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Coexistence of tactical cognitive radio networks

Vincent Le Nir, Bart Scheers

Abstract—In this paper, we consider the scenario in whichN different
cognitive radio networks can not cooperate with each other and wish to
broadcast a common information to their network by sharing the same
Nc parallel sub-channels. This scenario is particularly adapted to tactical
radio networks in which N different networks coexist in a given area
and broadcast a common information (voice, data...) to their group. In
this context, we propose a novel distributed power allocation for power
minimization subject to a minimum rate constraint based on the iterative
water-filling principle in which each network updates its power allocation
autonomously. The novel algorithm generalizes the iterative waterfilling
algorithm to the coexistence of multiple tactical radio networks.

Index Terms—Coexistence of tactical radio networks, broadcast chan-
nels, parallel multicast channels, iterative water-filling.

I. INTRODUCTION

When several coalition nations coexist in the same area, cur-
rent technologies do not permit reconfigurability, interoperability
nor coexistence of the radio terminals. Software defined radio has
been developed for reconfigurability of the terminals with software
upgrades and for portability of the waveforms. Cognitive radio has
been developed for spectrum availability recognition, reconfigura-
bility, interoperability and coexistence between terminals by means
of software defined radio technology, intelligence, awareness and
learning [1], [2]. Therefore, cognitive radio enables the adaptation
of the transmission parameters (transmit power, carrier frequency,
modulation strategy) to these scenarios.

Tactical radio networks are networks in which information (mostly
voice, but also packet based data) are conveyed from one transmitter
to multiple receivers. When several tactical radio networks are set up
in the same area and transmit in the same band, the coexistence
of these networks is critical. The coexistence of multiple tactical
radio networks calls for distributed algorithms implemented in the
cognitive terminals. Indeed, although distributed algorithms are sub-
optimal, they are preferred to centralized algorithms because of
their scalability and robustness. Therefore, each terminal must be
equipped with spectrum sensing and management functions todetect
the spectrum holes and to find the transmit powers improving the
performance of the network as a whole (capacity, stability,delay).

The broadcast channel has been introduced by Cover in 1972 as
a communication channel in which there is one transmitter and two
or more receivers [3]. The broadcast channel with only independent
information (unicast channel) belongs to the class of degraded chan-
nels in which one user’s signal is a degraded version of the other
signals. Its capacity region is fully characterized and canbe achieved
by superposition coding [4]. Contrary to a single unicast channel,
the sum of unicast channels as well as MIMO broadcast channels
are non-degraded [5], [6]. Previous studies on parallel broadcast
channels have focused on scenarios in which independent messages
are sent to the receivers (parallel unicast channels) [7], [8], [9], [10],
or in which simultaneous common and independent messages are
sent to the receivers [5], [11], [12]. Contrary to an unicastchannel,
a tactical radio network can be thought as a broadcast channel with
only common information (also referred to as a multicast channel).
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The capacity of a single multicast channel is limited by the capacity
of theworst receiver [4], [13]. However, less work has been done on
multicast channels withNc parallel sub-channels (parallel multicast
channels) [14].

In this paper, we propose some solutions for the power allocation
of parallel multicast channels, focusing on the power minimization
subject to a minimum rate constraint for all receivers. These solutions
can be used in a tactical radio network equipped with cognitive
terminals, i.e in which the transmitter knows the channel state infor-
mation (CSI) and noise variances of its receivers. Althoughthe initial
problem is difficult to solve, we compare different algorithms inspired
from Gallager’s water-filling strategy [15] associating aninner loop
for rate maximization and an outer loop for power minimization.
We then consider the scenario in whichN different cognitive radio
networks can’t cooperate with each other and wish to broadcast
a common information to their network by sharing the sameNc

parallel sub-channels. In this context, we propose a novel distributed
power allocation for power minimization subject to a minimum
rate constraint based on the iterative water-filling principle [16] in
which each network updates its power allocation autonomously. The
novel algorithm generalizes the iterative waterfilling algorithm to the
coexistence of multiple tactical radio networks.

