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Abstract— Linear Precoded OFDM systems with channel cod-
ing have already been demonstrated to efficiently exploit fre-
quency and time diversities of the transmission channel. Itera-
tive receivers which iteratively perform channel decoding and
deprecoding provide very good performance. In the literature,
these iterative receivers are based on maximum likelihood based
functions for both linear deprecoding and channel decoding
leading to a high complexity for large size of precoding matrices
or high modulation order. In this paper, a simple linear operation
instead of a maximum likelihood based one is carried out for
deprecoding allowing the use of large precoding matrices and
thus an optimal exploitation of the signal diversity.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing technique
(OFDM) has widely been studied for wireless broadband
multimedia applications over the last decade. The main ad-
vantages of OFDM are its robustness in the case of frequency
selective fading channels and its performance for portable and
mobile reception [1]. Due to the large number of orthogonal
subcarriers, the symbol duration is much higher than the chan-
nel time dispersion, minimizing the Inter-Symbol Interference
(ISI). Furthermore, residual ISI is suppressed thanks to the
insertion of a guard interval larger than the channel time
delay at the beginning of each symbol. On the other hand,
Linear Precoding (LP) also called constellation rotation or
signal shaping has already been demonstrated to efficiently
exploit both frequency and time diversities when combined
with OFDM (LP-OFDM) [2]. The studied linear precoding
technique is based on linear combinations of complex symbols
and thus do not require any channel knowledge at the transmit-
ter side and therefore exploits signal-space diversity without
bandwidth expansion. In [2], the deprecoding stage is based
on Maximum Likelihood (ML) algorithm which complexity
exponentially increases with the precoding length and the
modulation order. In [3], a sub-optimal linear receiver based on
Minimum Mean Square Error (MMSE) criterion is proposed
in order to cope with interferences brought by transmission
of linear precoded symbols By applying the turbo principle
described in [4], interferences can efficiently be cancelled in
an iterative process where deprecoding and channel decoding
are performed with ML-based algorithms leading to high
complexity for large precoding matrix or high modulation
order. In this paper, an iterative receiver with an MMSE-based
deprecoding is proposed. Simulation results over theoretical
time and frequency fading channel show that performance

close to the Gaussian curve is reached at high signal-to-
noise ratio (SNR) when the diversity order brought by linear
precoding is large. Low complexity at the receiver is conserved
even for large precoding matrix size and high modulation
order. Results over more realistic channels are also presented
stressing on the influence of the size of the interleaver on
performance.

II. LINEAR PRECODING

The principle of linear precoding is to linearly combine
the L symbols of vector x with a complex unitary matrix
ΘL of size L × L in order to bring diversity between each
component of the resulting vector s = ΘL · x. By using
ML receivers, authors of [2] show that a L-order diversity
can be achieved. Moreover this diversity is brought without
bandwidth expansion and without any channel knowledge at
the transmitter. Nevertheless the use of ML receiver limits
the exploitation of the signal diversity to low values of L. In
[3], a non-iterative MMSE receiver with reduced complexity
linear MMSE receiver for deprecoding is presented allowing
the use of large matrix and thus better signal-shape diversity
exploitation. In this paper, a unitary precoding matrix based
on a Hadamard construction is chosen where:

ΘL =

√
2
L

[
ΘL/2 ΘL/2

ΘL/2 −ΘL/2

]
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Θ2 =
1
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]
III. LINEAR PRECODED OFDM WITH CHANNEL CODING

The LP-OFDM system including channel coding is de-
scribed in Fig. 1(a). At the transmitter side, information bits d
are first convolutional encoded, bit interleaved (Πb) and then
mapped to complex symbols x with variance σ2

x belonging
to the constellation A . The linear precoding represented by
matrix ΘL is applied to x. The precoded symbols s are
OFDM modulated and transmitted to the channel. In practice
OFDM modulation and demodulation are easily carried out by
performing respectively Inverse Fast Fourier Transform (IFFT)
and FFT operations of size N . Furthermore the insertion of
a guard interval chosen greater than the delay spread of the
channel guarantees the absence of inter-symbol interference.
Thus the OFDM modulation, the multi-path fading channel



and the OFDM demodulation can be represented by an equiv-
alent flat fading channel (see Fig. 1(b)) on each subcarrier
such as:

rk = hk · sk + nk (2)

