


{1 . . .K}, and L(di,Jk) the path loss corresponding to the
distance di,Jk between jammer k and spectrum sensing device
i in meters.

Assume the knowledge of the log-distance path loss model.
If there is no disturbance in the measurements, the log-distance
path loss model is defined as

L(d) = L0 + 10α log(d) (2)

with L0 the path loss in one meter, d the distance in meters,
and α the path loss exponent. The first step after the collection
of the RSS from all the spectrum sensing devices is to remove
the contribution of the known transmitters to the RSS

vi = RSSi −
M∑
j=1

(
PTj − L(di,Tj )

)
(3)

with vi the contribution of the K jammers to the RSS of
spectrum sensing device i

vi =
K∑

k=1

(PJk − L0 − 10α log(di,Jk)) (4)

We assume that a single jammer has the most contribution
to the power of each spectrum sensing device i, therefore vi
in equation (4) can be approximated by ṽi defined as

ṽi = max
k

(PJk − L0 − 10α log(di,Jk)) (5)

This assumption requires the knowledge of the assignment
of a dominant jammer to each spectrum sensing device

qi = argmax
k

(PJk − L0 − 10α log(di,Jk)) (6)

The distance di,Jk between the jammer k and spectrum
sensing device i is represented as the following equation

di,Jk =
√
(xJk − xi)2 + (yJk − yi)2 (7)

Replacing (7) in (5) gives the following equation√
(xJqi − xi)

2 + (yJqi − yi)
2 = 10

PJqi
−L0−ṽi
10α (8)

Raising to the power of two and rearranging equation (8)
leads to the following equation

x2i + y2i = 2xJqixi + 2yJqi yi + 10
PJqi

−L0−ṽi
5α −R2

qi (9)

with R2
qi = x2Jqi

+ y2Jqi
. We can express (9) in a matrix

form

Aθ = b (10)

with

A =


a11 a12 . . . a1K
a21 a22 . . . a2K

...
...

...
...

aN1 aN2 . . . aNK

 of size Nx4K,

θ =


θ1
θ2
...
θK

 , and b =


x21 + y21
x22 + y22

...
x2N + y2N

,

with

aik =


(

0 0 0 0
)
, if k 6= qi(

2xi 2yi 10
−ṽi−L0

5α −1
)
, if k = qi

and θk =
(
xJk yJk 10

PJk
5α R2

k

)T
Similarly to [1], [9] for the localization and transmission

power estimation of a single jammer, the localization and
transmission power estimation of multiple jammers in the
presence of known transmitters can be formulated in a matrix
form and can be solved using least square methods. The
number of sensors N should be at least four times the number
of jammers K to solve the 4K unknowns for θ, providing that
the matrix A is nonsingular. The constraints corresponding to
the relationships of the intermediate variables Rk in (9) and
(10) can be introduced in the least square problem to build a
constrained least square problem. The constraints ensure that
the solutions are valid according to the Pythagoras’ theorem.
This constrained least square problem can be written as

θ̂ = argmin||Aθ − b||2

s.t. rTl θ + θTPlθ = 0 ∀l ∈ {1 . . .K}
(11)

with

Pl =


Pl1 04x4 . . . 04x4

04x4 Pl2
. . .

...
...

. . . . . . 04x4
04x4 . . . 04x4 PlK

 of size 4Kx4K,

rl =


rl1
rl2
...

rlK


with

Plk =



04x4, if k 6= l
1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 , if k = l

and

rlk =


(

0 0 0 0
)T

, if k 6= l(
0 0 0 −1

)T
, if k = l

The constrained optimization problem can be solved by its
Lagrangian

L(θ, λ) = (Aθ−b)T (Aθ− b) +
K∑
l=1

λl(r
T
l θ+ θTPlθ) (12)

with Lagrange multipliers λ1, . . . , λK and optimality
Karush-Kuhn-Tucker (KKT) conditions



∂L(θ, λ)
∂θ

= 0

∂L(θ, λ)
∂λl

= 0 ∀l ∈ {1 . . .K}

(13)

Derivatives are given by

∂L
∂θ

= 2θT (ATA+

K∑
l=1

λlPl)− 2bTA+

K∑
l=1

λlr
T
l (14)

and

∂L
∂λl

= rTl θ + θTPlθ ∀l ∈ {1 . . .K}

= −R2
l + x2l + y2l ∀l ∈ {1 . . .K}

= 0 ∀l ∈ {1 . . .K}

(15)

