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Low-Complexity Generic Receiver for Burst-Mode
Continuous Phase Modulation

Vincent Le Nir, and Bart Scheers

Abstract—This paper describes a low-complexity generic re-
ceiver for burst-mode continuous phase modulation. The burst
consists of a continuous wave (CW) signal followed by a pseudo-
random sequence and a data sequence modulated by continuous
phase modulation (CPM). Joint coarse carrier frequency, phase
and time synchronization is performed on the CW signal.
Fine time synchronization is performed on the pseudo-random
sequence part of the CPM signal. Fine carrier frequency and
phase synchronization is performed on the CPM signal. Expo-
nentiation transforms the CPM signal with modulation index
h < 1/2 into a CPM signal with modulation index h = 1/2.
Linear demodulation filters the synchronized signal with the
first pulse of Laurent’s linear representation of CPM signals.
Decision logic is applied to the filtered signal to recover the data
sequence. Simulations are conducted to show the influence of the
CPM parameters (modulation index, pulse length, shaping pulse,
differential encoder) and the burst parameters (length of the CW
signal, length of the CPM pseudo-random sequence, length of the
CPM data sequence) on the different algorithms.

Index Terms—Continuous Phase Modulation, Low-Complexity
Receiver, Burst-Mode.

I. INTRODUCTION

CONTINUOUS phase modulation (CPM) has the advan-
tages of high spectral efficiency due to the phase conti-

nuity and high power efficiency due to the constant envelope.
However, CPM has the disadvantage of the high implemen-
tation complexity required to build an optimal receiver [1].
CPM has been used in several well-known communications
protocols such as GSM and Bluetooth. CPM is also envisioned
for the NATO narrow band waveform (NBWF) [2].

This paper describes a low-complexity generic receiver for
burst-mode continuous phase modulation. The receiver works
for full response CPM (pulse length L = 1) as well as partial
response CPM (L > 1) for any modulation index (h 6 1/2).
The burst consists of a continuous wave (CW) signal followed
by a pseudo-random sequence and a data sequence modulated
by CPM. The low-complexity generic receiver can be split into
the following tasks :
• Joint coarse carrier frequency, phase and time synchro-

nization is performed on the CW signal. The synchro-
nization algorithm is an extension of the iterative fre-
quency estimation algorithm by interpolation on Fourier
coefficients described in [3] to take into account carrier
phase and time synchronization. The synchronization
algorithm searches for the time offset whose estimated
iterative frequency offset has the maximum power and
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determines the phase offset of the CW signal at the time
and frequency offset estimates.

• Fine time synchronization is performed on the pseudo-
random sequence part of the CPM signal as described in
[4]. A peak search of the correlation function between
the received signal and a stored CPM pseudo-random
sequence around the estimated coarse time offset is
performed.

• Fine carrier frequency and phase synchronization is per-
formed on the CPM signal. Two fine carrier frequency
and phase synchronization algorithms are studied in this
paper. The first algorithm is a data aided (DA) carrier
frequency and phase synchronization algorithm applied
to the CPM pseudo-random sequence signal. The second
algorithm is a non data aided (NDA) carrier frequency
and phase synchronization algorithm applied to the full
CPM signal. The second algorithm is an extension of
the NDA feed forward carrier frequency synchronization
algorithm with minimum shift keying (MSK)-type signals
as described in [5]. The extended algorithm downsamples
the signal at the symbol rate, transforms the resulting
signal into a CPM signal with four constellation points,
takes the fourth power of the transformed signal, and
applies the iterative frequency estimation algorithm [3]
on the fourth powered signal at the time offset estimate.

• Exponentiation transforms the CPM signal with modula-
tion index h < 1/2 into a CPM signal with modulation
index h = 1/2. An implementation of the transformation
of a CPM signal with small modulation index into a CPM
signal with modulation index h = 1/2 is described in [6].

• Linear demodulation filters the synchronized signal with
the first pulse of Laurent’s linear representation of CPM
signals [7], [8]. The linear demodulator has the advantage
of a good trade off between performance and complexity
compared to maximum-likelihood receivers implemented
using Viterbi or iterative algorithms [9], [10], [11], [12].

• Decision logic is applied to the filtered signal to recover
the data sequence. The decision logic algorithm performs
a differential detection using the real and imaginary
samples. If the CPM modulator is preceded with a dif-
ferential encoder, the inherent performance loss due to
the differential detection can be avoided and the overall
performance can be improved [13].

