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A Three-Module Strategy for Edge Detection 
VINCIANE LACROIX 

Abstract-This paper presents a three-module strategy for edge de- 
tection. The first and the last module involve well-known methods: the 
first module is a parallel process computing local edge strength and 
direction while the last module is a sequential process following edges. 
The originality of the overall method resides in the intermediate mod- 
ule, seen as a generalization of the nonmaximum deletion algorithm. 
The role of this module is twofold: it enables one to postpone some 
deletion to the last module where contextual information is available 
and it transmits the local edge direction in order to guide the contour 
following. In addition, a new postprocessing called learning edges is 
proposed as a refinement of the method. The binary edge images ex- 
tracted from various gray-level images illustrate the power of the pro- 
posed strategy. 

Index Terms-Contour following, edge detection, nonmaximum 
deletion algorithm. 

I. INTRODUCTION 
HERE exists two complementary approaches to edge T detection [12]. One is edge-based and it detects local 

changes; the other is region-based and it looks for local 
similarities. An edge is usually defined as a curve sepa- 
rating two regions characterized by different average in- 
tensities. How large should the regions be? How sharp 
should the separating edge be? The answers depend on the 
desired edge resolution (the resolution of a detector is the 
minimum distance between two distinct edges in the input 
image that leads to two distinct edge responses in the out- 
put of the detector). In order to have a complete edge map 
of an image, one has to integrate the responses of opera- 
tors working at various resolutions. Therefore the edge 
detection scheme can be subdivided into two stages: first, 
the design of an operator working at a given resolution; 
second, the elaboration of a process combining the re- 
sponses of the operator working at various resolutions. 
This paper is concerned only with the first task for which 
an edge-based strategy is proposed. 

Detection of edges at a given resolution usually in- 
volves two steps after an optional preprocessing. First, 
edge strength and direction is assigned to each pixel; 
strength may be thresholded in order to remove weak ed- 
gels. Next, pixels-or edgels-are selected and combined 
into contours. These two steps are usually considered in- 
dependently. In this paper, they are respectively the first 
and last part of a 3-module strategy. The aim of the first 
module is to compute an edge strength and an edge direc- 
tion which is digitized in order to point to one of the eight 
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nearest neighbors. Any method achieving this aim can be 
used in the first module. Section I1 is devoted to a review 
of such existing methods. The aim of the second module 
as described in Section I11 is to assign a likelihood of being 
an edge (LBE) to each pixel. The corresponding process 
is a generalization of a nonmaximum deletion algorithm 
in the sense that pixels with LBE = 0 are deleted, pixels 
with LBE = 1 are definitely kept as edge elements, while 
pixels with 0 < LBE < 1 have to wait for contextual 
information to know their status. Section IV presents the 
last module, an improved contour algorithm. In this mod- 
ule, a decision using contextual information is made re- 
garding the deletion of pixels with 0 < LBE < 1. A con- 
tour is started where the pixels have LBE = 1 and is 
continued along the edge direction as long as the LBE is 
> O .  Results and implementation details are shown and 
discussed in Section V. Section VI proposes a postpro- 
cessing called learning edge as a refinement of the method. 
This process performs a smoothing of the image without 
blurring its edges; the smoothed image then serves as in- 
put to our edge detector. Section VI1 is a review of ap- 
proaches combining responses of operators working at 
various resolutions and shows how our strategy can be 
incorporated in these approaches. Conclusions and sum- 
mary are given in Section VIII. 

11. FIRST MODULE 
The first module provides an edge strength and direc- 

tion to each pixel. In order to remove weak edgels a 
thresholding is performed on the edge strength values. 

Without any preprocessing, the resolution of the edge 
detector will depend on the extent of the first module op- 
erator. The preprocessing can be seen as a way to enlarge 
the operator support, and therefore as a method for chang- 
ing its resolution. Marr and Hildreth [ 141 were the first to 
introduce a preprocessing in order to study the image at 
different scales; in their approach, the preprocessing was 
performed applying several Gaussian filters characterized 
by different variances. 

