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Abstract—In the context of unsupervised clustering, a new the computation of the representatives of clusters [18her t
algorithm for the domain of graphs is introduced. In this  yse of median graph notion [9] to adapt classical clustering
paper, the key idea is to adapt the mean-shift clustering andts techniques into the domain of graphs [10].

variants proposed for the domain of feature vectors to graph In this paper we propose a new araph clustering algorithm
clustering. These algorithms have been applied succesdfuin pap prop grap g aig

image analysis and computer vision domains. The proposed PY making use of a seeking mode in the same philosophical
algorithm works in an iterative manner by shifting each graph ~ vein as the mean [2], median [12], [11] and medoid [17]
towards the median graph in a neighborhood. Both the set shift clustering techniques in the domain of feature vetor
medlan graph and the generalized r_nedlan graph are tested for However, in the domain of graphs, the computation of
the shifting procedure. In the experiment part, a set of cluger .
validation indices are used to evaluate our clustering algithm mean or median Of, a set of _graphs can not be performed
and a comparison with the well-known Kmeans algorithm is ~ With the same easiness as in domain of vectors. In fact,
provided. computing a distance between two graphs is in itself an
open problem. This problem is usually referred to as the
graph edit distance which is considered to be a NP-Complete
problem and requires an exponential time and space to find
Graphs give a universal and flexible framework to describeoptimal solution [1]. Nevertheless, to cope this problem
the structure and the relationship between objects. They amany approaches have been proposed to approximate the
useful in many different application domains like patterngraph edit distance, we refer the interested reader to the
recognition, computer vision and image analysis. Gengrall survey in [3]. Based on these approximation techniques,
classical document retrieval systems produce a rankedflist some new notions that compute medians and representatives
documents in response to the query document. In the casd a set of graphs have been proposed. For all these issues
of graph-based representation, the query is a graph whicthe median graph [9] has grown on as the efficient candidate
represents the query document. If this query is general, ito represent the center of a set of graphs. In this work, this
is difficult to identify the specific graphs which the user is notion is used to implement the shifting operation instefad o
interested in. Consequently, a natural alternative toirenk the mean used in the classical mean-shift clustering. leroth
is to cluster the target set into groups of graphs with commonvords, the proposed algorithm works in an iterative manner
aspects. Clustering aims to synthesize a huge amount of datg shifting each graph towards the median graph of graphs
by a small number of homogeneous and distinct clusterdn its neighborhood. Like mean-shift, the median graphtshif
such that all objects in the same cluster are similar to eachomputes the number of clusters during execution. In the
other and the objects the most dissimilar belong to differenexperiment part, a set of cluster validation indices arel tise
clusters. A lot of clustering algorithms have been proposeavaluate our clustering algorithm. In addition, a comparis
in the literature, a major part of these algorithms deal withwith the well-known Kmeans algorithm is provided.
data represented by feature vectors. We refer the readsz to t
Xu'’s survey [19]. Whereas, just a few works are interested ) ) )
to structural-based data representation, in particulaplygs A. Median shift clustering
[4]. These works fall roughly into two categories. The first  Mean-shift clustering [2] is a popular mode seeking
category contains the methods for which a mapping from thalgorithm that offers a non-parametric approach which does
domain of graphs to feature vectors are proposed. Almogtot requirea priori knowledge of the cluster’s number, and
all these methods use the notion of the graph kernel [13] taloes not set any restrictions on the shape of the clusters.
embed a graph into a feature vector, for example, by mean&n interesting variants of the mean-shift algorithm is the
of dissimilarities to some prototype graphs. Then, cladsic median shift [12], [11] in which the data points are shifted
clustering techniques are applied to graphs embedded intowards the median instead of the mean as follows. Let
vectors. The second category involves directly the work inX={x1,--- ,zy} be a set of points embedded in a n-
the graph domain, indeed the proposed approaches includémensional Euclidean space, asg C X be the set of

I. INTRODUCTION

Il. PRELIMINARIES



data pointz; in n-sphere characterized by its radiusnd
centered one;. Then,Vz; € S; ||lz; — z;|| < h. At each
iteration all data point in X are considered in parallel: the
data pointsr; € S; are considered for median computation,
shifting z; (the center ofS;) towards the median point;
which will be considered for next iteration. Let us note that
the convergence has been proved in [11]. In addition, it
has been shown empirically in [12] that the median-shift
procedure converges faster than the mean-shift. Figure 1. Execution of the repeat-until loop