II. COEXISTENCE OF MULTIPLE TACTICAL RADIO NETWORKS

The considered scenario is shown on Figure 1, whereN different
networks coexist in a given area. In each networkj, theTj receivers
are within the transmission range of the transmitter which broadcasts
a common information. The transmission range is represented by the
gray area around the transmitter. Moreover, the transmitter and the
receivers of each network are mobile. This mobility is represented
by arrows at the cardinal directions of the gray circles. In each
network, a receiver can also become a transmitter to broadcast a
common information, causing the initial transmitter to be another
receiver. Due to this mobility, the different networks can interfere
with each other, causing transmission losses if dynamic spectrum
management techniques are not implemented. Our goal is to alleviate
this problem by equipping each terminal with an algorithm which
gives the possibility to optimize its transmission power for each sub-
channel. The received signalsyj,it can be modeled as

yj,it = hjj,itxij +
N
P

k 6=j

hjk,itxik + nj,it i = 1 . . . Nc,

j = 1 . . . N,

t = 1 . . . Tj

(1)

wherenj,it represents a complex noise with varianceσ2
j,it andhjk,it

corresponds to the channel from networkk to j on receivert and tone
i. We are interested in the power minimization subject to a minimum
rate constraint for each network. In the following, we first derive the
power allocation for a single tactical radio network.

A. Single tactical radio network

Considering a single tactical radio network, we assume thateach
transmitter has knowledge of the fading channelshit in its network.
The power minimization subject to a minimum rate constraintRmin

for all T receivers is given by

min
(φi)i=1...Nc

Nc
P

i=1

φi

subject to
Nc
P

i=1

log2(1 + |hit|
2φi

Γσ2

it

) ≥ Rmin ∀t

. (2)
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Fig. 1. Multiple cognitive radio networks for tactical communications

with φ = E[|x|2] the variance of the transmitted signal andΓ the
SNR gap which measures the loss with respect to theoretically op-
timum performance [17]. The derivation of the modified Lagrangian
function leads to a single equation withT Lagrange multipliers.
Therefore, the optimal power allocation has an infinite set of solutions
and the problem is intractable forT > 1. We propose a solution to
this problem by defining an utility function which takes intoaccount
all the possible achievable rates to the individual receivers. In the
following, the weighted sum rate is chosen for this utility function as
it allows to consider the possible achievable rates to the individual
receivers with a certain flexibility owing to the weighting parameters.
Therefore, an inner loop determines the power allocation maximizing
the weighted sum rate subject to a total power constraint fora
fixed set of weights. The minimum rate is then selected amongst
the possible achievable rates to the individual receivers.Then, an
outer loop minimizes the power such that a minimum rate constraint
is achieved. This process is repeated for all set of weights and the set
of weights exhibiting the least power determines the power allocation
for power minimization subject to a minimum rate constraint. Let us
first define the power allocation of the inner loop. The primalproblem
for weighted sum rate maximization subject to a power constraint
P tot is

max
(φi)i=1...Nc

Nc
P

i=1

T
P

t=1

wtlog2(1 + |hit|
2φi

Γσ2

it

)

subject to
Nc
P

i=1

φi = P tot

(3)

with wt the weighting factors. The derivative of the modified La-
grangian function [18] with respect toφi is given by

∂L(λ, (φi)i=1...Nc)

∂φi

=
1

ln2

T
X

t=1

wt

Γσ2

it

|hit|
2 + φi

− λ. (4)

We can write the power allocation in closed-form analytical
expressions for1 ≤ T ≤ 4, while numerical algorithms are needed
for T > 4. Let us take an example with two receiversT = 2, the
power allocation is given by the solution of a quadratic equation

∂L(λ, (φi)i=1...Nc)

∂φi

= 0 ⇒
w1

Γσ2
i1

|hi1|2
| {z }

ai

+φi

+
w2

Γσ2
i2

|hi2|2
| {z }

bi

+φi

= λln2
|{z}

λ̃

.