We classify existing methods according to the size of 
their support; an operator is said to be local if it involves 
computations over small windows, typically 2 x 2 or 3 
X 3 windows. Operators having larger support are clas- 
sified as regional operators. Local operators have a finer 
resolution than regional operators, and therefore are more 
sensitive to noise. Although some approaches to the de- 
sign of local and regional operators are similar, such a 
classification is interesting because it groups together op- 
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erators according to their computational cost, an impor- 
tant issue in practical applications. 

A .  Local Operators 
Local operators assume that edges correspond to inten- 

sity changes and therefore they compute the gradient of 
the intensity field. The available gradient direction of lo- 
cal operators vanes: all directions can be obtained if the 
x and y components of the gradient are calculated from 
discrete approximations of the first derivative in these two 
directions. The approximation may include a weighted 
average such as the isotropic [5] or Sobel operators, an 
unweighted average like Prewitt’s operators [ 171 or no av- 
erage at all [ 181. 

Instead of computing a discrete approximation, one may 
locally fit some analytical surface to the intensity field and 
compute the analytical x and y derivatives of these func- 
tions in order to obtain the gradient. Haralick [7] locally 
fits a third order polynomial in x and y to the intensity 
values. 

Only eight directions corresponding to the eight nearest 
neighbors are provided by operators which find the best 
match among eight idealized edges. Some operators (see 
Fig. 1) may also involve a weighted average [5], [19], an 
unweighted average [ 191, or specific patterns [ 101. 

Frei and Chen [5] interpret these operators as “projec- 
tors” of the pattern present in the window onto a subspace 
made by these idealized edges. The angle of the vector 
associated with the pattern with the subspace reflects how 
well the pattern corresponds to an edge. This angle can 
thus be taken as the edge strength. The rest of this sub- 
section is devoted to Frei and Chen’s method. We shall 
first correct a mistake in their approach, then propose a 
simplified basis equation, and finally show how the ap- 
proach can be applied to the masks displayed in Fig. 1. 
In Frei and Chen’s approach, any pattern on a 3 x 3 win- 
dow is a weighted sum of 9 basis masks and therefore is 
viewed as a vector in a nine-dimensional space. The pro- 
jection of the pattern vector on the edge subspace is com- 
puted. The edge strength is defined as a ratio r of the 
length of the projected pattern vector to the length of the 
pattern vector itself. Let { T I ,  * , T 9 }  
be a set of orthogonal masks generating the whole pattern 
space where { T I ,  * * , T, } generates the edge space; let 
W be the vector associated to the pattern present in the 
window, then-see ( 2 )  in [5]- 

, T,, Te+  I ,  

l e  

4” i =  I ( W  * Ti)’ 

In fact, the denominator in (1) is equal to the length of 
the pattern vector in the entire space if and only if the 
basis is normalized; the ratio would remain unchanged 
though if the elements of the edge basis had the same 
norm, as well as the elements of the nonedge basis. The 

M, M, M, -1 0 1 
Types of average: 

1 0 -1 unweighted a = 1 0 1 a  

I I / weighted a = 2 + 

isotropic a = Jz M& = -M, M. = -M, M, = -M, M. = -M, 
\ 1 / + 

Fig. 1. Some local operators for which eight gradient directions are avail- 
able. 

T I ,  - * * , Te proposed by Frei and Chen have indeed the 
same norm, but the remaining masks have all different 
norms. Therefore, (1) will not provide the desired ratio 
unless some normalization factors are introduced. An- 
other solution is to redefine the scalar product and the def- 
inition of the norm. Further insight into (1) shows that it 
is still impossible to justify the use of Frei and Chen’s 
basis, even after a modification of the scalar product. 

