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Abstract—Recently, Goodness-of-Fit (GoF) based spectrum
sensing has been proposed as a method for blind narrowband
spectrum sensing. GoF based spectrum sensing has the nice
feature that, compared to Energy Detection, it needs fewer
samples to achieve the same sensing performance. In this paper,
we present how GoF based spectrum sensing can be integrated
in a conventional wideband spectrum sensing scheme, resulting
in an accurate technique with a very short sensing time, which
makes this method attractive for cognitive radio applications.
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I. INTRODUCTION

Wideband spectrum sensing is about efficiently sensing
across a very large frequency band, typically much larger than
the bandwidth of the waveforms that are used or that are to
be detected. Wideband spectrum sensing can be categorized
into two types: Nyquist wideband sensing, also referred to
as conventional wideband spectrum sensing, and sub-Nyquist
wideband sensing, depending whether the sampling rate at
which the signals are acquired is above or below the Nyquist
rate. Recent surveys of both approaches can be found in [1],
[2] and [3]. The method described in this paper is to be clas-
sified as a conventional wideband spectrum sensing method.
Typically in conventional wideband spectrum sensing schemes,
a time-frequency domain transformation (e.g. filter-bank, DFT
or wavelet transformation) is used to divide a wide frequency
band into a number of small frequency bins. Then, Energy
Detection (ED) or other sensing algorithm can be used to
determine the presence of a signal within these frequency bins.
In practical cases, the spectrum sensing algorithm following
the DFT is a non-coherent or blind sensing method as it
is not straightforward to have a priori knowledge of the all
potentially present signals over the spectrum band or to align
the frequency bins with all possible signals.

Wideband spectrum sensing is challenging. The problem
to solve is how to perform - accurate spectrum sensing - over
a very large frequency band - in a reasonably short sensing
time, as those requirements are contradictory.

Recently, GoF based spectrum sensing has been proposed
as a method for blind spectrum sensing [4]. The major advan-
tage of GoF based spectrum sensing over other blind sensing
methods, like ED, is that it needs fewer sample for the same
sensing performance, resulting in a short sensing time. Further,
the proposed method can easily be adapted for any type of
noise distributions, other than AWGN, as long as the noise

distribution is known. GoF based sensing methods are also
less influenced by typical spectrum sensing impairments like
non-Gaussian noise and noise uncertainty [5].

In this paper, we are mainly interested in the short sensing
time property of the method. We will describe how we can
apply GoF based spectrum sensing on the Fourier coefficients
of the power spectrum of the received samples, leading to a
very accurate and time efficient wideband sensing method.

The remainder of this paper is organized as follows. In Sec-
tion II, the GoF based spectrum sensing method is presented.
In section III, the distribution of the Fourier Coefficients of
AWGN is studied, as we will need it for the GoF testing. The
wideband spectrum sensing method integrating the GoF based
sensing is described in section IV. Finally we will discuss some
examples emphasising the strengths of the proposed method.

II. GOF BASED SPECTRUM SENSING

The GoF test is a blind nonparametric hypothesis test
problem which can be used to detect the presence of signals
in noise by determining whether the received samples are (are
not) drawn from a distribution with a Cumulative Distribution
Function (CDF) F0, representing the noise CDF. The hypoth-
esis to be tested can be formulated as follows:{

H0 : Fn(x) = F0(x)
H1 : Fn(x) 6= F0(x),

(1)

where F0 represents the hypothesized CDF (as already men-
tioned, in the application of sensing this will be the noise
CDF). Fn(x) is the empirical CDF of the received sample
and can be calculated by:

Fn(x) = |{i : x(i) ≤ x, 1 ≤ i ≤ n}/n|, (2)

where |.| indicates cardinality, x(i) are the ordered samples
under test (x1 ≤ x2 ≤ .... ≤ xn) and n represents the total
number of samples.

In literature, there are different GoF based tests pro-
posed for spectrum sensing. The most important ones are the
Kolmogorov- Smirnov test [7], the Cramer-Von Mises test [9],
the Anderson-Darling test [6] and order statistics [8]. All these
tests are based on the hypothesis test as formulated in (1), but
differ in the way the test statistic, i.e. the distance between
the empirical cumulative distribution of the observations made
locally at the CR user and the noise CDF F0(x), is calculated.
The calculated distance is compared with a threshold to decide



whether the signal is present or not, given a certain probability
of false alarm.

