
Multiple Input Multiple Output Iterative Water-Filling Algorithm for Multiple

Broadcast Networks Distributing Only Common Information

Vincent Le Nir∗, Bart Scheers∗∗

Royal Military Academy, Dept. Communication, Information Systems & Sensors (CISS), 30, Avenue de la Renaissance B-1000 Brussels
BELGIUM

Abstract

This paper considers the multiple input multiple output (MIMO) iterative water-filling algorithm (IWFA) for the coexis-
tence of multiple broadcast networks distributing only common information. In the first part of the paper, we propose a
power allocation for a MIMO broadcast network using parallel sub-channels and distributing only common information
either to maximize the common rate subject to a total power constraint or to minimize the power subject to a common
rate constraint. Assuming that the number of receive antennas is larger or equal to the number of transmit antennas,
mathematical derivations show that the power allocation can be expressed in closed-form for two receivers. The second
part of the paper focuses on the MIMO IWFA for the coexistence of multiple broadcast networks distributing only
common information. Simulation results show that the proposed strategy has better performance than the current state
of the art strategy which takes into account the worst sub-channels of all receivers. Moreover, a performance gain of
about 6 dBW can be achieved with MIMO 2x2 systems as opposed to single input single output (SISO) systems.
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1. Introduction

Tactical voice and data radio networks are often net-
works in which the same information is conveyed from a
transmitter to multiple receivers, e.g. push-to-talk voice
or position updates. Therefore, a tactical radio network
can be modeled as a broadcast channel with only common
information [4]. Making these types of networks cogni-
tive [16, 10], can have some interesting operational ad-
vantages. For instance, in a crisis situation, several radio
networks belonging to different coalition nations or non-
governmental organization (NGO) will be deployed in the
same small area. However, as the geographical location
of the crisis nor the coalition partners are known in ad-
vance and the reaction time is limited, it is impossible to
do a proper frequency planning in advance. In these sit-
uations, a cognitive tactical radio network, implementing
dynamic spectrum access by changing its operating param-
eters (e.g. transmit power, carrier frequency, modulation
strategy etc.) in an autonomous way, can provide reli-
able communications and efficient utilization of the radio
spectrum without a priori spectral information from the
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other radio networks nor the environment. Furthermore,
it is not inconceivable that future tactical networks will be
equipped with multiple antennas for multiple input multi-
ple output (MIMO) operations and will be able to transmit
on multiple channels at the same time.

Most studies on broadcast channels have focused on the
power allocation for parallel Gaussian single input single
output (SISO) and multiple input single output (MISO)
broadcast channels with common and independent infor-
mation [6, 11, 34, 9, 13, 32, 30, 31, 8, 19]. For instance, in
broadcast channels with independent information, the op-
timal power allocation is obtained by performing a multi-
level water-filling over the parallel Gaussian channels. The
capacity region of the Gaussian MIMO broadcast chan-
nels with or without common information has been stud-
ied for a single channel in [12, 14, 35]. With only common
information, the capacity of the Gaussian multiple input
multiple output (MIMO) broadcast channel is obtained by
maximizing the common information rate. Without com-
mon information, the MIMO Gaussian broadcast channel
is non-degraded and its capacity is obtained by maximiz-
ing the dirty paper coding (DPC) sum rate. The extension
to parallel Gaussian MIMO broadcast channels without
common information is studied in [38, 18]. However, to
our knowledge, less studies have been done on the exten-
sion to parallel Gaussian MIMO broadcast channels with
only common information. This scenario is of particular
interest in a tactical radio network composed of a transmit-
ter which broadcasts the same information to its multiple



receivers.
The iterative water-filling algorithm (IWFA) has been

introduced as a distributed power control algorithm for
parallel Gaussian interference channels [37]. Its conver-
gence has been studied in [23]. In the IWFA, each user
iteratively updates its own transmit power while optimiz-
ing its own utility function by considering the interference
coming from the other users as noise, converging towards
a Nash equilibrium in which any change in a player’s own
strategy would result in a rate loss. The IWFA has also
been extended to parallel Gaussian MIMO interference
channels in [36, 29]. In this paper, we extend the MIMO
IWFA to the coexistence of multiple broadcast networks
distributing only common information. It is assumed that
the transmitter in each tactical radio network knows the
MIMO channel state information (CSI) and the noise co-
variance matrices of its receivers. This knowledge can be
acquired by a feedback channel from the receivers to the
transmitter of each network assuming that the acquisition
time is much lower than the coherence time of the chan-
nel fading. We assume that the links between the trans-
mitter and the receivers of each network exhibit quasi-
static fading channels, i.e. in which the coherence times
of the fading channels are larger than the time necessary
to compute the algorithm. Such an assumption is moti-
vated by the fact that tactical radio networks using very
high frequency (VHF) and low ultra high frequency (UHF)
bands exhibit long coherence times for low mobility pat-
terns. The parallel channels are represented by multiple
orthogonal sub-carriers as used in orthogonal frequency di-
vision multiplexing (OFDM) or multiple non-overlapping
narrowband sub-channels. Therefore, each parallel sub-
channel is considered as a flat quasi-static fading channel
(no intersymbol interference).

