DEMANDE DE BREVET D'INVENTION

Date de dépôt : 16.12.02.

Priorité :

Date de mise à la disposition du public de la demande : 18.06.04 bulletin 04/25.

Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule

Références à d'autres documents nationaux apparentés :

Demandeur(s) : FRANCE TELECOM Société anonyme — FR.

Inventeur(s) : LE NIR VINCENT, HELARD MARYLINE et LE GOUABLE RODOLPHE.

Titulaire(s) :

Mandataire(s) : CABINET BALLOT.

PROCEDE ET DISPOSITIF MULTI-ANTENNE DE TRANSMISSION DE SIGNAUX.

La présente invention se situe dans le domaine des systèmes de communication sans fil à plusieurs antennes d'émission, correspondant à des systèmes MIMO (pour Multiple Input Multiple Output en langue anglaise) ou à des systèmes MISO (pour Multiple Input Single Output). Selon l'invention, les symboles à émettre sont précédés avec une matrice de précodage linéaire particulière puis codés selon un codage espace-temps par blocs de manière à tirer au maximum parti des diversités temporelle et spatiale permettant en réception un décodage linéaire particulièrement simple et efficace.
PROCEDE ET DISPOSITIF MULTI-ANTENNE
DE TRANSMISSION DE SIGNAUX

La présente invention se situe dans le domaine des systèmes de communication sans fil à plusieurs antennes d'émission, correspondant à des systèmes MIMO (pour Multiple Input Multiple Output en langue anglaise) ou à des systèmes MISO (pour Multiple Input Single Output).

PRESENTATION DE L'ETAT DE LA TECHNIQUE

La figure 1 montre un système de communication sans fil comprenant deux antennes d'émission, E₁ et E₂, et une antenne de réception R₁. Chaque antenne d'émission émet un symbole pendant un intervalle temporel de durée T appelé ci-après intervalle d'émission. Pour cette transmission de symboles, les évanouissements sont
considérés comme constants sur deux intervalles
d’émisison consécutifs. Pour des canaux de Rayleigh, on
considère donc que le canal entre les antennes E_1 et R_1
est égal à $h_1 = \alpha_1 e^{j\beta_1}$ pendant les deux premiers
intervalles d'émisison, notés IT_1 et IT_2, et à $h_3 = \alpha_3 e^{j\beta_3}$
pendant les deux intervalles d'émisison suivants, notés
IT_3 et IT_4. De même, le canal entre les antennes E_2 et
R_1 est égal à $h_2 = \alpha_2 e^{j\beta_2}$ pendant les intervalles IT_1 et
IT_2 et à $h_4 = \alpha_4 e^{j\beta_4}$ pendant les intervalles IT_3 et IT_4.

Le codage espace-temps par blocs exposé dans le
document [1] appliqué aux symboles à transmettre est
donné ci-après pour 2 cas :
- émission de 2 symboles s_1 et s_2 ;
- émission de 4 symboles s_1, s_2, s_3 et s_4.

Dans le premier cas, le codage espace-temps du document
[1] consiste à transmettre, pendant l'intervalles
temporel IT_1, simultanément les symboles s_1 et s_2 puis,
pendant l'intervalles temporel IT_2, les symboles $-s_2^*$ et
s_1^* respectivement à partir des antennes E_1 et E_2. Chaque
antenne d'émisison émet avec une puissance $p/2$.

Comme montré à la figure 2a, si on néglige le bruit
lors de la transmission, les signaux r_1 et r_2 reçus par
latenne de réception R_1, respectivement pendant
l'intervalles IT_1 et l'intervalles IT_2, sont alors :
- $r_1 = h_1 \cdot s_1 + h_2 \cdot s_2$
\[r_2 = -h_1^* s_2 + h_2^* s_1^* \]

où \(^*\) est l'opérateur de conjugaison complexe.

La figure 2b est une représentation linéaire virtuelle mais équivalente du codage espace-temps par blocs de la figure 2a. Elle est obtenue en transformant \(r_2 \) en \(-r_2^* \).

La représentation matricielle mathématique du codage espace-temps est alors la suivante:

\[
\begin{bmatrix}
 s_1 \\
 s_2
\end{bmatrix}
\begin{bmatrix}
 h_1 & -h_2^* \\
 h_2 & h_1^*
\end{bmatrix}
\]

Si, en réception, on applique aux signaux reçus la matrice de décodage \[\begin{bmatrix}
 h_1^* & h_2^* \\
 -h_2 & h_1
\end{bmatrix}, \]
transconjuguée de la matrice de codage \[\begin{bmatrix}
 h_1 & -h_2^* \\
 h_2 & h_1^*
\end{bmatrix}, \]
on obtient :

\[
\begin{bmatrix}
 s_1 \\
 s_2
\end{bmatrix}
\begin{bmatrix}
 h_1 & -h_2^* \\
 h_2 & h_1^*
\end{bmatrix}
\begin{bmatrix}
 h_1^* & h_2^* \\
 -h_2 & h_1
\end{bmatrix}
\]
soit \[\begin{bmatrix}
 A \\
 0
\end{bmatrix} \] avec \(A = |h_1|^2 + |h_2|^2 \).

Etant donné que la matrice de codage/décodage \[\begin{bmatrix}
 A & 0 \\
 0 & A
\end{bmatrix} \] est une matrice diagonale, les symboles émis sont très faciles à détecter en réception.

