
Chapter  7. UWB Signal processing

7.1. Introduction

In the last chapter of this work, we discuss some signal processing techniques used on

GPR data. Until now we only have treated hardware aspects of the UWB GPR and we

have modelled the system in the time domain. The question is if we can use this

additional information on the hardware of the system for adapting or developing

signal processing algorithms.

Further there is the question if the UWB approach in the demining application yields

the necessary advantages over the conventional GPR. Many authors suggest that there

is a lot of information in the early- and especially in the late-time response (also called

the resonant part) of buried objects to short transient pulses.  This information could

be very useful for the classification of targets. The verification of this statement

however is not straightforward. In the previous chapter we saw that UWB GPR was

able to detect shallow buried mines. But despite the better depth resolution and the

fact that the backscattered signal contains more frequency information on the target,

the visual classification of objects in the B- or C-scans is not feasible. In this chapter,

we will report some conclusions concerning the use of signal processing techniques

that are more adapted to UWB signals.

Signal processing on the raw data coming from a conventional GPR has mainly two

objectives. First it can be used to reduce the clutter. Clutter can be defined as
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backscattered signals that are not from possible targets, but occur in the same time

window and have similar spectral characteristics. In GPR applications some examples

of clutter sources are the air-ground interface, multiple reflections between antenna

and ground, reflections from side-lobes and discontinuities in the ground like stones

and roots. Unlike conventional radar systems, the targets and clutter sources are both

static, so clutter removal techniques like moving target indicator (MTI) can’t be used.

In the scope of the HUDEM project, work has been done in the domain of clutter

reduction on UWB data [1].

A second objective of the signal processing is in general to enhance the quality of the

images, so that the interpretation by a human operator becomes easier and more

correct. Noise reduction methods [2] as well as focussing techniques to reduce the

influence of the antenna beamwidth, called migration techniques, belong to this class

of signal processing techniques.

Another way of classifying the signal processing algorithms is by the type of signals

to which they are applied. Signal processing techniques can be applied to A-scans, B-

scans or C-scans. In the next section a brief overview of a few basic signal processing

techniques on A-scans will be given. The overview is far from complete, only the

techniques, used or developed in the scope of this work, are restrained. Furthermore

we report on two well-known signal processing techniques on A-scans that are more

adapted to UWB signals and discuss briefly their target classification capability,

without addressing the problem of classification itself. In the following section, an

overview of migration techniques is given. This section must be seen as an

introduction to the last section of this chapter where a fast and computational not

intensive migration technique is described. The novelty of the algorithm is that the

characteristics of the GPR system and the ground are taken into account in the

algorithm. This is normally not the case in the conventional migration techniques.
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7.2. A-scans processing

7.2.1. Overview of A-scan processing

DC offset removal

From the physical point of view, the mean value of an A-scan has to be zero or close

to zero. Many receivers however have a DC offset that is different from zero and

eventually slowly drifting as a function of time. Therefore it is advised to compensate

for this offset. In the assumption that the offset stays constant over the time duration

of the A-scan, it can be removed by
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where

)(na is the raw A-scan,

)(' na  the A-scan after DC offset removal,

n  the sample number of the A-scan, and

N  the total number of samples per A-scan.

Background subtraction

In many GPR data, there is clutter present that always appears at the same time in an

A-scan or in a series of neighbouring A-scans. Examples of this kind of clutter are a

flat air-ground interface, a horizontal layer in the ground, or antenna ringing. These

clutter sources create horizontal lines in the B- or C-scans and can in some cases

obscure a target. The reduction of this kind of clutter can be achieved by subtracting

from each A-scan the average of a number of neighbouring A-scans or even the

average of all the A-scans in a B-scan. The algorithm is mathematically described as
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where

)(nai is the thi A-scan in the raw data,

)(' nai  the thi A-scan of the processed data,

K  the number of A-scans to be averaged before subtraction. In

general, the neighbouring A-scans are taken symmetrically around

the A-scan that is processed.

If the clutter is present in the whole B-scan, the number K  is often taken equal to the

total number of A-scans in the B-scan, so that the average of the whole B-scan is

subtracted from each individual A-scan.

Note that other mathematical operations than the average, as for instance the median,

are also possible and sometimes lead to better results.

Care has to be taken with the background subtraction, as it can create artefacts in the

image and sometimes inversion in the intensity of the A-scans, leading to an inversion

of the colour in the B-scan. Fig. 7-1 shows a B-scan of a Belgian AP mine, type PRB-

409, buried at a depth of 5 cm in loam. The PRB-409 is a very flat and difficult to

detect AP mine. In the unprocessed image on the left, the antenna coupling and the

air-ground interface is clearly visible. In the processed image at the right, the little AP

mine becomes more visible. In this example, the average of the whole B-scan is taken

to be subtracted from each individual A-scan.