In Section II, we propose a power allocation for a MIMO
broadcast network using parallel sub-channels and distribut-
ing only common information either to maximize the com-
mon rate subject to a total power constraint or to minimize
the power subject to a common rate constraint. Assum-
ing that the number of receive antennas is larger or equal
to the number of transmit antennas, mathematical deriva-
tions show that the power allocation can be expressed in
closed-form for two receivers. In Section III, we extend the
MIMO IWFA to the coexistence of multiple broadcast net-
works distributing only common information. In Section
IV, simulation results compare the proposed algorithms
with the current state of the art strategy which takes into
account the worst sub-channels of all receivers.

2. Optimal power allocation for parallel Gaussian

MIMO broadcast channels with only common

information

Consider a T -receiver Nc-parallel Gaussian MIMO broad-
cast channel with only common information as shown in
Figure 1. The transmitter has Nt antennas and each re-
ceiver t has N t

r ≥ Nt antennas. This condition is necessary

Figure 1: T -receiver MIMO Gaussian broadcast channel

for the existence of the matrices Ai and Bi later defined
in this paper. The received signal can be modeled as

yit = Hitxi + nit t = 1 . . . T

i = 1 . . .Nc
(1)

where nit are i.i.d. complex Gaussian random vectors of
length N t

r with autocorrelation matrix Rit and Hit corre-
sponds to the N t

r × Nt channel matrix seen by receiver t

on tone i. The maximum common information rate that
can be supported by the system is given by [12, 5]

max
Φ

min
t=1...T

R0t(Φ)

subject to
Nc∑

i=1

Tr(Φi) = P tot

Φi � 0 ∀i

with R0t(Φ) = ∆f
Nc∑

i=1

log2|I + HitΦiH
H
it R

−1
it |

(2)

with Φi = E[xix
H
i ] the variance of the input signal on

sub-channel i, ∆f the sub-channel bandwidth, P tot the
total power constraint, |.| the determinant operator, Tr(.)
the trace operator, (.)H the Hermitian operator and Φ =
(Φ1, . . . ,ΦNc

) the power allocation among all sub-channels.
With a single sub-channel Nc = 1, the optimal solution can
be solved by standard numerical techniques since this is a
concave maximization [12]. To achieve the maximum com-
mon information rate for multiple sub-channels Nc > 1,
the common message codebook cannot be broken into dif-
ferent codebooks for each channel, i.e. joint encoding and
joint decoding must be performed across all sub-channels
[13]. This transmission scheme is referred to as “single
codebook, variable power” transmission [2]. In the follow-
ing, we derive a framework for parallel Gaussian MIMO
broadcast channels which leads to the optimal solution for
the maximization of the common rate subject to a total
power constraint and its dual form, i.e minimization of
power subject to a common rate constraint.

The expression in (2) is the maximization of the mini-
mum of a set of sums of concave functions of Φi. Since the
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sum and the minimum operations preserve concavity, the
objective is concave, and maximizing a concave function
yields a convex optimization problem. Moreover, by intro-

ducing weight values w = (w1, . . . , wT ), with
T∑

t=1
wt = 1,

(2) can be transformed into the following problem

Find Φwopt

given by

max
Φ

T∑

t=1
wtR0t(Φ)

subject to
Nc∑

i=1

Tr(Φi) = P tot

Φi � 0 ∀i

(3)

with

wopt = min
w

√

1

T

T∑

t=1
[(R0t(Φ

w) −
1

T

T∑

t=1
R0t(Φ

w))2]

1

T

T∑

t=1
R0t(Φ

w)

(4)

Equation (2) is equivalent to equation (3) and (4) ow-
ing to the multiple hypothesis testing approach as pro-
posed in [21, 22, 26]. In the two receiver case, three steps
for multiple hypothesis testing are followed. The first step
performs the power allocation considering the first receiver
only (w1 = 1,w2 = 0). Then, if the rate of the first receiver
is lower that the rate of the second receiver, this power al-
location is optimal since any weight given to the second
receiver would reduce the rate of the first receiver. The
second step performs the power allocation considering the
second receiver only (w1 = 0,w2 = 1). Then, if the rate
of the second receiver is lower that the rate of the first
receiver, this power allocation is optimal since any weight
given to the first receiver would reduce the rate of the
second receiver. If neither of the above cases are true, it
means that there is an optimal weight vector w1 and w2

such that the rates of the first receiver and the second re-
ceiver are equal. As performed in [20], these three steps
can be merged into one considering the optimal weight
vector w1 and w2 such that the difference between the
rates of the first receiver and the second receiver is min-
imized. If step 1 is true, any weight given to the second
receiver would increase the rate of the second receiver and
decrease the rate of the first receiver, therefore the differ-
ence between the two rates would be increased. If step 2 is
true, any weight given to the first receiver would increase
the rate of the first receiver and decrease the rate of the
second receiver, therefore the difference between the two
rates would be increased. In the last step, the difference
between the rates are already minimized. The extension to
multiple receivers is straightforward, an example of mul-
tiple hypothesis testing in the three receiver case is given
in [25]. Equations (3) and (4) allows to formulate multi-
ple hypothesis testing for the multiple receiver case in a
simple manner. However, to avoid an exhaustive search

on all the different combination of weights, the different
steps of multiple hypothesis testing can be employed in a
practical algorithm [21, 22, 26]. As pointed out previously,
for two receivers, multiple hypothesis testing involves the
three following steps

