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Abstract— In this paper, we study the association of Non-
orthogonal Space-Time Block Coding (NO-STBC) with channel
coding and propose an efficient iterative receiver. For two
transmit antennas, the use of the Alamouti scheme as STBC
is optimal owing to its orthogonality and its unitary rate. For
more than two antennas, full rate is maintained by giving up
the orthogonality. This non-orthogonality makes the decoding
often complex and sub-optimal in terms of exploitation of the
diversity. In this paper, we present a low complexity receiver
based on iterative process performing jointly space-time decoding
and channel decoding. Simulations over uncorrelated Rayleigh
flat fading channels show that such receiver exploits at best the
space-time diversity provided by the Non-Orthogonal STBC and
the channel coding.

I. INTRODUCTION

In wireless communications systems, the fading effects
of the channel significantly degrade the performance. This
phenomena can be efficiently combated by the use of transmit
diversity techniques. Since 1998 and the pioneering work of
Tarokh and Alamouti [1][2], space-time diversity techniques
have been studied extensively. An attractive approach to
exploit such diversity is Space-Time Block Coding (STBC).
When taken from orthogonal design, these codes provide
full diversity and allow a simple decoding algorithm, we
talk about Orthogonal Space Time Block Coding (O-STBC)
[2][3]. However it has been proved in [3] that, for complex
modulation, there are no full rate O-STBC for more than
2 Tx antennas and their extension to a greater number of
antennas is only possible with lower transmission rate (1/2 or
3/4 for example). One major technique to overcome the rate
limitation of O-STBC was proposed in [4][5] by introducing
full rate Non-Orthogonal STBC (NO-STBC). Because of the
non-orthogonality of the structure, a classical Maximum Ratio
Combining (MRC) performed on the receiver side to carry
out STBC decoding brings Inter Element Interference (IEI)
thus requiring an Maximum Likelihood (ML) algorithm [4].
Nevertheless, reduced complexity receiver based on linear
algorithms are presented in [5][6]. On the other hand, the con-

catenation of channel coding and O-STBC has been studied
in [7]: the best performance versus complexity trade-off is
demonstrated to be achieved by choosing the Alamouti O-
STBC as space-time code [2]. In this paper, we consider the
combination of channel coding with NO-STBC and propose
an iterative receiver which takes benefit from the channel
decoding in order to improve the space-time block decoding
by removing the interference terms. Simulations show that
such receiver exploits the diversity in an optimal manner while
keeping low complexity.

II. SYSTEM MODEL AND NOTATIONS

A. Transmitter

Information bits dn are first channel encoded and then
interleaved (Π). The output bits are passed directly to a mapper
leading to complex modulated symbols sk. We consider a
M -state modulation. Each group of K symbols are space-
time encoded employing a space-time block encoder and then
transmitted over T symbol durations. Assuming Nt transmit
antennas, the output of the STBC is a T×Nt matrix C = [cpi],
where cpi is either ±sk or ±s∗k and is transmitted by antenna
i at time t + (p − 1)Ts. Superscript (.)∗ denotes complex
conjugaison operation. The rate of the space-time code is
defined to be R = K/T . The STBC is said to be orthogonal
if:

CHC =
(|s1|2 + · · · + |sk|2

)
I (1)

Where I is the Nt × Nt identity matrix.

B. Channel model

We consider a discret-time MIMO channel model with
Nt transmit antennas and Nr receive antennas as described
in Figure 1. Each sub-channels are supposed independent
meaning that antenna spacing is sufficient. Frequency and
time selective channels is considered. By using Orthogonal
Frequency Division Multiplex (OFDM) modulation and de-
modulation, a frequency selective channel is transformed into



a set of orthogonal flat Rayleigh fading sub-channels [8].
Finally, the channel is supposed to be constant over T symbol
durations. Thus, the channel coefficient from antenna i to the
receive antenna j can be modeled by a complex value hij .
Assuming ideal interleaving in the OFDM process, the hij’s
samples follow an uncorrelated complex Gaussian law with
unit variance. At time t + (p − 1)Ts, the received signal rp,j

at antenna j is given by:

rp,j =
Nt∑
i=1

hi,jcpi + np,j (2)

where the noise samples nj,p are independent samples of a
zero-mean complex Gaussian random variable with a total
variance of σ2

n. Effects of both channel and space time coding
can be represented by an equivalent channel matrix H ∈
C