UWB signal processing

7-5

pos [cm]

Ti
m

e 
[n

s]

0 20 40

0.5

1

1.5

2

2.5

3

pos [cm]

Ti
m

e 
[n

s]

0 20 40

0.5

1

1.5

2

2.5

3
AP mine

          (a)                                                                        (b)

Fig. 7-1: B-scan of a PRB-409 AP mine (a) before and  (b) after background

subtraction

Time-varying gain

As already mentioned in Chapter 2, the received signal is attenuated by the losses in

the ground and by the spreading losses. The later in time the reflection appears in an

A-scan, the further it has travelled in the ground, hence the more it was attenuated by

the above mentioned losses. This can be compensated for by applying a time-varying

gain. As our receiver had no such gain implemented in hardware, it can also be done

software wise. The disadvantage of this approach however is that the noise and clutter

in the A-scan are also amplified, therefore we will almost never apply this signal

processing technique to our data.

Extraction of the scattering centres

In radar applications, it is well known that the backscattering from a complex target

can be approximately modelled by a discrete set of scattering centres. A method to

extract the scattering centres of the target, and thereby enhancing depth resolution, is

by deconvolving the signal source and antenna IR from the backscattered signal. Due

to the band limited nature of the emitted wave and the effects of noise, deconvolution

of the signal source and antenna IR is an ill-posed problem. Furthermore with the

deconvolution one cannot take into account the dispersive behaviour of the ground.
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Indeed, an additional problem to extract the scattering centres in an A-scan is the

broadening of the reflected signal due to the dispersive behaviour of the ground. An

often-used deconvolution technique is the Wiener filter or a variant of this filter. More

details about the Wiener filter can be found in Section 7.4. A disadvantage of this

filter is that the noise spectral density and the signal spectral density must be known.

In this section we present a processing technique for extracting the scattering centres,

which is more robust to noise and can partially compensate for the dispersive

behaviour of the ground [3][4]. The method is based on the Continuous Wavelet

Transformation (CWT) [5] and uses the dilatation properties of the wavelets to

counteract the dispersive behaviour of the ground. The knowledge of the exact source

signal and the antenna IR is basic in this method.

For clarity reasons let us summarise a somewhat simplified version of the time

domain radar range equation (5.13). The received voltage due to a reflection on one

buried object can be described by

dt
tdVs

thtthtgKtV RxNTxNdrec

)(
)()()()()( ,, ⊗⊗Λ⊗⊗=                     (7. 3)

where

K is a constant taking into account the spreading loss, the transmission

coefficients, the off boresight position of the target, etc.,

)(, th TxN is the normalised impulse response of the transmitting antenna on

boresight,

)(, th RxN  the normalised impulse response of the receiving antenna on

boresight,

g td ( )  the impulse response representing the two-way path length loss in the

ground,

)(tΛ  the impulse response of the buried target, and

 VS  the excitation voltage at the antenna feed.
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If more than one target is present in a scene and the targets are considered to be

independent of each other, the total received voltage at the receiver can then be

written as a sum of the received voltages of each individual (and independent) target.

Furthermore, in this method we assume that if k scattering centres approximately

model a scenario of complex targets and planner interfaces, then the received A-scan

can always be written as a sum of k individual normalised wavelets:
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where )(, th
pp τα  represents the backscattered wavelet on scattering centre p and pB its

amplitude. According to the time domain radar range equation (7.3), and neglecting

for the moment the influence of the ground, the backscattered wavelet )(, th
pp τα  must

have the shape of 

dt
tdV

thth S
RxNTxN
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In the case of the laboratory UWB GPR, expression (7.5) resembles a derivative of a

Gaussian pulse. To extract these individual wavelets from )(ta , the Continuous

Wavelet Transformation (CWT) is used. The CWT is a time-frequency analysis

technique that gives in a time-scale plane the correspondence between a time signal

)(ta  and a basic wavelet )(, th
pp τα , delayed by τ  and scaled by a dilatation coefficient

α . The basic wavelet for this transformation is chosen to fit the shape of expression

(7.5). Normalising the energy in the wavelet, results in the basic wavelet
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The delay pτ  takes into account the two-way travelling time between the antennas

and the scattering centre p. The dilatation coefficient pα  scales the wavelet and

thereby partially compensates for the broadening of the reflection on the scattering

centre due to the dispersive behaviour of the ground. The coefficients pB  are found

one at a time by an iterative procedure. One begins at stage p=1. The CWT of

received signal is computed, using (7.6) as basic wavelet. The parameter 1B  is found

as the maximum wavelet coefficient of the transformations, with 1α  and 1τ  as

corresponding dilatation coefficient and time-delay of the wavelet. Then )(
11,1 thB τα  is

subtracted from the received signal. This procedure is iterated to generate as many

coefficients as needed to accurately represent the original received signal. Fig. 7-2

shows the result of this method on an A-scan, representing a PMN mine in loam at 5

cm of depth. In this example only five scattering centres are calculated.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.02

-0.01

0

0.01

0.02

Time [ns]

 

Reconstructed signal 
Original received signal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2

-1

0

1
x 10

-7

Time [ns]

B
A

m
pl

 [
V

]

Fig. 7-2:  (upper) Approximation of A-scan as a sum of normalised wavelets,

  (lower) coefficients pB  of the five scattering centres

The lower plot of Fig. 7-2 can be seen as the deconvolved version of the solid curve in

the upper plot of Fig. 7-2. The first two scattering centres in the lower plot of Fig. 7-2

represent the reflection on the air-ground interface, the last three scattering centres

represent the reflection on the object.