(5)

Algorithm 1 Minimization of the power subject to a minimum rate
constraint
1 n=0

2 for all w1,. . . ,wT , with
T
P

t=1
wt = 1

3 n=n+1
4 init P = 10−9

5 init pstep = 2
6 init p = 0
7 init Rt = 0 ∀t

8 while |min(R1, . . . , RT ) − Rmin| > ǫ
9 init λ = 10−9

10 init step = 2
11 init b = 0
12 init φi = 0 ∀i

13 while |
Nc
P

i=1
φi − P | > ǫ

14 Calculateφi ∀i according to (4)’s root

15 if
Nc
P

i=1
φi − P < 0

16 b = b + 1
17 λ = λ/step
18 step = step − 1/2b

19 end if
20 λ = λ ∗ step
21 end while

22 Individual ratesRt =
Nc
P

i=1
log2(1 +

|hit|
2φi

Γσ2

it

) ∀t

23 if min(R1, . . . , RT ) − Rmin > 0
24 p = p + 1
25 P = P/pstep
26 pstep = pstep − 1/2p

27 end if
28 P = P ∗ pstep
29 end while
30 Pn = P
31 end for
32 P min = min(Pn)

The quadratic equation to be solved is

λ̃φ
2
i +(λ̃(ai+bi)−(w1+w2))φi+λ̃aibi−(w1bi+w2ai) = 0. (6)

The discriminant is given by

∆ = λ̃
2(ai − bi)

2 + (w1 + w2)
2 − 2λ̃(ai − bi)(w1 − w2). (7)

The power allocation is given by the positive root

φi =
h

1

2λ̃
+

q

(w1+w2)2

4λ̃2
− (ai−bi)(w1−w2)

2λ̃
+ (ai−bi)

2

4
− ai+bi

2

–+ . (8)

The algorithm maximizing the weighted sum rate subject to a
total power constraint (inner loop) is shown from line 13 to line
21 in Algorithm 1. The outer loop minimizing the power subject to
a minimum rate constraint is shown from line 8 to line 29. In the
following, we extend the results of a single tactical radio network to
the coexistence of multiple tactical radio networks.

B. Multiple tactical radio networks

The results of the precedent Section can be extended to multiple
tactical radio networks. We also consider the power minimization for
all the different networks subject to a minimum rate constraint



min
(φij)

j=1...N
i=1...Nc

Nc
P

i=1

N
P

j=1

φij

subject to
Nc
P

i=1

log2(1 +
|hjj,it|

2φij

Γ(σ2

j,it
+

P

k 6=j

|hjk,it|
2φik)

) ≥ Rmin ∀j, t

.

(9)
Similarly to the precedent Section, this problem is intractable for

Tj > 1 ∀j. However, as pointed out previously, a solution to this
problem can be found by defining an utility function which takes
into account all the achievable rates of the receivers and toselect
the minimum rate in each network. By choosing the weighted rate
sum for this utility function, an inner loop determines the power
allocation which maximizes the weighted sum rate subject toa total
power constraint for all the different networks. This primal problem
can be given by

max
(φij)

j=1...N
i=1...Nc

Nc
P

i=1

N
P

j=1

Tj
P

t=1

wjtlog2(1 +
|hjj,it|

2φij

Γ(σ2

j,it
+

P

k 6=j

|hjk,it|
2φik)

)

subject to
Nc
P

i=1

φij = P tot
j ∀j

.

(10)
Considering jointly the maximization of the weighted sum rate

subject to a total power constraint for all the different networks in
a centralized algorithm is an extensive task, since it wouldrequire
the knowledge of the channel variations of all the interference
terms hjk,it ∀i, j, t, k. This knowledge can be acquired through
a feedback channel from the receivers to the transmitter of each
network assuming that the acquisition time is much lower than the
coherence time of the channel fading. To this end, each terminal must
be equipped with a spectrum sensing function to estimate thenoise
variances and a channel estimation function to estimate itschannel
variations. This information can be further transmitted toa centralized
unit.

