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Resource Allocation for Parallel Gaussian
MIMO Wire-tap Channels

Vincent Le Nir, Bart Scheers

Abstract—Wire-tap channels are able to provide perfect se-
crecy when a receiver exhibits a better channel than its wire-
tapping opponent. In this letter, we extend the perfect secrecy
principle to parallel Gaussian multiple input multiple out put
(MIMO) wire-tap channels with independent sub-channels. As-
suming Nr ≥ Nt and Ne ≥ Nt, mathematical derivations
show that a sub-optimal solution can be given in closed-form
considering either secrecy rate maximization subject to a total
power constraint or power minimization subject to a secrecyrate
constraint. Although sub-optimal for MIMO systems, simulation
results show that the proposed algorithm allows to reach higher
secrecy rates with substantial gains in power consumption com-
pared to the single input single output (SISO) system.

Index Terms—MIMO systems, optimization methos, wire-tap
channel

I. I NTRODUCTION

The wire-tap channel has been introduced in 1975 by Wyner
[1]. The purpose of a wire-tap channel is to provide reliable
communication between a transmitter and its legitimate re-
ceiver and to prevent an eavesdropper to read the message. In
practice, as the channel state information (CSI) of both links
is known at the transmit side, wire-tap channels apply to voice
or data networks in which a transmitter sends a confidential
message to a particular receiver with perfect secrecy.

The resource allocation problems for parallel Gaussian
SISO wire-tap channels with independent sub-channels and
a single Gaussian MISO wire-tap channel are studied in [2],
[3], [4], [5]. Recently, the optimal power allocation in a single
Gaussian MIMO wire-tap channel has been investigated in
various articles [6], [7], [8], [9]. The MIMO wiretap channel
can be characterized as the saddle point of a minimax problem
[6] or based on an enhanced channel [7], [8]. The global
optimum solution requires a branch and bound with reformu-
lation linearization technique (BB/RLT) [9], which might be
relatively complex when considering parallel Gaussian MIMO
wire-tap channels. In this letter, we extend the perfect secrecy
principle to parallel Gaussian MIMO wire-tap channels with
independent sub-channels. AssumingNr ≥ Nt andNe ≥ Nt,
mathematical derivations show that a sub-optimal solution
can be given in closed-form considering either secrecy rate
maximization subject to a total power constraint or power
minimization subject to a secrecy rate constraint. Although
sub-optimal for MIMO systems, simulation results show that
the proposed algorithm allows to reach higher secrecy rates
with substantial gains in power consumption compared to the
SISO system.
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In Section II, we give the power allocation for parallel
Gaussian MIMO wire-tap channels with independent sub-
channels. In Section III, simulation results are given. Finally,
Section IV concludes this letter.

II. POWER ALLOCATION FOR PARALLEL GAUSSIAN MIMO
WIRE-TAP CHANNELS WITH INDEPENDENT SUB-CHANNELS

We consider the parallel Gaussian MIMO wire-tap channel
with independent sub-channels as shown in Figure 1. The
sender hasNt antennas, the receiver and the eavesdropper
haveNr ≥ Nt andNe ≥ Nt antennas respectively. These two
conditions are necessary for the existence of the matricesAi

andBi later defined in this letter. The secured data information
is sent onNc parallel sub-channels. The received signal can
be modeled as

yik = Hikxi + nik k = r, e

i = 1 . . .Nc
(1)

with nik the additive noise vector of lengthNk with auto-
correlation matrixRik andHik the Nk × Nt channel matrix
seen by receiverk on tonei. As the autocorrelation matrix
Rik is Hermitian and positive definite, it can be decomposed
into Rik = LikL

H
ik (Cholesky decomposition) withLik a

lower triangular matrix. The secrecy rate maximization of a
parallel Gaussian MIMO wire-tap channel with independent
sub-channels subject to a total power constraintP tot is

max
Φ

Nc
∑

i=1

(

log2|I + H̃irΦiH̃
H
ir | − log2|I + H̃ieΦiH̃

H
ie |
)

subject to

Nc
∑

i=1

Tr(Φi) = P tot

Φi = ΦH
i ∀i

Φi � 0 ∀i
(2)

with Φi = E[xix
H
i ] the variance of the input signal on sub-

channeli, Φ the power allocation among all sub-channels,
H̃ik = L−1

ik Hik (k = r, e), P tot the total power constraint,
|.| the determinant operator, Tr(.) the trace operator and
(.)H the Hermitian operator. As the objective function is
neither convex nor concave, the standard Karush-Kuhn-Tucker
(KKT) conditions are necessary but not sufficient [10]. The
Lagrangian function which includes the total power constraint
is given by