Dans le cas d'une émission de 4 symboles \(s_1, s_2, s_3 \) et \(s_4 \), ces derniers sont émis sur 4 intervalles d'émission. Le schéma d'émission est le suivant :
<table>
<thead>
<tr>
<th></th>
<th>(IT_1)</th>
<th>(IT_2)</th>
<th>(IT_3)</th>
<th>(IT_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenne (E_1)</td>
<td>(s_1)</td>
<td>(-s^*_2)</td>
<td>(s_3)</td>
<td>(-s^*_4)</td>
</tr>
<tr>
<td>Antenne (E_2)</td>
<td>(s_2)</td>
<td>(s^*_1)</td>
<td>(s_4)</td>
<td>(s^*_3)</td>
</tr>
</tbody>
</table>

Comme montré à la figure 3a, les signaux \(r_1\), \(r_2\), \(r_3\) et \(r_4\) reçus par l'antenne de réception \(R_1\), respectivement pendant les intervalles \(IT_1\), \(IT_2\), \(IT_3\) et \(IT_4\), sont alors:

- \(r_1 = h_1 \cdot s_1 + h_2 \cdot s_2\)
- \(r_2 = -h_1 \cdot s^*_2 + h_2 \cdot s^*_1\)
- \(r_3 = h_3 \cdot s_3 + h_4 \cdot s_4\)
- \(r_4 = -h_3 \cdot s^*_4 + h_4 \cdot s^*_3\)

La figure 3b est une représentation linéaire équivalente du codage espace-temps par blocs de la figure 3a. Le codage espace-temps de la figure 3b peut être représentée par le produit de matrices suivant:

\[
\begin{bmatrix}
 h_1 & -h_2^* & 0 & 0 \\
 h_2 & h_1^* & 0 & 0 \\
 0 & 0 & h_3 & -h_4^* \\
 0 & 0 & h_4 & h_3^*
\end{bmatrix}
\]

Si on applique, en réception, à ce produit de matrices la matrice de décodage

\[
\begin{bmatrix}
 h_1^* & h_2^* & 0 & 0 \\
 -h_2 & h_1 & 0 & 0 \\
 0 & 0 & h_3^* & h_4^* \\
 0 & 0 & -h_4 & h_3
\end{bmatrix}
\]

on obtient:
\[
\begin{bmatrix}
A & 0 & 0 & 0 \\
0 & A & 0 & 0 \\
0 & 0 & B & 0 \\
0 & 0 & 0 & B \\
\end{bmatrix}
\]
avec \(A = |h_1|^2 + |h_2|^2 \) et \(B = |h_3|^2 + |h_4|^2 \)

De même que pour le cas précédent, la matrice de codage/décodage étant diagonale, il est très facile de déte...
<table>
<thead>
<tr>
<th>Antenne</th>
<th>IT₁</th>
<th>IT₂</th>
<th>IT₃</th>
<th>IT₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>E₁</td>
<td>s₁</td>
<td>-s₂*</td>
<td>-s₃*</td>
<td>s₄</td>
</tr>
<tr>
<td>E₂</td>
<td>s₂</td>
<td>s₁*</td>
<td>-s₄*</td>
<td>-s₃</td>
</tr>
<tr>
<td>E₃</td>
<td>s₃</td>
<td>-s₄*</td>
<td>s₁*</td>
<td>-s₂</td>
</tr>
<tr>
<td>E₄</td>
<td>s₄</td>
<td>s₃*</td>
<td>s₂*</td>
<td>s₁</td>
</tr>
</tbody>
</table>

Chaque symbole est émis avec une puissance p/4 sur chaque antenne et pour chaque intervalle IT₁. Comme montré à la figure 5a, si on néglige les bruits lors de la transmission, les signaux r₁, r₂, r₃ et r₄ alors reçus par l'antenne de réception R₁, respectivement pendant les intervalles IT₁, IT₂, IT₃ et IT₄, sont :

- r₁ = h₁ ⋅ s₁ + h₂ ⋅ s₂ + h₃ ⋅ s₃ + h₄ ⋅ s₄
- r₂ = -h₁ ⋅ s₂* + h₂ ⋅ s₁* - h₃ ⋅ s₄* + h₄ ⋅ s₃*
- r₃ = -h₁ ⋅ s₃* - h₂ ⋅ s₄* + h₃ ⋅ s₁* + h₄ ⋅ s₂*
- r₄ = h₁ ⋅ s₄ - h₂ ⋅ s₃ - h₃ ⋅ s₂ + h₄ ⋅ s₁