In [6] it is suggested that the scattering centres of an object are characteristic of that

object. Hence the last three scattering centres in the lower plot of Fig. 7-2 can be used
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as a template to look for similar objects (in this case PMN mines) in other A-scans. A

more detailed study on the data coming from the UWB GPR revealed that the

template of an object indeed does not alter too much as a function of the depth of the

object [3]. However, the relative amplitude of the scattering centres, the time interval

between the scattering centres and even the number of scattering centres is very

sensitive to variations in inclination of the object and to variations in the surrounding

media of the objects. Furthermore, once the energy in the reflection on the target

becomes too small, because the target is too deep or the attenuation in the ground too

high, the retrieval of a stable template is almost impossible. As a whole the method

was not found robust enough to retrieve reliable features for classification algorithms

for buried objects on our data.

A possible application of this processing technique for extracting the scattering

centres is to use it as a method to reduce the amount of data. A problem often

encountered when working with C-scans is that the amount of data becomes too large.

A way of reducing this amount of data is to only store the information on the

scattering centres per A-scan. It is seen that in most of the cases an A-scan is

accurately represented by a sum of 5 wavelets. Each wavelet is characterised by one

triplet ( )pppB ατ ,, . This means that for an A-scan of 512 points, only 15 values have

to be stored instead of 512, hence a data reduction of 1/34. The complete A-scan can

always be reconstructed from those 15 values. The extraction of the scattering centres

is very fast and can easily be implemented in real time. A decomposition of an A-scan

of 512 points in a sum of 5 wavelets takes only 0.39 sec in MatLab code on a PC.

Fig. 7-3 shows a 3D plot of a C-scan of a buried mine by only representing the

scattering centres of each A-scan. The amplitudes of the coefficients pB  of the

scattering centres are represented by colours.
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Fig. 7-3: 3D plot of a C-scan by only representing the scattering centres

7.2.2. UWB signal processing on A-scans

In Chapter 5 we mentioned that the response of an object on a fast transient impulse

can be split into two parts: the early time response and the late time response. The late

time response is considered to begin after a time interval, which is of the order of the

wave transit time though the object. The late-time response (also called the resonant

part) is governed by the complex natural resonances of the object. These complex

natural resonances are supposed to be independent of the orientation of the object, and

contain valuable information for target recognition and clutter reduction.

Pole extraction

A technique for extracting the natural resonance frequencies of the late-time transient

response, is given by Prony-type methods. In Prony-type methods it is assumed that

the late-time response of a target can be modelled as an all-pole system, and hence

can be written as a summation of complex exponentials:
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where

)(ny  is a vector (sequence) of equally spaced data points,

N  the total number of data points,

T  the sampling period,

is  the thi complex pole,

iD  the residue of the thi complex pole, and

p  the total number of poles.

In 1795 Prony gave a method of solution for finding the complex poles to fit a vector

of equally spaced data points with length pN 2=  [7]. This method however performs

poorly in the presence of noise [8]. To overcome the problem, improved Prony-type

methods have been developed. Equation (7.7) can be written as a recursive differential

equation
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This auto-regressive recurrence equation, also called the forward linear prediction

equation can be written for the different measured data points
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or in short

hYa =

The matrix Y  is called the data matrix and the vector h  is called the observation

vector. The unknown complex amplitude vector a  can be calculated by solving the
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linear prediction equation (7.9) for pN 2>  in the sense of least squares [9]. Once the

amplitude vector a  has been found, the complex poles of the system can be calculated

as the zeros of the polynomial

pzpazaza −−− ++++ )(...)2()1(1 21                                 (7. 10)

The residues iD  can be found by solving using equation (7.7) in the sense of the least

squares. The same can be done using the backward linear prediction equation or a

combination of both [9]. Other improved prony-type methods based on linear

prediction are found in [10][11].

Another problem besides the measurement noise is the lack of a priori knowledge on

the exact number of poles of the system, i.e. the order pM =  of the system. In

[12][13], the estimation of M is done based on the singular value decomposition

(SVD) of the data matrix Y . If no noise is present in the data, the rank of Y  will be

equal to M and only M eigenvalues will be found different from 0. In our study, we

implemented the Total Least Square method (TLS) [13]. In this approach the noise in

the data matrix and the observation vector is reduced simultaneously. The number of

poles will be estimated by use of the SVD of the augmented matrix [ ]hY ; only the

poles with a sufficiently high energy are kept.

In an experimental study [3], the TLS method is tested on the backscattered signals of

metal discs and of different types of AP mines. The aim of the study was to verify if

the location of the poles is characteristic for an object, and if the location can be used

for the classification or even recognition of that object. The study showed that the

location of the poles is not stable and this for mainly two reasons. The first reason is

the large damping of the resonances. AP mines are so called low-Q  targets, i.e.

targets with a large damping factor. This damping factor is related to the target shape,

the dielectric contrast and the surrounding medium [14]. As a consequence the usable

length of the data vector )(ny  becomes shorter and the results from the TLS method

become highly unstable. A second problem is related to the choice of the starting

point of the data vector )(ny . In theory Prony-type methods must be applied only on
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the late time response, as the early time response is a function of the orientation of the

object. AP mines however are relatively small compared to the duration of the

incoming pulse that is used, hence the end of the early time response interferes with

the beginning of the late time response. Indeed, we observed that in practice it is

almost impossible to separate the early time response from the late time response and

that the position of the poles found by the TLS method is very sensitive to changes of

the starting point of the data vector. As a whole we concluded that the results of the

pole extraction algorithm are not robust enough to be used for the classification of AP

mines in practical applications.