In order to simplify ( l ) ,  we propose to use the natural 
“canonical” basis made of 9 orthonormal masks (or 
9-component vector) each one having one pixel (or com- 
ponent) set to 1 and the others to 0. Any pattern on a 
window is then viewed as a 9-component vector, each 
component being the intensity value of the corresponding 
pixel in the window. Let Mi be the vector associated with 
mask i in Fig. 1. For any average type, the set { M I ,  MZ, 
M 3 ,  M4} generates a four-dimensional edge space. How- 
ever, the basis vectors M I ,  M 2 ,  M 3 ,  M4 are not orthogo- 
nal to each other. The Gram-Schmidt method can be used 
to build a new orthogonal basis B 1 ,  - - * , B4. Noting that 
M 2  is orthogonal to M4, and M 3  to M I ,  one can build 
bases as shown in Fig. 2.  

Instead of completing the latter with five other masks, 
we can use the canonical basis in order to compute the 
norm of the pattern vector so that (1) becomes 

l e  

where wk denotes the intensity on the kth pixel of the win- 
dow or the kth component of the vector W (pixels are 
numbered using a left-to-right, top-to-bottom raster scan). 
Note that the Bi are not strictly normalized but do have 
the same norm so that a “proportional to” sign ( a ) must 
be introduced. 

A more general solution, which gives different weight 
to each pixel while respecting the symmetry of the prob- 
lem, can be obtained after a redefinition of the scalar 
product and leads to the equation. 

r o :  ( 3 )  

where nl = n3 = nl = n9 = x, n2  = n4 = n6 = n8  = y ,  
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Types of average: 

unweighted: a =  1 B1 B, B. 

isotropic: a = JZ a 
1 0 -1 -(I 1 0 1 -a 

weighted: a = 2 ” ’ ’ ’ 

Fig. 2 .  Orthogonal bases associated with the local operators. 

n5 = z .  There does not seem to be any clear criterion for 
a good choice of x ,  y ,  and z .  

Edge strength in this “vectorial space” approach can 
thus be computed using either a normalized version of 
Equation ( l ) ,  either Equation (2) or more generally Equa- 
tion (3). Edge direction can trivially be computed using 
B1 and B2.  

B. Regional Operators 
The various local approaches can easily be generalized 

to larger supports. 
A smoothed gradient is proposed by Canny [3] as a sim- 

plified version of his directional mask operators (see the 
end of this subsection). The process is equivalent to two 
consecutive operations namely a Gaussian filtering fol- 
lowed by a gradient computation. The x component of the 
smoothed gradient is computed as follows: 

a x ( ]  * G ( x ,  Y ) )  = ( 1  * a x W 9 )  * G ( Y )  
( 1  * ( - x e - X 2 / 2 “ 2 ) )  * e - ) ’ 2 / 2 0 2  

where I denotes the intensity field. A similar computation 
is made for the y component. 

Operators which assume an edge model inside the re- 
gion make use of a “vectorial space” approach. The edge 
strength will depend on how well the local intensity field 
fits the edge model, and the edge direction is the direction 
associated to the best model. In Hueckel’s model [8], a 
region of diameter D is centered at the point (x, y ) .  An 
edge at ( x ,  y )  is modeled by a bar lying on (x, y )  char- 
acterized by a constant intensity b,  a width w, and an an- 
gle CY, separating two regions of constant intensity r ,  and 
r2 .  A section perpendicular to the edge is shown in Fig. 
3.  

Each edge corresponding to this model can be repre- 
sented by an infinite weighted sum of some basis func- 
tions-or masks. Hueckel proposes to truncate this sum 
up to the first eight terms. This is equivalent to a projec- 
tion of the pattern vector on the subspace generated by the 
corresponding eight basis masks. Results of this operator 
are reputed to be poor [ l l ] ,  [9]. 

MCr6 and Vassy [15] simplify Hueckel’s model. A 
square of area D 2  is centered at the point (x, y ) .  An edge 
at ( x ,  y )  is modeled by a line passing through ( x ,  y )  char- 
acterized by an angle CY, separating two regions of con- 
stant intensity rl and r2 as shown in Fig. 4. Another set 
of basis masks is proposed; it leads to improved results. 

