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V. LE NIR, M. HELARD, R. LE GOUABLE  

EFFICIENT DIVERSITY TECHNIQUES USING LINEAR 
PRECODING AND STBC FOR MULTI-CARRIER SYSTEMS 

1. INTRODUCTION 

Since the work of Foschini [1], there has been a huge interest concerning Multiple 
Input Multiple Output (MIMO) systems in order to exploit the capacity varying 
linearly with the minimum of transmit Nt and receive antennas Nr and then to exploit 
the diversity of these systems using Orthogonal Space Time Block Codes (OSTBC) 
as discovered by Alamouti [2] for Nt=2 and then generalized by Tarokh [3] for 
2≤Nt≤4. Quasi-Orthogonal (QO) STBC were then described in [4][5]. New codes 
are given in [6] for Nt=5 or 6. In parallel, linear precoding was demonstrated to be 
very efficient in SISO transmission in order to exploit temporal diversity using 
Maximum Likelihood (ML) detector [7]. Using same type of detectors, linear 
precoders were adapated to multi-antenna transmissions. The linear precoders used 
as space-time codes were carried out in [8][9]. The concatenation of linear precoders 
with QOSTBC was carried out in [10]. In this paper, we combine a particular linear 
precoder with OSTBC in a specific way allowing a simple linear decoding for 
various cases of MIMO systems [11]. Several linear precoding matrices based on 
either Hadamard matrix or Fourier Transform construction are compared. In the 
second part, we present this linear precoding that has the effect of increasing the 
overall diversity of the system by scattering the information in the time and/or 
frequency domains for multi-carrier modulations. We apply our precoder to OFDM 
and MultiCarrier Code Division Multiplex Access (MC-CDMA) systems, exploiting 
spatial, temporal and frequency diversities. 

2. OSTBC REPRESENTATION 
The different channel coefficients are modelled as independent flat fading channels 
that are quite realistic for OFDM-like modulations. We consider uncorrelated 
channels from each transmit antenna t to each receive antenna r tri

trtr eh θρ= . 
Assuming one receive antenna, the Alamouti code can be represented as follows:  
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Assuming fading coefficients constant over two consecutive symbol transmissions, 
the received signal over two consecutive symbols periods are: 
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where n1 and n2 are independent complex variables with zero mean and one-sided 
power spectral density N0, representing Additive White Gaussian Noise (AWGN). 
For this study, perfect channel estimation is assumed. Applying the transpose 
conjugate of the channel matrix to the equivalent received vector, we obtain:  
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with 2
2

2
1 hh +=λ . This receiving process corresponds to a Maximum Ratio 

Combining (MRC) equalizer. However, an equalization process can be carried out 
according to the Zero Forcing or Minimum Mean Square Error criteria. This matrix 
representation can be extended for other OSTBC schemes [3][6] where we obtain:  
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in the case of a MRC or a MMSE equalizer respectively, where γ is the Signal to 
Noise Ratio at the receive antenna. We use different equalizers because they lead to 
different performance when using linear precoding. 

3. LINEAR PRECODING 
 
This linear precoding given in [11] is briefly presented. According to the theorem of 
diagonal decomposition, let AL be a Hermitian LxL matrix with eigenvalues λ1…λL. 
Then AL can be expressed as:  

 H
LLLLA ΘΛΘ=  (5) 

where ),...,( 1 LL diag λλ=Λ  and LΘ  is an unitary matrix so that H
LL Θ=Θ−1 , where 

(.)H stands for transpose conjugate. We propose to use the following linear 
precoding based on the Hadamard construction matrix such as:  
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with L=2n, n ∈  N*, n ≥ 2 and:  
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belonging to the Special Unitary group SU(2), therefore 1)det( 2 =Θ . This leads to 
the following expression:  
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where ),...,( 2/1
1

2/ LL diag λλ=Λ and ),...,( 12/
2

2/ LLL diag λλ +=Λ . For L=2, we obtain 
the following Hermitian matrix:  
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Therefore, one can see that for LA  the diagonal elements are equal to:  
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and that some non-diagonal elements are similar to:  
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Owing to (8) form, the other terms of interference are also sum of difference 
between eigenvalues. By simulation, the optimal results were found for pure real or 
pure imaginay interference. For 2=L , 4πη = , 212 πθθ −= , 451 πθ = , we get:  
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One may use Fourier matrices instead of these matrices based on Hadamard 
construction, but we will see in the following section that they lead to worse 
performance for low values of L when the linear precoding is combined with STBC. 