The paper is organized as follows. In section II, we present
the signal model. More specifically, the complex baseband rep-
resentation of a CPM signal and the burst-mode transmission
model are presented. In section III, the different algorithms
of the low-complexity receiver are described. These are the
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joint coarse carrier frequency, phase and time synchronization
algorithm, the fine time synchronization algorithm, the fine
carrier frequency and phase synchronization algorithm, the
exponentiation algorithm, the linear demodulation algorithm
and the decision logic algorithm. In Section IV, simulations are
conducted to show the influence of the burst parameters (length
of the CW signal, length of the CPM pseudo-random sequence,
length of the CPM data sequence) and CPM parameters (mod-
ulation index, pulse length, shaping pulse, differential encoder)
on the different algorithms. Finally, section V concludes the
paper.

II. SIGNAL MODEL

A. Representation of a CPM signal

The complex baseband representation of a CPM signal is
given by

x(t, a) = e jψ (t,a) (1)

ψ(t, a) = πh
∑
i

aiq(t − iT ) (2)

with h the modulation index, T the symbol period, a = {ai }

the information belonging to the binary alphabet {±1}, q(t)
the phase response of the system with q(t) =

∫ t
0 g(u)du

and satisfying the condition q(LT ) = 1, L the pulse length,
g(t) the shaping pulse time-limited to the interval [0, LT] and
satisfying the condition g(t) = g(LT − t). Full response CPM
corresponds to L = 1. Partial response CPM corresponds
to L > 1. MSK-type modulation corresponds to a binary
CPM with h = 1/2. The most important shaping pulses are
the rectangular (LREC), raised-cosine (LRC), spectral raised
cosine (LSRC), Gaussian and tamed FM as defined in [1].

B. Laurent’s representation of a CPM signal

Laurent [7] showed that the complex baseband representa-
tion of a CPM signal (1) can be written as a sum of K = 2L−1

pulse amplitude modulation (PAM) signals

x(t, a) =
∑
i

K−1∑
k=0

bk, ick (t − iT ) (3)

with bk, i a function of the information sequence {ai } and ck (t)
an equivalent shaping pulse of the k th PAM signal [8]. Laurent
also showed that c0(t), which represents the pulse of longest
duration (L+1)T , also happens to have the highest energy and
is the most important component of the signal [7]. Therefore,
the baseband signal (1) can be approximated as

x(t, a) ≈
∑
i

b0, ic0(t − iT ) (4)

b0, i = b0, i−1e jπhai (5)

c0(t) =
L−1∏
l=0

p(t + lT ) (6)

p(t) =




sin
(
πhq(t)

)
sin(πh)

0 ≤ t ≤ LT

sin
(
πh

(
1 − q(t − LT )

))
sin(πh)

LT ≤ t ≤ 2LT

0 otherwise

(7)

Assuming transmission over an additive white Gaussian
noise (AWGN) channel, the complex baseband representation
of the received signal can be written as

y(t, a) = Ae j (2παt+φ) x(t − τ, a) + n(t)

≈ A
∑
i

b0, i−1e j (πhai+2παt+φ)c0(t − τ − iT ) + n(t)

(8)
with A the received signal amplitude, α the carrier frequency
offset, φ the carrier phase offset, τ the time offset and n(t)
the AWGN with variance N0/2 per dimension. The received
samples can be written as

y(k) = y(t, a)
����t= kT

F
(9)

with F the oversampling factor.

C. Burst-mode transmission model

The burst-mode transmission model considers the transmis-
sion of independent bursts. Each burst has a known duration
and structure as described in [4] and shown in Figure 1.

CW
CPM

Pseudo-Random
Sequence

CPM
Data

Sequence

Ncw Nprs Nds

Ntot

Fig. 1. Structure of the burst

The burst of length Ntot consists of a continuous wave
(CW) signal of length Ncw , a CPM pseudo-random sequence
signal of length Npr s and a CPM data sequence signal of
length Nds . Such burst structure has already been adopted in
[4], in which the authors exploit the CW signal for carrier
frequency and phase synchronization and the CPM pseudo-
random sequence signal for time synchronization. However,
the accuracy of the carrier frequency and phase estimates
might not be enough for short CW signal length, non-smooth
shaping pulse g(t) and/or long pulse duration L. In this
paper, two fine carrier frequency and phase synchronization
algorithms are studied. The first algorithm is a DA carrier
frequency and phase synchronization algorithm applied to the
CPM pseudo-random sequence signal. The second algorithm is
a NDA carrier frequency and phase synchronization algorithm
applied to the full CPM signal. These algorithms allow to ob-
tain more efficient carrier frequency and phase synchronization
accuracy if necessary.