Distributed algorithms, although sub-optimal, are preferred to
centralized algorithms for the coexistence between several tactical
radio networks because of their scalability and robustness. Therefore,
it is assumed that each transmitter has the knowledge of the channel
variations in its own networkj (hjk,it, ∀k = j, ∀i, ∀t). We propose
a sub-optimal distributed algorithm for power minimization subject
to a minimum rate constraint based on the iterative water-filling
algorithm initially derived for dynamic spectrum management in
digital subscriber line (DSL) [16]. Each update of one network’s
water-filling affects the interference of the other networks and this
process is repeated iteratively between the networks untilthe power
allocation of all networks converge and reach a Nash equilibrium.
As the power updates between networks can be performed asyn-
chronously, an iterative water-filling based algorithm is very attractive
when multiple tactical radio networks coexist in the same area. Let
us derive the modified Lagrangian function of (10)

L((λj)j=1...N , (φij)
j=1...N
i=1...Nc

) =
Nc
P

i=1

 

N
P

j=1

Tj
P

t=1

wjt log2(1 +
|hjj,it|

2φij

Γ(σ2

j,it
+

P

k 6=j

|hjk,it|
2φik)

) −
N
P

j=1

λjφij

!

+
N
P

j=1

λjP
tot
j

(11)
in which theλj ’s are the Lagrange multipliers. Assuming that the
noise variances and the channel variations have been estimated by
the receivers and given to their transmitter, we can solve the KKT
system of the optimization problem by taking the derivativeof the

modified Lagrangian function with respect toφij

∂L((λj)j=1...N ,(φij)
j=1...N
i=1...Nc

)

∂φij
=

1
ln2

Tj
P

t=1

wjt

Γ(
σ2

j,it

|hit|
2

+
P

k 6=j

|hjk,it|
2

|hit|
2

φik)+φij

− λj

. (12)

Therefore, after collecting the noise variances and the channel
variations of its network, each transmitter has to apply Algorithm 1
autonomously and to update its power allocation regularly to reach an
equilibrium between the different networks. However, in Algorithm
1, the weight loop encompasses the outer loop to find which set
of weights corresponds to the global minimum power such thata
minimum rate constraintRmin is achieved. As the algorithm should
be distributed and autonomous, the set of weights minimizing the
power have to be determined for each network independently.To this
end, we have to shift the weight loop between the inner loop and the
outer loop. As the weights have to be chosen in each network, we
introduce a rule based on the achievable rates after the computation
of the weight loop and the inner loop. An adequate rule on the
achievable rates is to choose the weights such that the disparity
between the rates within each network is minimized. To this end, we
introduce a deviation metric (DM) which measures the dispersion of
the rates. The DM for a variableθ is given by:

DM =

p

E[(θ − E[θ])2]

E[θ]
(13)

The DM must be computed within each networkj for each set of
weightsn over theTj receivers. The rule is given by the following
formula:

DMj(n) =

s

1
Tj

Tj
P

t=1

[(Rjt(n) − 1
Tj

Tj
P

t=1

Rjt(n))2]

1
Tj

Tj
P

t=1

Rjt(n)

(14)

with Rjt(n) the rate for the networkj, receiver t and the set of
weightsn. This rule allows to achieve the global minimum power
although the decision has to be taken inside the outer loop. It basically
means that for a given power the closer the rates of the different
receivers within a network, the less power will be needed to achieve
the minimum rate constraint. Therefore, it is in the interest of the best
receiver to backoff and to give an advantage to the worst receiver to
minimize the power globally. The algorithm for the coexistence of
multiple tactical radio networks is presented in Algorithm2.

III. S IMULATION RESULTS

For the simulations, the log-distance path loss model is used to
measure the path loss between the transmitter and the receivers [19]:

PL(dB) = PL(d0) + 10nlog10(
d

d0
) (15)

with n the path loss exponent,d is the distance between the
transmitter and the receiver, andd0 the close-in reference distance.
The reference path loss is calculated using the free space path loss
formula:

PL(d0) = −32.44 − 20log10(fc) − 20log10(d0) (16)

where fc is the carrier frequency in MHz andd0 the reference
distance in kilometers. The transmitter and the receivers are placed
randomly in a square area of1 km2. The carrier frequency is chosen
to be in the very high frequency (VHF) band (fc = 80 MHz). The
SNR gap for an uncoded quadrature amplitude modulation (QAM)
to operate at a symbol error rate10−7 is Γ = 9.8 dB. The bandwidth