• Step 1: Find Φ(1,0) given by

max
Φ

R01(Φ)

subject to
Nc∑

i=1

Tr(Φi) = P tot

Φi � 0 ∀i

(5)

If R01(Φ
(1,0)) < R02(Φ

(1,0)) then the optimal power

allocation is Φwopt

= Φ(1,0) and finish. If this condi-
tion is true, we do not need to calculate additional set
of weights since the rate of the first receiver is lower
than the rate of the second receiver while the power
allocation considers only the first receiver. Consid-
ering the two receivers for the power allocation will
reduce the rate of the first receiver and consequently
the common rate.

• Step 2: Find Φ(0,1) given by

max
Φ

R02(Φ)

subject to
Nc∑

i=1

Tr(Φi) = P tot

Φi � 0 ∀i

(6)

If R02(Φ
(0,1)) < R01(Φ

(0,1)) then the optimal power

allocation is Φwopt

= Φ(0,1) and finish. Similarly to
step 1, if this condition holds, we do not need to
calculate additional set of weights since the rate of
the second receiver is lower than the rate of the first
receiver while the power allocation considers only the
second receiver. Considering the two receivers for the
power allocation will reduce the rate of the second
receiver and consequently the common rate.

If none of the previous conditions are true, this means
that R01(Φ

(1,0)) > R02(Φ
(1,0)) and R02(Φ

(0,1)) > R01(Φ
(0,1)).

Therefore, the two receivers should be considered for the
power allocation and there exists a set of weights such that
the rates of the two receivers are equal. The search of the
optimal set of weights is summarized in the following step.

• Step 3: For all (w1, w2) with
2∑

t=1
wt = 1, find Φ(w1,w2)

given by

max
Φ

2∑

t=1
wtR0t(Φ)

subject to
Nc∑

i=1

Tr(Φi) = P tot

Φi � 0 ∀i

(7)
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Find (w1, w2)
opt that satisfies R01(Φ

(w1,w2)
opt

) = R02(Φ
(w1,w2)

opt

),

then the optimal power allocation is Φ(w1,w2)
opt

and
finish. Note that to reduce the complexity in a prac-
tical algorithm, the weights wt are taken from a given
data set in interval [0 1] with Ns samples, leading to
an exhaustive search over a maximum of Ns possibili-
ties including step 1 and step 2 of multiple hypothesis
testing. Therefore, to satisfy the conditions requir-
ing the rates of the different receivers to be equal,
the optimal value (w1, w2)

opt should minimize the
dispersion of the rates

(w1, w2)
opt

= min
(w1,w2)

s

1

2

2
P

t=1
[(R0t(Φ(w1,w2)) −

1

2

2
P

t=1
R0t(Φ(w1,w2)))2]

1

2

2
P

t=1
R0t(Φ(w1,w2))

(8)

First consider the optimization problem of step 1 and
2. As the objective function is concave, the power alloca-
tion can be derived by the standard Karush-Kuhn-Tucker
(KKT) conditions [1]. The modified Lagrangian function
which includes the total power constraint for step 1 and 2
is given by

L(λ,Φ) =
Nc∑

i=1

(

∆f log2|I + HitΦiH
H
it R

−1
it | − λTr(Φi)

)

+ λP tot

t = 1, 2
(9)

with λ the Lagrange multiplier associated with the total
power constraint. As the autocorrelation matrix Rit is
Hermitian and positive definite, it can be decomposed into
Rit = LitL

H
it (Cholesky decomposition) with Lit a lower

triangular matrix. Therefore the modified Lagrangian can
be rewritten as

L(λ,Φ) =
Nc∑

i=1

(

∆f log2|I + H̃itΦiH̃
H
it | − λTr(Φi)

)

+ λP tot

t = 1, 2
(10)

with H̃it = L−1
it Hit. By taking the derivative of the mod-

ified Lagrangian function with respect to Φi, we can solve
the KKT system of the optimization problem. The deriva-
tive with respect to Φi is given by

∂L(λ,Φ)

∂Φi
=

∆f

ln2
H̃H

it (I + H̃itΦiH̃
H
it )−1H̃it − λI t = 1, 2

=
∆f

ln2
((H̃H

it H̃it)
−1 + Φi)

−1 − λI t = 1, 2

(11)
The optimal power allocation is obtained through the

singular value decomposition (SVD) of each channel ma-
trix combined with standard water-filling as described in
[7, 33, 17]

∂L(λ,Φ)

∂Φi
= 0 ⇒ Φi =

∆f

λln2
I− (H̃H

it H̃it)
−1

⇒ Φi = Vit

[

∆f

λln2
I− Σ−2

it

]+

VH
it

(12)
in which the SVD H̃it = UitΣitV

H
it contains the diago-

nal matrix of singular values Σit and the unitary matrices
Uit and Vit

1. Hence the optimal power allocation can be
written as

• Step 1:

Φ
(1,0)
i = Vi1

[
∆f

λln2
I − Σ−2

i1

]+

VH
i1 (13)

• Step 2:

Φ
(0,1)
i = Vi2

[
∆f

λln2
I − Σ−2

i2

]+

VH
i2 (14)

The [.]+ operator is inserted to obtain positive semi-definite
matrices without loss of optimality [33, 15].