La figure 5b est une représentation linéaire équivalente du codage espace-temps par blocs de la figure 5a. Le codage espace-temps de la figure 5b peut être représentée par le produit de matrices suivant :

\[
\begin{bmatrix}
 h₁ & -h₂^* & -h₃^* & h₄ \\
 h₂ & h₁^* & -h₄^* & -h₃ \\
 h₃ & -h₄^* & -h₁^* & -h₂ \\
 h₄ & h₃^* & h₂^* & h₁
\end{bmatrix} \cdot
\begin{bmatrix}
 s₁ \\
 s₂ \\
 s₃ \\
 s₄
\end{bmatrix}
\]
Si on applique, en réception, à ce produit de matrices
\[
\begin{bmatrix}
h_1^* & h_2^* & h_3^* & h_4^* \\
-h_2 & h_1 & -h_4 & h_3 \\
-h_3 & -h_4 & -h_1 & h_2 \\
h_4^* & -h_3^* & -h_2^* & h_1^*
\end{bmatrix}
\]
la matrice de décodage, on obtient:
\[
\begin{bmatrix}
A+B & 0 & 0 & \text{In} \\
h_2 & A+B & -\text{In} & 0 \\
0 & -\text{In} & A+B & 0 \\
\text{In} & 0 & 0 & A+B
\end{bmatrix}
\]
avec \(\text{In} = 2 \cdot \Re \{h_1 \cdot h_2^* - h_2 \cdot h_3^*\} \)

La matrice de codage/décodage n'est plus diagonale et comporte des termes dits d'interférence intersymbole. Ces interférences sont très fortes et nécessitent généralement une détection des symboles par un détecteur à maximum de vraisemblance (Maximum Likelihood Detection langue anglaise) complexe à mettre en œuvre. Afin d'exploiter au mieux la diversité, Da Silva et Correia proposent de précoder les symboles avant leur codage espace-temps.

Ils proposent pour cela d'utiliser une matrice de rotation complexe orthonormale \(A8 \) définie de la manière suivante:
\[
A_8 = \begin{bmatrix} A_4 & A_4^* \\ A_4^* & -A_4 \end{bmatrix} \frac{1}{2\sqrt{2}} \text{ avec } A_4 = \begin{bmatrix} e^{j\theta} & -je^{j\theta} & e^{j\theta} & -je^{j\theta} \\ -je^{-j\theta} & e^{-j\theta} & -je^{-j\theta} & e^{-j\theta} \\ e^{-j\theta} & -je^{-j\theta} & e^{-j\theta} & -je^{-j\theta} \\ je^{j\theta} & e^{j\theta} & -je^{j\theta} & e^{j\theta} \end{bmatrix}
\]
Ce précodage permet de modifier la matrice globale d'émission/réception des symboles tout en gardant la détection des symboles par maximum de vraisemblance.

Un but de l'invention est de proposer un procédé permettant de s'affranchir de la détection des symboles par maximum de vraisemblance en réception.

Un autre but de l'invention est de proposer un procédé d'émission de symboles permettant d'émettre avec deux antennes d'émission ou plus et d'avoir en réception une détection simple des symboles émis.

PRESENTATION DE L'INVENTION

Selon l'invention, ces buts sont atteints en effectuant une étape de précodage avec une matrice de précodage particulière permettant d'obtenir, en réception, une détection des symboles par application de la matrice de précodage inverse.

L'invention a pour objet un procédé d'émission d'un signal composé d'une pluralité de symboles à partir de \(n_e \) antennes d'émission, \(n_e \) étant un entier supérieur ou égal à 2,

caractérisé en ce qu'il comporte les étapes suivantes :
- précoder les symboles à émettre de façon à générer, pour chaque paquet de \(m \) symboles consécutifs à émettre, \(m \) combinaisons linéaires de symboles, \(m \) étant un nombre entier supérieur ou égal à \(n_e \), et
- pour chaque paquet de \(m \) symboles consécutifs à émettre, coder lesdites \(m \) combinaisons linéaires selon un codage espace-temps de manière à émettre les uns après les autres des blocs de \(q \) combinaisons linéaires codées avec \(q \) entier inférieur ou égal à \(m \), chaque bloc de \(q \) combinaisons linéaires codées étant émis à partir de \(q' \) antennes d'émission, \(q' \) étant un entier supérieur ou égal \(q \), chacune des combinaisons linéaires codées dudit bloc de \(q \) combinaisons linéaires codées étant émise pendant \(q'' \) intervalles d'émission temporels consécutifs propres audit bloc à partir de l'une desdites \(n_e \) antennes d'émission, \(q'' \) étant supérieur ou égal à \(q \).

Si on utilise le codage espace-temps présenté dans le document [1],
- les combinaisons linéaires codées sont émises par blocs de 2 (\(q=2 \)) pendant 2 intervalles de temps consécutifs (\(q''=2 \));
- les combinaisons linéaires codées sont émises à partir de \(n_e \) antennes, \(n_e \) allant de 2 à \(m \);
- chaque bloc de deux combinaisons linéaires est émis à partir de deux antennes d'émission (\(q'=2 \));
- si \(n_e=m \), chaque combinaison linéaire codée est émise à partir d'une antenne d'émission qui lui est propre.

Avantageusement, le procédé comprend en outre, avant l'étape de codage espace-temps, une étape d'entrelacement des combinaisons linéaires pour modifier l'ordre temporel de celles-ci et augmenter ainsi la diversité spatiale des émissions. La taille de
la matrice utilisée pour réaliser l'entrelacement est \(m' \times m' \), avec \(m' \) supérieur ou égal à \(m \).

Selon l'invention, l'étape de précodage consiste à appliquer, à chaque vecteur de \(m \) symboles consécutifs à émettre, une matrice de précodage orthonormée complexe de dimension \(m \times m \) de manière à former lesdites \(m \) combinaisons linéaires de symboles. Ladite matrice de précodage est de préférence une matrice ou une combinaison de matrices appartenant au groupe spécial unitaire \(SU(m) \).