III. LOW-COMPLEXITY RECEIVER

The low-complexity generic receiver depicted in Figure 2
is described in the following paragraphs.
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Fig. 2. Block diagram of the low-complexity receiver

A. Joint coarse carrier frequency, phase and time synchro-
nization

Joint coarse carrier frequency, phase and time synchroniza-
tion is performed on the CW signal. The synchronization
algorithm is an extension of the iterative frequency estimation
algorithm by interpolation on Fourier coefficients described in
[3] to take into account carrier phase and time synchronization.
Let Ncw the number of samples of the CW signal, Ntot the
total number of samples of the burst, α̂ the estimated carrier
frequency offset with β̂ the integer part of the estimated carrier
frequency offset and δ̂ the non-integer part of the estimated
frequency offset. The extended algorithm is described in
Algorithm 1 with N = Ncw .

Algorithm 1 Joint coarse carrier frequency, phase and time
synchronization algorithm
1 Loop : for all k, yk = [y(k) . . . y(k + N )]
2 Let Yk = FFT (yk ), Ek (i) = |Yk (i) |2, i = 0 . . . N − 1
3 Find β̂ = argmax

i
Ek (i)

4 Set δ̂0 = 0
5 Loop : for each i from 1 to Q

6 Xp =
N−1∑
n=0

y(n)e− j2πn
β̂+δ̂i−1+p

N , p = ±0.5

5 δ̂i = δ̂i−1 +
1
2 Re

{
X0.5+X−0.5
X0.5−X−0.5

}

7 X0,k =
N−1∑
n=0

y(n)e− j2πn
β̂+δ̂Q

N

8 α̂k =
β̂+δ̂Q
N

9 Coarse time offset estimate : τ̂ = argmax
k

|X0,k |
2

10 Coarse carrier frequency offset estimate : α̂ = ατ̂
11 Coarse carrier phase offset estimate : φ̂ = arg(X0,τ̂ )

This algorithm searches for the time offset whose estimated
iterative frequency offset has the maximum power. The carrier
frequency offset estimate is the carrier frequency offset at the
time offset estimate. The carrier phase offset estimate is the
carrier phase offset of the CW signal at the time and frequency
offset estimates.

B. Fine time synchronization

Fine time synchronization is performed on the addition of
the CW signal and the CPM pseudo-random sequence signal.
A peak search of the correlation function between the received
signal and a stored CW signal plus CPM pseudo-random
sequence signal around the estimated coarse time offset is
performed. Assuming N = Ncw + Npr s , the optimization
problem can be written as

τ̂ = argmax
k

|r (k) |2 (10)

with

r (k) =
1
N

N−1∑
n=0

y(n + k)x∗(n) k ∈ [τ̂ −
Ncw

2
. . . τ̂ +

Ncw

2
]

(11)

C. Fine carrier frequency and phase synchronization

Fine carrier frequency and phase synchronization is per-
formed on the CPM signal. Two fine carrier frequency and
phase synchronization algorithms are studied in this paper.
The first algorithm is a DA carrier frequency and phase
synchronization algorithm applied to the CPM pseudo-random
sequence signal. The second algorithm is a NDA carrier
frequency and phase synchronization algorithm applied to the
full CPM signal.

1) Data aided fine carrier frequency and phase synchro-
nization: This algorithm applies the iterative frequency esti-
mation algorithm by interpolation on Fourier coefficients de-
scribed in [3] to the correlation function between the received
signal and a stored CPM pseudo-random sequence signal at the
time offset estimate. The algorithm is described in Algorithm
2 with N = Npr s and z = [z(0) . . . z(N − 1) with

z(k) = y(k)x∗(k + τ̂) (12)

Finally, the DA carrier frequency estimate is given by α̂ =
β̂+δ̂Q
N , and the DA carrier phase estimate by φ̂ = arg(X0).
2) Non data aided fine carrier frequency and phase syn-

chronization: The second algorithm is an extension of the
NDA feed forward carrier frequency synchronization algo-
rithm with MSK-type signals as described in [5]. We assume
that the received signal is low-pass filtered to eliminate out-
of-band noise and sampled at symbol rate 1/T . The extended
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algorithm uses exponentiation to transform the CPM signal
with modulation index h < 1/2 into a CPM signal with modu-
lation index h = 1/2. An implementation of the transformation
of a CPM signal with small modulation index into a CPM
signal with modulation index h = 1/2 is described in [6].
Exponentiation can also be described by the following method