We now consider the optimization problem of step 3.
As the objective is a weighted sum of concave functions,
the power allocation can also be derived by the standard
KKT conditions. The modified Lagrangian function which
includes the total power constraint for step 3 is given by

L(λ,Φ) =
Nc∑

i=1

(

∆f
2∑

t=1
wtlog2|I + H̃itΦiH̃

H
it | − λTr(Φi)

)

+λP tot

(15)
with λ the Lagrange multiplier associated with the total
power constraint. By taking the derivative of the modified
Lagrangian function with respect to Φi, we can solve the
KKT system of the optimization problem. The derivative
with respect to Φi is given by

∂L(λ,Φ)

∂Φi
=

∆f

ln2

2∑

t=1

wt((H̃
H
it H̃it)

−1 + Φi)
−1 − λI (16)

Nulling the derivative gives

∂L(λ,Φ)

∂Φi
= 0

⇒ w1((H̃
H
i1H̃i1)

−1

︸ ︷︷ ︸

Ai

+Φi)
−1 + w2((H̃

H
i2H̃i2)

−1

︸ ︷︷ ︸

Bi

+Φi)
−1 =

λln2

∆f
︸ ︷︷ ︸

λ̃

I

⇒ w1(Ai + Φi)
−1 + w2(Bi + Φi)

−1 = λ̃I

(17)

1For practical implementations, we introduce in (12) the SNR
gap Γ which measures the loss with respect to theoretically optimum
performance [3], giving

Φi = Vit

»

∆f

λln2
I − ΓΣ

−2

it

–+

V
H
it

4



with Ai and Bi two Hermitian matrices. The existence of
the matrices Ai and Bi requires N1

r ≥ Nt and N2
r ≥ Nt.

Then, by making the variable change Φ̃i = Φi +
Ai + Bi

2

and by defining the Hermitian matrix Ci =
Ai − Bi

2
, this

leads to

w1(Φ̃i + Ci)
−1 + w2(Φ̃i − Ci)

−1 = λ̃I

Φ̃i − (w1 − w2)Ci = λ̃(Φ̃i + Ci)(Φ̃i − Ci)

Φ̃i − (w1 − w2)Ci = λ̃(Φ̃2
i − C2

i + CiΦ̃i − Φ̃iCi)

(18)

As Φi is an Hermitian matrix, Φ̃i is also an Hermitian
matrix. By taking Hermitian conjugates on both sides, we
get

Φ̃i − (w1 − w2)Ci = λ̃(Φ̃2
i − C2

i + CiΦ̃i − Φ̃iCi)
(.)H

⇐⇒ Φ̃i − (w1 − w2)Ci = λ̃(Φ̃2
i − C2

i + Φ̃iCi − CiΦ̃i)

(19)

leading to the following system of equations

⇒

{

CiΦ̃i − Φ̃iCi = 0

Φ̃i − (w1 − w2)Ci = λ̃(Φ̃2
i − C2

i )
(20)

Since Ci is Hermitian, we can work in a basis in which
Ci is diagonalized. Therefore, we use the eigenvalue de-
composition (EVD) Ci = WiDiW

H
i which leads to the

following developments of the system of equations

⇒

{

WiDiW
H
i Φ̃i − Φ̃iWiDiW

H
i = 0

Φ̃i − (w1 − w2)WiDiW
H
i = λ̃(Φ̃2

i − WiD
2
i W

H
i )

(21)

⇒

{

DiW
H
i Φ̃iWi − WH

i Φ̃iWiDi = 0

WH
i Φ̃iWi − (w1 − w2)Di = λ̃(WH

i Φ̃2
i Wi − D2

i )

(22)
Making the variable change Zi = WH

i Φ̃iWi, the final
system of equations to be solved is

⇒

{

DiZi − ZiDi = 0

Zi − (w1 − w2)Di = λ̃(Z2
i − D2

i )
(23)

The first line of the system of equations implies Zi to
be diagonal since Di is diagonal. The power allocation
is a type of water-filling strategy given by the solution of
parallel quadratic equations

λ̃Z2
i − Zi − λ̃D2

i + (w1 − w2)Di = 0 (24)

with Zi diagonal. The discriminant of this quadratic equa-
tion is given by

∆ = I + 4λ̃2D2
i − 4λ̃(w1 − w2)Di (25)

The power allocation is given by the positive root

Zi =
I

2λ̃
+

(

I

4λ̃2
−

(w1 − w2)Di

λ̃
+ D2

i

)1/2

(26)

Knowing that Φ̃i = WiZiW
H
i and Φi = Φ̃i−

Ai + Bi

2
,

the power allocation is given by2

Φi = Wi




I

2λ̃
+

(

I

4λ̃2
−

(w1 − w2)Di

λ̃
+ D2

i

)1/2


WH
i −

Ai + Bi

2

(27)
Transmit covariance matrices should be positive semi-

definite for a practical implementation by linear precoding.
However, the [.]+ operator cannot be inserted directly to
obtain positive semi-definite matrices because of the dif-
ference operation. As proposed in [28], a new EVD is
performed on Φi = TiΘiT

H
i with Ti the unitary matrix

containing the eigenvectors and Θi the diagonal matrix
containing the eigenvalues. The negative eigenvalues of
Θi are dropped (set to zero) such that the transmit co-
variance matrices are positive semi-definite. Therefore the
power allocation becomes

Φi = Ti[Θi]
+TH

i (28)

The projection transforms the optimal solution into a
sub-optimal solution. However, this projection allows to
find feasible positive semi-definite matrices close to the op-
timal covariance matrices and is extremely fast compared
to other projection methods [28, 24].