En réception, il suffit selon l'invention d'appliquer la matrice de codage espace-temps inverse et la matrice de précodage inverse pour retrouver les symboles émis.

On peut prévoir que ladite matrice de précodage est le produit de Kronecker d'une matrice de Hadamard d'ordre \(\frac{m}{k} \) et d'une matrice du groupe spécial unitaire \(SU(k) \), \(k \) étant un entier supérieur ou égal à 2.

On peut encore prévoir que la matrice du groupe Spécial Unitaire \(SU(2) \) est du type

\[
[SU(2)] = \begin{bmatrix} a & b \\ -b^* & a^* \end{bmatrix} = \begin{bmatrix} e^{i \theta_1} \cos \eta & e^{i \theta_2} \sin \eta \\ -e^{-i \theta_1} \sin \eta & e^{-i \theta_2} \cos \eta \end{bmatrix}
\]

avec \(\eta = \frac{\pi}{4} + k' \frac{\pi}{2} \).

\(\theta_1 = -\theta_2 + \frac{\pi}{2} + k'' \pi \) et \(\theta_2 = \theta_1 - \frac{\pi}{2} \), \(k' \) et \(k'' \) étant des entiers relatifs.

Aussi, l'invention concerne également un procédé de réception d'un signal composé d'une pluralité de symboles émis à partir de \(n_a \) antennes d'émission, \(n_a \) étant supérieur ou égal à 2, à l'aide de \(n_r \) antennes de réception, \(n_r \) étant un entier supérieur ou égal à 1, lesdits symboles étant émis selon l'un des procédés décrits ci-dessus,
caractérisé en ce qu'il consiste à décoder lesdites m combinaisons linéaires codées reçues sur chacune desdites n, antennes de réception en appliquant une étape de codage espace-temps inverse et une étape de précodage linéaire inverse de celles dudit procédé d'émission de manière à récupérer, à partir desdites m combinaisons linéaires codées émises, les m symboles correspondants.

L'invention concerne également un système de communication sans fil caractérisé en ce qu'il comprend des moyens d'émission pour mettre en œuvre un procédé d'émission de symboles tel que défini ci-dessus et le procédé de réception de symboles décrit ci-dessus.

Ces caractéristiques et avantages de la présente invention, ainsi que d'autres, apparaîtront plus clairement à la lecture de la description suivante, faite en relation avec les dessins annexés, dans lesquels :
- la figure 1, déjà décrite, représente un système de communication sans fil avec deux antennes d'émission et une antenne de réception;
- les figures 2a et 2b, déjà décrites, illustrent la transmission de 2 symboles dans un système à 2 antennes d'émission selon un premier procédé connu;
- les figures 3a et 3b, déjà décrites, illustrent la transmission de 4 symboles sans précodage dans un système à 2 antennes d'émission selon ledit premier procédé connu;
- la figure 4, déjà décrite, représente un système de communication sans fil avec quatre antennes d'émission et une antenne de réception;
- les figures 5a et 5b, déjà décrites, illustrent la transmission de 4 symboles dans un système à 4 antennes d'émission selon un second procédé connu;
- la figure 6 représente schématiquement les opérations du procédé d'émission et du procédé de réception selon l'invention;
- les figures 7a et 7b illustrent la transmission de 4 symboles précodés dans un système à 2 ou 4 antennes d'émission selon le procédé d'émission de l'invention; et
- la figure 8 illustre les performances du procédé de l'invention en termes de taux d'erreur binaire.

Dans la suite de la description, n_e et n_r désignent le nombre d'antennes d'émission et le nombre d'antennes de réception du système de communication sans fil.

Par souci de simplification, on va tout d'abord considérer que $n_r=1$.

En référence à la figure 6, l'émission consiste à précoder des paquets de m symboles à émettre avec une matrice de précodage linéaire particulière puis à coder les combinaisons linéaires résultant de cette opération de précodage selon un codage espace-temps. En réception, les symboles reçus sont décodés par application de la matrice de codage espace-temps inverse et de la matrice de précodage inverse.

L'opération de précodage linéaire consiste à appliquer au paquet de m symboles à émettre une matrice de précodage linéaire PREC appartenant au groupe Spécial Unitaire SU(m).
Pour émettre par exemple des paquets de 4 symboles consécutifs, on utilise la matrice PREC suivante :

$$\text{PRE}C = \frac{1}{\sqrt{2}} \begin{bmatrix} [\text{SU}(2)] & [\text{SU}(2)] \\ [\text{SU}(2)] & [-\text{SU}(2)] \end{bmatrix}$$

Les matrices du groupe SU(2), notées ci-dessus $[\text{SU}(2)]$, sont des matrices carrées de dimension 2 ayant les propriétés suivantes :

- $[\text{SU}(2)] = \begin{bmatrix} a & b \\ -b^* & a^* \end{bmatrix}$ avec $\det[\text{SU}(2)]=1$ et où $\det[A]$ est le déterminant de la matrice $[A]$ et a, b sont des nombres complexes; et

- $[\text{SU}(2)]^\dagger = [\text{SU}(2)]^\dagger = \begin{bmatrix} a^* & -b \\ b^* & a \end{bmatrix}$ où $[\text{SU}(2)]^\dagger$ est la matrice transconjuguée de la matrice $[\text{SU}(2)]$.