ψ̃(k) =
arg(y(k))

h
1
2

(13)

The received signal is then reconstructed by the following
formula

ỹ(k) = e jψ̃ (k ) (14)

The reconstructed signal is a CPM signal with four con-
stellation points for any shaping pulse whenever the pulse
length L = 1, 2. For L ≥ 3, an additional exponentiation taking
into account the pulse length L and the shaping pulse might
be necessary to obtain a CPM signal with four constellation
points. In [5], a quadratic non linearity (QNL) is applied on the
received signal z(k) = (−1)k ỹ(k)2 for CPM signals without
inter symbol interference (ISI) or pulse length L = 1. However,
this QNL does not apply for partial response CPM with ISI
(L > 1). After the transformation of the received signal into a
CPM signal with four constellation points by exponentiation,
we propose to take the fourth power of the transformed signal
z(k) = ỹ(i)4 for L > 1, and to apply the iterative frequency
estimation algorithm [3] on the resulting signal. The algorithm
can also be described in Algorithm 2 with N = Npr s + Nds

and z = [z(0) . . . z(N − 1)].

Algorithm 2 Iterative frequency estimation algorithm for
DA and NDA carrier frequency and phase synchronization
algorithms

2 Let Z = FFT (z), E(k) = |Z (k) |2, k = 0 . . . N − 1
3 Find β̂ = argmax

k
E(k)

4 Set δ̂0 = 0
5 Loop : for each i from 1 to Q

6 Xp =
N−1∑
n=0

z(n)e− j2πn
β̂+δ̂i−1+p

N , p = ±0.5

5 δ̂i = δ̂i−1 +
1
2 Re

{
X0.5+X−0.5
X0.5−X−0.5

}

7 X0 =
N−1∑
n=0

z(n)e− j2πn
β̂+δ̂Q

N

Finally, the NDA carrier frequency estimate is given by
α̂ =

β̂+δ̂Q
N

h
4 , and the NDA carrier phase estimate by φ̂ =

arg(X0) h4 . With the QNL (L = 1), the NDA carrier frequency

estimate is given by α̂ =
β̂+δ̂Q
N

h
2 , and the NDA carrier

phase estimate by φ̂ = arg(X0) h2 . For L ≥ 3, a further
exponentiation of Lth power is applied on equation (13) and a
division by L is necessary on the NDA carrier frequency and
phase estimates.

D. Transformation into a CPM signal with h = 1/2

The CPM signal with modulation index h < 1/2 is trans-
formed into a CPM signal with modulation index h = 1/2 with

four constellation points while keeping the initial phase offset.
The transformation is described by the following method

ψ̃(k) =
arg(y(k))

h
1
2
+ (

1
h
− 2)

π

8
(15)

for even 1/h numbers. For odd 1/h numbers, an additional
phase unwrapping is necessary

Algorithm 3 Phase unwrapping for odd 1/h numbers
1 Loop : for all k
2 if ψ̃(k) − ψ̃(k − 1) > 2π
3 ψ̃(k) = ψ̃(k) − π
4 if ψ̃(k) − ψ̃(k − 1) < 2π
5 ψ̃(k) = ψ̃(k) + π

The received signal is then reconstructed by the following
formula

ỹ(k) = e jψ̃ (k ) (16)

Similarly to the NDA fine carrier frequency and phase
synchronization algorithm, the reconstructed signal is a CPM
signal with four constellation points for any shaping pulse
whenever the pulse length L = 1, 2. For L ≥ 3, an additional
exponentiation taking into account the pulse length L and the
shaping pulse might be necessary to obtain a CPM signal with
four constellation points.

E. Linear demodulation
Linear demodulation filters the synchronized signal with the

first pulse of Laurent’s linear representation of CPM signals.
The linear demodulator has the advantage of a good trade off
between performance and complexity compared to maximum-
likelihood receivers implemented using Viterbi or iterative
algorithms [9], [10], [11], [12]. The convolution and sampling
operation can be written as

s(i) = (y ∗ c0)(k) |i=Fk+τ̂ (17)

F. Decision Logic
Decision logic is applied to the filtered signal to recover

the data sequence. The decision logic algorithm performs a
differential detection using the real and imaginary samples.