NrT×K [6] [9]. By introducing an equivalent receive vector
r ∈ C

NrT×1 whose components are either rp,j or r∗p,j , we
can write (see section V):

r = Hs + n (3)

where s =
[
s1 . . . sK

]T
and n ∈ C

NrT×1 is the equivalent
noise vector. The average power of the symbols transmit from
the Nt antennas is normalized to be 1 so that the average
power at each receive antenna is 1 and the signal-to-noise ratio
(SNR) per antenna is equal to 1/σ2

n. We assume that perfect
channel information is available on the receiver side. This can
be accomplished by classical means of channel estimation, e.g.
insertion of pilot symbols or pilot tones.
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Fig. 1. MIMO Channel model

C. STBC Decoding strategies

Classical decoding strategy for STBC is MRC. This decod-
ing is performed by applying HH to equivalent receive vector
r:

ŝMRC = HHr = HHHs + HHn (4)

For orthogonal STBC , it can be shown that equivalent matrix
H has the same orthogonality properties as matrix C. Under
this assumption eq (4) becomes:

ŝMRC = HHr =
∑

i

∑
j

|hij |2s + HHn (5)

Thus orthogonality ensures linear decoding and optimal di-
versity exploitation. MRC decoding leads to the same perfor-
mance as a Maximum Likelihood decoder [10].
In case of Non orthogonal STBC, matrix H is no more
orthogonal and equation (4) becomes:

ŝMRC =
∑

i

∑
j

|hij |2s + Js + n (6)

where J = HHH − diag(HHH) with J ∈ C
K×K . The esti-

mated vector ŝMRC is corrupted by Inter Element Interference
(IEI) represented by Js. These interferer degrade severely the
performance and prevent from linear decoding [4].
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Fig. 2. Transmitter

III. ITERATIVE SPACE-TIME DECODING AND CHANNEL

DECODING RECEIVER

In case of O-STBC, optimal performance are obtained by
simply concatenating space-time and channel decoding in
the receiver [7]. In case of NO-STBC, because of the non-
orthogonality, the optimal receiver would consist in perform-
ing jointly space-time decoding and channel decoding owing
to a super trellis. However this receiver is extremely complex
and could not reasonably be implemented in a ship. In this
paper we propose a practical sub-optimum decoding scheme
based on iterative "turbo" principle [11] where two stages,
a space-time demapper and a channel decoder exchange
extrinsic information in an iterative loop until the receiver
converges. These stages are separated by an interleaver used
to decorrelate the outputs before feeding them to the next
decoding stage. Figure 3 describes the proposed scheme. The
space-time decoder employs a linear Parallel Soft Interference
Canceller (PSIC) optimized under the Minimum Mean-Square
Error (MMSE) criterion which aim is to restore the orthog-
onality by removing the IEI. For the first iteration, because
no prior information on transmitted symbols is available, the
decoded vector s̃(1) is obtained by a linear MMSE space-time
decoder:

s̃(1) =
(
HHH + σ2

nI
)−1

HHr (7)

For next iterations (l > 1), previous estimated symbols are
used by the PSIC decoder in order to cancel the residual IEI:

s̃(l) =
(
diag(HHH) + σ2

nI
)−1(

HHr − Jŝ(l−1)
)

(8)



where J ∈ C
K×K is the IEI matrix: J = HHH−diag(HHH)

and I is the K × K identity matrix.
The second stage is a channel decoder based on Soft Output

Viterbi Output (SOVA) algorithm which produces extrinsic
Logarithmic Likelihood Ratios (LLRs) on coded bits that
are fed to the first stage. By performing successively and
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Fig. 3. Proposed iterative Receiver

iteratively channel decoding and interferer terms cancelling,
global STBC decoding is progressively improved

IV. STUDIED SYSTEMS

We consider three different MIMO systems for which no
full rate full diversity O-STBC exist.

