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When does vectored Multiple Access Channels
(MAC) optimal power allocation converge to an

FDMA solution?
Vincent Le Nir, Marc Moonen, Jan Verlinden, Mamoun Guenach

Abstract— Vectored Multiple Access Channels (MAC) have
attracted a lot of interest during the past few years. The
optimal structure of vectored MAC in the uplink is based on the
Successive Interference Canceller-Minimum Mean Square Error
(SIC-MMSE). For equal weights and zero Signal to Noise Ratio
(SNR) gap, the optimal transmit covariance matrices are found by
iterative waterfilling. However, practical scenarios include non-
zero SNR gap required to achieve the target probability of error
at the desired data rate. With non-zero SNR gap, it is possible
to achieve a weighted rate sum higher than iterative waterfilling
by means of MAC-Optimal Spectrum Balancing (MAC-OSB).
Moreover, it has been shown in the literature that the optimal
power allocation for single-carrier flat scalar MAC with non -
zero SNR gap is given by a Frequency Division Multiple Access
(FDMA) type solution. In this paper, we investigate the problem
of optimal power allocation for multi-carrier vectored MAC
with non-zero SNR gap. Simulation results are given for VDSL2
channels and wireless channels. We confirm by simulations that
FDMA is indeed the optimal power allocation in multi-carrier
scalar MAC systems. When extending to multi-carrier vectored
MAC systems, the optimal power allocation will tend towardsa
shared spectrum solution or a FDMA type solution depending
on the level of crosstalk, the SNR, the SNR gap and the power
constraints.

I. I NTRODUCTION

Vectored Multiple Access Channels (MAC) have attracted a
lot of interest during the past few years [1], [2]. The optimal
receiver structure of vectored MAC in the uplink is based
on the the Successive Interference Canceller-Minimum Mean
Square Error (SIC-MMSE) [1]. For equal weights and zero
Signal to Noise Ratio (SNR) gap, the optimal transmit covari-
ance matrices are found by iterative waterfilling [2]. However,
practical scenarios include non-zero SNR gap required to
achieve the target probability of error at the desired data rate.
With non-zero SNR gap, it is possible to achieve a weighted
rate sum higher than iterative waterfilling by means of MAC-
Optimal Spectrum Balancing (MAC-OSB) [3]. In a recent
paper, it has been shown that the optimal power allocation
for single-carrier flat scalar Multiple Access Channels (MAC)
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with non-zero SNR gap is given by an Frequency Division
Multiple Access (FDMA) type solution [4].

In this paper, we investigate the problem of optimal power
allocation for multi-carrier vectored MAC with non-zero SNR
gap. Therefore we extend the single-carrier flat scalar MAC
with non-zero SNR gap to the multi-carrier vectored MAC
with non-zero SNR gap. In the vectored MAC case, it is shown
that the crosstalk plays an important role in the optimal power
allocation. The optimal power allocation can tend towards a
FDMA type solution or a shared solution of each tone between
users, depending on the level of crosstalk scenario, the SNR,
the SNR gap and the power constraints. Using the Lagrange
multipliers in the vectored MAC objective function, we study
the convergence of the multi-carrier vectored MAC with non-
zero SNR gap toward these two solutions depending on these
different parameters.

In section II, we first recall the comparison between the
weighted rate sums for single-carrier systems FDMA, scalar
MAC and vectored MAC with non-zero SNR gap. In section
III, we extend the different weighted rate sums from the
single-carrier case to the multi-carrier case. In fact, theprimal
vectored MAC capacity optimization problem subject to per-
modem total power constraints and non-zero SNR gap is
transformed into a collection of per-tone unconstrained vec-
tored MAC capacity optimization problems using Lagrangian
parameters. We derive optimal receiver structures in combina-
tion with optimal transmit covariance matrices which achieve
vectored MAC channel capacity. Simulation results are given
for VDSL2 channels and wireless channels. We confirm by
simulations that FDMA is indeed the optimal power allocation
in multi-carrier scalar MAC systems. When extending to multi-
carrier MIMO MAC systems, the optimal power allocation
will tend towards a shared spectrum solution or a FDMA type
solution depending on the level of crosstalk, the SNR, the SNR
gap and the power constraints.