In a recent paper Davies [4] discusses the constraints 
that one should follow in order to design either local or 
regional idealized edge masks. Once masks have been de- 
signed, one can take as the edge strength either the length 
of the projected vector on the edge space, or the angle 
between the pattern vector and the edge space. 

’ 

Intensity 

I 

(* 
w 

D 
Fig. 3 .  Hueckel’s model. 

Intensity 

D 
Fig. 4 .  MCr6 and Vassy’s model. 

Other regional operators look for a property change in- 
side a region. The edge strength is now proportional to 
the change and the edge direction corresponds to the bor- 
der between the considered regions. Many edge detectors 
aim at detecting edges as idealized by Mer6 and Vassy 
with the difference that r ,  and r2 are average values so 
that regions may be textured or noisy. Therefore, the 
property to be compared is the average intensity. The av- 
erage may be weighted or not. 

On each side of the presupposed edge direction, the in- 
tensity average is computed over a region of given size 
and the difference is assigned to the pixel. Masks are de- 
signed for this purpose. Let the pixels of the mask be in- 
dexed by k and 1, and let ( 0 ,  0)  denote the center of the 
mask. Let F ( k ,  I )  be the mask weight at the point ( k ,  1 ). 
In order to measure the presence of an edge of a given 
direction at pixel ( i ,  j ), the mask is placed on the image, 
its origin coinciding with ( i ,  j ), such that the directions 
of the axes K and L lie along the normal and the tangent 
to the presupposed edge, respectively. Then a convolu- 
tion takes place. The result of the convolution is the re- 
sponse of the edge detector attached to that direction. A 
convolution is performed for every possible edge direc- 
tion. The maximum convolution value provides the edge 
strength and the direction of the mask leading to that max- 
imum value provides the edge direction. Most of the 
masks have the property F (  k ,  1 ) = C( k ,  1 ) S, ( k )  where 
S , , ( k )  is a 1-D step detection function and C ( k ,  1 )  takes 
into account the edge continuity in order to realize a 2-D 
detector. The resolution of these operators is related to 
the interval over which S,, ( k )  is significant. 

A simple average is achieved by Rosenfeld’s [20] “dif- 
ference of box” masks. For this method, C ( k ,  1 )  is 1, 
while S, ( k )  is - 1, 0, 1 for i = 0, and i > 0, respectively. 
According to Canny [3] these detectors do not generate a 
thin edge but rather have multiple responses nearby the 
edge. Several weighted versions of such masks have been 
proposed. Argyle [ l ]  uses a split Gaussian mask where 
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S , , ( k )  is a Gaussian multiplied by the sign of i. In 
MacLeod’s [13] masks, S , ( k )  is the difference of two 
shifted Gaussians peaking at opposite points, and C ( k ,  1 ) 
is a Gaussian of zero mean. 

Canny [3] also proposes such a type of masks which 
may be viewed as computing a difference of some 
weighted average over two regions. Although the method 
is not presented in this format for implementation pur- 
poses, it seems that F ( k ,  l )  = G,( l )  S , , ( k )  where S , ( k )  
is the first derivative of a 1-D Gaussian, and G, ( I  ) is a 
1-D Gaussian. At each pixel, masks corresponding to var- 
ious orientations are then matched with the current win- 
dow. An SNR measure is estimated for each of the masks. 
Then the mask giving rise to the highest SNR value as- 
signs its direction to the current pixel. 

Yakimovsky [23] assumes that edges are interfaces be- 
tween sets of points, each being described by a normal 
distribution. He proposes a set of pairs of neighborhoods 
(which are the hypothetic sets of points) corresponding to 
idealized edge types. At each pixel, each of these pairs is 
investigated in order to find the parameters of the two nor- 
mal distributions. Then, a maximum likelihood operation 
selects the best pair. The current pixel could be labeled 
by the difference of the means like in Rosenfeld’s algo- 
rithm described above, but in his paper Yakimovsky sug- 
gests the use of some region growing technique which will 
not be discussed here. 