where sk is the precoded symbol before OFDM modulation,
hk is the attenuation coefficient of the kth subcarrier on which
the precoded symbol sk is transmitted and nk an equivalent
additive white Gaussian noise sample with zero-mean and
total variance σ2

n. Assuming ideal time and frequency inter-
leaving in the OFDM process, the |hk|2 samples follow an
uncorrelated Rayleigh law with unit variance. By introducing
H = Diag[h1, h2, . . . , hL] ∈ CL×L, we can write:

r = Hs + n (3)

with n = {nk} ∈ CL×1, s = {sk} ∈ CL×1 and r = {rk} ∈
CL×1. The concatenation of H and ΘL brings inter-element
interference (IEI) terms that the receiver has to cope with.
Note that matrix H does not depend on N , size of the FFT.
In fact the FFT is performed on N precoded symbols available
at the entrance of the OFDM modulator.
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Fig. 1. LP-OFDM representation

IV. PROPOSED ITERATIVE RECEIVER

The proposed receiver iteratively performs deprecoding ac-
cording to MMSE criterion and channel decoding as illustrated
in Fig. 2. According to the turbo principle, two main functions
exchange information learned from one stage to another at
each iteration [5], [6]. The first function, called LP decoder,
consists of a deprecoder and a demapper. The second function
is a channel decoder.

A. LP decoding stage

1) MMSE receiver using a priori information: The LP
decoder stage employs a linear interference canceller opti-
mized under the MMSE criterion latter called MMSE-IC and
that produces at iteration p vector x̃(p) of equalized symbols
from the previous vector x̂(p−1) made of estimated symbols.
By defining the global matrix C = HΘL, let rewrite the
expression of the receive vector as a function of the kth
element of the transmitted vector:
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Fig. 2. Proposed receiver

r = Cekxk︸ ︷︷ ︸
useful term

+
∑
n 6=k

Cenxn︸ ︷︷ ︸
interference terms

+ n︸︷︷︸
noise terms

(4)

where ek is a L by 1 vector containing zero in all position
except a 1 in position k. We propose a linear equalizer based
on the MMSE principle and soft interference cancellation
inspired from turbo-equalization concept [7]–[9]. The idea is to
remove the interference terms brought by the linear precoding
and then perform a linear filter wk ∈ CL×1 optimized under
the MMSE criterion. The equalized symbol can be expressed
as:

x̃
(p)
k = wH

k

(
r−Câ(p−1)

k

)
(5)

with

â(p−1)
k =

[
x̂

(p−1)
1 . . . x̂

(p−1)
k−1 0 x̂

(p−1)
k+1 . . . x̂

(p−1)
L

]T

where x̂
(p−1)
k is the estimated vector of xk given by previous

iteration. The Wiener-Hopf solution is obtained by minimizing
the following quantity:

wopt
k = arg min

wk

∣∣xk − x̃
(p)
k

∣∣2 (6)

Exact solution of such equation can be found in [7], [8]:

wopt
k =

(
CVkCH +

σ2
n

σ2
x

I
)−1

Cek (7)

where

Vk = σ2
xI− σ2

x̃

L∑
n=1,n 6=k

eneT
n

and I is the L×L identity matrix whereas σ2
x̂ is the variance of

the estimated symbol x̂k. However, each filter are determined



by matrix inversion that increases the computational complex-
ity. Sub-optimal solution can be found by assuming in Eq. (6),
perfect estimation of transmitted symbol i.e.: x̂k = xk. The
corresponding solution is:

wsubopt
k =

(
CekeT

k CH +
σ2

n

σ2
x

I
)−1

Cek (8)

Thus, the equalized symbol at iteration p can be easily
rewritten in a matrix form:

x̃(p) =
[
D +

σ2
n

σ2
x

I
]−1[

CHr− Jx̂(p−1)
]

(9)

Where D and J are L × L complex matrices containing
the diagonal and the off-diagonal elements of matrix CHC
respectively. The equalization process now requires only
matrix product, matrix sum and diagonal matrix inversion
leading to reasonable complexity. Discussion on this
approximation is given in the simulation results section.

2) First iteration equalization: At the first iteration because
no prior information on symbols is available, a first equalized
vector is obtained by using classical MMSE equalization (see
[3]):

x̃(1) =
[
ΘH

L HHHΘL +
σ2

n

σ2
x

I
](−1)

HHΘH
L r (10)

By using the unitary property of ΘL , Eq. (10) can be
simplified:

x̃(1) = ΘH
L

[
HHH +

σ2
n

σ2
x

I
](−1)

HHr (11)

Since H is diagonal, matrix inversion operation is reduced to
L scalar inversions.