A. 4 × 1 system with rate 1 Quasi-orthogonal STBC

The rate-one Jafarkhani code is used [4]:

CJaf4 =




s1 s2 s3 s4

−s∗2 −s∗1 −s∗4 s∗3
−s∗3 s∗4 s∗1 s∗2
s4 −s3 −s2 s1


 (9)

By using the following equivalent channel matrix:

H =




h11 h21 h31 h41

h∗
21 −h∗

11 h∗
41 −h∗

31

h∗
31 h∗

41 −h∗
11 −h∗

21

h41 −h31 −h21 h11


 (10)

and the following equivalent receive vector:

r =
[
r1,1 r∗2,1 r∗3,1 r4,1

]T
(11)

we obtain this interference matrix:

J =




0 0 0 a
0 0 −a 0
0 −a 0 0
a 0 0 0


 (12)

with a = h1h
∗
4 − h2h

∗
3 − h3h

∗
2 + h4h

∗
1. Because there are

low interference terms, the Jafarkhani code is said quasi-
orthogonal.

B. 3 × 1 system with rate 1 NO-STBC

For this transmission scheme, a repetition based STBC is
used:

C3 =


s1 s2 s3

s3 s1 s2

s2 s3 s1


 (13)

This code leads to the following equivalent channel matrix:

H =


h11 h21 h31

h31 h11 h21

h21 h31 h11


 (14)

and the following receive vector:

r =
[
r1 r2 r3

]T
(15)

The STBC is full-rate (R=1) and the interference matrix J
shows that the STBC is not orthogonal:

J =


 0 a b∗

b∗ 0 b
b b∗ 0


 (16)

with b = h2h
∗
1 + h1h

∗
3 + h3h

∗
2

C. 4 × 2 system with rate 2 NO-STBC

For future wireless communications, high data rates will
have to be provided. In order to reach these high data rates,
spatial diversity and spatial multiplexing must be efficiently
used as studied within the framework of the IST-4MORE
project where 4 × 2 systems based on MC-CDMA are under
study in a downlink scenario [12]. For this MIMO architecture,
we propose to use a NO-STBC combining spatial multiplexing
and O-STBC initially introduced by Bäro et al. in [13]. Two
Alamouti codes are performed simultaneously on two blocks
of two antennas leading to a code rate of 2:

CBäro =
[

s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3

]
(17)

Note that this transmission scheme belongs to the Linear Dis-
persion Codes category formalized by Hassibi and Hochwald
[14]. By using the following transmission matrix:

H =




h11 h21 h31 h41

h12 h22 h32 h42

h∗
21 −h∗

11 h∗
41 −h∗

31

h∗
22 −h∗

12 h∗
42 −h∗

32


 (18)

and the following equivalent receive vector:

r =
[
r1,1 r∗2,1 r1,2 r∗2,2

]T
(19)

The resulting interference matrix is the following:

H =




0 0 u v
0 0 −v∗ u∗

u∗ −v 0 0
v∗ u 0 0


 (20)



with u = h31h
∗
11 + h21h

∗
41 + h32h

∗
12 + h22h

∗
42 and v =

−h21h
∗
31 + h41h

∗
11 − h22h

∗
32 + h42h

∗
12

V. SIMULATION RESULTS

Considering the Rc = 1/2 convolutional encoder with
polynomial generator (133, 177)o and a QPSK modulation, we
provide simulation results obtained with the proposed iterative
receiver for the three different NO-STBC systems presented in
the previous section. Curves are plotted in signal-to-noise ratio
per useful bit Eb/N0. The relation with SNR is the following:

Eb/N0 =
(
log2(M)RcR

)−1
SNR (21)

For each system, we provide performance of the first iteration
(#1) and performance of the iteration for which the process
has converged. All performance results are compared to an
optimum curve defined as the lower bound which represents a
genie aided space-time decoder cancelling perfectly all the IEI.