Time-frequency analysis

Time-frequency analysis is a well adapted signal processing technique for analysing

non-stationary data and has recently been applied with success to electromagnetic

UWB scattering data [15][16]. A problem encountered with the spectrum analysis of a

signal using a Fourier transform is that the signal is supposed to be stationary. With

the data coming from an UWB GPR, this assumption is not true. The non-stationary

character of the data in an A-scan makes that time-frequency analysis techniques like

Short-Time Fourier Transform (STFT) and Continuous Wavelet Transformations

(CWT) would perform better than the conventional Fourier transformations. These

techniques give a spectrum analysis that is more localised in time, hence they are

good candidates for the analysis of the late time response of targets.

The Short-Time Fourier Transform (STFT) is a technique where a sliding window

(often a Gaussian window) is applied to the data in order to limit the signal in time. A

Fourier Transform is then performed on the windowed data for each position of the

window. The STFT on a time signal )(tx   results in a two dimension function, time

versus frequency, and is expressed as
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where τ  is the centre of the sliding Gaussian window and σ  the standard deviation.

The Continuous Wavelet Transformations (CWT) is a technique where the time signal

)(tx  is decomposed into a continuous set of wavelets, which are derived from a basic

wavelet by expansion (contraction) and shifting in time. The CWT is expressed as

∫
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where )(th  is the basic wavelet (also called the mother wavelet), τ  is the time shift

of the wavelet and a  the scale factor. The result of a  CWT on an A-scan gives a two

dimensional representation of the signal, time  versus scale-factor. In analogy with the

power spectrum representation of a Fourier transformation, a CWT is often

represented in what is termed a scalogram, defined as

2),(),( aWaSCALW ττ =                                           (7. 13)

An important point in CWT is the choice of the mother wavelet [16]. For seismic

applications the Morlet wavelet is often used [5]. In our research, we also used the

Morlet wavelet and tested it on the data coming from the UWB GPR [17]. Although

CWT could give an indication of the presence of a target, the results of CWT with

respect to the classification of objects was found to be limited, probably because of

the same reasons as mentioned in the paragraph on pole extraction.

 Fig. 7-4 shows two scalograms: one of an A-scan with only a reflection on the air-

ground interface, and one of an A-scan with a target present.
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Fig. 7-4 : (a) Scalogram of an A-scan without target, (b) scalogram of an A-scan with

target

The study of UWB signal processing techniques on A-scans coming from the UWB

GPR was mainly experimental. The first conclusions drawn from this study were not

promising enough for us to continue research in this direction. From this point, an

important reorientation of the work in the domain of signal processing was done.

Until now we hoped to find sufficient information on the target in an A-scan, because

the UWB GPR could then be used in the same way as a metal detector, i.e. producing

an alarm when a mine or a mine-like target is detected.  Considering our rather

disappointing experience with the UWB signal processing techniques on A-scans, we

decided to concentrate our work more on the interpretation of C-scans, to retrieve

information on the shape and dimensions of the buried target.

7.3. Migration

7.3.1. General

The data coming from a GPR, even after optimal A-scan processing will still be

unfocussed. Because of the beam-width of the transmitting and receiving antenna, the

reflections on a structure will be smeared out over a broad region in the recorded data.
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The family of processing algorithms that try to reconstruct, from the recorded B- or C-

scans at the surface, the reflecting structure present in the sub-surface, is called

migration. The aim of migration techniques is to focus reflections in the recorded data

back into the true position and physical shape of the target. In this respect, migration

can be seen as a form of spatial deconvolution that increases spatial resolution.

The migration techniques received much attention in the last 30 years in seismic and

geophysical engineering. The first migration methods were geometric approaches.

After the introduction of the computer, more complex techniques, based on the scalar

wave equation, were introduced. A good overview of these techniques is given in [18]

and [19].

Migration techniques applied on GPR images are sometimes called 1D-SAR imaging

techniques. Indeed, migration uses data coming from different antenna position and

increases azimuth (cross range) resolution. In this perspective the name 1D-SAR

technique is correctly chosen. Note that SAR techniques used in radar usually make

more approximations than the migration techniques in seismic. In seismic most of the

migration algorithms are based on a backpropagation (inverse extrapolation) of the

wave field, described by a scalar wave equation. Until the late 1980s, SAR techniques

were based on differences in travel time (or phase) and used plane wave

approximations. It is only recently that processing techniques, similar to migration

algorithms in seismic, are used in synthetic aperture radars [20].