La matrice de précodage PREC, donnée ci-dessus, qui appartient en fait au groupe SU(4), peut être obtenu en effectuant le produit de Kronecker d'une matrice de Hadamard H_2 d'ordre 2 et d'une matrice $[\text{SU}(2)]$:

$$\text{PRE}C = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes [\text{SU}(2)] = \frac{1}{\sqrt{2}} H_2 \otimes [\text{SU}(2)]$$

Avec le codage Alamouti, les combinaisons linéaires sont émises par blocs de deux à partir des antennes d'émission du système. Les blocs de combinaisons linéaires sont émis les uns après les autres pendant deux intervalles d'émission consécutifs à partir de deux antennes d'émission. Chacune des combinaisons linéaires du bloc est émise avec une puissance p/2 à partir d'une des deux antennes d'émission associées audit bloc.

Pour un système à 4 antennes d'émission, les combinaisons linéaires sont émises par exemple par paquets de 4 symboles sur 4 intervalles d'émission consécutifs comme illustré à la figure 7a. Le schéma d'émission est résumé dans la table suivante :

<table>
<thead>
<tr>
<th>Antenne</th>
<th>IT₁</th>
<th>IT₂</th>
<th>IT₃</th>
<th>IT₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>E₁</td>
<td>s₁</td>
<td>-s₂</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E₂</td>
<td>s₂</td>
<td>s₁</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E₃</td>
<td>0</td>
<td>0</td>
<td>s₃</td>
<td>-s₄</td>
</tr>
<tr>
<td>E₄</td>
<td>0</td>
<td>0</td>
<td>s₄</td>
<td>s₃</td>
</tr>
</tbody>
</table>

Chaque symbole est émis avec une puissance p/2. Ces combinaisons linéaires peuvent également être émises à
partir de 2 antennes d'émission au lieu de 4. On arriverait alors au schéma d'émission de la figure 3a dans lequel les symboles émis seraient précédés. Dans ce cas de figure, les antennes E₁ et E₃ sont une seule et même antenne. De même, les antennes E₂ et E₄ sont une seule et même antenne.

Si on néglige le bruit lors de la transmission, les signaux \(r₁, r₂, r₃ \) et \(r₄ \) reçus par l'antenne de réception \(R₁ \), respectivement pendant les intervalles \(IT₁, IT₂, IT₃ \) et \(IT₄ \), sont :

\[
\begin{align*}
 r₁ &= h₁ \cdot s₁ + h₂ \cdot s₂ \\
 r₂ &= -h₁ \cdot s₂ + h₂ \cdot s₁ \\
 r₃ &= h₃ \cdot s₃ + h₄ \cdot s₄ \\
 r₄ &= -h₃ \cdot s₄ - h₄ \cdot s₃
\end{align*}
\]

La figure 7b est une représentation linéaire équivalente du codage espace-temps par blocs de la figure 7a. Le codage espace-temps de la figure 7b peut être représentée par le produit de matrices suivant :

\[
\begin{bmatrix}
 h₁ & -h₂ & 0 & 0 \\
 h₂ & h₁ & 0 & 0 \\
 0 & 0 & h₃ & -h₄ \\
 0 & 0 & h₄ & h₃
\end{bmatrix}
\]

Apres application de la matrice de codage espace-temps inverse et de la matrice de précédage
inverse \(\text{PREC}^{-1} = \frac{1}{\sqrt{2}} \begin{bmatrix} \text{[SU(2)]}^{-1} & \text{[SU(2)]}^{-1} \end{bmatrix} \), on obtient la matrice globale \(G \) suivante :

\[
G = \text{PREC} \cdot \begin{bmatrix}
A & 0 & 0 & 0 \\
0 & A & 0 & 0 \\
0 & 0 & B & 0 \\
0 & 0 & 0 & B
\end{bmatrix} \cdot \text{PREC}^{-1} = \frac{1}{2} \begin{bmatrix}
A+B & 0 & A-B & 0 \\
0 & A+B & 0 & A-B \\
A-B & 0 & A+B & 0 \\
0 & A-B & 0 & A+B
\end{bmatrix}
\]

soit \(G = \frac{A+B}{2} \mathbf{I} + \mathbf{J} \)

où - \(\mathbf{I} \) est la matrice identité \(4 \times 4 \), et
- \(\mathbf{J} \) matrice est une matrice d'interférence définie ainsi :

\[
\mathbf{J} = \frac{1}{2} \begin{bmatrix}
0 & 0 & A-B & 0 \\
0 & 0 & 0 & A-B \\
A-B & 0 & 0 & 0 \\
0 & A-B & 0 & 0
\end{bmatrix}
\]

A noter que cette formulation matricielle s'applique à un système comportant 2 ou 4 antennes d'émission.

Les termes de la diagonale en \(\frac{A+B}{2} = \frac{1}{2} \left(|h_1|^2 + |h_2|^2 + |h_3|^2 + |h_4|^2 \right) \) de la matrice \(G \) obéissent à une loi de \(\chi^2 \) (canaux de Rayleigh indépendants entre eux). Il est donc très facile de retrouver les symboles en réception.