L(λ,Φ) =
Nc
∑

i=1

(

log2|I + H̃irΦiH̃
H
ir | − log2|I + H̃ieΦiH̃

H
ie |

−λTr(Φi)

)

+ λP tot

(3)
with λ the Lagrange multiplier associated with the total power
constraint. Using the property|I + AB| = |I + BA|, the
Lagrangian function can be rewritten as

L(λ,Φ) =
Nc
∑

i=1

(

log2|Ai + Φi| − log2|Bi + Φi| + log2|A
−1
i |

−log2|B
−1
i | − λTr(Φi)

)

+ λP tot

(4)
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Fig. 1. Gaussian MIMO wire-tap channel

with two Hermitian matricesAi = (H̃H
irH̃ir)

−1 and Bi =
(H̃H

ieH̃ie)
−1. The existence of the matricesAi andBi requires

Nr ≥ Nt and Ne ≥ Nt. Moreover, we assumeBi � Ai. In
order to derive the closed-form power allocation associated
with the necessary conditions, we define two Hermitian ma-

tricesΦ̃i = Φi +
Ai + Bi

2
andCi =

Ai − Bi

2
, leading to the

following Lagrangian function

L(λ,Φ) =
Nc
∑

i=1

(

log2|Φ̃i + Ci| − log2|Φ̃i − Ci| + log2|A
−1
i |

−log2|B
−1
i | − λTr(Φi)

)

+ λP tot

.

(5)
The derivative of the Lagrangian function which includes

the total power constraint with respect toΦi is given by

∂L(λ,Φ)

∂Φi
=

1

ln2

(

(Φ̃i + Ci)
−1 − (Φ̃i − Ci)

−1
)

− λI. (6)

Nulling the derivative gives

∂L(λ,Φ)

∂Φi
= 0 ⇒ (Φ̃i + Ci)

−1 − (Φ̃i − Ci)
−1 = λ̃I

⇒ −2Ci = λ̃(Φ̃i + Ci)(Φ̃i − Ci)

⇒ −2Ci = λ̃(Φ̃2
i − C2

i + CiΦ̃i − Φ̃iCi)
(7)

with λ̃ = λln2. By taking Hermitian conjugates on both sides,
we get

−2Ci = λ̃(Φ̃2
i − C2

i + CiΦ̃i − Φ̃iCi)
(.)H

⇐⇒ −2Ci = λ̃(Φ̃2
i − C2

i + Φ̃iCi − CiΦ̃i)
(8)

leading to the following system of equations
{

CiΦ̃i − Φ̃iCi = 0

−2Ci = λ̃(Φ̃2
i − C2

i )
. (9)

Since Ci is Hermitian, we need to work in a basis in
which Ci is diagonalized. Therefore, we use the eigenvalue
decomposition (EVD)Ci = WiDiW

H
i which leads to the

following developments of the system of equations
{

WiDiW
H
i Φ̃i − Φ̃iWiDiW

H
i = 0

−2WiDiW
H
i = λ̃(Φ̃2

i − WiD
2
i W

H
i )

(10)

⇒

{

DiW
H
i Φ̃iWi − WH

i Φ̃iWiDi = 0

−2Di = λ̃(WH
i Φ̃2

i Wi − D2
i )

. (11)

Making the variable changeZi = WH
i Φ̃iWi, the final

system of equations to be solved is
{

DiZi − ZiDi = 0

−2Di = λ̃(Z2
i − D2

i )
. (12)

The system of equations impliesZi to be diagonal since
Di is diagonal. The power allocation is a type of water-filling
strategy given by the solution of the parallel quadratic equation

λ̃Z2
i + 2Di − λ̃D2

i = 0 (13)

with Zi diagonal. The discriminant of this quadratic equation
is given by

∆ = 4λ̃2D2
i − 8λ̃Di. (14)

As Φ̃i is Hermitian,Zi should have real diagonal elements.
The solution is given by the positive root

Zi =





[

D2
i −

2

λ̃
Di

]+




1/2

. (15)

Knowing thatΦ̃i = WiZiW
H
i andΦi = Φ̃i −

Ai + Bi

2
,

the power allocation is given by

Φi = Wi





[

D2
i −

2

λ̃
Di

]+




1/2

WH
i −

Ai + Bi

2
. (16)

The difference operation prevents to obtain positive semi-
definite matrices. Therefore, after the calculation of theΦi

matrices, a new EVD must be performed onΦi = TiΘiT
H
i

with Ti the unitary matrix containing the eigenvectors andΘi

the diagonal matrix containing the eigenvalues. As the negative
eigenvalues ofΘi must be set to zero to have positive semi-
definite matrices, the power allocation becomes

Φi = Ti[Θi]
+TH

i . (17)

The SNR gapΓ which measures the loss with respect to
theoretical performance [11] can be introduced in (2) giving
1

Γ
H̃ikΦiH̃

H
ik. Then, formula (16) becomes

Φi = Wi





[

Γ2D2
i −

2Γ

λ̃
Di

]+




1/2

WH
i −

Γ(Ai + Bi)

2
.