C. Thresholding 
Whether the edge strength has been derived from local 

or from regional operators, selection of meaningful edge 
elements is performed using a fixed or an adaptive thresh- 
old. When a fixed threshold is used, all pixels character- 
ized by an edge strength inferior to the threshold are dis- 
carded. Canny [3] proposes the use of an additional 
threshold so that pixels having their edge strength be- 
tween both thresholds can only be continuations of a con- 
tour, while pixels above both thresholds can either be 
starts or continuations of a contour. 

At the end of the first module all pixels have an edge 
strength and direction. The latter is digitized so that it 
points to one of the eight nearest neighbors. 

111. THE SECOND MODULE 
The pixels surviving after the thresholding in the first 

module do not provide a one pixel wide contour. Several 
authors use a skeletonizing algorithm to erode the thick 
edges. Such an algorithm works as a blind processor as it 
does not use earlier computations. Other authors use a 
nonmaximum deletion algorithm. The latter method often 
deletes junction pixels. An example is shown in Fig. 5 .  
The intensity value is shown in Fig. 5(a), the gradient 
direction in Fig. 5(b), the gradient magnitude in Fig. 5(c), 
and the pixels resulting of the nonmaximum suppression 
are framed in Fig. 5(d). The gradient in (b)-(d) is com- 
puted using unweighted masks. The output image in (d) 
results from the following deletion process: a 3 x 1 win- 

(C) (d) 

Fig. 5 .  Example (a) intensity, (b) gradient direction, (c )  gradient magni- 
tude, (d) remaining edge pixels. 

dow is placed along the gradient direction, its center on 
the current pixel; this pixel is deleted if its gradient mag- 
nitude is lower than the one of any other two pixels lying 
in the window. The pixel ( i ,  j )  lying at the junction of 
several borders is indeed lost. Canny’s [3] nonmaximum 
deletion algorithm is slightly different but will produce 
the same type of undesirable effects. Here and in the se- 
quel, the term “gradient” is used improperly to synthe- 
size edge strength and direction perpendicular to the edge. 

We propose to generalize the nonmaximum deletion al- 
gorithm so that some deletion can be postponed until con- 
textual information becomes available. The likelihood of 
being an edge (LBE) has been designed for that purpose. 
Pixels with LBE = 0 are deleted; pixels with LBE = 1 
are definitely considered as edge candidates; pixels with 
0 < LBE < 1 have to pass the third module to know their 
status. 

The LBE is computed by the following process. Each 
pixel of the image has two counters U and rn; U counts 
how many times a point is “visited;” rn counts how many 
times a point is a local maximum. The image is scanned. 
On each pixel, a 3 X 1 window is placed such that the 
middle of the window coincides with the current pixel and 
the other two pixels lie along the current gradient direc- 
tion. All pixels belonging to the window are “visited” 
during this process and their v counters are incremented. 
On the other hand, only the pixel(s) having the greatest 
gradient magnitude increments his (their) rn counter(s). 
Fig. 6 shows how the counters are incremented when the 
window is placed on the pixel ( i ,  j ) of Fig. 5(a) and also 
shows whenever the v and rn counters of pixel ( i ,  j ) are 
incremented during the whole scan. 

After the scan, an LBE = rn/v is assigned to every 
pixel. One readily observes that the intermediate process 
does not delete the junction point ( i ,  j ) in Fig. 5 but as- 
signs it the LBE = 0.5. 