We consider a vectored MAC with T receivers and K users,
each user k having a single transmitter in an uplink scenario
and using Discrete Multi-Tone (DMT) modulation with a
cyclic prefix longer than the maximum delay spread of the
channels. The transmission on tonei can then be modelled
as:

vi = H
H
i ui + wi where H

H
i =

[

h
H
i1 . . . h

H
iK

]

(1)
where Nc is the number of subcarriers,vi is the received
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vector of lengthT , ui = [ui1 . . . uiK ]T is the transmitted
vector with φik = E[uikuH

ik] the transmitted power for user
k and tonei, Hi the K × T Mutiple nput Multiple Output
(MIMO) channel matrix andwi the vector containing Additive
White Gaussian Noise (AWGN). In this paper, we assume
E[wiw

H
i ] = E[nin

H
i ] = I, which can always be obtained

after a whitening step.

II. COMPARISON BETWEEN WEIGHTED RATE SUMS OF

VECTOREDFDMA AND VECTORED MAC IN

SINGLE-CARRIER SYSTEMS WITH FLAT CHANNELS

In this part, we consider the weighted rate sum for single
carrier-systems with flat channels and flat power allocation.
The wk ’s are the weights assigned to the different users.
Assumingw1 < · · · < wK , we consider the weighted rate
sum function of scalar MAC for a given decoding order 1,...,K-
1,K (i.e. user K is decoded last) with non-zero SNR gap. We
set the number of usersK = 2 and the number of receivers
T = 1. Therefore the 2×1 channel matrix is represented by
H = [h1h2]

T . For single carrier-systems with flat channels and
flat power allocation, the weighted rate sums in the 2-user case
for the scalar MAC (shared solution with SIC-MMSE) are:

RMAC
A = w1log2

(

1 + 1
Γφ1|h1|

2
)

+

w2log2

(

1 + 1
Γ

φ2|h2|
2

1+φ1|h1|2

)

RMAC
B = w2log2

(

1 + 1
Γφ2|h2|

2
)

+

w1log2

(

1 + 1
Γ

φ1|h1|
2

1+φ2|h2|2

)

(2)

The rate region for FDMA (or TDMA) is characterized by
:

RFDMA = αlog2

(

1 + 1
αΓφ1|h1|

2
)

+

(1 − α)log2

(

1 + 1
(1−α)Γφ2|h2|

2
) (3)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

R1

R
2

 

 

scalar MAC

FDMA

(a) Γ=0 dB

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

R1

R
2

 

 

scalar MAC

FDMA

(b) Γ= 6 dB

Fig. 1. Rate regions of scalar MAC and FDMA with zero and non-zero SNR
gaps

The rate regions for FDMA and scalar MAC with zero SNR
gap are shown on the left part of Figure 1. The corner points
A and B of the scalar MAC rate region correspond to the
different detection orders. The rate-sum for the two pointsis
the same (angle of connecting line between A and B is 45
degrees). An in-between point on the line connecting A and
B can be reached by time-sharing between two SIC’s with

different detection orders. The rate regions for FDMA and
scalar MAC with non-zero SNR gap (Γ = 6dB) are shown
on the right part of Figure 1. For the scalar MAC, inserting a
non-zero SNR gap does not lead to a constant rate-sum (the
line connecting the two points has an angle different from 45
degrees). Moreover, one can see that points outside the rate
region of the scalar MAC can be reached by a FDMA strategy.

Now we try to give to the scalar MAC the required addi-
tional flexibility such that it can compute the FDMA points.
For instance, in the 2 users case, in theα bandwidth (or time if
TDMA is considered) the power loadings for the corner point
A are given by(φ1A, φ2A) and in the(1 − α) bandwidth the
power loadings for the corner point B are given by(φ1B , φ2B).
This mixed weighted rate sum is given by:

Rmixed = α
(

w1log2(1 + 1
αΓφ1A|h1|

2)+

w2log2(1 + 1
αΓ

φ2A|h2|
2

1+ 1
α

φ1A|h1|2
)
)

+

(1 − α)
(

w2log2(1 + 1
(1−α)Γφ2B |h2|

2)+

w1log2(1 + 1
(1−α)Γ

φ1B |h1|
2

1+ 1
(1−α)

φ2B |h2|2
)
)

(4)

The left part of Figure 2 shows the rate region of the updated
scalar MAC with non-zero SNR gap (Γ = 12dB) where
the power loadings correspond to their respective bandwidth
φ1A = αφ1, φ1B = (1 − α)φ1, φ2A = αφ2, and φ2B =
(1 − α)φ2. One can see that the scalar MAC corner points
A and B are found by settingα =0 or α =1. The right
part of Figure 2 shows the rate region of the updated scalar
MAC with non-zero SNR gap (Γ = 12dB) where the power
loadings correspond toφ1A = βφ1, φ1B = (1 − β)φ1),
φ2A = (1 − β)φ2, φ2B = βφ2). One can see that the FDMA
points are found by settingβ =0 or β =1 corresponding to
φ1A∗φ1B = 0, φ2A∗φ2B = 0, φ1A∗φ2A = 0, φ1B ∗φ2B = 0.
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Fig. 2. Updated scalar MAC rate region with two different power loadings
strategies