Les termes d'interférence intersymbole en \(\frac{A-B}{2} = \frac{1}{2} \left(|h_1|^2 + |h_2|^2 - |h_3|^2 - |h_4|^2 \right) \) résultent de la différence de deux lois de \(\chi^2 \). Ces termes sont donc minimes et
peuvent être ignorés en réception. Ainsi, les symboles sont donc directement détectés après application de la matrice de précodage inverse. Une détection par maximum de vraisemblance pourrait être utilisée à la place de l'étape de précodage inverse. Cela apporterait des résultats légèrement meilleurs mais augmenterait d'une manière non négligeable la complexité du récepteur.

Les valeurs a et b de la matrice [SU(2)] sont de la forme: \(a = e^{i\theta_1} \cdot \cos \eta \) et \(b = e^{i\theta_2} \cdot \sin \eta \). Certaines valeurs de \(\eta \), \(\theta_1 \) et \(\theta_2 \) permettent de réduire le taux d'erreur binaire lors de la transmission des symboles.

De préférence, on choisira \(\eta = \frac{\pi}{4} + k \cdot \frac{\pi}{2} \) afin de pondérer équitablement la diversité exploitée par le codage espace-temps d'Alamouti et \(\theta_1 = -\theta_2 + \frac{\pi}{2} + k' \pi \) pour maximiser le déterminant de la matrice \(G \) et pour minimiser les termes d'interférence. \(k' \) et \(k'' \) sont des entiers relatifs. Par ailleurs, on a déterminé de manière empirique que les meilleures performances de taux d'erreur binaire sont obtenues pour \(\theta_2 = \theta_1 - \frac{\pi}{2} \).

Dans un mode de réalisation préféré, on choisit:

\[\eta = \frac{\pi}{4} \]
\[\theta_1 = \frac{5\pi}{4} \]
\[\theta_2 = \frac{3\pi}{4} \]
La taille de la matrice de précodage PREC peut être étendue à 8x8. La matrice PREC est alors égale à :

$$\text{PREC} = \frac{1}{\sqrt{2}} H_4 \otimes [\text{SU}(2)]$$

où H_4 est la matrice de Hadamard d'ordre 4.

Le codage espace-temps est alors effectué sur 2, 4 ou 8 antennes d'émission. Les symboles à émettre sont alors précodés par paquets de 8. L'émission des combinaisons linéaires de ces 8 symboles est effectuée sur 8 intervalles d'émission.

La matrice de codage/décodage est alors la suivante :

$$
\begin{bmatrix}
A & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & A & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & B & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & B & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & C & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & C & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & D & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & D \\
\end{bmatrix}
$$

avec $A=|h_1|^2+|h_2|^2$, $B=|h_3|^2+|h_4|^2$, $C=|h_5|^2+|h_6|^2$ et $D=|h_7|^2+|h_8|^2$ où h_i représente le $i^{ème}$ canal entre l'une des antennes d'émission et l'antenne de réception (canal constant sur 2 intervalles d'émission consécutifs).

La matrice globale G est alors la suivante :
Les termes utiles (à savoir ceux de la diagonale) obéissent à une loi de χ^2_{16}.

Pour une matrice de précodage construite sur le même principe, on aurait en généralisant :

<table>
<thead>
<tr>
<th>Matrice de précodage</th>
<th>Taille matrice précodage</th>
<th>Diversité des termes de la diag.</th>
<th>Diversité des termes interférents</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_2 \otimes SU(2)$</td>
<td>4×4</td>
<td>χ^2_3</td>
<td>Diff. de χ^2_2</td>
</tr>
<tr>
<td>$H_4 \otimes SU(2)$</td>
<td>8×8</td>
<td>χ^2_{16}</td>
<td>Diff. de χ^2_8</td>
</tr>
<tr>
<td>$H_2 \otimes SU(4)$</td>
<td>8×8</td>
<td>χ^2_{16}</td>
<td>Diff. de χ^2_8</td>
</tr>
<tr>
<td>$H_{m/2} \otimes SU(2)$</td>
<td>$m \times m$</td>
<td>χ^2_{2m}</td>
<td>Diff. de χ^2_{m}</td>
</tr>
<tr>
<td>$H_{m/k} \otimes SU(k)$</td>
<td>$m \times m$</td>
<td>χ^2_{2m}</td>
<td>Diff. de χ^2_{m}</td>
</tr>
</tbody>
</table>

À mesure que le produit m croît, la loi de χ^2_{2m} tend vers une loi gaussienne (théorème de la limite centrale) et l'exploitation de la diversité est améliorée.

Une caractéristique importante de l'invention est que l'on peut agir de manière indépendante sur le nombre d'antennes d'émission n_a et sur la taille de la matrice de précodage m. Une même taille de matrice de précodage $m \times m$ peut s'appliquer à plusieurs nombres d'antennes.
d'émission, de 2 à m. Dans l'exemple de la figure 7a, on a pris \(m \geq 4 \) et \(n_0 = 4 \).

Pour une modulation à \(2^m \) états, l'augmentation de l'exploitation de la diversité s'accroît avec la taille de la matrice de précodage, avec une complexité qui augmente avec cette taille de matrice en \(m^3 \). En utilisant une transformée de Hadamard rapide, on peut transformer cette complexité en \(m \cdot \log(m) \).

Si on utilise un détecteur à maximum de vraisemblance en réception, la complexité croît en \(M^m \).