âi =

{
Im(s(i))Re(s(i − 1)) i even
−Re(s(i))Im(s(i − 1)) i odd (18)

If the CPM modulator is preceded with a differential en-
coder, the inherent performance loss due to the differential
detection can be avoided and the overall performance can be
improved [13].

âi = Re((− j)i s(i)) (19)

IV. SIMULATION RESULTS

Simulations are conducted to show the influence of the
CPM parameters (modulation index, pulse length, shaping
pulse, differential encoder) and the burst parameters (length of
the CW signal, length of the CPM pseudo-random sequence,
length of the CPM data sequence) on the different algorithms.
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Fig. 3. Influence of the modulation index

A. Influence of the modulation index

Figure 3 shows the BER performance of the low-complexity
generic receiver with rectangular shaping pulse and pulse
length L = 1 (1-REC) and L = 2 (2-REC) for different
modulation indexes (h = 1/2, 1/4, 1/6, 1/8). The BER curves
correspond to the genie aided curves which can be reached
with adequate CW, CPM pseudo-random sequence, CPM data
sequence signal lengths as will be discussed in the following
paragraphs for the DA and NDA fine carrier frequency and
phase synchronization algorithms. Simulations shows that the
BER performance degrades as the modulation index decreases.

B. Influence of the pulse length and the shaping pulse

Figure 4 shows the BER performance of the low-complexity
generic receiver with modulation index h = 1/2 for different
pulse length L = 1, 2, 3 and shaping pulses (REC, GAUS-
SIAN). Simulations shows that the BER performance degrades
as the pulse length increases. The loss of BER performance
for L = 2 compared to L = 1 is small (0.4 dB). The loss of
BER performance is larger for L = 3. In fact, for L = 3, it can
be shown that the energy contained in the Laurent’s second
pulse of a rectangular shaping pulse is very large. If a Gaussian
shaping pulse is used instead of a rectangular shaping pulse,
simulations show that the BER performance can be improved.

C. Influence of the differential encoder

Figure 5 shows the BER performance of the low-complexity
generic receiver with modulation index h = 1/2, rectangular
shaping pulse with pulse length L = 1 (1-REC) and L =
2 (2-REC) and with a differential encoder at the modulator.
Simulations shows that the BER performance improves when
differential encoding is used at the modulator.
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D. Influence of the CW signal length on the BER performance
for the coarse carrier frequency and phase synchronization
algorithm

Figure 6 shows the bit error rate (BER) performance of the
low-complexity generic receiver without fine carrier frequency
and phase synchronization, modulation index h = 1/2, rect-
angular shaping pulse with pulse length L = 1 (1-REC) and
L = 2 (2-REC), CPM pseudo-random sequence signal length
Npr s = 63 and for different CW signal lengths and CPM
data sequence signal lengths (Ncw = 45, 180, Nds = 345, 90).
The genie aided BER curves corresponds to the case of
perfect carrier frequency and phase estimates. Simulations



6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

B
E

R

 

 

1−REC h=1/2 genie−aided

1−REC h=1/2 Ncw=45 Nds=345

1−REC h=1/2 Ncw=45 Nds=90

1−REC h=1/2 Ncw=180 Nds=345

1−REC h=1/2 Ncw=180 Nds=90

2−REC h=1/2 genie−aided

2−REC h=1/2 Ncw=45 Nds=345

2−REC h=1/2 Ncw=45 Nds=90

2−REC h=1/2 Ncw=180 Nds=345

2−REC h=1/2 Ncw=180 Nds=90

Fig. 6. Influence of the CW signal length on the BER performance for the
coarse carrier frequency and phase synchronization algorithm

show that the longer the CW signal length, the better the
BER performance. This is due to better estimates of the
carrier frequency and phase. However, the longer the CPM
data sequence signal length, the worse the BER performance.
This is due to the carrier frequency error which accumulates
phase error with time. Moreover, it can be observed that 2-
REC CPM has more sensitivity to synchronization errors than
1-REC CPM. Indeed, 2-REC CPM needs larger CW signal
length (Ncw > 180) than 1-REC CPM to reach the optimal
BER performance (genie aided BER curves).