The GoF test based spectrum sensing was first presented
in [6]. It is based on the Anderson-Darling (AD) GoF test
to decide whether the received samples are drawn from the
noise CDF F0 (Gaussian CDF) or an alternative CDF. Authors
in [6], show by simulations that AD-sensing outperforms the
ED-sensing at low SNR. The sensing method takes as a
normal distribution noise CDF F0 for the GoF test, meaning
that they assume that the samples of the received signal are
real valued. However, in cognitive radios (CR), based on the
SDR technology, this is a limitation, as the radio receives
complex valued baseband IQ samples in the digital domain.
In [4], this limitation is overcome by considering the energy
of the received samples and test them against a chi-square
distribution with 2 degrees of freedom. The sensing method
can be summarized as follows: Consider the classical binary
hypothesis test {

H0 : xi = ni
H1 : xi = si + ni,

(3)

where si are the received complex samples of the transmitted
signal and ni is the complex Gaussian noise. We now consider
the random variable Yi = |xi|2 which corresponds to the
received energy. It is known that, if the real and the imaginary
part of xi are normally distributed, which is the case under H0

hypothesis, the variable Yi = |xi|2 is chi-squared distributed
with 2 degrees of freedom. The spectrum sensing problem can
now be reformulated as an hypothesis represented in (1) where
we will test whether the received energy Yi = |xi|2 are drawn
from a chi-square distribution with 2 degrees of freedom or
not.

Without loss of generality, we will use from now on the
Anderson-Darling (AD) test to perform the GoF testing, as
this test seems to perform better than other tests proposed in
literature [4]. The AD test statistic was proposed by T. W.
Anderson and D. A. Darling in 1952 [10].

1

n
A2
n =

∫ 1

0

[Fn(x)− F0(x)]
2ψ[F0(x)]dF0(x), (4)

This test statistic is based on the Von Mises criterion, which
is an average of the squared discrepancy [Fn(x) − F0(x)]

2,
weighted by the increase in F0(x). The authors in [10]
proposed an extra weighting function ψ(F0(x)) to give more
importance to the tails of the CDF.

ψ[F0(x)] =
1

F0(x)[1− F0(x)]
(5)

To numerically calculate the test statistic given in (4), one
can to break down the integral as

1

n
A2
n =

∫ z1

0

F 2
0 (x)

F0(x)[1− F0(x)]
dF0(x)+∫ z2

z1

[Fn(x)− F0(x)]
2

F0(x)[1− F0(x)]
dF0(x) + · · ·+∫ 1

zn

[1− F0(x)]
2

F0(x)[1− F0(x)]
dF0(x), (6)

with zi = F0(xi), i = 1 . . . n.

By straightforward integration and collection of the terms,
equation (6) can be written as [11]

A2
n = −n−

n∑
i=1

(2i− 1)(lnF0(x(i)) + ln(1− F0(x(n+1−i))))

n
.

(7)

with x(i) the ordered samples and F0 the hypothetical noise
energy distribution. In case of complex Gaussian noise, F0

represents the CDF of a chi-square distribution given by:

F0(y) = 1− e−y/2σ
2
n

m−1∑
k=0

1

k!
(
y

2σ2
n

)k, y > 0, (8)

where m is the degree of freedom (in our case m=2) and σ2
n

is the noise power of the real and the imaginary part. It is
assumed that the noise power of both parts equal 1.

Once the test statistic A2
n is computed, it will be compared

to a predefined threshold λ:{
H0 : A2

n ≤ λ
H1 : A2

n > λ,
(9)

The value of λ is determined for a specific value of Pfa. A
table listing values of λ corresponding to different false alarm
probabilities Pfa is given in [12]. Otherwise, these values can
be computed in advance by Monte Carlo approach.

As mentioned in the introduction, one of the nice features
of GoF based spectrum sensing is that it need fewer samples
than ED to achieve the same sensing performance in terms of
probability of detection versus probability of false alarm. To
illustrate this, we present in figure 1 the detection probability
Pd versus SNR for the AD detector and the ED and this
for different values of n, the total number of samples. The
Pfa for both detectors is set to 0.01 and the SNR varies from
−15dB to 10dB. The curves are obtained by 10000 Monte-
Carlo simulations. As one can see, the detection performance
of the AD detector for n = 40 is comparable to the detection
performance of the ED for n = 100. In other words, for the
same detection performance, the AD detector will yield a gain
of a factor 2.5 in sensing time, compared to ED.