B. Graph edit distance and median graph

Matching by minimizing edit distance gauge the distancevia embedding [6]. The set median graph, can be computed
between graphs by counting the least cost of edit operatiortsy a straightforward procedure with a complexity &yn
needed to make two graph isomorphic. A standard set of edit
operations is given by insertions, deletions and subiitat
These edit operations are applied on both edges and nodes. Ill. M EDIAN GRAPH SHIFT
In addition, a certain cost is associated with each of these
operations. Obviously, for every pair of graphs A and B there A pseudo-code description of the proposed algorithm is
exists different sequence of edit operations transformingiven in Algorithm 1. The algorithm can serve two goals, ei-
A into B. However, the computation of the edit distancether clustering or selecting representative prototypeshis
between two graphs involves not only finding a sequence opaper, we draw an evaluation of its clustering application.
edit operations to transform one graph to the other, but alsérom a given set of graphs G, the algorithm returns a set of
finding such a sequence that possesses the minimum totelusters{C;} and each cluster has a representative prototype
cost. p;. The radiush, called bandwidth in the classical mean-

Definition Let A=(V,,E,) and B=(\},,E;) be two graphs. shift, is a parameter fixed priori. The algorithm computes
The graph edit distance between A and B is given by: the number of cluster during execution. In the algorithm,

. first each graply; € G is associated to an empty graph
Zc(e') gmsi (line 1). Then, for each grapy; € G the inner loop
) ! (line 3-7) is performed. This loop computes for the graph
a steady median graph,s;. We define the steady median
where v(4, B) denotes the sequences of edit operationgraphg,,,; as the final median graph returned by a shifting
transforming A into B andc(e;) denotes the cost of the series ofg;. In the experiments, it has been shown that this
edit operation g process converges. To compute a steady median graph for

In order to compute a optimal graph edit distance, severay graphg;, only a subseti; C G centered ory; with a
techniques have been proposed. In a recent work, Riesen apgdius , is considered (line 4). Thep; is shifted (line 6)
al. [16] propose an approximate computation of the graphowards the median graph ¢f; which is computed by an
edit distance by means of bipartite graph matching, In thexxternal procedurenedian() (line 5). Figure 1 illustrates
experiment part of this paper we use this approach. an execution of the repeat-until loop, in this example the

The median graph is introduced by Jiang and Bunke in [9konvergence of the graphto the steady median gragh,.
and refined in recent works (e.g. [6]). It is a useful tool tois done in four iterations. That is, after each iteratiomtiyh
compute a representative of a set of graphs. We distinguisthe repeat loop, the subsét; is more compact than the
two kinds of median graph, the set median graph (SM) previous iteration because of the substitution of its aente
and the generalized median graph (Gy)The set median by a median graph which minimizes the sum of distance in
graph is a graph belonging to the involved set of graphs S¢g;, and consequently keep the convergence of the algorithm.
Whereas, the generalized median graph is a graph belongingence, the final steady median gragh,; can be regarded
to the set of graphs U that can be constructed using the labelg a cluster convergence graph. The cluster aroyng

d(A,B) = min
(e1,..,ex)EY(A,B =1

in the initial set S. Formally speaking, consists of exactly those graphs that converge by shifting
L . to gmsi. Finally, the result is generated (line 10) as follows:
9= []nelg X:Sd(g,gi), andg = [72'{} st(g,gi) the number of clusters is the number of distipgs;. Note
gi€ gi€

here that, we consider two graph and g as distinct if
where d is a distance between graphs. Obviously, it istheir distancel(g1, g2) # 0. Next, the set of prototypes P is
difficult to compute the generalized median graph, as itglefined from the distinct steady median graghs;. Each
time complexity grows exponentially with the size of U. In clusterC; is composed by the graplgs € G that converge
this paper we use the approximate generalized median graj p;.
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Algorithm 1 Median Graph Shift pseudo-code

Require: A set of graphs, Gy, - -
Ensure: A set of clusters{C;}

amrowdne

@

P:{pb e 7pk}

repeat

k
j=1r

,gn}, and a radius
and a set of prototypes

: Associate to eaclhy; € G an empty graply,,s,
. for eachg; € G do

let G; C G, whereVg, € Gy, d(g;,9x)<h

gm — median(G;)
computation
Shift g; towardsg,,

> Median graph

until g; converge to a steady median gragh, (does

not change)

9ms; < Gm

. end for
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Different validation indices in function of thedias h, for SM (left), GM (right) with GREC Data set

of h. This value varies from the minimum distance between
two graphs to the maximum in each data set. Then, the
clustering performance was evaluated using two cluster
validation indices, the7oodman-Kruskal index [7] and

the Rand index [14]. These indices have been previously
used in the context of graph clustering in [8], [5]. Figure 2
shows the results of the clustering indices on the GREC data-
set by changing the value of the radiasIn left column:

two curves of the values of different validation indices as
function of the value of radiué, where the used median
procedure is the generalized median graph [6], and the set
median graph in the right column. For the remainder, we
assume that théest radiush consists of the value which
maximize the two indices since high values of each index
value correspond to a better clustering. Concretely, fehea

Assign graphs with the same steady median graph tealue ofh we sum the two indices and we take thealue’s
the same cluster Cwherel <j< k andk is number of

distinct gy, -

IV. EXPERIMENTAL RESULTS

that maximizes this sum.