Now we extend these results to the vectored MAC and
vectored FDMA. The weighted rate sum of the vectored MAC
is:

RMAC
A = w1log2

[

det
(

I + 1
Γh

H
1 φ1h1

)

]

+

w2log2

[

det
(

I + 1
Γ

h
H
2 φ2h2

I+hH
1 φ1h1

) ]

RMAC
B = w2log2

[

det
(

I + 1
Γh

H
2 φ2h2

)

]

+

w1log2

[

det
(

I + 1
Γ

h
H
1 φ1h1

I+hH
2 φ2h2

) ]

(5)
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The rate region for the vectored FDMA is characterized by
:

RFDMA = αlog2

[

det
(

I + 1
αΓh

H
1 φ1h1

)

]

+

(1 − α)log2

[

det
(

I + 1
(1−α)Γh

H
2 φ2h2

) ] (6)

The optimality of vectored FDMA or vectored MAC de-
pends on the SNR gap, the SNR and the level of crosstalk.
In the Figure 3 we set the number of usersK = 2 and the
number of receiversT = 2. Therefore the 2× 2 channel matrix
is represented byH = [h1h2]

T , with h1 = [h11h12] andh2 =
[h21h22]. We can observe on this figure that while FDMA
achieve higher rates compared to vectored MAC with strong
crosstalk (crosstalk channels having the same power spectral
density as direct channels|h12|

2 = |h11|
2 and |h21|

2 =
|h22|

2), with weaker crosstalk channels vectored MAC offers
a higher weighted rate sum (|h12|

2 = |h21|
2 = 0). Therefore

there exists a point of crosstalk level where the vectored MAC
becomes the optimal solution compared to vectored FDMA. It
is possible to calculate the level of crosstalk between the opti-
mal power allocation by vectored FDMA and vectored MAC
by solving numerically the equivalenceRMAC = RFDMA.
The boundary between vectored MAC and vectored FDMA
according to the crosstalk levelρ = |h12|/|h11| = |h21|/|h22|
is shown on Figure 4, where we vary the SNR gap and the
SNR. The main conclusion of this figure is that the level of
crosstalk should be quite high in order to have an OFDMA
type solution as the optimal power allocation (with SNR=40dB
andΓ=20 dB the level of crosstalkρ = 0.5)
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As for the scalar MAC, we can add to the vectored MAC
the required additional flexibility such that it can computethe
FDMA points. As previously for the 2 users case, in theα
bandwidth the power loadings for the corner point A are given
by (φ1A, φ2A) and in the(1−α) bandwidth the power loadings
for the corner point B are given by(φ1B , φ2B). The mixed
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weighted rate sum is given by:

Rmixed = α
(

w1log2

[

det
(

I + 1
αΓh

H
1 φ1Ah1

)

]

+

w2log2

[

det
(

I + 1
αΓ

h
H
2 φ2Ah2

I+hH
1

1
α

φ1Ah1

) ]

)+

(1 − α)
(

w2log2

[

det
(

I + 1
(1−α)Γh

H
2 φ2Bh2

) ]

+

w1log2

[

det

(

I + 1
(1−α)Γ

h
H
1 φ1Bh1

I+hH
2

1
(1−α)

φ2Bh2

)

])

(7)

We can conclude the same conclustions for the updated
vectored MAC with non-zero SNR gap as for the updated
scalar MAC with non-zero SNR gap. Indeed, the vectored
MAC corner points A and B are found by settingα =0 or
α =1. In case of zero crosstalk channels (|h12|

2 = |h21|
2 = 0)

the updated vectored MAC will provide a single optimal point
(green curve on Figure 4). However, as the SNR gap is non-
zero, the corner points A and B do not lead to the same rate
sum. The FDMA points can be found by settingβ =0 or
β =1 to the power loadingsφ1A = βφ1, φ1B = (1 − β)φ1,
φ2A = (1−β)φ2, φ2B = βφ2 whenever the crosstalk is large.
This leads to non-overlapping spectra of the different users
φ1A∗φ1B = 0, φ2A∗φ2B = 0, φ1A∗φ2A = 0, φ1B ∗φ2B = 0.