Therefore the set of equations satisfy the second set of
conditions. Setting the first equation (14) to zero leads to the
following equation

θ = (ATA+

K∑
l=1

λlPl)
−1

(
ATb−

K∑
l=1

λl
2
rl

)
(16)

The convergence to the global optimal solution is guar-
anteed for a single jammer localization [15]. For multiple
jammer localization and transmission power estimation, the
convergence of the algorithm to the global optimal solution

requires that matrix ATA +
K∑
l=1

λlPl is non singular and

that the functions of Pythagoras’ theorem constraints are

monotone in λl. One can observe that ATA +
K∑
l=1

λlPl is

a block diagonal matrix, therefore the inverse of this block
diagonal matrix is another block diagonal matrix composed

of the inverse of each block
N∑
i=1

aTilail + λlPll. Similarly

to the single jammer localization [15], each block matrix is
non singular in its trust region or interval and each function
of Pythagoras’ theorem constraints rTl θ(λl) + θ(λl)

TPlθ(λl)
is stricly decreasing on its interval. Therefore, the proposed
solution will converge to a unique optimal solution under the
assumption of a dominant jammer assigned to each spectrum
sensing device.

A bisection method can be used to find the Lagrange
multipliers that satisfies the Pythagoras’ theorem constraints.
Algorithm 1 describes the different steps of the method for
multiple jammer localization and transmission power estima-
tion. The first step after the collection of the RSS from all the
spectrum sensing devices is to remove the contribution of the
known transmitters to the RSS. Then, each Lagrange multiplier
is initialized as the center point of its trust region [15]. An
initial solution vector is calculated based on all the Lagrange
multipliers. The Pythagoras’ theorem constraints are checked

for this initial solution vector and the Lagrange multipliers are
iteratively updated by bisection until convergence of each the
Pythagoras’ theorem constraints, leading to the final solution
vector.

Algorithm 1 Multiple Jammer Localization and Transmission
Power Estimation Algorithm
1 Loop : for all spectrum sensing devices i ∈ {1 . . . N}
2 Compute equation (3)
3 End loop
4 Generate : A, b, Pl ∀l, rl ∀l
5 Initialisation : λl,a = −1/λl,max ∀l, λl,b = 1010 ∀l

6 Generate: θa = (ATA+
K∑
l=1

λl,aPl)
−1

(
ATb−

K∑
l=1

λl,a
2

rl

)
7 Generate: θb = (ATA+

K∑
l=1

λl,bPl)
−1

(
ATb−

K∑
l=1

λl,b
2

rl

)
8 Generate : Fl,a = rTl θa + θTaPlθa ∀l
9 Generate : Fl,b = rTl θb + θTb Plθb ∀l
10 If Fl,aFl,b < 0 ∀l
11 Generate : λl = (λl,a + λl,b)/2 ∀l

12 Generate: θ = (ATA+
K∑
l=1

λlPl)
−1

(
ATb−

K∑
l=1

λl
2
rl

)
13 Generate : Fl = rTl θ + θTPlθ ∀l
14 Loop : while abs(Fl) > 10−5 ∀l
15 Loop : For all l ∈ {1 . . .K}
16 If Fl,aFl < 0
17 λl,b = λl
18 Else
19 λl,a = λl
20 End if
21 End loop for
22 Generate : λl = (λl,a + λl,b)/2 ∀l

23 Generate : θ = (ATA+
K∑
l=1

λlPl)
−1

(
ATb−

K∑
l=1

λl
2
rl

)
24 Generate : Fl = rTl θ + θTPlθ ∀l
25 End loop while
26 End if

III. SIMULATION RESULTS

The first simulation is evaluated in the following scenario.
We consider a square of 1000mx1000m with a known trans-
mitter at the position (670,470) with transmit power 16 dBW
and a jammer at the position (270,770) with transmit power 17
dBW. There are 16 spectrum sensing stations equally spaced
on a square grid and placed at the center positions of a
subregion with an edge size of 250m. The spectrum sensing
devices positions can easily be seen on Figure 1 (b) in which
the inverse distance weighting (IDW) shows deep fades and
peaks at these positions as artifacts of the algorithm. The path
loss in one meter is defined as

L0 = 20 log(f)− 27.55 (17)

with f the frequency in megahertz. The path loss exponent is
set to 3.5 and the frequency is set to 400 MHz.