When leaving the second module, a pixel that is a strict 
local maximum will have LBE = 1, while a pixel that is 
sometimes but not always a local maximum-depending 
on the position of the window-will have 0 e LBE e 1. 
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+ + 
(a) (b) 

# #  j 

1 0  10 0 0.4 1 

(C) (d) 
Fig. 6. (a) Window at (i, j ) .  (b) Incrementation of counters while scan- 

ning ( i ,  j ) .  (c) x, o denote the position of the raster scan when, respec- 
tively, the U and m counters of ( i ,  j )  are incremented. (d) LBE. 

IV. THIRD MODULE 
The third module based on Kunt’s contour following 

method [12], is a sequential process which uses the fact 
that, in real images, edges *tend to be continuous and 
should be perpendicular to the gradient at each pixel. 

In the contour following process, pixels are marked so 
that contours do not overlap. The image is scanned; 
whenever a pixel has LBE = 1 and has not yet been 
marked, a left and right contour-left and right with re- 
spect to the gradient vector-is started. For each of the 
leftlright contours, the edge is continued according to the 
following rules. Get the three lefthght neighboring pix- 
els. Let p ,  U, and d be, respectively, the pixel perpendic- 
ular, up (left/right), and down (lefthght) with respect to 
the gradient (see Fig. 7). Let mar be the maximum of 
their LBE. Assume that mar # 0 and that p ,  U, and d are 
not yet marked, so that the contour may be continued in 
either direction. 

if p has LBE = max then 
begin 
p is the next point of the contour { direction perpen- 
dicular to the gradient is preferred } 
if LBE of U and/or of d equals 1 then modify LBE 
so that it becomes less than 1 
{prevents a contour to start there but allows one to 
continue through that pixel } 
end 

the one with LBE=mar is the next point of the con- 
tour 

else if both U and d has LBE=mar then { current point 
is a junction } 
choose one with the closest gradient norm {try to 
stay along the same physical edge } and set the LBE 
of the other to 1 { force a new contour to start there } 

else if only one of U and d has LBE = mar then 

The process is repeated with the appended point as “pi- 
vot” until the left/right contour is stopped. A test on the 
length of the whole contour-left and right-is used to 
remove short meaningless contours. 

left gradient direction 

Y 
right left neighbors right neighbors 

Fig. 7. Left and right neighbors. 

V. IMPLEMENTATION 
Any method described in Section I1 or any other method 

providing each pixel with an edge strength and direction 
can be used in the first module. Edge direction should be 
digitized so that it points to one of the eight nearest neigh- 
bors. A thresholding is performed on the edge strength. 
The threshold is such that x percent of the pixels are re- 
tained as edge candidates. There are several advantages 
for using the parameter x rather than an absolute thresh- 
old. First, it is more intuitive because it reflects a tangible 
quantity: the number of edge pixels. Second, the same x 
can be used indiscriminately with any method in the first 
module. Finally, it is not easy to choose a threshold for 
the edge strength, especially when the range is not known. 

As previously stated, the resolution of the operators de- 
pends on the local extent of the operator in the first mod- 
ule. For high resolution a local operator as described in 
Section 11-A should be used. The three-module strategy, 
with the unweighted masks in the first module, has been 
used on the input images shown in Fig. 10. The images 
are 100 X 100 pixels large. Intensity varies from 0 to 255. 
Forty percent of the pixels are retained at the end of the 
first module. The scaled LBE and the contour image for 
which the minimum length is 4 pixels are respectively 
shown in Fig. 11 and in Fig. 12. 

For a low resolution operator, a regional operator (see 
Section 11-B) or a preprocessing plus a local operator are 
required in the first module. We used the smoothed gra- 
dient as the regional operator. The edges extracted from 
Fig. 8, a 120 x 180 image, are shown in Fig. 9. Mini- 
mum contour length is 8 pixels. 