4. LINEAR PRECODING WITH STBC 
 
In this paper, we combine the OSTBC with linear precoding by concatenation 
according to the equation (5) where ΛL represents the OSTBC coding and decoding 
without noise, and ΘL stands for the linear precoding. It is possible to use more 
transmit antennas by applying the OSTBC using subgroups of the available transmit 
antennas [11]. For instance, if we use the Alamouti code with four antennas, the first 
subgroup including antenna 1 and 2 will code the symbols according to Alamouti 
while antenna 3 and 4 are switched off. The total transmit power should remain P, 
therefore antenna 1 and 2 will transmit symbol at a power of P/2. Then, antennas 3 
and 4 will transmit the coded symbols according to Alamouti while antennas 1 and 2 
are switched off. All OSTBC can be applied to this scheme as those described in 
[2][3][6] thus many scenarios can be drawn from this example depending on antenna 
configurations. As presented in Figure 1, at transmission side, input bits are first 
mapped into symbol vector [ ]LxxX ...1=  where L is the number of transmitted 
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symbols. Linear precoding is then performed by applying the ΘL matrix to the X 
vector. The next step consists in applying an OSTBC to the symbol-rotated vector. 

linear
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coding
symbol
mapping

Data 
input

x
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Fig.1 Combination of Linear Precoding with OSTBC: Transmitter scheme 
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Fig.2 Combination of Linear Precoding with OSTBC: Receiver scheme 
 
The receiver part is described by Figure 2. Without interleaving, the channel 
representation of the OSTBC codes leads to the equivalent channel coding and 
decoding matrix with the same diagonal elements. Owing to the Alamouti scheme 
(1) and the linear precoding described in (6) and (7) with optimal values given in 
Section 3, for L=4 without interleaving we get the following Hermitian matrix: 

 HA 4444 ΘΛΘ=  (14) 
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where i and j are index used to distinguish different channels related by the OSTBC 
decoding.  
The resulting matrix is then: 
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When applying an interleaving process, the λ 's within each block are affected by 
different channels: 
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With interleaving, the Λ4 matrix and the resulting in formula (14) becomes:  

 ( )43214 ,,, λλλλdiag=Λ    with     [ ]4...1
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Thus, the resulting matrix A4 becomes: 
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One can notice that, with or without interleaver, at the receiver part a linear 
decoding can be performed by simply applying the transpose conjugate of the linear 
precoder. Therefore, we obtain a matrix of the form described in (14). The 
interleaving has the effect of mixing eigenvalues between different blocks, thus the 
components of the resulting matrix are different from each others. After OSTBC 
decoding and linear deprecoding, we can merely detect the signals. When L 
increases, OSTBC is performed on more subgroups and the resulting matrix 
corresponds to (5). With OSTBC, the diagonal elements follow a chi square law 
with 2Nt degrees of freedom. When using linear precoding, the diagonal elements 
reach a chi square law with Nt.L degrees of freedom. With interleaving, the elements 
of the diagonal matrix reach a chi square law with 2Nt.L degrees of freedom, 
providing more diversity. 
When using a Fourier matrix of size L=4 instead of the complex Hadamard matrix 
based on SU(2), we obtain a circulant matrix of the form:  
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with a = λ1+λ2+λ3+λ4, b = λ1-λ3–j(λ2-λ4), c = λ1-λ2+λ3-λ4 and d = λ1-λ3+j(λ2-λ4). 
Hence, the interference terms are different from those obtained with the Hadamard 
construction. As L increases the interference terms will tend slower  towards the 
gaussian law than the interference terms of the Hadamard construction presented 
before. Indeed, the interference terms of the Fourier construction follow a chi-square 
law with twice as less degrees of freedom as the Hadamard one per dimension.  

5. LINEAR PRECODING WITH STBC AND MULTI-CARRIER SYSTEMS 

In the precedent part, linear precoding is done in the time domain, but it can also be 
performed in the frequency and/or time domains for OFDM and MC-CDMA 
systems that provide full frequency diversity owing to the orthogonality between 
subcarriers of the OFDM modulation. OSTBC will be performed for multicarrier 
systems as described in [14] for different OSTBC codes. 