E. Influence of the CPM pseudo-random sequence signal
length on the BER performance for the DA fine carrier
frequency and phase synchronization algorithm

Figure 7 shows the BER performance of the low-complexity
generic receiver with DA fine carrier frequency and phase
synchronization, modulation index h = 1/2, rectangular shap-
ing pulse with pulse length L = 1 (1-REC) and L = 2 (2-
REC), CW signal length Ncw = 45 and CPM data sequence
signal length Nds = 345 for different CPM pseudo-random
sequence signal lengths (Npr s = 63, 127). The DA fine carrier
frequency and phase synchronization algorithm is applied to
the concatenation of the CW signal and the CPM pseudo-
random sequence signal Ncw+Npr s . Simulations show that the
DA fine carrier frequency and phase synchronization algorithm
improves the BER performance compared to Figure 6 in which
only coarse carrier frequency and phase synchronization is ap-
plied. Moreover, it can be observed that the BER performance
improves as the CPM pseudo-random sequence signal length
increases and depends on the CPM type (1-REC, 2-REC).
Therefore, in order to design a burst whose BER performance
reaches the optimal performance, CW and CPM pseudo-
random sequence signal lengths should be chosen adequately.
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Fig. 7. Influence of the CPM pseudo-random sequence signal length on the
BER performance for the DA fine carrier frequency and phase synchronization
algorithm

F. Influence of the CPM signal length on the BER performance
for the NDA fine carrier frequency and phase synchronization
algorithm

Figure 8 shows the BER performance of the low-complexity
generic receiver with NDA fine carrier frequency and phase
synchronization, modulation index h = 1/2, rectangular shap-
ing pulse with pulse length L = 1 (1-REC) and L = 2 (2-
REC), CW signal length Ncw = 45, CPM pseudo-random
sequence signal length Npr s = 45 and for different CPM data
sequence signal lengths Nds = 345, 90. The NDA fine carrier
frequency and phase synchronization algorithm is applied
on the full CPM signal Npr s + Nds . Simulations show that
the BER performance improves as the CPM data sequence
signal increases. Simulations show that the NDA fine carrier
frequency and phase synchronization algorithm improves the
BER performance compared to the DA fine carrier frequency
and phase synchronization algorithm at all Eb/N0 values for
L = 1 and from a particular Eb/N0 threshold for L = 2.
The BER performance is degraded for Eb/N0 lower than this
threshold. This effect is due to the fourth exponentiation used
in the NDA fine carrier frequency and phase synchronization
algorithm. When associated with forward error correction
(FEC), the waterfall threshold of the NDA fine carrier fre-
quency and phase synchronization algorithm will be higher
than the waterfall threshold of the DA fine carrier frequency
and phase synchronization algorithm. Therefore, the DA fine
carrier frequency and phase synchronization algorithm is the
preferred algorithm for L = 2 if the design of the burst al-
lows sufficient CW and CPM pseudo-random sequence signal
lengths. However, for short CW and CPM pseudo-random
sequence signal lengths, the NDA fine carrier frequency and
phase synchronization algorithm is the preferred algorithm.
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V. CONCLUSION

This paper has described a low-complexity generic re-
ceiver for burst-mode continuous phase modulation. The burst
consists of a continuous wave (CW) signal followed by a
pseudo-random sequence and a data sequence modulated by
continuous phase modulation (CPM). A coarse carrier fre-
quency, phase and time synchronization is performed on the
CW signal. A fine time synchronization is performed on the
pseudo-random sequence part of the CPM signal. A fine carrier
frequency and phase synchronization is performed on the full
CPM signal. The demodulator transforms the synchronized
signal into a CPM signal with modulation index h = 1/2 and
filters the synchronized signal with the first pulse of Laurent’s
linear representation of CPM signals. A simple decision logic
is applied to the filtered signal to recover the data sequence.
Simulations were conducted to show the influence of the
CPM parameters (modulation index, pulse length, shaping
pulse, differential encoder) and the burst parameters (length of
the CW signal, length of the CPM pseudo-random sequence,
length of the CPM data sequence) on the different algorithms.
Simulations have shown that the BER performance degrades
as the modulation index decreases and as the pulse length
increases. Simulations have also shown that the BER perfor-
mance can be improved when differential encoding is used at
the modulator. Finally, simulations have shown that the design
of the CPM burst and the choice of the fine carrier frequency
and phase synchronization algorithm are crucial and depends
on the lengths of the CW signal, the CPM pseudo-random
sequence signal and the CPM data signal.
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