VI. LEARNING EDGES 
If a high resolution is required and the input image is 

very noisy as in Fig. 8, the “learning edge” process might 
be used. This process performs a smoothing of the image 
without blurring its edges. Such types of processing have 
been proposed in the literature. In Nagao and Matsuma- 
ya’s [ 161 technique, the most homogeneous neighborhood 
area around each pixel is searched for. This is done by 
considering several typical neighborhoods and computing 
the intensity variance on each of them. The intensity av- 
erage is then performed over the neighborhood corre- 
sponding to the lowest variance. The operation is repeated 
several times until the intensity at the given pixel does not 
vary any more. 

In the proposed method, the edges are first extracted 
and are considered as an “edge hypothesis.” Then, the 
resulting binary edge image is used together with the orig- 
inal image in order to compute an average which does not 
blur the edges already detected. The average image now 
serves as input to the edge detector and a new binary im- 
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1 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Fig. 8 .  Noisy image. 

Fig. 9. Smoothed gradient in 1st module ( a  = 2 . 5 ) .  

Fig. 10. Input images 

age is thus generated. The process can be repeated once 
more: the original image is taken for the averaging pro- 
cess with the last edge pixels as the hypothesis. 

In the averaging process, the original image is analyzed 
and at each pixel an average is computed over a region 
surrounding the pixel and not containing any edge pixel 
found by the edge detector algorithm. The region is found 
by the following technique (see Fig. 13). The maximum 
size W of the averaging window is defined. At each pixel 
the window is divided into four rectangular regions, R I ,  

(b) 
Fig. 11.  (a) LBE images. (b) Detail of framed part of (a). 

Fig. 12. Contour images. 

Fig. 13. Averaging neighborhood 

R,, R3,  R4. The largest rectangle in each Ri touching the 
pixel and not containing any edge is sought in each re- 
gion. The union of these rectangles and the current pixel 
becomes the neighborhood over which the average- 
weighted or not-is performed. 

It turns out that repeating the process many times is not 
necessary. One or two passes are indeed sufficient to lead 
to satisfying coarse images. The smoothed image and edge 
image are shown in Fig. 14. 
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(a) (b) 
Fig. 14. (a) Smoothed image. (b) Edges on smoothed image. 

VII. OVERALL STRATEGIES 
In their paper Marr and Hildreth [14] modeled the hu- 

man vision system by a blurring process (i.e., a convo- 
lution with a Gaussian) followed by a zero-crossing of the 
Laplacian. Narrow Gaussians (i.e., Gaussians with a 
small variance) have a high *resolution while wide Gaus- 
sians have a low resolution. In several applications one is 
usually interested in an edge detector with a fixed reso- 
lution. This property can be obtained by adjusting the 
standard deviation U of the Gaussian. 

In other applications, all types of edges are required: 
sharp edges, edges between textured regions, etc. Several 
attempts were made to combine the results of the edge 
detectors at different scales (obtained by various a’s in the 
blurring Gaussian). In Canny’s edge detection scheme [3], 
the results of the operator working at the finest resolution 
are first analyzed; then results coming from lower reso- 
lution processing are integrated one after the other. The 
Gaussian filter may induce a shift of an edge already de- 
tected at a finer resolution; therefore, in order to have a 
single response attached to a single edge, one uses a pro- 
cess which predicts the location of the already detected 
edges; then the comparison between the prediction and 
the effective results is made. 

Witkin [21], on the contrary, moves from a coarse to a 
fine analysis. For the 1-D case, he notes that zero-cross- 
ings shift slightly when the a of the Gaussian decreases 
but never disappear, although additional zero-crossings 
pairs may appear at a given U .  An edge is then character- 
ized by its location defined as the location of the zero- 
crossing at the finest resolution and by its coarseness cor- 
responding to the value of U where it vanishes. All these 
edges are organized in an interval tree in what is called 
the scale-space; the top of the tree provides the coarsest 
description of the image, while the bottom presents the 
finest one. 

