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Abstract

Color line extraction is an important part of the segmentation process.
The proposed method is the generalization of the Gradient Line Detector
(GLD) to color images. The method relies on the computation of a color
gradient field. Existing color gradient are not “oriented”:the gradient vector
direction is defined up toπ, and not up to2π as it is for a grey-level image. An
oriented color gradient which makes use of an ordering of colors is proposed.
Although this ordering is arbitrary, the color gradient orientation changes
from one to the other side of a line; this change is captured bythe GLD. The
oriented color gradient is derived from a generalization from scalar to vector:
the components of the gradient are defined as a “signed” distance between
weighted average colors, the sign being related to their respective order. An
efficient averaging method inspired by the Gaussian gradient brings a scale
parameter to the line detector. For the distance, the simplest choice is the
Euclidean distance, but the best choice depends on the application. As for
any feature extraction process, a post-processing is necessary: local maxima
should be extracted and linked into curvilinear segments. Some preliminary
results using the Euclidean distance are shown on a few images.
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1 Introduction

Feature extraction is important for Computer Vision. The argument to use color
information for line detection is the same as for color edge detection: some linear
features have a much better contrast in the colored than in the luminance image.

Color edge detection has largely been addressed and effective methodsare
available (see [1], [2] for an overview). Other features such as corners, interest
points and lines have mainly been addressed on luminance images, although some
of them include color or multi-band information [3], [4], [5]. Lines deserve specific
attention because they are important cues that edge detectors often fail to detect.
The methods proposed to detect color edges could be simply transposed to line de-
tection, thus edge and lines (dis)similarities are worth summarizing. In grey-level,
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Figure 1: The edge orientations in (a) and (b) are opposite while their directions
shown in (c) and (d) are the same

an edgeorientationand directionare defined by an angle in the range]−π π] and
]−π/2 π/2] respectively (see Figure 1), the orientation pointing towardshigher in-
tensityvalues. Although edges have an orientation, this information is hardly used
to build contours. On the other hand, in grey-level images the orientation leads to
two types of line: “dark” or “bright”. Line detection in grey-level image thususu-
ally involves ridge (bright) and/or valley (dark) detection. Note that “plateau-like”
lines are ignored. Both edge and line detection involve a “resolution” or “scale”
parameter. The resolution is linked to the minimum distance between the extracted
features, but also to the level of noise in the input or smoothness desired for the
output. The performance issues concerning edge and line detection are similar [6]:
position precision, robustness to noise and computational complexity.

The proposed method for color line detection is made of three modules: the first
one computes an “oriented” color gradient field including a smoothing parameter
to cope with noise and an efficient implementation to address the computational
complexity, the second produces a line strength and direction, and the last one —
out of the scope of this article– extracts local maxima and links them into lines.

In Section 2 several strategies for color line detection are analyzed and our
choice motivated. Section 3 presents an “oriented” color gradient field. Section 4
explains how the oriented color gradient is used to derive a line strength and direc-
tion. Results are shown and discussed in Section 5. Further discussion is provided
in Section 6. Conclusions are summarized in Section 7.

2 Choice for a color line detection strategy

Our choice of strategy for color line detection is motivated by exploring several
tracks and analyzing their drawbacks.
Color Lines from color edges: if edges may be detected, detecting lines involves
only detecting edges at both sides of the line. In practice, two problems occur.
First, the edge detection on very thin lines (one pixel wide) may often miss an edge
at one side of the line, the edge model assuming some uniformity at each side of
the edge. Second, as the aim of line detection is to locate the axis of the line, a
necessary non-trivial process is required to match edges at each sideof the line.
Color Line Template: masks similar to the generalized Sobel and Prewitt operator
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on a 3×3 window or on a 5×5 in color, could be designed and combined as they
are for the GVDG [2]. Such an option would convey the same drawbacks as the
ones they bring in color edge detection: their sensitivity to noise.
Transform color information to grey-level: a simple approach is to transform the
multi-band information into a grey-level image and perform line detection on this
image (on the first component of a PCA for example). In Remote Sensing where
road detection on high resolution images may rely on line detection, the “spectral-
angle difference” between the pixel radiance with respect to some reference has
been used at this aim [5]. A black line detection is then performed so that the linear
structures having the most similar signature as the reference are extracted. The
choice of the reference is a critical issue: an almost optimal choice will produce a
double response instead of a unique response if the color at each side of the line
are closer to the reference than the color of the line itself. Moreover, as many as
reference signatures are needed to detect all “types” of curvilinear structures.
Combining line detection in each plane: detecting lines in each band, then merg-
ing the information seems the most straightforward method; see Figure 2 for an
example of edge and line norm fusion. Such an approach would howevermiss a
yellow line at the interface of a red and green surface (see Figure 3 (left)) unless it
is sought on the Value or Luminance plane, implying a transformation in another
space. Which transformations, which planes to consider and how to combinethe
outputs? A generic but time consuming solution is proposed in [7].