Table | summarizes the best radius to each data set with
their corresponding indices values using the set median
graph and the generalized median graph and provides a
comparison with the Kmeans algorithm. Here, the graph

To perform the evaluation of the proposed algorithm, weedit distance approximation and the set median graph are
used the Mutagenicity (Molecules), the Letter (distorte |
ter drawings) and the GREC (symbols from architectural ando perform the clustering. Let us recall that the Kmeans

used in the Kmeans algorithm to compute the centers and

electronic drawings) datasets from [15]. The experimentslgorithm is not deterministic. That is, the clusteringuies
consisted in applying our algorithm for each dataset usingichieved by Kmeans depend on thaitial selected graphs

the set median graph and the generalized median graph [8]hich are selected randomly. That is why, we performed
which are two possible implementations of the procedurelO repetitions on each data set and we take the average
median() in Algorithm 1. In addition, in order to evaluate value of each cluster validation index. We observe that the
the impact of the radiug on the results, we performed proposed algorithm outperforms the Kmeans clustering on
several repetitions of each experiment with different galu all the data set regarding the GK-index. RegardiRgrd



GREC  Mutagenicity  Letter

Besth  SM 1567.1 14.389 3.059 [4] R. Englert and R. Glantz. Towards the clustering of gsaph
GM 1044.7 9.592 0.764 IAPR Workshop GbRPR 1999, Austrian Computer Sqciety
Indices pages 125-133, 1999.
GK SM 0239 0.306 0.189
GM 0.278  0.621 0.578 [5] M. Ferrer, E. Valveny, F. Serratosa, |. Bardaji, and Hinke.
Kmeans 0.234  0.164 -0.236 Graph-basedK-means clustering: A comparison of the set
Rand  SM 0.373  0.539 0.544 median versus the generalized median graphCAdP, LNCS
GM 0346 05 0.232 5702 pages 342-350, 2009.
Kmeans 0.363 0.512 0.924
Table | [6] M. Ferrer, _E. Valveny,_ F. Serratosa, K. Riesen, and HIBun
COMPARISON WITH THE RESULTS ORKMEANS ALGORITHM. (BEST An approximate algorithm for median graph computation gisin
SELECTED RADIUSh, SM: SET MEDIAN, GM: GENERALIZED MEDIAN) g(r)%%h embedding. 1&9th Intl. Conf. on ICPR pages 1-4, Dec.

[7] L. Goodman and W. Kruskal. Measures of association for
cross-classificationsl. American Statistical Associatiph954.

index, the median graph shift algorithm achieves the bes[tg] S. Gunter and H. Bunke. Validation indices for graph téus
result for two data sets. ing. IAPR Workshop GbRPR 200fiages 229-238, 2001.

In addition to the non-parametric and deterministic prop-
erties of the median graph shift algorithm, the clusteringl9] X. Jiang, A. Mnger, and H. Bunke. On median graphs: Proper
results are better than the Kmeans algorithm regarding tlliz,lalg&r)lihms, and applicationf=EE TPAM| 23(10):1144—
separability and compactness. Regarding similarity to the ' '

ground truth the proposed algorithm outperforms Kmeang$10] S. Jouili and S. Tabbone. A hypergraph-based model for
for two data sets. graph clustering: Application to image indexing. 18th Intl.
Computer Analysis of Images and Patterns, LNCS 5p@ges

V. CONCLUSION 360-368, 2009.

In this paper, we consider the clustering of graphs. A new11] V. Lacroix. Automatic palette identification of colategyraph-
graph clustering algorithm is proposed. It is an adaptation ics. InIAPR Workshop on Graphics Recognitigmages 95—
of the well-established mean-shift algorithm into domain o~ 100, 2009.

graphs. The notion of set median and generalized mediaf ) v, | acroix. Raster-to-vector conversion: Problems aols

graph is used to implement the shifting operation instead “towards a solution a map segmentation application. 7tm
of the mean in the classical mean-shift clustering. The Intl. Conf. on Advances in Pattern Recognition, ICAPRges

median graph shift clustering is a deterministic and non-  318-321, Feb. 2009.

parametric algorithm. It computes the number of cluster313] B. Luo, R. C. Wilson, and E. R. Hancock. Spectral feature

during execution. We have performed a set of clustering “\ectors for graph clustering.|IAPR Workshop on S+SSPR,

experiments with three data sets using two validation ilic LNCS 2396 pages 83-93, 2002.

The results have shown that the proposed clustering algo- o o _ _

rithm is able to produce meaningful clustering for graplis se [14] W. Rand. Objective criteria for the evaluation of cerstg

In a near future. we will focus our works to discuss deepl methods. Journal of the American Statistical Associatjon
; PYY  66(336):846-850, 1971.

the issue of the bandwidth selection by adapting previous

works developed for the mean-shift algorithm. [15] K. Riesen and H. Bunke. lam graph database repositary fo
graph based pattern recognition and machine learninbAPR
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