III. U PDATED VECTOREDMAC-OPTIMAL SPECTRUM

BALANCING (MAC-OSB) UNDER PER-MODEM TOTAL

POWER CONSTRAINTS WITH NON-ZERO SNR GAP

In this part we investigate the problem of optimal power
allocation for multi-carrier vectored MAC with non-zero SNR
gap. We add to the vectored MAC-OSB [3] the required
additional flexibility such that it can compute the FDMA
points and compute the best corner point for each tone. The
primal problem of finding optimal power allocations in the
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MAC under a per-modem total power constraintP tot
k is:

max
φik,α

Nc
∑

i=1

Rmixed
i

subject to
Nc
∑

i=1

φik ≤ P tot
k ∀k

φik � 0, i = 1 . . .Nc, k = 1 . . .K

(8)

with Φik = E[uiku
H
ik] the covariance matrix of transmitted

symbols for userk over tonei. Assumingw1 < · · · < wK ,
the weighted rate sum function considering MIMO MAC for
a given decoding order 1,...,K-1,K (i.e. user K is decoded last)
with non-zero SNR gap is given by:

CMAC =

K
∑

k=1

wk

Nc
∑

i=1

log2

[

det

(

I +
1

Γ
B

−1
ik H

H
ikΦikHik

)]

(9)
with Γ the SNR multiplier required to achieve the target
probability of error at the desired data rate in the MIMO

MAC, and Bik = I +
N
∑

j=k+1

H
H
ijΦijHij . The above formula

corresponds to the operation of SIC-MMSE which is an
optimal receiver for given transmit powers. The idea of dual
decomposition is to solve the primal problem by its Lagrangian
(dual problem) and leads to the MAC-OSB solution algorithm
[3]. The Lagrangian decouples into a set ofNc smaller prob-
lem, thus reducing the complexity of equation of the primal
problem. By definingΛ = diag(Λ1, . . . ,ΛK) and Λk a
diagonal matrix of Lagrange multipliersdiag(λk1, . . . , λkMk

),
the MAC dual objective function is:

FMAC(Λ) = max
(Φik)k=1...K

i=1...Nc

L(Λ, (Φik)k=1...K
i=1...Nc

) (10)

with

L(Λ, (Φik)k=1...K
i=1...Nc

) =
Nc
∑

i = 1

(

K
∑

k = 1

wklog2

[

det






I +

H
H
ikΦikHik

Γ(I+
K
∑

j=k+1

HH
ijΦijHij)







]

−
K
∑

k=1

Trace(ΛkΦik)

)

+
K
∑

k=1

Trace(Λkdiag(P tot
k1 , . . . , P tot

kMk
))

(11)
The dual optimization problem is:

minimize FMAC(Λ)
subject to Λ ≥ 0

(12)

By tuning the Lagrange multipliers, the per-modem total
power constraints can be enforced. If the SNR gap is zero,
for given Tx powers the detection order does not change
the rate sum. Hence in a weighted rate sum, the weights
define the detection order. Moreover, it has been shown in
[5] that the dual optimization problem is a convex problem,
therefore simple iterative algorithms can be used to find the
optimal solution. With non-zero SNR-gap, however, for given
Tx powers the detection order (in general) does change the
rate sum. In this case, an exhaustive search on the different

power loadings can be done [3]. The search for the optimal
Λ involves evaluations of the dual objective function, i.e.
maximizations of the Lagrangian, which is decoupled over the
tones for a givenΛ. The optimization problem of MAC-OSB
is solved by an exhaustive search on a per-tone basis.

For the scalar MAC-OSB algorithm, we set the number of
usersK = 2 with the number of transmitters for user 1 and 2
M1 = 1 andM2 = 1 respectively and the number of receivers
T = 1. Therefore the 2×1 channel matrix is represented by
Hi = [hi1hi2]

T . The Lagrangian becomes:

L(Λ, (φi1, φi2)i=1...Nc
) =

Nc
∑

i = 1

(

w1log2

(

1 + φi1|hi1|
2

Γ(1+φi2|hi2|2)

)

+w2log2

(

1 + φi2|hi2|
2

Γ

)

− λ1φi1 − λ2φi2

)

+λ1P
tot
1 + λ2P

tot
2

(13)

IV. SIMULATION RESULTS

Simulations results are obtained on VDSL2 measured chan-
nels with 2 lines of 400 meters. An AWGN of -140 dBm/Hz
and maximum transmit powerP tot

j =14.5 dBm per line are
used. The frequency range is from 0 to 30 MHz with 4.3125
kHz spacing between subcarriers and 4 kHz symbol rate.
The FDD band plan of VDSL2 corresponds to 3 frequency
bands in the uplink scenario which are 25-138kHz, 3.75-
5.2MHz and 8.5-30MHz. The optimal power allocation for
the scalar MAC-OSB algorithm is given on Figure 5 forΓ=0
dB and on Figure 6 forΓ=10.8 dB. We can see on these
figures that increasing the SNR gap indeed leads to an FDMA
solution using the scalar MAC-OSB algorithm. The weighted
rate sum (w1 = w2=0.5) for scalar MAC-OSB andΓ=0 dB
is w1R1 + w2R2=138.39 Mbps withR1=56.09 Mbps and
R2=220.69 Mbps. The weighted rate sum (w1 = w2=0.5)
for scalar MAC-OSB andΓ=10.8 dB isw1R1 + w2R2=98.95
Mbps with R1=94.66 Mbps andR2=103.25 Mbps and .