(18)
A pseudocode, providing the power allocation for secrecy

rate maximization subject to a total power constraintP of Nc

parallel Gaussian MIMO wire-tap channels with independent
sub-channels, is presented in Algorithm 1 from line 3 to line
7 referred to as the inner loop of the algorithm. An outer loop
can be added to find the minimum amount of power that is
needed to support a given secrecy rate constraint. Algorithm 1
provides the power allocation for power minimization subject
to a secrecy rate constraintRsec of Nc parallel Gaussian
MIMO wire-tap channels with independent sub-channels (the
bisection method is used to update the parametersλ andP ).
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Algorithm 1 Minimization of the power subject to a secrecy
rate constraint
1 initialize P = 10−9, λ = 10−9, Φi = 0 ∀i

2 repeat
3 repeat
4 CalculateΦi ∀i according to (17)

5 if
Nc
∑

i=1

Tr(Φi) < P decreaseλ

6 if
Nc
∑

i=1

Tr(Φi) > P increaseλ

7 until the desired accuracy is reached

8 CalculateR =
Nc
∑

i=1

(

log2|I + HirΦiH
H
irR

−1
ir |

−log2|I + HieΦiH
H
ieR

−1
ie |
)

9 if R < Rsec increaseP
10 if R > Rsec decreaseP
11 until the desired accuracy is reached

III. S IMULATION RESULTS

In this Section, we study the performance of the proposed
power allocation for a SISO system withNt = Nr = Ne = 1
antenna and MIMO systems withNt = Nr = Ne = 2, 3, or 4
antennas. The log-distance path loss model is used to measure
the path loss between the transmitter and the receivers [12].
The transmitter is placed at the origin, the receiver is placed
randomly in a quarter circle of radius1 km and the eaves-
dropper is placed randomly in a quarter circle band of radius
3 and 4 km. For the simulations,Nc = 4 sub-channels are
considered. The carrier frequency is chosen to be in the VHF
band (fc = 80 MHz). The SNR gapΓ = 9.8 dB corresponds
to an uncoded quadrature amplitude modulation (QAM) at
symbol error rate10−7. The bandwidth of each sub-channel is
∆f = 25 kHz, the path loss exponent in the log-distance path
loss model isn = 4, reference distanced0 = 20 meters and
thermal noise with varianceσ2 = −204dB/Hz+10log10(∆f).

Figure 2 shows the results of the power minimization subject
to a secrecy rate constraint and ranging fromRsec = 4
kbps to Rsec = 1024 kbps. These results are expressed in
Watts and averaged over103 Monte Carlo trials. The SISO
and MIMO4x4 secrecy algorithms are compared with the
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Fig. 2. Results on the power minimization subject to a secrecy rate constraint

64 kbps SISO
Secrecy

SISO
Waterfilling

MIMO2x2
Secrecy

MIMO3x3
Secrecy

MIMO4x4
Secrecy

MIMO4x4
Waterfilling

P (W) 1.17e-5 1.11e-5 2.84e-6 1.15e-6 6.07e-7 5.66e-7
Gain (dB) - 0.23 6.15 10.07 12.85 13.15

TABLE I
NUMERICAL RESULTS AND GAINS FOR THE POWER MINIMIZATION

SUBJECT TO A SECRECY RATE CONSTRAINTRsec = 64 kbps

standard SISO and MIMO4x4 waterfilling algorithms (to the
intended receiver only) to provide a lower bound for the
optimal secrecy algorithms presented in [6], [7], [8], [9].
Figure 2 and Table 1 show that the proposed algorithm allows
to obtain higher secrecy rates and lower power consumption
when the number of antennas increases. Although sub-optimal
for MIMO systems, the MIMO4x4 secrecy algorithm requires
only a small power augmentation compared to the standard
MIMO4x4 waterfilling algorithm.

IV. CONCLUSION

In this letter, we have extended the perfect secrecy principle
to parallel Gaussian multiple input multiple output (MIMO)
wire-tap channels with independent sub-channels. Assuming
Nr ≥ Nt and Ne ≥ Nt, mathematical derivations have
shown that a sub-optimal solution can be given in closed-form
considering either perfect secrecy rate maximization subject
to a total power constraint or power minimization subject
to a perfect secrecy rate constraint. Although sub-optimal
for MIMO systems, simulation results have shown that the
proposed algorithm allows to obtain higher secrecy rates and
substantial gains in power consumption compared to the SISO
system, and is not far from the optimum solution.
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