3) Soft mapping/demapping: For an equalized sample x̃k,
the demapper produces a vector of q Logarithm Likelihood
Ratios (LLRs) [Λeq

1,k, . . . ,Λeq
q,k]. Under the assumption that the

output of the MMSE-IC follows a Gaussian law and according
to the ”max-log” approximation we obtain:

Λeq
i,k =

1
σ2

N + σ2
IEI

(
min
x∈Ai

0
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where Ai
b denotes the subset of the constellation for which

the i-th bit is equal to b. The respective variances of the
residual noise and the inter-elements interferer terms, are
calculated from Eq. (4) and (8):
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Note that, for the first iteration, we set:
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The processed LLRs are sent to the channel decoding stage
via a de-interleaver Π−1

b . The updated LLRs coming from
the output of the channel decoder are again interleaved and
fed to the LP-decoding stage. The soft mapper provides the
inverse transformation at the output of the channel decoder
by converting the block of [Λdec

1,k , . . . ,Λdec
q,k ] calculated by the

decoder into a soft symbol x̂k . If we denote [b1, . . . , bL] the
bits that constitute a q-ary symbol belonging to constellation
A, the soft estimated symbol is given by the following
expression [9]:

x̂k =
∑
x∈A

x

q∏
i=1

[
1
2

+
2bi − 1

2
tanh

(Λdec
i,k

2

)]
(13)

B. Channel decoding stage

The input of the channel decoding stage is the set of a priori
LLRs of coded bits. The channel decoder processes the soft
information and compute refined LLRs of coded bits and at
the last iteration the LLR of the information bits. A forward-
backward algorithm of the type of BCJR or a Soft Output
Viterbi Algorithm (SOVA) can be implemented [10].

V. CHANNEL AND SYSTEM PARAMETERS

A. Channel models

1) Theoretical channel: The coefficients are chosen
i.i.d. Gaussian samples with unit variance. This channel
corresponds to an optimal OFDM transmission over time and
selective channel where the interleaver depth in the OFDM
process is perfectly dimensioned. Performance over such
channel provides the optimal performance that can be reached
with the iterative receiver over a time and frequency selective
channel.

2) Time variant Frequency fading channel: We consider
the 18-tap BRAN E model specified by ETSI-BRAN [11]
that represents a typical outdoor urban multi-path propaga-
tion characterized by a large delay and Doppler spread. For
simulations, the mobile speed is set to 16.6 m/s.

B. System parameters

We choose a half-rate convolutional code with (23, 35)o as
generator polynomials and a QPSK modulation leading to a
raw spectral efficiency of 1 bit/s/Hz. All systems parameters
are presented in Table I. OFDM parameters have been chosen
according to the time and frequency coherence of the channel
in order to reduce the inter carrier interference and the inter-
symbol interference. Finally the interleaving depths are chosen
relatively small in order to provide realistic simulation results.
Moreover, in order to highlight the performance of the receiver,
we plot the matched filter bound (MFB) of each system that



TABLE I
SYSTEM PARAMETERS

Carrier frequency 5 GHz
Sample Frequency 57.6 MHz

FFT Size 1024

Number of modulated subcarriers 768

Occupied bandwidth 42.75 MHz
OFDM Guard interval duration 3.73 s
Total OFDM symbol duration 21.52 s

Symbol interleaving Random type, 768 symbols
Precoding length 4 or 64

Constellation mapping QPSK
Bit Interleaving Random type, 1432 bits
Channel coding 1/2-rate, (23, 35)o

stands also for performance obtained with an ideal receiver
that perfectly cancels the interference coming from linear
precoding.

VI. SIMULATION RESULTS

Bit Error Rate (BER) performance, provided over theoretical
Rayleigh channel and a BRAN E channel, is plotted for
different sizes of linear precoding matrices and depending
on the number of iterations at the receiver side. The curves
labeled ”no LP” stand for a classical OFDM system with
channel coding but without linear precoding. The curves
AWGN are obtained with only Additive White Gaussian Noise
and channel coding. The curves named ”opt” represents the
respective matched filter bounds that could be theoretically
obtained by a genie aided system where interference would
be perfectly cancelled and data perfectly estimated.