5.1. Linear Precoding with OFDM 

In order to apply linear precoding in the frequency domain, one may use a linear 
precoder of size L≤Nc , where L always the size of the precoding matrix and Nc is the 
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number of subcarriers. This corresponds to an OFDM linear precoded scheme in the 
frequency domain. Again, in order to apply linear precoding in the time and 
frequency domains, one may use a linear precoder of size L≥Nc. This corresponds to 
an OFDM linear precoded scheme in the time and frequency domains. 

5.2. Linear Precoding with MC-CDMA 

MC-CDMA combines OFDM modulation and CDMA access technique taking 
benefits from both the high spectral efficiency and the robustness against multipath 
channels of OFDM and access flexibility of CDMA [12][13]. In order to linearly 
precode a MC-CDMA scheme, we simply allocate codes for a specific user of length 
L≥Nc. This means that allocation of spreading codes is carried out in the time and 
frequency domain. An interesting analogy can be made when MC-CDMA is applied 
with a linear precoding. In this case, MC-CDMA is equivalent to an OFDM scheme 
where our linear precoder is applied in both time and frequency domains. This can 
be adapted either to MIMO transmissions. We propose linear precoded OFDM 
scheme with OSTBC or linear precoded MC-CDMA scheme with OSTBC where 
temporal, spatial and frequency diversities are exploited.  

6. RESULTS AND CONCLUSION 

We carried out simulations in order to check the behaviour of the proposed system 
regarding the efficient exploitation of the diversities with multi-carrier systems, and 
to compare the performance with Hadamard-based and Fourier based precoders.  
Figure 3 shows the performance of OSTBC with linear precoding for L=32 and 
spectral efficiency η of 1 bps/Hz for a flat Rayleigh channel. To obtain η=1, a 
BPSK is applied to the Alamouti code, whereas QPSK is applied to Tarokh codes. 
For this spectral efficiency, the Alamouti performs worse than Tarokh codes, but 
this is not true for higher spectral efficiencies [3][14]. The results confirm that the 
performance improves with linear precoding for all tested OSTBC code providing a 
2 dB gain at BER=10-3 with G4 with a very simple linear receiver. These results 
have been obtained with a number of transmit antennas Nt corresponding to their 
respective OSTBC. Since the channel coefficients are uncorrelated, we find the 
same results by applying the OSTBC using subgroups depending on Nt. For 
instance, we have the same results with the Alamouti code using Nt=2,4,8,16 or 32 
transmit antennas for L=32 and Nt/2 subgroups if Nt>2.  
Figure 4 shows the performance of the OSTBC Alamouti code (Nt=2 and Nr=1) 
with linear precoded OFDM for L=4 or L=4096 and with Nc=64 over uncorrelated 
Rayleigh channels (η=1). We see that the rotated Hadamard and FFT precoded 
OFDM give the same results when N is large (N=4096) but this specific Hadamard 
linear precoder performs better than FFT one when L is small (L=4). Moreover, 
these results are similar to the results of MC-CDMA with OSTBC over Rayleigh 
channels, adding the benefits of the spreading in time and frequency dimensions.  
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In this paper, we propose to linearly precode and decode OSTBC systems using a 
particular unitary matrix based on Hadamard or FFT construction. Our scheme has a 
low complexity, which only grows linearly with the size of the unitary matrix and 
not exponentially when more complex detectors are used. Simulation results with 
the specific linear precoders using OSTBC are given for flat independent Rayleigh 
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fadings or OFDM systems. These precoders can be applied to various MIMO 
transmissions in order to exploit spatial, temporal and frequency diversities. We saw 
thanks to simulation results that the precoding method is very efficient for multi-
carrier modulations. We gave an interesting analogy between linear precoded 
OSTBC for flat independent Rayleigh fadings, linear precoded OFDM with OSTBC 
and linear precoded MC-CDMA with OSTBC. One can apply this linear precoding 
with any OSTBC, keeping the linearity of the transmission chain even at the receiver 
part. It is also possible to apply this linear precoding with QOSTBC, but at the 
expense of more complex receiver. Moreover, the proposed scheme suits to several 
multi-antenna configurations and thus can be adapted to channel characteristics. 
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