In Section 7.3.3 some existing migration techniques, applicable on GPR data, will be

introduced. Although most of the techniques are originally developed for acoustic

sounding, using scalar pressure-wave propagation theory, they are applied with

success to electromagnetic sounding. In electromagnetic sounding the fields have a

vectorial character and hence the scalar seismic processing algorithms can in theory

not be used. In practice however, as most GPRs only radiate and measure one scalar

component of the EM field, the seismic migration techniques for scalar fields perform

well. In this chapter, to simplify the analysis, we will also make this approximation

and replace the vector field by a scalar one. Another difference between

electromagnetic and acoustic sounding is the way in which the data are recorded. In

the GPR case, the distance between the transmitting antenna and the receiving antenna



UWB signal processing

7-17

is always constant. In seismic terminology, this is called constant-offset data. If the

distance between the two antennas is negligible, this is called zero-offset data.

Further, with the laboratory UWB GPR, the antennas are used off the ground. This

means that the migration algorithm must be modified to take into account the different

velocities of the two media (air and ground) and the diffraction on the air-ground

interface. If possible, we will suggest such a modification. More mathematical details

on the migration algorithm are found in Appendix B.

7.3.2. Exploding source model

A model often used in seismics to explain the mathematics behind some of the

methods, is the model of the exploding source. We present the model here because it

allows some definitions of terms and illustrates well the migration problem. The

geometry of the model is represented on Fig. 7-5. The exploding source is located in

the xz-plane, denoted the object plane. At time 0=t , the sources in the object plane

explode and send out waves. The waves propagate as a function of time, represented

on a horizontal axis, and reach the surface. The receivers, located along the x-axis, at

0=z , record the data. The plane in which the data is recorded is defined as the data

plane. The recorded data are denoted ),0,( tzxb =  or in short ),( txb .

The ideal migration method transforms the data ),0,( tzxb =  from the data plane back

into the object plane )0,,( =tzxb . Due to a number of unknowns, the reduced data

set, the complexity of the subsurface and the noise present in the data, a complete

inversion is difficult and computational intensive. In many cases it is even impossible,

or can lead to unreliable results. All migration algorithms are based on a linearisation

of the wave scattering problem. This means that the interaction of the field inside the

scatterer and between different scatterers present in the scene is neglected. This

approximation is known from optics as the Born approximation [21]. The result of the

migration method on the recorded data is called the migrated image ),(ˆ zxO . The

migrated image is an estimation of the object plane. Sometimes the migrated image is

not represented as a function of the depth z , but as a function of time. One reason for

this is that the estimation of the propagation velocity in the subsurface is limited in



Chapter 7

7-18

accuracy. The migration process resulting in the data ),(ˆ txO  is then called time

migration. If the propagation velocity of the medium is known, there is a direct

relation between the time and the depth.

*

t

x

z

Point source

Data plane

Obje
ct p

lan
e

t=0

z=0

Receiver locations

Fig. 7-5: The geometry of the exploding sources model

The data, resulting from an exploding source model is largely equivalent with the

zero-offset data of a GPR, with one important distinction. The zero-offset data is

recorded as two-way travelling time, while the data from the exploding source model

represents the one-way travelling time. To make the data comparable, one can always

imagine that the velocity of propagation is half the value of the actual medium

velocity in the exploding source model.

Note that the notions data- and object planes are represented here as 2D planes. This

will only be the case if B-scans are recorded. For C-scans, the dimension of the data

increases by one, and the two planes have to be considered as volumes.

Further we assume that the propagation velocity in the ground remains constant with

depth and that we only want to migrate the top region of the recorded data down to a

depth of 20 cm. These two assumptions introduce some simplifications in a lot of the
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methods. An extension to a variable propagation velocity in depth and even cross-

range is not possible in all of the methods.

7.3.3. Overview of existing migration methods

Diffraction-summation

The first technique is a relatively straightforward method, but it illustrates well the

general principle of migration. Consider a 3D data set ),,( tyxb  recorded in the data

plane. Each point in the migrated image ),,(ˆ zyxO  is the result of a summation of the

recorded amplitudes in the data-plane along a diffraction hyperbola, whose curvature

is governed by the medium velocity and the depth of the point to be migrated. If there

is an object in the apex of the diffraction hyperbola, the amplitudes will add. If not,

the summation of the non-coherent data along the diffraction hyperbola tends to zero.

 Suppose the data ),,( tyxb  is recorded with a monostatic GPR by moving the

antennas on the ground in the xy-plane, taking a measurement ),,( tyxb kj  at position

)0,,( kj yx , with Jj ,..,2,1=  and Kk ,..,2,1= . The migrated image ),,(ˆ zyxO  is then

calculated by

∑∑
= =

=
J

j

K

k

kj
kj v

R
yxbzyxO

1 1

, )
2

,,(),,(ˆ                                  (7. 14)

where

kjR ,  is the distance between the measuring position )0,,( kj yx  and the point

),,( zyx  that is to be migrated,

v  the propagation velocity of the medium.
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The time 
v

R kj,.2
 represents the total travelling time from the transmitting antenna to

the point ),,( zyx  and back.

For the UWB GPR data, using the antennas off-ground, the two-way travelling time in

equation (7.14) has to be modified to take into account the different velocities of the

two media (air and ground) and the diffraction on the air-ground interface. This can be

done by calculating for each point in the object plane the corresponding migration

template in the recorded data.  To obtain the point in the migrated image, the

summing must be performed along the migration template. This must be repeated for

all points in the object plane.