A. Theoretical channel

Fig. 3 illustrates the BER performance without any iterative
process. This receiver can be viewed as a linear MMSE one.
This performance is also obtained after the first iteration of the
iterative receiver. We can note that, as demonstrated in [3], that
LP-OFDM outperforms OFDM if the SNR is greater than a
threshold that depends on the channel code structure and the
precoding length. In case of (23, 35)o half rate convolutional
code as channel coder, this threshold is equal to 5.7 dB and
6.1 dB for L = 4 and L = 64 respectively. The degradation
of LP-OFDM at the first iteration compared to OFDM is
due to the interferences brought by the linear precoding. By
increasing the precoding size, the asymptotical performance
of LP-OFDM are improved owing to a better exploitation of
the signal-space diversity but the degradation due to many
interference terms becomes greater at low SNR.

However, as illustrated by Fig. 4 and 5 for respectively
LP-OFDM with L=4 and L=64, these interferences are pro-
gressively removed during the iterative process leading to
meaningful gains after few iterations. Two methods are used
in order to implement the MMSE-IC, the first one called IC
exact with a matrix inversion for calculations (see [7] or [8]),
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Fig. 3. BER performance of the LP-OFDM system with linear MMSE
receiver over theoretical channel, QPSK, 1/2-rate convolutional code, 1
bps/Hz

and a second one called IC approx that stands for simplified
calculations given by Eq. (9) presented in part IV and requiring
no matrix inversion. Better results are obtained with the IC
exact at low SNR but at a higher complexity cost due to
the matrix inversion. The larger the size of precoding matrix,
the larger the interference terms and thus the greater the
degradation between the 2 methods at low SNR. Nevertheless,
the simplified method provides very good trade-off between
performance and complexity and exactly same performance at
BER=10−3. There is about a 2.5 dB gain at 10−4 achieved by
LP-OFDM with L = 4 after 4 iterations and a 3.5 dB gain at
10−4 achieved by LP-OFDM with L = 64 after 4 iterations.
The performance of the system with L = 64 is very close to
the Gaussian curve at high SNR, confirming the efficiency
of the receiver and that time and frequency diversities are
efficiently exploited.
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Fig. 4. BER performance of the LP-OFDM system with iterative receiver
over theoretical channel with size L=4, QPSK, 1/2-rate convolutional code,
1 bps/Hz
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Fig. 5. BER performance of the LP-OFDM system with iterative receiver
over theoretical channel with size L=64, QPSK, 1/2-rate convolutional code,
1 bps/Hz

B. BRAN E channel

Results presented in Fig. 6 are obtained over a more realistic
outdoor channel, frequency and time selective, as defined by
BRAN ETSI with the BRAN E channel model. The MMSE
IC carried out for these results is the simplest one, i.e. the so-
called IC approx. The interleaving depth is chosen relatively
small (1432 bits) in order to respect a realistic framing.
Optimal performance are reached with a degradation smaller
than 2 dB versus theoretical channel and an improvement
greater than 2 dB and 3 dB for L= 4 and L=64 respectively
versus an OFDM system. Increasing the size of the interleaver
in respect with potential application should have led to a lower
degradation compared to the Gaussian curve and thus to a
greater improvement compared to the OFDM system for which
no iterative process is performed.
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Fig. 6. BER performance of the LP-OFDM system with iterative receiver
over Bran E channel with size L=64, QPSK, 1/2-rate convolutional code, 1
bps/Hz

VII. CONCLUSION

The proposed iterative receiver for LP-OFDM system with
channel coding offers very good BER performance results
at a very low cost of complexity. In fact, the proposed
iterative receiver does not require any matrix inversion and
its complexity does not increase with the linear precoding
matrix size, nor with the modulation order. The interferences
brought by linear precoding are efficiently removed in the
iterative process. In the other hand OFDM that conserves
orthogonality is not improvable by such an iterative process.
Over a theoretical channel, near Gaussian performance is
obtained with a precoding size of 64 demonstrating that
frequency, time and signal space diversities are all efficiently
exploited. With more realistic channels, such as BRAN E
channel, and a small interleaver, the improvement compared
to OFDM remains important. Using a large size of precoding
matrix allows a greater gain but a difference of only 1 dB is
observed between L = 4 and L = 64. Finally performance
over realistic channel could by improved by using larger size
of interleaver
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