For more than two receivers, the power allocation al-
gorithm is driven by the solutions of higher degree matrix
polynomials and involves more steps under multiple hy-
pothesis testing. For instance, with three receivers T = 3,
the optimal power allocation algorithm is given by seven
steps involving the solutions of three matrix linear equa-
tions, three matrix quadratic equations and a matrix cubic
equation (similarly to [25] in the SISO case). More gener-
ally, the optimal power allocation is given by the solutions
of matrix polynomial equations up to degree T from the
formula

T∑

t=1

wt(H̃
−1
it H̃−H

it + Φi)
−1 = λ̃I (29)

The power allocation can be solved numerically, for
instance by an exhaustive search on the matrix elements
of Φi, although computationally intensive compared to a
closed-form solution. Moreover, similarly to the two re-
ceivers case, the weights wt can be taken from a given
data set in interval [0 1] to reduce the search space with
Ns samples, leading to an exhaustive search over a max-
imum of (T − 1)NT−1

s possibilities including all the steps
in multiple hypothesis testing.

2Note that the SNR gap Γ, which corresponds to a constant in-
crease in the interference temperature, can also be introduced in
formula (27) and gives

Φi = Wi

2

4

I

2λ̃
+

 

I

4λ̃2
−

(w1 − w2)ΓDi

λ̃
+ Γ2

D
2
i

!1/2
3

5W
H
i −

Γ(Ai + Bi)

2
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The minimization of the power subject to a common
rate constraint is the dual form of the maximization of
the common rate subject to a total power constraint. The
only difference lies in the algorithm where an outer loop
is added to find the minimum amount of power that is
needed to support the common rate constraint. Algorithm
1 provides the power allocation for power minimization
subject to a common rate constraint Rcom of a T -receiver
Nc parallel Gaussian MIMO broadcast channel with only
common information. Note that the actual common rate
in the network is defined as R0(Φ

opt) = min
t=1...T

R0t(Φ
opt).

The pseudocode providing the power allocation for com-
mon rate maximization subject to a total power constraint
P tot of a T -receiver Nc parallel Gaussian MIMO broadcast
channel with only common information is a subset of Al-
gorithm 1 (inner loop of the algorithm) from line 2 to line
9. A fixed step-size can be used to update λ̃ and P tot (e.g.
3 dB) as in Algorithm I. However, an adaptive bisection
method is used in the simulations to converge rapidly to
the optimal values. In this case, the step-sizes are up-
dated whenever the variables have to be decreased [17].
For the initialization, the variables λ̃ and P tot are set to
extremely low values (e.g. 10−11), the step-sizes are set to
2, and two counters are set to 0. Whenever a variable λ̃ or
P tot has to be decreased, its counter is incremented, the
variable is decreased by its actual step-size, a new step-size
is calculated as the difference between the actual step-size
and the inverse of 2 powered by its counter, and the vari-
able is increased by the new calculated step-size. If the
variable λ̃ or P tot has to be incremented, the variable is
increased by the actual step-size. The algorithm has a
cubic complexity increase with respect to the number of
antennas and a linear complexity increase with the num-
ber of iterations of the inner loop Li an the outer loop Lo

necessary. If Nt = N1
r = N2

r , this gives a complexity order
O(LiLoN

3
t (T − 1)NT−1

s ).

Algorithm 1 Minimization of the power subject to a com-
mon rate constraint
1 repeat
2 repeat
3 for all (w1, . . . , wT )

4 Calculate Φ
(w1,...,wT )
i ∀i according to (29)

5 if
Nc∑

i=1

Φ
(w1,...,wT )
i < P tot decrease λ̃

6 if
Nc∑

i=1

Φ
(w1,...,wT )
i > P tot increase λ̃

7 end for
8 Find Φ(w1,...,wT )opt

according to (4)
9 until the desired accuracy is reached

10 if R0(Φ
(w1,...,wT )opt

) < Rcom increase P tot

11 if R0(Φ
(w1,...,wT )opt

) > Rcom decrease P tot

12 until the desired accuracy is reached

3. Multiple Input Multiple Output Iterative Water-

Filling Algorithm for Multiple Broadcast Net-

works Distributing Only Common Information

In this Section, we consider the MIMO IWFA for the
coexistence of multiple broadcast networks distributing
only common information. However, the MIMO IWFA
applies to an interference channel in which a transmitter
sends data to only one receiver. This Section extends the
MIMO IWFA considering an interference channel in which
a transmitter sends common data to multiple receivers.
The game theory concept of the MIMO IWFA is adapted
to this scenario, i.e. players iteratively update their trans-
mit covariance matrices until a Nash equilibrium point is
attained.