The result of the above described diffraction migration method on a B-scan, recorded

with the UWB GPR is shown in Fig. 7-6. The B-scan represents a metal disc with a

radius of 5 cm, buried at 6 cm in dry sand. The diffraction hyperbolas on the top of

the metal disc are clearly visible in Fig. 7-6 (a). On the migrated image however, the

diffraction hyperbolas disappear and the physical dimensions of the targets approach

the real dimensions of the target. Note the presence of some artefacts in the migrated

image at the left and the right side above the target. These artefacts, typical for the

method, are explained by the fact that the summation of the data along a diffraction

hyperbole not always tends to zero when no target is present.

The diffraction migration algorithm is easy to implement, but computationally

intensive, because the diffraction template on which we have to sum has to be

recalculated for each depth. In practice however, the shape of the diffraction

hyperbola does not change very much with depth and the same hyperbola can be used

for a broad depth range. On the other hand, diffraction migration does not take the

physics of wave propagation into account. Therefore more complex algorithms will be

introduced.
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(a)                                                             (b)

Fig. 7-6: (a) B-scan of metal disc, buried at 6 cm in dry sand, (b) result after

migration, using the diffraction migration algorithm

Kirchhoff-migration

The basic idea in the Kirchhoff-migration is to back-propagate the wavefront,

measured in the data-plane (as defined in the exploding source model, see Fig. 7-5), to

the object plane at 0=t , using an integral solution method to the scalar wave

equation. So this migration method involves back-propagation or inverse

extrapolation to remove the effects of wave field propagation. In fact the array of

receivers recording the data )',0',','( tzyxb =  in the data plane, denoted here as 'S ,

will be replaced by an array of secondary sources, each driven in reverse time by the

recorded data. Doing so the migrated image ),,(ˆ zyxO  is calculated as

'
'
)cos(

)/',0',','(
4

2
),,(ˆ

'
dS

rr
vrrzyxb

v
zyxO

S −
−== ∫∫

θ
π

&                    (7. 15)

where            )',0',','( tzyxb =&  is the time derivative of the data recorded in the data

plane 'S ,

),,( zyxr =  the point to be migrated, and

θ  the angle between the direction rr −'  and the normal to the data

plane 'S .
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The complete development of (7.15) is found in Appendix B.

Comparing the result of the diffraction migration method in (7.14) with the Kirchhoff

migration given by (7.15), three differences are observed. First there is the oblique

factor )cos(θ , that takes into account the fact that the normal to the wave front is not

parallel to the normal of the measuring surface. Second there is the spreading factor

'
1

rr −
, dealing with the spreading losses of spherical waves. Last, the summation

over the diffraction hyperbola has to be taken on the time derivative of the recorded

data. So before summation, the time derivative of each A-scan has to be calculated.

Equation (7.15) has to be adapted for the data coming from the UWB GPR with the

two antennas off-ground. The same principle as in the diffraction-summation method

is used, i.e. the summing is performed on a migration template. In  (7.15) the

travelling time 
v

rr '−
 is replaced by the actual travelling time (from transmitting

antenna towards the point ),,( zyx to be migrated and back to the receiving antenna).

For the calculation of the angle θ , the refraction on the air-ground interface has to be

taken into account.

For comparison purposes, the Kirchhoff migration algorithm has been applied to the

same B-scan as in the previous method. The B-scan in Fig. 7-7 (a), recorded with the

UWB GPR, represents a metal disc with a radius of 5 cm, buried at 6 cm in dry sand.

The result after migration is shown in Fig. 7-7 (b). The result is obviously better than

with the diffraction summation method. The target is more focussed and there are

almost no artefacts left on the top of the metal disc.
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Fig. 7-7: (a) B-scan of metal disc, buried at 6 cm in dry sand, (b) result after

migration, using the Kirchhoff migration algorithm.

Finite-Difference Migration

The finite-difference migration is, just as the Kirchhoff migration, a method that back-

propagates the wavefront, measured in the data-plane towards the object plane at

0=t . The main difference with the Kirchhoff method is the way of solving the scalar

wave equation. The finite-difference migration is based on the differential solution.

From the wavefront at time t , it calculates the wavefront at time tt ∆− , using finite-

difference approximations, and backpropagates until 0=t .

Frequency-Wavenumber Migration

In 1978, Stolt [22] introduced a Fourier transform approach in migrations. Since then,

variants on the methods on the original Stolt migration appeared. All these methods

are grouped under the name Frequency-Wavenumber Migration, or in short f-k

migration.

The method is, just like the former two, based on the back-propagation of the scalar

wave-equation and can thereby best be explained using the exploding source model.