Bergholm [2] proposes a 2-D generalization called edge- 
focusing. A wide Gaussian is first utilized in order to de- 
tect the most important edges; then, Gaussians of decreas- 
ing width are used in the surrounding of the detected edges 
in order to refine them. In Witkin’s scheme, this process 
consists in starting at a given stage of the interval tree 
and, while descending the tree-i.e., decreasing a-track- 
ing only the current zero-crossings disregarding all the 

appearing zero-crossings. However, this hierarchical 
method is computationally expensive. 

Although not concerned with any type of preprocess- 
ing, Rosenfeld is conscious of the need to integrate re- 
sponses of operators working at different scales [20]. As 
he does not use any preprocessing the only way to change 
the resolution of the edge detector is to use a larger extent 
in the mask detecting the edge. In his scheme employing 
difference of boxes masks, an edge size rn is assigned to 
every edge pixel if the output of the operator of size 2”’ 
is not lower than the output of any operator of larger size 
and greater than the output of an operator of smaller size. 

Torre and Poggio [22] assert that a multiresolution 
analysis should be performed after the differentiating op- 
eration, when nonlinear differential operators are used. 
Arguments for their assertion are found in [24]. Yuille 
and Poggio [24] also show that the Gaussian filter is the 
only one for which no zero-crossing appears when moving 
in the scale-space from a fine to coarser resolution. This 
property holds not only for zero crossings but also for 
ridges and Yalley. 

Any of these strategies may incorporate the three-mod- 
ule strategy; the finest resolution is provided by a local 
operator as described in Section 11-A while lower resolu- 
tions are obtained for example by adjusting the standard 
deviation U of the smoothed gradient operator (see Section 
11-B). According to [24], the resulting edges will have the 
nice property to vanish at some resolution but never to 
appear as one moves from a fine to coarser resolution; 
problems may however occur at junctions. 

VIII. CONCLUSION AND FURTHER WORK 
We propose a three-module strategy for edge detection. 

Any method providing an edge strength and direction can 
be used in the first module. The strength values are 
thresholded so that only x percent of the pixels are re- 
tained as edge candidates. In the second module, a 
“likelihood” of being edge (LBE) is assigned to every 
pixel; this operation is a generalization of the nonmaxi- 
mum deletion in the sense that pixels with LBE = 1 are 
definitely taken as edge candidates, pixels with LBE = 0 
are definitely deleted and no decision is made for pixels 
with 0 < LBE < 1 .  In the last module, contours are 
started where LBE = 1 and continued along local edge 
directions where LBE > 0. 

The second module offers two advantages over the tra- 
ditional nonmaximum deletion scheme. First, the dele- 
tion of some edge pixels, namely pixels with 0 < LBE 
< 1, is postponed to the last module where contextual 
information becomes available. This ensures better suc- 
cess at junction ways. Second, it transmits the gradient 
strength and direction to the last module in order to guide 
the contour following. 

For several applications, the three-module strategy 
which uses a local operator (unweighted mask) provides 
good results. For other applications such as very noisy or 
textured images, the choice of a regional operator in the 
first module is required. Experiences show that the 



810 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 6, NOVEMBER 1988 

smoothed gradient gives good results for lower resolu- 

quired, a process called learning edge may be used. Fi- 
nally, for images containing high and low resolution 

ing” [2] method using the operator with various U’S will 

[ 111 M. Kunt, “Source coding of X-Ray pictures,” IEEE Trans. Eiomed. 
Eng., vol. BME-25, no. 2,  pp. 121-138, Mar. 1978. 

1172-1175. 

Proc. IEEE, vol. 60, p. 344, 1972. 

Soc. London, vol. B207 ,  pp. 187-217, 1980. 

If a high On a noisy image is re- [12] -, “Edge detection: A tutorial review,” in proc, ICASSp82, pp, 

[13] I. D. G. MacLeod, “Comments on ‘Techniques for edge detection’,’’ 

an Overall strategy I2l1 such as an ‘‘edge focus- (141 D, M a n  and E, Hildreth, “Theory of edge detection,” Proc, Roy, 

be necessary in order to produce a complete edge map of 
the image. 
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