On peut encore améliorer la diversité du système, en entrelaçant les combinaisons linéaires issues de l'étape de précodage. Un exemple de matrice d'entrelacement \(\text{ENT} \) de taille 8x8 est donnée ci-après

\[
\text{ENT} =
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

En réception, une étape de désentrelacement entre l'étape de codage espace-temps inverse et l'étape de précodage inverse. L'étape de désentrelacement est
effectuée à l'aide de la matrice $\text{ENT}^{-1} = \text{ENT}^T$ (\(\text{ENT}^T\) est la transposée de \(\text{ENT}\))

On obtient alors :

$$
\begin{bmatrix}
A & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & A & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & B & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & B & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & C & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & C & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & D \\
0 & 0 & 0 & 0 & 0 & 0 & D \\
\end{bmatrix}
\begin{bmatrix}
A & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & C & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & B & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & D & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & A & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & C & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & B \\
0 & 0 & 0 & 0 & 0 & 0 & D \\
\end{bmatrix}
$$

La matrice globale (précodage, entrelacement, codage, codage inverse, désentrelacement, précodage inverse) du système devient alors :

$$G = \begin{bmatrix} [G_1] & [G_2] \\ [G_2] & [G_1] \end{bmatrix}$$

avec

$$
\begin{bmatrix}
A + B + C + D & j(A + B - C - D) & A - B + C - D & j(A - B - C + D) \\
-j(A + B - C - D) & A + B + C + D & -j(A - B - C + D) & A - B + C - D \\
A - B + C - D & j(A - B - C + D) & A + B + C + D & j(A + B - C - D) \\
-j(A - B - C + D) & A - B + C - D & -j(A + B - C - D) & A + B + C + D \\
\end{bmatrix}
$$

et

$$
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
$$
On constate alors que l'entrelacement permet d'obtenir une diversité d'ordre χ_2^{16} sur la diagonale au lieu de χ_2^{8} sans entrelacement.

<table>
<thead>
<tr>
<th>Entre-lacement</th>
<th>Taille matrice précédage</th>
<th>Diversité termes de la diag.</th>
<th>Diversité termes interférents</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_{m/k} \otimes SU(k)$</td>
<td>Non</td>
<td>$m \times m$</td>
<td>χ_2^{2m}</td>
</tr>
<tr>
<td>$H_{m/k} \otimes SU(k)$</td>
<td>Oui</td>
<td>$m \times m'$ avec $m' \geq m$</td>
<td>χ_2^{4m}</td>
</tr>
</tbody>
</table>

L'invention n'a été décrite que pour un système à 1 antenne de réception. Bien entendu, il peut être appliqué à un système à n_r antennes de réception.

Les performances du procédé de l'invention sont illustrées à la figure 8 par des courbes de taux d'erreur binaire TEB en fonction du rapport signal sur bruit $Eb/N0$. Cette figure comprend 8 courbes :

- AWGN : Canal Gaussien;
- SISO : Système de transmission à 1 antenne d'émission et 1 antenne de réception avec un canal de Rayleigh;
- MISO 2x1 Al. : Système de transmission à 2 antennes d'émission et 1 antenne de réception avec un canal de Rayleigh utilisant un codage espace-temps en bloc d'Alamouti;

- MISO 2x2 : Système de transmission à 2 antennes d'émission et 2 antennes de réception avec un canal de Rayleigh utilisant un codage espace-temps en bloc d'Alamouti;

- 2 Al.+prec4+entrIQ: Système de transmission à 2 antennes d'émission et 1 antenne de réception avec un canal de Rayleigh utilisant un matrice de précodage 4x4 obtenue à partir de matrices SU(2) et un entrelacement IQ(entrelacement différent en phase et en quadrature);

- 2 Al.+prec8+entrIQ: Système de transmission à 2 antennes d'émission et 1 antenne de réception avec un canal de Rayleigh utilisant un matrice de précodage 8x8 obtenue à partir de matrices SU(2) et un entrelacement IQ(entrelacement différent en phase et en quadrature);

- 2 Al.+prec16+entrIQ: Système de transmission à 2 antennes d'émission et 1 antenne de réception avec un canal de Rayleigh utilisant un matrice de précodage 16x16 obtenue à partir de matrices SU(2) et un entrelacement IQ(entrelacement différent en phase et en quadrature);

- 2 Al.+prec32+entrIQ: Système de transmission à 2 antennes d'émission et 1 antenne de réception avec un canal de Rayleigh utilisant un matrice de précodage 32x32 obtenue à partir de matrices SU(2)
et un entrelacement IQ(entrelacement différent en phase et en quadrature).

On peut voir que si on augmente la taille de la matrice de précodage, on exploite de mieux en mieux la diversité. En effet, pour une taille de matrice 4x4, les performances sont meilleures que le système connu d' Alamouti. Avec une taille de matrice plus importante, on dépasse même les performances d'un système à diversité d'ordre 4 optimal qui est le MIMO 2x2 et ce à des rapports signaux sur bruit de plus en plus faibles. Ce système à diversité d'ordre 4 optimal correspondrait s'il existait au code espace-temps à 4 antennes exploitant la diversité maximale.
REVENDICATIONS