Assuming N different networks, each network j having
Tj receivers, the received signal can be modeled as

yj,it = Hjj,itxij +
N∑

k 6=j

Hjk,itxik + nj,it i = 1 . . .Nc

j = 1 . . . N

t = 1 . . . Tj

(30)
where nj,it are i.i.d. complex Gaussian random vectors
of length N t

r with autocorrelation matrix Rj,it and Hjk,it

corresponds to the N j,t
r ×Nk

t channel matrix from network
k to network j seen by receiver t on tone i. We consider
the maximization of the aggregate common rate subject
to a total power constraint per network

max
Φ

N∑

j=1

R0j(Φ)

subject to
Nc∑

i=1

Tr(Φij) = P tot
j ∀j

(31)

with
R0j(Φ) = min

(1,...,Tj)
R0jt(Φ) (32)

and

R0jt(Φ) = ∆f

Nc∑

i=1

log2

∣
∣
∣I + Hjj,itΦijH

H
jj,itR̃

−1
j,it

∣
∣
∣ (33)

with Φ = (Φ1, . . . ,ΦN ) the power allocation among
all sub-channels and networks, Φj = (Φ1j , . . . ,ΦNcj) the
power allocation among all sub-channels for network j and
R̃j,it = Rj,it +

∑

k 6=j

Hjk,itΦikH
H
jk,it the covariance matrix

seen by the tth receiver of network j on tone i. Similarly
to a single tactical radio network, by introducing weight

values wjt, with
Tj∑

t=1
wjt = 1, ∀j, (31) can be transformed

into the following problem

Find Φ(wopt) given by

max
Φ

N∑

j=1

Tj∑

t=1
wjtR0jt(Φ)

subject to
Nc∑

i=1

Tr(Φij) = P tot
j ∀j

(34)
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and

w
opt
j = min

w
j

√

1

Tj

Tj∑

t=1
[(R0jt(Φ

(w)) −
1

Tj

Tj∑

t=1
R0jt(Φ

(w)))2]

1

Tj

Tj∑

t=1
R0jt(Φ

(w))

∀j

(35)
with w = (w1, . . . , wN ) the weight allocation among all re-
ceivers and networks and wj = (wj1, . . . , wjTj

) the weight
allocation among all receivers for network j. Maximization
of the aggregate common rate subject to a total power con-
straint per network in a centralized algorithm is an exten-
sive task, since it requires the knowledge of the sub-channel
matrix from any transmitter to any receiver Hjk,it ∀i, j, k, t

and an exhaustive search on wjt ∀j, t. Although sub-
optimal, a distributed algorithm only requires the knowl-
edge of the sub-channel gains from a transmitter to its
own receivers (Hjj,it, ∀i, j, t), as well as noise covariance
matrices of its receivers estimated by spectrum sensing
(R̃j,it = Rj,it+

∑

k 6=j

Hjk,itΦikH
H
jk,it). The distributed algo-

rithm called IWFA for MIMO interference channels [36, 29]
iteratively updates the power allocation of each network
while considering the interference of all other networks as
noise. Under this assumption, the expression in (34) is the
maximization of a weighted aggregation of common rates,
each common rate being the minimum of a sum of concave
functions of Φij . Since the sum and the minimum oper-
ations preserve concavity, the objective is concave, and
maximizing a concave function yields a convex optimiza-
tion problem. Considering the MIMO IWFA in parallel
Gaussian broadcast channels with only common informa-
tion, the Lagrangian function can be written as

L(λ,Φ) =
Nc∑

i=1

(

∆f
N∑

j=1

Tj∑

t=1
wjtlog2

∣
∣
∣I + Hjj,itΦijH

H
jj,itR̃

−1
j,it

∣
∣
∣

−
N∑

j=1

λjTr(Φij)

)

+
N∑

j=1

λjP
tot
j

(36)

in which λ = (λ1, . . . , λN ) are the Lagrange multipliers
over all networks. According to [1], the Karush-Kuhn-
Tucker (KKT) conditions of the optimization problem can
be solved by taking the derivative of the Lagrangian func-
tion with respect to Φij

∂L(λ,Φ)

∂Φij
=

∆f

ln2

Tj∑

t=1
wjt(H̃

−1
j,itH̃

−H
j,it + Φij)

−1 − λjI

(37)
with H̃j,it = L−1

j,itHjj,it and Lj,it the lower triangular ma-

trix from the Cholesky decomposition Lj,itL
H
j,it = Rj,it +

∑

k 6=j

Hjk,itΦikH
H
jk,it. Therefore, (37) leads to the same so-

lution as (29) in Section II. For instance, with two re-
ceivers Tj = 2, the power allocation within the network

j is given by (27). Therefore, a distributed power control
will update the N transmit covariance matrices iteratively
to minimize the power subject to a common rate constraint
Rcom. Within each network, an inner loop determines the
power allocation maximizing the common rate subject to
a total power constraint. This process is updated regu-
larly between all the different networks until they reach
a Nash equilibrium. Finally, an outer loop minimizes the
power such that a common rate constraint is achieved for
each network. These power updates are performed asyn-
chronously from one network to another, and the period of
the power update for the outer loop is much higher than
the period of the power update for the inner loop. The
MIMO IWFA for the coexistence of multiple broadcast
networks distributing only common information is pre-
sented in Algorithm 2.