More details about the calculation are found in Appendix B.
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If ),0,,( ωyx kkB  is the Fourier transformation of the data recorded in the data plane,

with respect to the x , y  and the t  co-ordinate, then the migrated image can be

calculated as

ωω ddkdkekkBzyxO yx
zkykxki

yx
zyx∫∫∫

++−= )(),0,,(),,(ˆ                    (7. 16)

where zk  is a wavenumber defined as

22

²
²)sgn( yxz kk

v
k −−= ωω                                       (7. 17)

Equation (7.16) is the general representation of the f-k migration, also called the

Phase Shift Migration. The method can deal with variations of velocity as a function

of depth. The Stolt Migration is a variant on the Phase Shift Migration, for a constant

propagation velocity. In the special case where cstvzv ==)( , equation (7.16) can be

further developed by a change of variables from ω  to zk .  The migrated image

becomes

dzdkdkekkB
k

vzyxO yx
zkykxki

yx
z zyx∫∫∫ ++−= )(),0,,(²),,(ˆ ω

ω
                  (7. 18)

The advantage of (7.18) over (7.16) is that (7.18) can be calculated using an inverse

Fourier transformation of ),0,,( ωyx kkB , scaled by 
ω

zkv²
, i.e. the Jacobian of the

transformation from ω  to zk .  This implies a serious reduction of the number of

floating point operations for the migration and a gain of calculation time.

Fig. 7-8 (b) shows the result of the Stolt migration on the B-scan representing a metal

disc with a radius of 5 cm, buried at 6 cm in dry sand (Fig. 7-8 (a)). In the

configuration of the UWB GPR, as the antennas are used off-ground, there is a change

in the vertical propagation velocity, and normally the Stolt migration given by (7.18)
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can not be used. To solve this problem, a constant mean velocity, somewhere between

the propagation velocity in air and in ground, is used for the migration. This is

probably the reason why the method performs less good than to the Kirchhoff

migration. The artefacts on the left and the right side above the ground are due to the

Fourier transformation. They can be avoided by windowing the data, prior to

migration.
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Fig. 7-8: (a) B-scan of metal disc, buried at 6 cm in dry sand, (b) result after

migration, using the Stolt migration algorithm

7.4. Migration by deconvolution

In previous section we have concentrated on some existing migration methods. Most

of these methods are based on backpropagation of waves. Almost none of these

methods however include system aspects of the GPR like the waveform of the

excitation source, the impulse response of the antennas, the antenna pattern, etc.

Furthermore most of the migration methods consider the ground as being loss-less and

without dispersion. It can be expected that an imaging technique that takes into

account the characteristics of the system and possibly the characteristics of the ground

would perform better. The migration scheme presented in this section is a

backpropagation technique based on the deconvolution of the recorded C-scans with

the point spread function of the system. This point spread function is a synthetic C-
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scan of a fictive point target at a given depth. It includes all the above mentioned

system and ground characteristics. The point spread function can be found by forward

modelling. By doing so, a very simple and fast migration algorithm, integrating

system and ground characteristics, is obtained.

7.4.1. Development of the method

The development of the method is done in the time domain, using the time domain

description of the system, presented in Chapter 5. The migration by deconvolution

makes only sense if the acquisition process by the GPR is a convolution between the

structure present in the subsurface and the point spread function of the system. This

can be demonstrated under certain assumptions.

Suppose a co-ordinate system as represented in Fig. 7-9. The antenna configuration is

a bistatic configuration and there are only variations in propagation velocity in the

downward direction. The 3D data ),0,,( tzyxb =  are recorded on a regular grid by

moving the antennas in the xy -plane at z =0.

),,( oooo zyxr =
r

x
Antennas

Air

Ground

0

z

y

oz

Fig. 7-9: Configuration and representation of the co-ordinate system
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Assume in a first time that there is only one small isotropic point scatterer present in

the subsurface, located at ),,( oooo zyxr =
r

 and characterised by an impulse response

(IR) )( oo tΛ , independent of the incident direction. Note that, in the most general case,

the IR of the localised isotropic point scatterer does not necessarily have to be a Dirac

impulse as a function of time. For the antennas at any position )0,,( == zyxr aaa

r
, the

received voltage, representing an A-scan, can be written according to (5.13) as

dt
ttdVs

tahttahtg
cRR

TT
trb d

sRxNoiTxNd
rt

agga
a

)(
),()(),()(

8
),( ,,2

−
⊗−⊗Λ⊗⊗= −− rrr

π
     (7. 19)

where dt  represents the exact two-way travelling time between the antennas and the

point target, taking into account the different propagation velocities in the media.

By grouping all the factors, except for the IR of the point target, in one factor

),,( trrw oa

rr
, equation (7.19) becomes

)(),,(),( ttrrwtrb otoaa Λ⊗=
rrr                                      (7. 20)

The symbol t⊗  is introduced to clearly indicate that the convolution in (7.20) is a

convolution in time: τττ
τ

dtrrwtrb ooaa ∫ Λ−= )(),,(),(
rrr . For a given configuration, all

the factors in (7.19) are known, hence ),,( trrw oa
rr  can be easily calculated.