1) Procédé d'émission d'un signal composé d'une pluralité de symboles à partir de \(n_e \) antennes d'émission, \(n_e \) étant un entier supérieur ou égal à 2, caractérisé en ce qu'il comporte les étapes suivantes :
 - précoder les symboles à émettre de façon à générer, pour chaque paquet de \(m \) symboles consécutifs à émettre, \(m \) combinaisons linéaires de symboles, \(m \) étant un nombre entier supérieur ou égal à \(n_e \), et
 - pour chaque paquet de \(m \) symboles consécutifs à émettre, coder lesdites \(m \) combinaisons linéaires selon un codage espace-temps de manière à émettre les uns après les autres des blocs de \(q \) combinaisons linéaires codées avec \(q \) entier inférieur ou égal à \(m \), chaque bloc de \(q \) combinaisons linéaires codées étant émis à partir de \(q' \) antennes d'émission, \(q' \) étant un entier supérieur ou égal à \(q \), chacune des combinaisons linéaires codées dudit bloc de \(q \) combinaisons linéaires codées étant émise pendant \(q'' \) intervalles d'émission temporels consécutifs propres audit bloc à partir de l'une desdites \(n_e \) antennes d'émission, \(q'' \) étant un entier supérieur ou égal à \(q \).

2) Procédé selon la revendication 1, caractérisé en ce que \(q, q' \) et \(q'' \) sont égaux à 2.

3) Procédé selon la revendication 2, caractérisé en ce que \(n_e \) est égal à 2.
4) Procédé selon la revendication 1, caractérisé en ce que le nombre \(n_a\) d'antennes d'émission est égal à \(m\), chaque combinaison linéaire codée étant émise à partir d'une antenne d'émission qui lui est propre.

5) Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comprend en outre, avant l'étape de codage espace-temps, une étape d'entrelacement desdites combinaisons linéaires pour modifier l'ordre temporel de celles-ci.

6) Procédé selon la revendication 5, caractérisé en ce que ladite étape d'entrelacement est effectuée à l'aide d'une matrice d'entrelacement de taille \(m' \times m'\), \(m'\) étant supérieur ou égal à \(m\).

7) Procédé selon l'une des revendications précédentes, caractérisé en ce que l'étape de précodage consiste à appliquer, à chaque vecteur de \(m\) symboles consécutifs à émettre, une matrice de précodage orthonormée complexe de dimension \(m \times m\) de manière à former lesdites \(m\) combinaisons linéaires de symboles.

8) Procédé selon la revendication 7, caractérisée en ce que ladite matrice de précodage est une matrice ou une combinaison de matrices appartenant au groupe spécial unitaire SU(\(m\)).

9) Procédé selon la revendication 8, caractérisé en ce que ladite matrice de précodage est le produit de
Kronecker d'une matrice de Hadamard d'ordre $\frac{m}{k}$ et d'une matrice du groupe spécial unitaire $SU(k)$, k étant un entier supérieur ou égal à 2.

10) Procédé selon la revendication 9, caractérisé en ce que la matrice du groupe Spécial Unitaire $SU(2)$ est du type

\[
[SU(2)]=\begin{bmatrix}
 a & b \\
 -b^* & a^*
\end{bmatrix} = \begin{bmatrix}
 e^{i\theta_1} \cos \eta & e^{i\theta_1} \sin \eta \\
 -e^{-i\theta_2} \sin \eta & e^{-i\theta_2} \cos \eta
\end{bmatrix} \text{ avec } \eta = \frac{\pi}{4} + k' \frac{\pi}{2},
\]

$\theta_1 = -\theta_2 + \frac{\pi}{2} + k'' \pi$ et $\theta_2 = \theta_1 - \frac{\pi}{2}$, k' et k'' étant des entiers relatifs.

11) Procédé de réception d'un signal composé d'une pluralité de symboles émis à partir de n_e antennes d'émission, n_e étant supérieur ou égal à 2, à l'aide de n_r antennes de réception, n_r étant un entier supérieur ou égal à 1, lesdits symboles étant émis selon le procédé d'émission de l'une des revendications 1 à 10, caractérisé en ce qu'il consiste à décoder lesdites m combinaisons linéaires codées reçues sur chacune desdites n_r antennes de réception en appliquant une étape de codage espace-temps inverse et une étape de précodage linéaire inverse de celles dudit procédé d'émission de manière à récupérer, à partir desdites m combinaisons linéaires codées émises, les m symboles émis.

12) Système de communication sans fil caractérisé en ce qu'il comprend des moyens d'émission pour mettre en
œuvre le procédé d'émission de symboles de l'une quelconque des revendications 1 à 10.

13) Système selon la revendication 12, caractérisé en ce qu'il comprend en outre des moyens pour mettre en œuvre le procédé de réception de symboles de la revendication 11.
FIG. 1
(Art antérieur)

FIG. 2a
(Art antérieur)

FIG. 2b
(Art antérieur)

FIG. 3a
(Art antérieur)

FIG. 3b
(Art antérieur)
FIG. 8
RAPPORT DE RECHERCHE PRÉLIMINAIRE

établi sur la base des dernières revendications déposées avant le commencement de la recherche

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernées</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>* le document en entier *</td>
<td>5,6,9,10</td>
<td></td>
</tr>
</tbody>
</table>

DOMAINE TECHNIQUES

RECHERCHES (Int.CL.7)

<table>
<thead>
<tr>
<th>Clé</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO4L</td>
<td></td>
</tr>
</tbody>
</table>

DATE D’ACHIEVEMENT DE LA RECHERCHE

1 septembre 2003

Toumpoulidis, T