Figure 2: (a) Original Image (b) Edge Fusion: (R,G,B)= scaled Edge Norm in
(R,G,B) (c) Line Fusion: scaled Line Norm in (R,G,B) with grey: no line, brighter:
bright line, darker: dark line (GLD computation) [8]

Line detection exploiting local color variation: pixels located on the center of
a line are characterized by low color variation along the line and a high variation
in the perpendicular direction. If the line lies on a uniform background the color
variation seen as a vector in the 3D color space at each side of the line will have
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opposite orientation; in the case of a colored line at the interface of two other
colors, the orientation will not be opposite, but will vary significantly. Exploring
the color variation in a 8-neighborhood will thus give an indication of the presence
of a line. Color variation is captured by the color gradient field, but existingcolor
gradient [1], [2], [9], [10] are not “oriented” as they cannot distinguish the passage
from a colorc1 to a colorc2, from its symmetrical (see Figure 3 (right)); we thus
introduce an “oriented” color gradient in the next section.

Input image
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Figure 3: Left: input image on which marginal line output fusion fails; right: an
oriented color gradient on two input images and their gradients on Red and Green
planes

3 Oriented Color Gradient Field

A color image is seen as a mapping fromZ2 → Z3 where each pointp = (i, j) of
the plane is mapped on a three dimensional vectorcp = (rp, gp, bp) whererp, gp,
andbp represent the red, green and blue values at the coordinates(i, j). The vector
may also be seen as a point (in a three-dimensional space), namely, a “color” point.
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Figure 4: (a) local window atp (b) x component of the gradient:̂Ir − Îl (c) y com-
ponent of the gradient:̂Id − Îu

In grey-level images, the intensity variation is captured byG = (Gx, Gy),
the Gradient of the Intensity: at each point, the gradient direction, its normand
its orientation provide the direction of the greatest intensity variation, the amount
of variation and the direction of higher intensities respectively; it is the perfect
candidate to describe an edge as displayed in Figure 1 (a–b). Each component of
the gradient may be seen as the difference between two average intensities[11]
or as theEuclidean distance between two averages intensities multiplied by a
sign representing their respective mathematical order, as seen in Figure 4where
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Îr, Îl, Îu, Îd represent the average of the intensity in the zones at the right, left, up
and down of the pixel respectively. Thus,

Gx(i, j) = s d(Îr, Îl) ≡ s drl and Gy(i, j) = s d(Îd, Îu) ≡ s ddu (1)

whered(a, b) is the Euclidean distance ands = 1 if a > b, s = 0 if a = b and
s = −1 if a < b. The norm of the gradient may then be rewritten as:

N(i, j) =
√

d(Îr, Îl)2 + d(Îd, Îu)2 ≡
√

d2

rl + d2

du

An oriented color gradient field may thus be obtained by a generalization of Equa-
tion 3 from a scalar functionI (grey-level) to a vector functionA (color):

