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Abstract— In this paper, we combine Convolutional Codes
(CC) and Turbo Codes (TC) as channel coding with Space-
Time Block Coding (STBC) in order to exploit spatio-temporal
diversities. Moreover, linear precoding matrices are combined
to efficiently improve the space-time diversity order of the
multiple antenna system. The proposed system implements a
simple Minimum Mean Square Error (MMSE) linear decoder
at the reception side, which has very low complexity compared
to the Maximum Likelihood (ML) decoders currently used in
such systems. Performance results obtained by simulationsare
given for a 2 transmit antennas system with different precoding
matrix sizes over flat Rayleigh fading channels for a global system
including channel coding. The described scheme can easily and
efficiently be adapted to a different system with more transmit
antennas.

I. I NTRODUCTION

In 1996, Foschini demonstrated that the spectral efficiency
increases linearly with the minimum number of transmit or
receive antennas [1] when using multiple antennas systems.
Another way to exploit multiple antennas is to use STBC.
The initial two-transmit antennas Orthogonal STBC (OSTBC)
proposed by Alamouti [2] is merely decoded with a linear
operation. Another advantage of this code is its unitary rate.
Then, Tarokh [3] extended OSTBC to 3 or 4 transmit antennas
with linear decoding as well, but resulting in lower 1/2 and
3/4 rate codes. Since, many studies have been carried out to
find out space-time codes with more than two antennas and
rate one, resulting in Quasi Orthogonal STBC (QOSTBC) [4,
5], but requiring more complex than linear decoders such as
Maximum Likelihood (ML) decoder.

In parallel, linear precoding also called constellation rotation
was demonstrated to efficiently exploit time diversity for
Single Input Single Output (SISO) systems [6]. In [7], a system
combining the STBC proposed in [4] with linear precoding
is presented, but the complexity of its ML detector varies
exponentially with the length of the precoding matrix.

Since 1993, Turbo codes are demonstrated to be very
efficient to exploit the coding diversity, performing closeto the
Shannon limit [8]. In this paper, we tested the influence of the
channel coding for the system presented in [9], where linear
precoding and OSTBC are efficiently combined. As channel
coding scheme, we have implemented the robust duo binary
turbo channel encoder that is proposed in DVB-RCT standard
[10], as well as CC. At the receiver, before channel decodinga
simple linear MMSE decoder offers a good trade-off between
performance and complexity thanks to low interference terms.

II. L INEAR PRECODING

In this section, we present the unitary linear precoding
matrices which are the Fourier, the Vandermonde and the
complex Hadamard matrices for a sizeL × L.
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The linear precoding matrix obtained with Fourier Trans-
form matrix construction is:

ΘFFT
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(1)
with w = e

2jπ

L .
The linear precoding matrix obtained with Vandermonde

matrix construction is:

ΘV an
L = diag[1, α, α2, . . . , αL−1].ΘFFT

L (2)
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with θi = αwi = αe
2ijπ

L .
The linear precoding based on the complex Hadamard

construction base on SU(2) group matrix is :

ΘHad
L =

√

2

L

[

ΘL/2 ΘL/2

ΘL/2 −ΘL/2

]

(4)

with L = 2n, n ∈ N∗, n ≥ 2 and:

Θ2 =

[

ejθ1 . cos η ejθ2 . sin η
−e−jθ2 . sin η e−jθ1 . cos η

]

(5)

belonging to the Special Unitary group SU(2), therefore
det(Θ2) = 1 andΘ−1

2 = ΘH
2 .

Figure 1 represents the 3-D Gaussian density of linearly
precoded Quadrature Phase Shift Keying (QPSK) symbols by
one of the three linear precoding matrices of sizeL = 256. In
fact, the projection of a uniform probability distributionover
an L-sphere onto one or two dimensions is a non-uniform
probability distribution that approaches a Gaussian density as
L increases. When using Quadrature Amplitude Modulation
(QAM) symbols equiprobably distributed, the result of the
projection over a sphere of dimension L is a 3-D Gaussian
density when L is large, as forL = 256.