A. 4 × 1 system with rate 1 Quasi-orthogonal STBC
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Fig. 4. Performance of the channel coded Jafarkhani 4 × 1 NO-STBC
scheme with the proposed iterative receiver over uncorrelated Rayleigh flat
fading channels, 1 bit/s/Hz

Figure 4 provides performance results of 4×1 system with
the Jafarkhani STBC and the proposed iterative receiver. For
comparison, we also show the performance of so called 4-
antennas time-switched Alamouti O-STBC combined with the
same channel encoder. The coding matrix is the following
[15]:

CAl4 =




s1 s2 0 0
−s∗2 s∗1 0 0
0 0 s3 s4

0 0 −s∗4 s∗3


 (22)

The STBC is unitary rate and provides a 2-order spatial
diversity. The receiver only consists of a STBC decoder
concatenated with the channel decoder. Without iterative

process, we can notice that the performance of the 4-antenna
Jafarkhani code is worse than the 4-antenna time-switched
Alamouti code. This is due to the IEI brought by the
quasi-orthogonal Jafarkhani code. However the IEI is
progressively removed by the iterative process, and after
only 3 iterations the lower bound performance is reached at
high SNR meaning that all the interference terms brought
by the NO-STBC are completely removed. In fact, the lower
bound curve corresponds to a virtual 4-antenna O-STBC in
conjunction with channel coding and represents the maximum
achievable diversity for such a system. Thus the iterative
process efficiently exploits the 4-order diversity brought by
the Jafarkhani code leading to a significant performance
gain over the 4-antennas time-switched Alamouti system.
At low SNR, the process does not succeed in removing
all the IEI leading to a degradation versus the optimum
curve. The quasi-orthogonality properties of the Jafarkhani
code explained that this degradation is relatively small. Full
diversity Tarokh O-STBC [10] could be used for this system,
but due to their lower rate (1/2 or 3/4), these codes ought to
be associated with higher order modulation and thus limiting
their performance.

B. 3 × 1 system with rate 1 NO-STBC
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Fig. 5. Performance of the channel coded 3×1 NO-STBC scheme with the
proposed iterative receiver over uncorrelated Rayleigh flat fading channels, 1
bit/s/Hz

After having tested the efficiency of the proposed receiver
for a quasi-orthogonal STBC, the receiver is now evaluated
for a non-orthogonal STBC in a 3 × 1 system which
performance results are plotted in Figure 5. Due to higher
interference terms, the 3 × 1 system provides, at the first
iteration, worse performance than the 4×1 Jafarkhani system.
However, with the same convergence speed (3 iterations),
lower bound is reached leading to a 4 dB gain over the first



iteration. One can notice that the degradation at low SNR is
much significant than for the Jafarkhani system. This can also
be explained by the several interference terms brought the
3-antennas NO-STBC. Our system could also be compared
with the rate 3/4 O-STBC for 3 antennas presented in [10].
However it well known, that the STBC rate must be much
favoured than modulation order.

C. 4 × 2 system with rate 2 NO-STBC
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Fig. 6. Performance of the channel coded 4×2 NO-STBC scheme with the
proposed iterative receiver over uncorrelated Rayleigh flat fading channels, 2
bit/s/Hz

Figure 6 shows the performance of the 4 × 2 system. The
rate-2 NO-STBC leads to spectral efficiency of 2 bits/s/Hz.
As shown in Figure 5, the presence of several terms in the
interference matrix, leads to lack in performance at low SNR.
However optimal performance are also reached from Eb/N0 =
0 dB. For comparison, we also consider the 4-antennas time-
switched Alamouti STBC (CAl4) with a 16-QAM modulation
(leading to the same spectral efficiency i.e. 2 bits/s/Hz).
Simulation results show that the orthogonality of the 4-antenna
time-switched Alamouti code does not compensate the lack in
STBC rate.

VI. CONCLUSION

In this paper, we investigate NO-STBC in conjunction with
channel coding in order to both exploit the channel coding and
the space-time diversities. We propose an efficient iterative
receiver leading to a good trade-off between complexity and
performance. With a very small number of iterations the
process converges to the maximum diversity curve. Because
full rate and full diversity O-STBC only exist for 2 transmit
antenna schemes, channel coded NO-STBC associated with
the proposed receiver seems to be suitable for exploiting
space-time diversity in an optimal way without sacrificing data
rate and whatever the number of transmit or receive antennas.
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