Gx(i, j) = s d(Âr, Âl) ≡ s drl and Gy(i, j) = s d(Âd, Âu) ≡ s ddu (2)

whered(a, b) is the considered distance ands = 1 if a > b, s = 0 if a = b and
s = −1 if a < b, according to some order relationship. This order is arbitrary
(unique if n = 1) but all orders will generate similar gradient direction up toπ,
as the same rule applies to both directions. The lexicographical order is the most
natural one. Given a vectora = (a1, . . . , an) and a vectorb = (b1, . . . , bn),

a = b iff ai = bi for i = 1, . . . , n.
a < b iff a1 < b1 or ai = bi for i = 1, . . . , j − 1 < n and aj < bj

a > b iff a1 > b1 or ai = bi for i = 1, . . . , j − 1 < n and aj > bj

Other ordering can be found in literature: color edge detectors based onvector
order statistics require an ordering scheme [1]; morphological color edge detectors
[10] are a special case of such detectors. However, to our knowledge, none of them
uses anabsolute ordering: in [10], the concept of “extremum” exists but there is
no minimum nor maximum; in more general vector order statistics schemes, the
concept of “rank” holds, but without privileged orientation.

If the intensityI(i, j) is given by the norm of the vector||A||, such as in

the RGB representation of an image (i.e.I(i, j) =
√

A2

R + A2

G + A2

B), a multi-
spectral or hyper-spectral representation, performing an orderingon the norm basis
first, and then on each coordinates would be more appropriate.

In the generalization of the norm of the gradient, the orientation disappears:

N(i, j) =
√

d(Âr, Âl)2 + d(Âd, Âu)2 ≡
√

d2

rl + d2

du (3)

If d is the Euclidean distance, it is easily seen thatN in Equation 3 is the square
root of the marginal squared gradients (i.e. gradient in red, green andblue planes)
as already proposed in literature (see [2]). If color perception is an issue, the av-
erage intensitieŝIr, Îl, Îu, Îd may be converted in the CIE-L*a*b* space (referred
as CIE-Lab in the following), and, when the Euclidean distance is small, otherdis-
tances such as CIE1994, CIE2000, or CMC could be used [12]. Although there
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Figure 5: (a) pixels pairs atp (b) gradient vectors configuration for a dark line atp

is still no consensus on the best perceptual distance to use [13], it is recognized
that the Euclidean distance in CIE-Lab isnot correct for small distances (in [3]the
contrary is assumed). Indeed, similar colors do not hold in spheres in the CIE-Lab
space, but rather in ellipsoids, which shapes depend on the color positionin the
space and on the observer [14].

A two-dimensional color gradient field is thus available on each pixelp, its
norm being defined by Equation 2, its direction (including an orientation) defined
by the gradient vector in Equation 3. For an efficient computation of the averages,
we recommend the weighting factors involved in the Gaussian gradient computa-
tion: on each color plane, for thex component of the gradient, a smoothing in the
y direction using a Gaussian is performed first (details on the size of the window
and the best way to compute the coefficients are given in [8]), then, instead of
convolving the resulting image with the derivative of the same Gaussian alongx
direction as it done for the Gaussian gradient, the derivative mask is divided in a
left and right mask, in order to compute a left and right average with all positive
coefficients, as the “difference” between the averages is taken out ofthe computa-
tion. The average vector at left and at right may then be obtained by collecting the
averages on each color plane. They component is computed similarly. The scale
parameter of the line detector is thus related to theσ of the Gaussian used in this
averaging process.

4 Gradient Color Line detection

The grey-level Gradient Line Detector [8] (GLD) exploits the gradient orientation
change at each side of the line axis. At each pixel, pairs of opposite pixelsin the
8-neighborhood (see Figure 5) producing a negative dot product —the guarantee
of an orientation change— are considered, and the square root of the maximum
absolute value is taken as line strength. The projection of each gradient along
the line joining the pairs enables to distinguish dark lines (lines darker than the
background) from bright ones; the method as such cannot detect “plateau” lines.