Figure 1 shows the results of the different algorithms. Figure
1 (a) shows the true REM (true positions of the known
transmitter and the jammer). Figure 1 (b) shows the REM
using the inverse distance weighting (IDW) algorithm [16]



Fig. 1. Results of the different algorithms for one known transmitter and one jammer

with power parameter β = 1. Figure 1 (c) shows the REM
using the IDW algorithm with power parameter β = 2. Figure
1 (d) shows the REM using the kriging algorithm [17], [18].
Figure 1 (e) shows the REM using the LiveREM algorithm
by determining the position of a single jammer [14]. Figure 1
(f) shows the REM using the proposed Algorithm 1. One can
see that the proposed algorithm leads to best performance in
comparison with the true REM.

Monte carlo trials have been performed for the first scenario,
in which the known transmitter and the jammer have been
placed at random positions with random transmit powers in
the range [1 20] dBW. Over 105 Monte Carlo trials, only
3 trials did not converge (ill-conditioned matrix inversion).
From the remaining trials the distance error mean and standard
deviation are 4.47 10−2 and 1.82 meters respectively. The
power error mean and standard deviation are −6.22 10−4 and
3.15 10−2 dBW respectively. Reducing the transmit powers
in the range [15 20], only 1 trial did not converge. From the
remaining trials the distance error mean and standard deviation
are 1.3 10−8 and 1.75 10−6 respectively. The power error
mean and standard deviation are −1.86 10−10 and 5.18 10−8

dBW respectively.

The second simulation is evaluated without known trans-
mitters and with two jammers at the positions (670,470) with
transmit power 16 dBW and (270,770) with transmit power

17 dBW. Figure 1 (a) shows the true REM (true positions of
the two jammers). Figure 2 shows the results for algorithm 1
and scenario 2. One can see that the proposed algorithm leads
to a good performance in comparison with the true REM.

Monte carlo trials have been performed for the second
scenario, in which the two jammers have been placed at
random positions with random transmit powers in the range [1
20] dBW. Over 105 Monte Carlo trials, 46.65% of the trials
did not converge (ill-conditioned matrix inversion). From the
remaining trials the distance error mean and standard deviation
are 51.64 and 37.41 meters respectively. The power error mean
and standard deviation are −1.62 and 1.28 dBW respectively.
Reducing the transmit powers in the range [15 20], 24.94%
of the trials did not converge. From the remaining trials the
distance error mean and standard deviation are 50.60 and
29.50 meters respectively. The power error mean and standard
deviation are −1.89 and 1.13 dBW respectively. Therefore, we
can draw from these simulations that an adequate number of
spectrum sensing devices and an adequate spacing between
spectrum sensing devices should be chosen depending on
the jammer transmission powers in order to have a better
chance of having a well-condition matrix for inversion and
for convergence. Indeed, an ill-condition matrix is obtained in
the case of an insufficient number of spectrum sensing devices
assigned to a jammer. Such scenarios exist for instance if a



Fig. 2. Results of algorithm 1 for two jammers

jammer is at the border of the square area or if a jammer has
much more power than another jammer, therefore taking all
the assigments of the spectrum sensing devices.

Future work will study the impact of path loss disturbances
like shadowing on the method, the estimation of parameters
to obtain a full blind method (number of jammers, path
loss exponent, assignment of the dominant jammer to each
spectrum sensing device), and the determination of the optimal
number of spectrum sensing devices and optimal spacing
between spectrum sensing devices. For instance, to take into
account path loss disturbances like shadowing effect, the pre-
sented problem could be extended to a weighted least square
constrained optimization problem to minimize the mean square
error for the localization and transmission power estimation of
multiple jammers in the presence of known transmitters.

IV. CONCLUSION

The problem of jammer localization is an important problem
in a tactical context. This paper has described a method for
jammer localization and transmission power estimation using
only received signal strength (RSS) from spectrum sensing
devices for radio environment map (REM). This method is able
to localize multiple jammers and to estimate their transmission
powers in the presence of known transmitters. Simulations
have shown the efficiency of the method compared to existing
methods in the literature such as inverse distance weighting
(IDW), kriging, or LiveREM. Monte Carlo trials have shown
that an adequate spacing between spectrum sensing devices
should be chosen depending on the jammer transmission
powers in order to have a better chance of having a well-
condition matrix for inversion and for convergence.
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