In this paper, we will integrate the GoF based spectrum
sensing as described above in a conventional wideband sensing
scheme. To this end, we will not perform the test on the energy
of the received samples, but on the Fourier Coefficients of the
power spectrum of the received samples. Therefore we need
first to describe the distribution of the Fourier Coefficients of
an AWGN.

III. FOURIER COEFFICIENTS DISTRIBUTION OF AWGN

Consider a complex Gaussian noise vector x = {xn} of
length N , with xn normal distributed iid complex samples of



Fig. 1. Detection probability versus SNR for AD detector and ED, Pfa =
0.01, n = 40 and 100.

zero means and variance σ2. The Discrete Fourier coefficients
of the noise vector are given by

Xk =

N−1∑
n=0

xne
−j2π kn

N k = 0 · · ·N − 1 (10)

From probability theory, it is known that a weighted sum of
Gaussian random variables remains Gaussian. In other words,
the Fourier coefficient Xk for any given frequency bin k will
be Gaussian distributed. As xn has a zero means, the mean
value of Xk equals zero. It is also known from probability
theory that if X and Y are two independent random variables
with variance σ2 and τ2 respectively, then the random variable
X+Y has variance σ2+τ2. Further, if X is a random variable
with variance σ2, then the random variable sX , with s some
scalar constant, has variance s2σ2. Hence, the variance of Xk

can be calculated as:

var(Xk) =

N−1∑
n=0

|e−j2π kn
N |2σ2 (11)

= Nσ2, (12)

with σ2 the power of the complex noise. In summary, a
complex Gaussian noise process xn ∼ N(0, σ2) produces
complex Gaussian Fourier coefficients Xk ∼ N(0, Nσ2),
with N the length of the DFT.

Consequently, we can also state that the kth power spec-
trum coefficient |Xk|2, normalized by var(Xk)/2 follows a
χ2
2 distribution,

2|Xk|2

Nσ2
∼ χ2

2. (13)

The factor 2/Nσ2 in (13) comes from the fact that we need
to normalize the real and the imaginary part of the Gaussian
Fourier coefficients Xk to a ∼ N(0, 1) distribution (i.e. the
power of the complex Gaussian Fourier coefficients needs to

be normalized to 2), as a χ2
2 distribution is defined as the

distribution of the sum of the squares of 2 independent standard
normal variables.

IV. WIDEBAND SENSING METHOD BASED ON GOF

The observation in (13) can now be used to integrate the
narrowband spectrum sensing based on GoF in a conventional
wideband spectrum sensing scheme. The wideband sensing
method is represented in figure 2. The received signal is
sampled at the Nyquist rate, leading to a sequence of complex
samples xi. In the most general case, the received signal can be
represented as the sum of some unknown narrowband signals
plus noise.

xi =
∑
j

sj,i + ni, j = 0 · · · J, (14)

with sj,i the samples of a narrowband signal j, present in the
frequency band of interest and ni an AWGN with variance σ2.

Fig. 2. Wideband sensing method block diagram.

An N-point DFT is calculated on K consecutive segments,
resulting in a sequence {Xk} of length K for every frequency
bin. We assume that in every frequency bin, there is either only
noise present (the H0 hypothesis) or either there is a signals
with zero-mean and unknown variances plus noise present
(the H1 hypothesis). Under the H0 hypothesis, the normalised
power spectrum coefficient 2|Xk|2

Nσ2 will follow a χ2
2 distribution,

which can be tested by the narrowband GoF based Spectrum
Sensing as presented in section 2, using a chi-square CDF as
F0. Under the H1 hypothesis, the sequence Xk of length K
will fail the GoF test.

The strength of this method is that only a few DFTs (e.g.
K = 20 − 50) are needed to result in an accurate wideband
spectrum sensing as the GoF test only needs few samples [4].
This nice feature of the GoF test is amplified in a conventional
wideband spectrum sensing scheme, resulting in a total sensing
time equivalent to KN samples.