The oriented color gradient is thus used as input of the GLD, from which
“bright” lines or “dark” lines are extracted. In the color context, “bright”and
“dark” have to be interpreted with respect to the color order introduced: aline will
be detected as bright if its colorcl > cb, wherecl andcb are the color of line and
the background respectively. More precisely, at each pixelp, the oriented color
gradient is computed according to Equation 2. In the 8-neighborhood of the pixel
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the 4 pairs of symmetrical pixels are considered (see Figure 5). In orderto have a
line atp, the projection of the oriented color gradient along the line joining some of
such pairs should be of different sign. Thus letd = (dx, dy) be the vector joining
p to q, where(q, r) is the considered pair. ComputePq = Gx(q)dx +Gy(q)dy and
Pr = −Gx(r)dx − Gy(r)dy. Then ifPq andPr have the same sign, computeD,
the dot product ofG(q) andG(r):

D = Gx(q)Gx(r) + Gy(q)Gy(r)

D should be negative, as the orientation of the gradient should change at each side
of the line. If Pq andPr are positive (negative), pixelp is a candidate for a dark
(bright) line. Thus ifPq < 0 andPr < 0, Dbright = |D| elseDbright = 0; if
Pq > 0 andPr > 0, Ddark = |D|, elseDdark = 0. A pixel may be both candidate
for a bright line in some direction (i.e. for some pair(q, r)) and dark in another
one. ComputeDbright andDdark for each of the 4 pairs and compute respectively
Lb andLd, the maximum of both values. The “bright” and “dark” line strength at
p is then

√
Lb and

√
Ld respectively. For display purpose, it is convenient to define

the “line strength” output atp asL(p) =
√

Lb if Lb > Ld or L(p) = −
√

Ld if
Ld ≥ Lb. The direction of the line is given by the direction of the difference of the
gradient vectors of the pairs providing the corresponding line strength.

5 Results

The color line filter is characterized by 3 parameters: the smoothing factorσ, the
type of distance, and the ordering scheme. It has been applied to two imagesshown
in Figure 6 with slightly different parameters. For the upper imageσ = 1 while
for the lower image a value ofσ = 0.5 was necessary to separate some lines. This
value is convenient for the upper image: note how the noise in the orange lineis
smooth out. On the lower image, despite the low value ofσ, some lines cannot be
separated so that a more precise line detector should be used at some places. All
other parameters are similar: the Euclidean distance (dE) and the lexicographical
order (Orgb) were used. The curvilinear structures are well detected in both images.

6 Discussion

A potential undesirable effect of the introduction of an order in the color space
is the instability of the edge orientation at the interface of some colors that have
a similar color component although their distance is large. Consider the example
shown in Figure 7, where one side has the uniform colora, and the other side
includes some noise: one pixel has a colorb, another one a colorb′, with b very
close tob′ anda far away fromb. If the red components of the noisy pixels on
the red axis are respectively just lower and greater than the component ofa and if
the ordering is made on the red component first, then the edge orientation will be
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inverted as shown in (b). Note that if another ordering is used (for example starting
by the green component first) as in (c), the instability vanishes.

(b) (c)(a)

Figure 6: (a) 512×512 color images; (b) Color line filter outputs : grey:0, whiter:
“bright” line output, darker: “dark” line output. Filter parameters up: (1,dE , Orgb)
down: (0.5,dE , Orgb) (c) zooms on part of the image.

A solution might thus be to detect these specific cases i.e. whenÂr andÂl or
Âu andÂd are distant while sharing a similar color component, and use a different
ordering scheme for the latter. Not more than three ordering scheme are necessary.
Of course, the meaning of “dark” and “bright” will change accordingly.

b

b’
a

(c)(b)
a

b b’

R
(a)

G b

b’
a

Figure 7: Gradient orientation instability: (a) 3 colors in Color Space having0 blue
components (b) Oriented Gradient usingOrgb (c) Oriented Gradient usingOgrb
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7 Conclusions

The introduction of an arbitrary order in the color space enables to produce an
oriented color gradient which in turn may be used for color line detection. The
proposed color gradient field includes a scale parameter and an efficient implemen-
tation based on the Gaussian gradient is proposed. The color gradient computation
enables to use other color distances at the price of an additional cost in computer
time. The line detection computation is straightforward as it involves computing a
few dot products at each pixel. “Bright” and “dark” line strength outputare pro-
duced, they should be interpreted with respect to the color ordering introduced.
The results on some images are encouraging.
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