III. T HEORETICAL PERFORMANCE WITH DIVERSITY

In this section we provide the theoretical performance of a
system with L independent branches in a flat Rayleigh fading.
Assuming that a code word̃x is detected whereas the code
word x is sent, for a fixed channel and with an Additive
White Gaussian Noise (AWGN) whose variance isσ2 = N0

2
per dimension, the Pairwise Error Probability (PEP) can be
expressed with the following formula :

P (x → x̃|H) = Q

(

d(x, x̃)

2σ

)

(6)

where d(x, x̃) denotes the Euclidean distance between
code wordx and x̃ and Q(y) is the Gaussian tail function.
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Fig. 1. linear precoded QPSK matrices for L=256

If we call H the matrix representation of the channel, the
formula becomes :

P (x → x̃|H) = Q

(

√

||Hx− Hx̃||2
2N0

)

(7)

Let N the length of the code word, the probability thatx

and x̃ differ at L < N positions, we obtain :

PL(x → x̃) = Q

(

√

√

√

√

L
∑

l=1

|hl|2
2Es

N0

)

(8)

If all the fading amplitudeshl are independent and identi-
cally Rayleigh distributed, it can be shown that

∑L−1
l=1 |hl|2

follows a chi-square probability law with2L degrees of
freedom. By evaluating this integral for a BPSK modulation,
we obtain [11]:

PL(x → x̃) =
1

2

[

1 − µ

L
∑

k=0

(

2k

k

)(

1 − µ2

4

)k
]

(9)

with

µ =

√

Es/N0

1 + Es/N0
(10)

Fig. 2 shows the bit error probability obtained with (9) for
a L-branch diversity. We can denotes that when diversityL
increases, the bit error probability tends towards AWGN curve.

IV. A SSOCIATION OF LINEAR PRECODING WITHOSTBC

In this section, the association of linear precoding and
OSTBC is presented. Then the effect of linear precoding on
the symbols and the noise is investigated.
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Fig. 2. Bit error rate for system with L-branch diversity

A. Description of the proposed scheme

Let N the number of symbols to be transmitted andT
the number of symbol durations over which the channel is
constant. The rateR of OSTBC is the ratioN/T . Let x =
[x1 . . . xL]T complex symbols. We consider aL×L/R matrix
such that the entriesS(x1, . . . , xL) are complex linear combi-
nations ofxi, i = 1, . . . , L and their conjugates according to
part I andSH(x1, . . . , xL)S(x1, . . . , xL) = D, whereD is a
diagonal matrix whose components are linear combinations of
|si|2, i = 1, . . . , L [3]. For instance, with the Alamouti code
[2], this corresponds to the following matrix:

S = diag(S1, . . . ,Sj , . . . ,SL/2) (11)

with

Sj =

[

s2j−1 −s∗2j

s2j s∗2j−1

]

(12)

and s = [s1 . . . sL]T being linear precoded
symbols such as s = ΘL.x . The received vector
r = [r1 . . . rL] is represented by r = h.S + n

where h = [h1 . . . hL] is the channel and
n = [n1 . . . nL] is the AWGN. The received

vector must be rearranged leading to the vector
r′ = [r1 −r∗2 . . . rL−1 −r∗L]T and leading to

the equation r′ = H.s + n′ with n′ the modified AWGN
n′ = [n1 −n∗

2 . . . nL−1 −n∗

L]T and

H = diag(H1, . . . ,Hj , . . . ,HL/2) (13)

with

Hj =

[

h2j−1 h2j

−h∗

2j h∗

2j−1

]

(14)

the equivalent channel matrix representation. The decoding
process consists of applying a Maximum Ratio Combiner
(MRC) equalizer to the equivalent received vector which is
the transconjugate of the equivalent channel matrix :

y = HHH.s + HH .n′ = Λ.s + HH .n′ (15)

with
Λ = diag(Λ1, . . . ,Λj , . . . ,ΛL/2) (16)



3

and

Λj = λjI2 = (|h2j−1|2 + |h2j |2)I2 (17)

Considering an interleaving process long enough, the diagonal
elements are mixed up between leading to:

Λ = diag(λ1, . . . , λL) (18)

We have seen that before being space-time coded, the symbols
are preliminarily linear precoded with aL×L unitary matrix
as described in part II. The final step consists of applying the
inverse linear precoding to the vectory:

z = ΘH
L .y = ΘH

L .Λ.ΘLx + ΘH
L .HH .n′ (19)

B. Effect of linear precoding on the symbols

This linear precoding will have the effect of increasing the
diversity order of the transmitted symbols. For instance, using
ΘV an

L for L = 4 and applying the coefficientsα = π
4 , this

leads to the global hermitian circulant matrix:

A4 =
1

4









a b c b∗

b∗ a b c
c b∗ a b
b c b∗ a









(20)

with
a = λ1 + λ2 + λ3 + λ4

b = λ1 − λ3 − j(λ2 − λ4)
c = λ1 − λ2 + λ3 − λ4

(21)

The transconjugate of the channelG = HH is equivalent
to an Maximum Ratio Combining (MRC) equalizer. When
L increases in a flat Rayleigh fading channel environment,
the diagonal terms have a diversity that tend towards a non-
centered Gaussian law and interferences that tend towards a
centered Gaussian law on the non-diagonal terms. Therefore,
when using an MRC equalizer with perfect channel estimation,
the global system is non-orthogonal. For Vandermonde matri-
ces, the diagonal terms follow aχ2