Just like in other DFT based wideband spectrum sensing
methods, windowing and overlapping can be used prior to the
DFT to improve selectivity between the frequency bins and to
decrease further the total number of samples for sensing. Note
however that windowing will affect the noise power, hence we
need to adapt the normalisation factor of the power spectrum
coefficients. Consider a discrete-time window {wn} of length
N . Following an equivalent reasoning as for (12), the variance
of the Fourier coefficients Xk of a Gaussian noise vector {xn},



point by point multiplied by a window {wn} can be written
as:

var(Xk) =

N−1∑
n=0

w2
nσ

2, (15)

with σ2 the power of the complex noise. This means that if
a window {wn} is used, the normalisation factor, prior to the
GoF test, needs to be taken

2|.|2∑N−1
n=0 w

2
nσ

2
. (16)

V. DISCUSSION

In this section, we will discuss some results of the
proposed method on synthetic data. The aim of this section
is not to compare the performance of the proposed method
to a classic Energy Detection (ED) method. A comparison
between GoF based spectrum sensing and ED can be found
in [4]. Although [4] is about narrowband sensing, the results
can be generalizes to wideband spectrum sensing.

The first simulation is mainly to illustrate the proposed
method. For this, only one narrow-band signal, with high
SNR, will be present in a 10MHz frequency band of interest.
The incoming signal, {xi} as represented in figure 2, is a
complex baseband signal, sampled at 10 MHz. The complex
noise in the band is consider AWGN and has a noise power
density of 0dBm/Hz. The parameters for the wideband sens-
ing algorithm are the following: the number of consecutive
segments K = 40 and the number of points for the DFT
N = 1024, meaning that the wideband sensing is performed
on K.N = 40960 samples, corresponding to a sensing time of
4.096ms. With these values, the width of the frequency bins
equals approximatively 10kHz. The Pfa for the sensing is set
to 1%, which corresponds to a threshold λ = 3.89 [12]. The
signal to detect is a BPSK modulated signal at 3 MHz and
a bandwidth of 25kHz. The modulated symbols are shaped
using a RRC pulse shape with α = 0.5. The power of the
modulated signal is set to obtain an SNR of 10dB. Note
that the SNR-value is calculated by only taking into account
the noise power within the noise bandwidth of the modulated
signal. As the BPSK signal has a 3dB-bandwidth of 25kHz, it
can be expected that the signal will be detected in 3 frequency
bins.

In figure 3 we show the empirical CDF for every frequency
bin. The empirical CDFs corresponding to a bin in the H0

hypothesis are in blue. The empirical CDFs corresponding to
a bin in the H1 hypothesis are in red. The reference CDF F0

for the GoF test corresponding to a χ2
2 CDF is represented

in green. One can clearly distinguish the 3 empirical CDFs
corresponding to the BPSK signal. The empirical CDFs in red,
close to the F0 CDF are false alarms.

The probability of detection Pd for the BPSK signal in this
scenario equals almost 1. This can been seen in figure 1, on the
curve that represents the Pd of the AD detector for n = 40 and
Pfa = 1%, i.e. the same parameters that are used in the first
simulation. For SNR > 1dB the Pd equals almost 1, meaning
that it is almost certain that we will detect the BPSK signal

Fig. 3. Empirical CDF for every frequency bin: in blue the CDFs in the H0

hypothesis, in red the CDFs in the H1 hypothesis. The CDF F0 is represented
in green.

of the first scenario in the frequency bins where the signal is
present with SNR > 1dB.

In a second scenario, we have the same set-up, but now
two modulated signals, at a much lower SNR, are present in
the 10MHz band of interest. The BPSK modulated signal,
still at 3 MHz, is now at SNR = 0dB. The second signal
is a DAB mode-I signal, centred around 7 MHz and at an
SNR = −5dB. The DAB mode-I signal is based on an OFDM
modulation with 1536 sub-carriers and a sub-carrier spacing
of 1kHz. The bandwidth equals approximately 1.54MHz.
The parameters for the wideband sensing algorithm are kept
identical to the previous simulation. Figure 4 shows the result
of the proposed wideband spectrum sensing algorithm. An ’1’
on the y-axis means that the frequency bin is found to be in
the H1 hypothesis, otherwise it is in the H0 hypothesis.