Algorithm 2 Distributed power allocation for minimization of the
power subject to a minimum rate constraint

1 init Pj = 10−9 ∀j
2 init pstepj = 2 ∀j
3 init pj = 0 ∀j
4 init Rjt = 0 ∀t, j
5 while |min(Rj1, . . . , RjTj

) − Rmin| > ǫ ∀j
6 for iteration=1 to 20
7 for j=1 to N
8 n=0

9 for all wj1,. . . ,wjTj
, with

Tj
P

t=1
wjt = 1

10 n=n+1
11 init λ = 10−9

12 init step = 2
13 init b = 0
14 init φij = 0 ∀i

15 while |
Nc
P

i=1
φij − Pj | > ǫ

16 Calculateφij ∀i according to (12)’s root

17 if
Nc
P

i=1
φij − Pj < 0

18 b = b + 1
19 λ = λ/step
20 step = step − 1/2b

21 end if
22 λ = λ ∗ step
23 end while

24 Rjt(n) =
Nc
P

i=1
log2(1 +

|hjj,it|
2φij

Γ(σ2

j,it
+

P

k 6=j

|hjk,it|
2φik)

) ∀t

25 φij(n) = φij ∀i
26 end for
27 nopt = min

n
(14)

28 Rjt = Rjt(nopt) ∀t
29 φij = φij(nopt) ∀i
30 end for
31 end for
32 for j=1 to N
33 if min(Rj1, . . . , RjTj

) − Rmin > 0
34 pj = pj + 1
35 Pj = Pj/pstepj

36 pstepj = pstepj − 1/2pj

37 end if
38 Pj = Pj ∗ pstepj

39 end for
40 end while

is ∆f = 25 kHz, the path loss exponent isn = 4, reference distance
d0 = 20 meters and thermal noise with the following expression:

σ
2
n = −204dB/Hz+ 10log10(∆f) (17)

which gives a noise variance of approximatelyσ2
n = 10−16. Simula-

tion results are performed using Monte Carlo trials for the locations of
the transmitters and the receivers with 2 particular scenarios, T = 2
receivers andNc = 4 sub-channels. In the first scenario (left part of
Figure 2), the first receiver sees a small noise on the first three sub-
channels and a very strong noise on the 4th sub-channel, while the
second receiver sees a very strong noise on the 1st sub-channel and
a small noise on the last three sub-channels. In the second scenario
(right part of Figure 2), the first receiver sees a very strongnoise
on the 3rd and 4th sub-channels and the second receiver sees a very
strong noise on the 1st and 2nd sub-channels.

In the first set of simulations, we compare Algorithm 1 with four
other strategies for the minimization of the power subject to a min-
imum rate constraint. These strategies are theworst receiver, worst

1 2 3 4

: First receiver

: Second receiver

1 2 3 4

: First receiver

: Second receiver

Fig. 2. Water-fill functions for two scenarios over four sub-channels

case sub-channel, best receiver andbest case sub-channel strategies.
The algorithms for the four strategies are similar to Algorithm 1
except for the inner loop which maximizes a different utility function
than the weighted sum rate for the selection of the minimum rate.
The maximum available power at the transmitter isP tot = 1W . For
the worst receiver strategy, the inner loop maximizes the minimum
rate achieved by the receivers

R = min
t

max
Nc
P

i=1

φi=P tot

Nc
X

i=1

log2(1 +
|hit|

2φi

Γσ2
it

). (18)

For theworst case sub-channel strategy, the inner loop maximizes
the minimum rate achieved by the superposition of the receiver’s
sub-channels

R = max
Nc
P

i=1

φi=P tot

Nc
X

i=1

min
t

log2(1 +
|hit|

2φi

Γσ2
it

). (19)

For the best receiver strategy, the inner loop maximizes the
maximum rate achieved by the receivers

R = max
t

max
Nc
P

i=1

φi=P tot

Nc
X

i=1

log2(1 +
|hit|

2φi

Γσ2
it

). (20)

