa, for a given value of Pfa,

the detection probability of the modified AD detector outperforms the

detection probability of the AD detector. In summary we can state that

for a given value of Pfa, the proposed detector is more sensitive than the

classical AD detector.

Conclusion: In this paper we studied the Anderson-Darling test as

a method for blind spectrum sensing. The AD detector will test the

Goodness-of-Fit of empirical distribution of the squared magnitude of the

received samples against the noise energy distribution, based on the AD

test statistic A2
n. In this test, the discrepancy between the empirical CDF

and the reference CDF can be either to the left or to the right. This means

that in the H0 hypothesis, empirical CDFs that are situated too much

left of the reference CDF will also generate false alarms. This has no

physical meaning in the application of spectrum sensing as this situation

would corresponds to a signal with less power than the expected noise

power. In the H1 hypothesis, the overall power in the received signal

should always be larger than the noise power, as noise and signal are

uncorrelated. We therefore proposed a modified binary test to eliminate
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Fig. 2 Detection probability versus SNR for AD and Enhanced AD detector,

λ= 2.495 for both detectors, n= 40.
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Fig. 3 Detection probability versus probability of false alarms for AD and

Enhanced AD detector, SNR=−3dB, n= 40.

the empirical CDFs left to the reference CDF from the H1 hypothesis, as

we know that these empirical CDFs would correspond to a false alarm.

Simulations have indeed shown that the modified AD detector reduces

the false alarm rate by a factor 2 for a given threshold λ or for a given

probability of detection. As a consequence, for a given false alarm rate,

the enhanced AD detector is more sensitive than the classic AD detector.
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