As one can see, most of the frequency bins where a modu-
lated signal is present are tagged as occupied (H1 hypothesis).
The number of false alarms, 8 in total, is in accordance with
the pre-setted value of Pfa. The OFDM signal is not detected
over it’s complete band. This is due to the probability of
detection of the GoF based spectrum sensing. An OFDM
modulated signal is known to have a quite flat power spectral
density. It can therefore be assumed that the SNR in each
frequency bin within the bandwidth of the OFDM signal will
have a SNR = −5dB and hence a Pd = 0.2, meaning that
approximately 1 out of 5 bins will be tagged as occupied.

The latter simulation shows the strength of the wideband
GoF spectrum sensing. Only on a few values (K = 40), an
accurate sensing result can be obtained. The total number of
samples for the wideband spectrum sensing method equals
K.N . For a given sensing time, because K can be kept small
in this method, N can be increased, resulting in a method with
a good frequency domain resolution.



Fig. 4. Wideband sensing result on the 2 low SNR signals: N = 1024,
K = 40, λ = 3.89.

VI. RESULT ON REAL DATA

In the previous section, the wideband AD detector was
applied on synthetically generated data. In this section we will
show the result of the wideband spectrum sensing technique on
real data. For this, a 100ms data segment was captured in the
region of Brussels using a real-time spectrum analyser from
Agilent (the N9020A MXA Signal Analyser). The frequency
range was set from 50MHz to 108MHz, covering the ma-
jority of the military VHF band, including the FM broadcast
band. The result is shown in figure 5. The upper subplot of
the figure represents the power spectral density of the complete
captured signal. The number of DFT-bins N is set to 8192 and
a Hamming window is used. The middle subplot shows the
waterfall representation of the power spectrum. The vertical
lines in the waterfall represent signals present in the spectrum.
One can see very clear the FM broadcast band, but also other
weaker signals in the first part of the spectrum band. The lower
subplot of figure 5 represents the result of the wideband AD
detector. For the AD detector, the following parameters are
used. The number of DFT-bins N is also set to 8192, leading
to a frequency resolution of 9KHz, and a Hamming window is
used to limit the leakage between frequency bins. K equals 40
and the Pfa is set to 0.01. Given the sample time of 0.1347ns,
the total sensing time for one wideband AD detection equals
4.4ms. The estimation of the noise power is done based on
the Long-Term Gaussian noise power estimation method as
described in [13]. The advantage of this method is that it
can estimate the noise power in the presence of signals. On
the complete captured dataset of 100ms, a total of 22 non-
overlapping wideband AD detections could be performed. The
result of these 22 detections are presented under a waterfall
representation in the lower subplot of figure 5. The red color
corresponds to the H1 hypothesis. A red vertical line in the
waterfall means that the signal is all the time detected, vertical
blue lines represent spectrum holes.

VII. CONCLUSION

In this paper, we have introduced a new wideband spectrum
sensing scheme. The method is based on a conventional wide-
band spectrum sensing approach, using a DFT to divide the
frequency band into small frequency bins. On each frequency
bin a narrowband GoF based spectrum sensing algorithm is
applied. It was shown that, if in a frequency bin only noise
is present, the power coefficients will follow a chi-square
distribution, which is tested by a GoF test using the Anderson-
Darling test statistic. If the test fails, it is considered that also
a signal is present in the frequency bin.

Fig. 5. Wideband sensing result on real data: (a) Power spectral density of
the captured signal, (b) Waterfall of the power spectrum, (c) Waterfall plot of
the wideband AD detector result,N = 8192, K = 40, λ = 3.89. The red
color corresponds to the H1 hypothesis.

The narrowband GoF based spectrum sensing has the
characterised by a short sensing time as it can take accurate
decisions on only a few samples, typically less than 50. This
feature is emphasised in a classical wideband spectrum sensing
approach. An accurate decisions per frequency bin can be made
after only a few DFTs. Typically, compared to a classical ED
based wideband method, the gain in sensing time for the same
performances is in the order of 2.5. This also implies that,
compared to ED based wideband sensing methods, an increase
of points for the DFT, resulting in a better frequency domain
resolution, is less penalising in terms of sensing time.

These features, i.e. good sensitivity, together with a rela-
tively small sensing time, while still maintaining a reasonable
resolution in the frequency domain, makes this method inter-
esting for cognitive radio applications.
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