For thebest case sub-channel strategy, the inner loop maximizes
the maximum rate achieved by the superposition of the receiver’s
sub-channels

R = max
Nc
P

i=1

φi=P tot

Nc
X

i=1

max
t

log2(1 +
|hit|

2φi

Γσ2
it

). (21)

Figure 3 shows the results of the power minimization subject
to a minimum rate constraint ranging fromRmin = 2 kbps to
Rmin = 512 kbps over103 Monte Carlo trials for both scenarios.
Algorithm 1 provides always the minimum power for all scenarios
compared to the other strategies. For scenario 1, the results of the
other strategies highly depend on the minimum rate constraints. For
minimum rate constraintsRmin < 8 kbps, theworst case sub-
channel strategy provides lower power than theworst receiver, best
case sub-channel and best receiver strategies. For minimum rate
constraints8 kbps < Rmin < 64 kbps, theworst receiver strategy
provides lower power than theworst case sub-channel, best case sub-
channel and best receiver strategies. For minimum rate constraints
64 kbps < Rmin < 256 kbps, theworst receiver strategy provides
lower power than thebest case sub-channel, worst case sub-channel
and best receiver strategies. For minimum rate constraints256 kbps
< Rmin, the best case sub-channel strategy provides lower power
than theworst receiver, worst case sub-channel and best receiver
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Fig. 3. Results on the power minimization subject to a minimum rate
constraint for scenario 1 (left) and 2 (right)

strategies. It is hard to give an argument for each ordering between
other strategies than Algorithm 1, therefore we keep the conclusion
that Algorithm 1 provides always the minimum power while other
strategies do not surpass each other at all range of minimum rate
constraints. For scenario 2, Algorithm 1 provides the minimum
power, followed by thebest case sub-channel strategy. Moreover, the
other strategies, i.e. theworst receiver, worst case andbest receiver
strategies use the maximum power for all minimum rate constraints.

In the second set of simulations, we compare Algorithm 2 withthe
same four other strategies for the minimization of the powersubject to
a minimum rate constraint withN = 2 networks whose transmitters
and receivers are in a same square area of1 km2. We are interested
in a scenario in which the receivers see a different noiseσ2

n on their
Nc = 4 sub-channels (similarly to the first set of simulations). Inthe
first network, a very strong noise (σ2

n = 10−9) is seen on the 4th sub-
channel by the first receiver and the 1st sub-channel by the second
receiver. In the second network, a very strong noise (σ2

n = 10−9) is
seen on the 3th sub-channel by the first receiver and the 2nd sub-
channel by the second receiver. Figure 4 shows the results ofthe
power minimization subject to a minimum rate constraint ranging
from Rmin = 2 kbps toRmin = 512 kbps over103 Monte Carlo
trials. The results are averaged for both networks. In this scenario,
Algorithm 2 is the only strategy which provides a viable solution.
Therefore, in practical scenarios in which the interference temperature
varies along the sub-channel and the receiver locations, Algorithm
2 provides a novel distributed strategy to find the power allocation
minimizing the power subject to a minimum rate constraint. Since
it is based on closed-form expressions, the algorithm has reasonable
complexity for a low number of receivers as the search for thebest
set of weights require an exhaustive search over all possible weights.

IV. CONCLUSION

In this paper, we have considered the scenario in whichN different
cognitive radio networks can not cooperate with each other and wish
to broadcast a common information to their network by sharing the
sameNc parallel sub-channels. In this context, we have proposed a
novel distributed power allocation for power minimizationsubject to a
minimum rate constraint based on the iterative water-filling principle
in which each network updates its power allocation autonomously.
The novel algorithm generalizes the iterative waterfillingalgorithm to
the coexistence of multiple tactical radio networks. Simulation results
have shown that the proposed strategy provides a viable solution
compared to trivial strategies such as theworst receiver, worst case
sub-channel, best receiver andbest case sub-channel strategies, while
keeping a reasonable complexity for a low number of receivers since
it is based on closed-form expressions.
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Fig. 4. Results on the power minimization subject to a minimum rate
constraint averaged for two networks
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