Algorithm 2 MIMO IWFA for the coexistence of multiple
broadcast networks distributing only common information

1 repeat
2 repeat
3 repeat
4 for j = 1 to N

5 for all (wj1, . . . , wjTj
)

6 Calculate Φ
(wj1,...,wjTj

)

ij ∀i according to (29)

7 if
Nc∑

i=1

Φ
(wj1,...,wjTj

)

ij < P tot
j decrease λ̃j

8 if
Nc∑

i=1

Φ
(wj1,...,wjTj

)

ij > P tot
j increase λ̃j

9 end for

10 Find Φ
(wj1,...,wjTj

)opt

j according to (4)
11 end for
12 × times
13 until the desired accuracy is reached
14 for j = 1 to N

15 if R0j(Φ
(wj1,...,wjTj

)opt

j ) < Rcom increase P tot
j

16 if R0j(Φ
(wj1,...,wjTj

)opt

j ) > Rcom decrease P tot
j

17 end for
18 until the desired accuracy is reached

4. Results

In this Section, the performance of the proposed algo-
rithms is evaluated by simulations of a single or multiple
networks, each network having one transmitter, two re-
ceivers T = 2 and a number of transmit and receive an-
tennas Nt = N1

r = N2
r = 1 (SISO) or Nt = N1

r = N2
r = 2

(MIMO). It is assumed that the transmitter in each tac-
tical radio network knows the MIMO channel state in-
formation (CSI) and the noise covariance matrices of its
receivers. This knowledge can be acquired by a feedback
channel from the receivers to the transmitter of each net-
work assuming that the acquisition time is much lower
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than the coherence time of the channel fading. We assume
that the links between the transmitter and the receivers of
each network exhibit quasi-static fading channels, i.e. in
which the coherence times of the fading channels are larger
than the time necessary to compute the algorithm. Such
an assumption is motivated by the fact that tactical radio
networks using very high frequency (VHF) and low ultra
high frequency (UHF) bands exhibit long coherence times
for low mobility patterns. The parallel channels are rep-
resented by multiple orthogonal sub-carriers as used in or-
thogonal frequency division multiplexing (OFDM) or mul-
tiple non-overlapping narrowband sub-channels. There-
fore, each parallel sub-channel is considered as a flat quasi-
static fading channel (no intersymbol interference). The
log-distance path loss model is used to measure the path
loss between the transmitter and the receivers [27]. The
transmitter and the receivers are placed randomly in a
square area of 1 km2. The carrier frequency is chosen
to be in the VHF band (fc = 80 MHz). The SNR gap
Γ = 9.8 dB corresponds to an uncoded quadrature am-
plitude modulation (QAM) at symbol error rate 10−7 [3].
The bandwidth is ∆f = 25 kHz, the path loss exponent
in the log-distance path loss model is n = 4, reference
distance d0 = 20 meters and thermal noise with variance
σ2 = −204dB/Hz+10log10(∆f). We assume that the par-
allel sub-channels are frequentially and spatially uncorre-
lated, i.e. the frequency separation of the parallel sub-
channels is larger than the coherence bandwidth and the
antenna separation of the transmitter and the receivers is
larger coherence distance. Moreover, they obey a Rayleigh
fading distribution, i.e. the received signal at each fre-
quency and antenna is a sum of many contributions com-
ing from different directions. Therefore, the path loss be-
tween each transmitter-receiver pair is multiplied by i.i.d.
random matrices whose entries are complex Gaussian with
zero mean and unit variance. This spatial model allows to
have a lower (SISO) and upper bound (fully uncorrelated
MIMO), knowing that a more realistic correlated MIMO
will have performance results between these two bounds.

In the first simulation, we compare Algorithm 1 pre-
sented in Section II with the worst sub-channel strategy
for T = 2 receivers and Nc = 4 sub-channels. In the worst
sub-channel strategy, the inner loop maximizes the rate of
the superposition of the receiver’s worst sub-channels

max
Φ

Nc∑

i=1

min
t=1...T

log2|I + HitΦiH
H
it R

−1
it |

subject to
Nc∑

i=1

Tr(Φi) = P tot

Φi � 0 ∀i

(38)

The worst sub-channel strategy corresponds to the strat-
egy in which the common message codebook is broken
into different codebooks for each sub-channel, therefore
the common rate transmitted on each sub-channel is lim-
ited by the weakest receiver in each sub-channel [13]. This

transmission scheme is referred to as “multiple codebook,
variable power” transmission [2]. In the worst sub-channel
strategy, the water-filling is performed on the worst sub-
channel conditions of both receivers. More precisely, the
sum of the eigenvalues Ai and Bi are compared and the
greatest value is selected for the water-filling of each sub-
channel. For a scenario in which spectrum sensing gives an
estimated noise of 10−16 seen by the receivers on all sub-
channels before transmission (corresponding to the ther-
mal noise), performance results between Algorithm 1 and
the worst sub-channel strategy are similar. However, for
a scenario in which spectrum sensing gives en estimated
noise which varies across sub-channels and receivers, per-
formance results between Algorithm 1 and the worst sub-
channel strategy show some differences. Therefore, we con-
sider a scenario in which spectrum sensing gives a strong
estimated noise of 10−9 on the 1st and 2nd sub-channels
seen by the first receiver and the and 3rd and 4th sub-
channels seen by the second receiver (10−16 for the other
channels). In a realistic environment, the noise varia-
tions across sub-channels and receivers correspond to sub-
channels occupied by primary users or jammers at different
locations.