For the MIMO MAC-OSB algorithm, we set the number of
usersK = 2 with the number of transmitters for user 1 and 2
M1 = 1 andM2 = 1 respectively and the number of receivers
T = 2. Therefore the 2×2 channel matrix is represented by
Hi = [hi1hi2]

T , , with hi1 = [hi11hi12] andhi2 = [hi21hi22].
The Lagrangian becomes:

L(Λ, (φi1, φi2)i=1...Nc
) =

Nc
∑

i = 1

(

w1log2

[

det
(

I +
h

H
i1φi1hi1

Γ(I+hH
i2φi2hij)

) ]

+w2log2

[

det
(

I +
h

H
i2φi2hi2

Γ

) ]

− λ1φi1 − λ2φi2

)

+λ1P
tot
1 + λ2P

tot
2

(14)

Simulations results are obtained on VDSL2 measured chan-
nels with 2 lines of 400 meters. The optimal power allocation
for the MIMO MAC-OSB algorithm is given on Figure 7 for
Γ=10.8 dB because we obtain the same set of PSD’s over
the tones withΓ=10.8 dB orΓ=0 dB. Therefore, with weak
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crosstalk channels as in VDSL2 and high SNR, the optimal
solution is not an FDMA-type solution. The weighted rate
sum (w1 = w2=0.5) for MIMO MAC-OSB andΓ=0 dB
is w1R1 + w2R2=254.14 Mbps withR1=254.95 Mbps and
R2=253.33 Mbps. The weighted rate sum (w1 = w2=0.5) for
MIMO MAC-OSB and Γ=10.8 dB isw1R1 + w2R2=177.90
Mbps with R1=177.11 Mbps andR2=178.69 Mbps. If we
consider the crosstalk channels having the same power spectral
density as direct channels|h12|

2 = |h11|
2 and|h21|

2 = |h22|
2

for Γ=10.8 dB, we obtain the same FDMA-type solution as
Figure 5.

The last simulation results are obtained on complex gaussian
channels of mean 0 and variance 1 constant over 100 tones
for direct and crosstalk channels, keeping the same FDD band
plan for VDSL2 in the uplink. Again, we set the number
of usersK = 2 with the number of transmitters for user 1
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Fig. 7. Γ=10.8 dB

and 2 M1 = 1 and M2 = 1 respectively and the number
of receiversT = 2. The optimal power allocation for the
MIMO MAC-OSB algorithm is given on Figure 8 forΓ=10.8
dB with an AWGN of -50 dBm/Hz giving a low SNR.
Therefore, for complex gaussian channels with low SNR and
high crosstalk, the optimal power allocation is given by an
FDMA type solution. To summarize, FDMA is the optimal
power allocation in multi-carrier scalar MAC systems. When
extending to multi-carrier MIMO MAC systems, the optimal
power allocation tends towards a shared spectrum solution
for high SNR and low crosstalk. However, some simulations
showed that the multi-carrier MIMO MAC-OSB algorithm
can tend towards an FDMA type solution with low SNR and
high crosstalk. Moreover, as multi-carrier scalar MAC systems,
non-square systems withT < K will likely lead to an FDMA
type solution.
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Fig. 8. Γ=10.8 dB
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V. CONCLUSION

In this paper, we investigated the problem of optimal power
allocation for multi-carrier MIMO MAC with non-zero SNR
gap. Simulation results were given for VDSL2 channels and
wireless channels. We saw that FDM is the optimal power
allocation in multi-carrier scalar MAC systems. When extend-
ing to multi-carrier MIMO MAC systems, the optimal power
allocation likely tends towards a shared spectrum solution
for VDSL2 channels due to high SNR and low crosstalk.
However, the multi-carrier MIMO MAC-OSB algorithm can
tend towards an FDMA type solution for wireless channels
with low SNR and high crosstalk. As multi-carrier scalar MAC
systems, non-square systems withT < K will likely lead to
an FDMA type solution.
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