16 law when an Alamouti
MRC equalizer is chosen in a flat Rayleigh fading channel
environment. The interference term notedc follows a χ2

8 law
difference andb follows a χ2

4 law difference per dimension.
In the case of a ZF equalizer, the equalization matrix is :

G =
HH

HHH
(22)

In the case of an MMSE equalizer, the equalization matrix is
:

G =
HH

HHH + 1
γ I

(23)

whereγ is the Signal to Noise Ratio at the receive antenna.
When using a ZF equalizer with perfect channel estimation, all
the non diagonal terms are null. In order to avoid enhancing
the noise, it is preferable to choose an MMSE equalizer,
leading to very small interference terms and leading to a global
orthogonal system at high SNR.

C. Effect of linear precoding on the noise

However, this linear precoding will not improve the perfor-
mance at low SNR. For instance, with the Alamouti code the
noise terms become:

K = HH .n′ = [K1 . . . Kj . . . KL] (24)

with

Kj = h∗

2j−1n2j−1 + h2jn
∗

2j or Kj = h∗

2jn2j−1 − h2j−1n
∗

2j

(25)
With an MRC equalizer, the variance of this noise has the
following form:

E[K2
j ] = 2N0(|h2j−1|2 + |h2j |2) (26)

per real dimension. With a ZF equalizer, the variance of noise
becomes

E[K2
j ] =

2N0

|h2j−1|2 + |h2j |2
(27)

per real dimension. Applying the linear deprecoder will have
the effect of averaging the variance ofKj , the noise becomes:

M = ΘH

L
K = ΘH

L
HH .n′ = [M1 . . . Mj . . . ML] (28)

With a ZF equalizer, the variance of the noise becomes:

E[M2
j ] =

2N0

L

L
∑

j=1

(|h2j−1|2 + |h2j |2)−1 (29)

per real dimension. Owing to the last equation, the linear
precoding has little impact on the noise.

V. SIMULATION RESULTS

The simulations are carried out in a Rayleigh flat fading
channel environment well adapted to OFDM-like modulation
with Alamouti and Tarokh codes, MMSE equalizer and inter-
leaving for different sizes of precoding matrices. In fact,the
MMSE equalizer provides the best results compared to the
MRC or the ZF equalizer.

Figure 3 shows the performance of the linear precoded
Alamouti system with complex Hadamard based SU(2) ma-
trices for different sizes of precoding matrices (L = 4 and
64) andNr = 1 without channel coding. We observe that the
specified precoded system withL = 4 outperforms of 2 dB
the sole Alamouti scheme without precoding atBER = 10−3.
One can see that the slopes of the simulated curves are parallel
to the slopes of the theoretical curves. However, a shift canbe
seen between the simulated and the theoretical curves because
of a loss in performance due to the variance of the noise
described in part IV-C.

Figure 4 provides BER performance of the linear precoded
system for one (SISO) and two antennas (Alamouti) with
non systematic convolutionnal channel coding of half rate
with constraint lengthK = 7 and (133, 171)o polynomial
generators. In spite of the diversity gain brought by the channel
coding, linear precoding exploits an aditionnal diversitylead-
ing to an higher slope for both SISO and Alamouti schemes.

Finally, the performance of both schemes (SISO and Alam-
outi) are carried out in Figure 5 with duo-binary turbo channel
coding of half rate proposed in DVB-RCT standard and packet
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Fig. 3. Linear precoded Alamouti scheme
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Fig. 4. Linear precoded SISO and Alamouti schemes with convolutionnal
coding

size 432 [10]. The proposed schemes with linear precoding
have a0.5dB performance gain compared to their respective
systems without precoding. Moreover, the use of a precoding
matrix allows to achieve better performance even with a very
low value of precoding matrix owing to the additional diversity
brought to the turbo-decoding.

VI. CONCLUSION

In this paper, we have proposed a new scheme relying on
the combination of OSTBC, issued on the Alamouti scheme,
and a linear precoding. This new scheme leads to an efficient
exploitation of space-time diversity. In addition, as a linear
decoder is used at the reception side, the complexity linearly
increases with the precoding matrix size but not exponentially
compared to ML detectors often used in such precoding
systems. Like this, our system described may be applied
to other OSTBC codes and several antenna configurations.
The performance results show that a simple linear decoder
is sufficient when using an OSTBC combined with linear
precoding. This conclusion remains valuable when a channel
coding is used. To conclude, we can say that the use of
our proposed schemes for two or more transmit antennas
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Fig. 5. Linear precoded SISO and Alamouti schemes with duo-binary turbo-
coding

are good choices of transmission chain for future wireless
communication systems.
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