Multiple hypothesis testing is used for Algorithm 1
with step-size 0.1 in interval [0 1], leading to an exhaustive
search over a maximum of Ns = 11 possibilities. For the
initialization, the variables λ̃ and P tot are set to extremely
low values 10−11. The desired accuracy is set to 10−10 for
the inner loop (power) and 10−4 for the outer loop (com-
mon rate) in order to have precise results for the simula-
tions, requiring approximately 100 iterations for each loop
to converge. In practice, these parameters can be adapted
carefully to reach the target power and the target common
rate at minimum complexity and power consumption. For
instance, one can use the previous knowledge of the vari-
ables λ̃ and P tot for the initialization, allowing to converge
to the desired accuracy in a few iterations.

Figure 2 shows the results of the power minimization
subject to a common rate constraint presented in Section
II and ranging from Rcom = 2 kbps to Rcom = 512 kbps.
These results are expressed in Watts and averaged over 103

Monte Carlo trials for the locations of the transmitter and
the receivers. Algorithm 1 clearly outperforms the worst
case sub-channel strategy. Moreover, there is a substantial
gain for using a MIMO 2x2 compared to a SISO channel,
i.e. around 6 dBW gain for all the range of Rcom.

In the second simulation, we compare Algorithm 2 pre-
sented in Section III with the worst sub-channel strategy
for N = 2 networks, Tj = 2 receivers ∀j and Nc = 4
sub-channels. Similarly to the single network case, for a
scenario in which only thermal noise 10−16 is seen by the
receivers on all sub-channels before transmission, perfor-
mance results between Algorithm 2 and the worst sub-
channel strategy are similar. To compare both algorithms
in a more realistic environment in which sub-channels can
be occupied by primary users or jammers at different loca-
tions, we consider a scenario in which a very strong noise
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Figure 2: Results on the power minimization subject to a common
rate constraint

of 10−9 is seen on the 1st and 4th sub-channels by respec-
tively the first and second receiver of the first network. In
the second network, a very strong noise of 10−9 is seen on
the 2nd and 3rd sub-channels by respectively the first and
second receiver (10−16 for the other channels).

Figure 3 shows the results of the power minimization
subject to a common rate constraint ranging from Rcom =
2 kbps to Rcom = 512 kbps over 103 Monte Carlo trials for
the locations of the transmitter and the receivers. It can be
seen that Algorithm 2 outperforms the worst sub-channel
strategy for SISO and MIMO 2x2 channels. Moreover, the
SISO and MIMO2x2 algorithms are compared with the
single network SISO and MIMO2x2 algorithms to provide
a lower bound for the centralized algorithm (31). Figure
3 shows that Algorithm 2 allows to obtain higher common
rates and lower power consumption when the number of
antennas increases. Although sub-optimal, the SISO and
MIMO2x2 algorithms require only a small power augmen-
tation compared to the single network SISO and MIMO2x2
algorithms. Therefore, in practical scenarios in which the
interference temperature varies along the sub-channel and
the receiver locations, Algorithm 2 provides an efficient
distributed strategy to find the power allocation of multi-
ple networks in which each transmitter has to broadcast a
common information to its receivers.

5. Conclusion

This paper has considered the multiple input multiple
output (MIMO) iterative water-filling algorithm (IWFA)
for the coexistence of multiple broadcast networks dis-
tributing only common information. In the first part of the
paper, we have proposed a power allocation for a MIMO
broadcast network using parallel sub-channels and distribut-
ing only common information either to maximize the com-
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Figure 3: Results on the power minimization subject to a common
rate constraint averaged for both networks

mon rate subject to a total power constraint or to minimize
the power subject to a common rate constraint. Assum-
ing that the number of receive antennas is larger or equal
to the number of transmit antennas, mathematical deriva-
tions show that the power allocation can be expressed in
closed-form for two receivers. The second part of the pa-
per has focused on the MIMO IWFA for the coexistence
of multiple broadcast networks distributing only common
information. Simulation results have shown that the pro-
posed strategy has better performance than the current
state of the art strategy which takes into account the worst
sub-channels of all receivers. Moreover, a performance
gain of about 6 dBW can be achieved with MIMO 2x2
systems as opposed to single input single output (SISO)
systems. Using the proposed algorithm, it can be seen
that the different networks coexisting in the same area
will independently and without a priori information con-
verge to a sub-optimal solution that outperforms the worst
sub-channel strategy. Although sub-optimal, simulation
results have shown that the proposed algorithm allows to
obtain higher common rates and substantial gains in power
consumption compared to the single network algorithm,
and is not far from the optimum solution.
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