Furthermore, for the antennas at 0=z  and the point scatterer at a fixed depth ozz = ,

the response ),,( trrw oa
rr  is a function of or

r
 and ar

r
 only by their difference, and (7.20)

can be written as

),(),(),( 0 trtrrwtrb toaa Λ⊗−=
rrr                                    (7. 21)

If an object can be modelled by a set of independent small isotropic point scatterers,

all at approximately the same depth ozz = , the output voltage ),( trb a
r will be a
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combination of the contribution of each individual point scatterer, that is clearly a

convolution in space if we assume that the operation is linear:

dxdydyxtzyyxxwtyxb
yx zooaaaa τττ

τ
∫∫ ∫ Λ−−−=

,
),,(),,,(),,(            (7. 22)

Equation (7.22) represents a space-time convolution along the co-ordinates x , y and

t , and can be written as

),,(),,,(),,( ,, tyxtzyxwtyxb zotyxo Λ⊗=                         (7. 23)

where ),,( tyxzoΛ  is a 3D matrix, called the scattering matrix [19], and contains the

responses associated with the distributed point scatterers at approximately a depth oz .

The symbol tyx ,,⊗  denotes a space-time convolution along the co-ordinates x , y  and

t .   The 3D matrix ),,,( tzyxw o  represents the point spread function of the UWB

GPR system for a depth oz  and is found by replacing the scattering matrix in (7.23)

by a Dirac impulse in space and time:

)(),,(),,( tzzyxtyx ozo δδ −≡Λ                                  (7. 24)

In practice the 3D point spread function ),,,( tzyxw o  is calculated by using (7.19) for

different antenna positions ar
r

 on a regular grid in the xy -plane at z = 0 and a small

fictive point scatterer with IR )( dtt −δ , at a depth oz . In other words it can be seen as

a synthetic C-scan of a small fictive point scatterer. Fig. 7-10 shows the 3D point

spread function of the system at a depth of 6 cm below the air-ground interface (with

the antennas 25 cm above the ground). In the point spread function, as it is obtained

by forward modelling, all the information on the system like the waveform of the

source, the IR of the antennas, the antenna pattern, the attenuation and dispersion in

the ground, etc. are included. Note that for the implementation of (7.23), the apex of

the hyperboloid in Fig. 7-10 has to be centred in the origin of the 3D image, i.e. the
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top corner of the 3D volume. If not, the convolution with the point spread function

will introduce a displacement of the objects in the scattering matrix.

0

Fig. 7-10: Synthetic C-scan of a fictive point scatterer at a depth of 6 cm below the

air-ground interface

Although the point spread function ),,,( tzyxw o  is space variant (function of oz ), its

shape will not change very much with depth. In practice, the point spread function for

a given depth can be used for a broad depth range. As a consequence, the space-time

convolution (7.23) can by considered as space (depth) invariant and the image of the

3D scattering matrix ),,(ˆ tyxΛ can be calculated in one step by

),,,(),,(),,(ˆ 1
,, tzyxwtyxbtyx otyx

−⊗=Λ                                  (7. 25)

where ),,(ˆ tyxΛ denotes the spatial image of ),,( tyxzoΛ , i.e. the migrated image,

),,( tyxb is the recorded C-scan that is to be migrated,

),,,( tzyxw o  the point spread function for a fixed depth ozz = , and

1
,,

−⊗ tyx
 a deconvolution in x , y and t .
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7.4.2. Implementation of the migration method

From the mathematical point of view, solving equation (7.25) can cause some

problems. Because of the band-limited nature of the system and the effects of noise,

equation (7.25) is a classical ill-posed problem. A fast and computational not

intensive mathematical solution for the deconvolution is to perform it in the

frequency-wavenumber domain, by means of a Wiener filter [23]. A Wiener filter is

an optimal filter that minimises the variance of the error between the restored image

and the original image before degradation, under the assumption of a signal-

independent noise, a linear degradation and stationarity of the images.

Let ),,( ωyx kkB  be the 3D Fourier transform of the data recorded ),,( tyxb , with

respect to the x , y  and the t  co-ordinates:

ωω ω dxdydetyxbkkB tiyikxik
yx

yx∫∫∫
−+= ),,(),,(                        (7. 26)

Taking the Wiener filter approach, the restored image in the frequency-wavenumber

domain is given by

),,(

),,(
),,(),,(

),,(),,(
),,(ˆ

*

*

ω

ω
ωω

ωω
ω

yx

yxn
yxyx

yxyx
yx

kkP

kkP
kkWkkW

kkWkkB
kk

Λ

+
=Λ               (7. 27)

where ),,( ωyx kkW is the 3D Fourier transformation of the calculated point spread

function,

),,(* ωyx kkW its complex conjugate,

),,( ωyxn kkP  the spectral density of the noise in the image , and

),,( ωyxn kkP  the spectral density of the original image.



UWB signal processing

7-31

The main problem with the Wiener filter is that it can be difficult to get a good

estimation of the spectral density of the noise and the spectral density of the image

before degradation, which is a priori not known. A classical solution is to replace the

ratio of the two power spectral densities by a constant parameter µ , also called water

level parameter. It will prevent (7.27) of becoming too large for very small values of

),,( ωyx kkW .

Finally the migrated image is given by the inverse 3D Fourier Transform of

),,(ˆ ωyxzo kkΛ :

ωω
π

ω ddkdkekktyx yx
tykxki

yx
yx∫∫∫ −+−Λ=Λ )(),,(ˆ

2
1

),,(ˆ                      (7. 28)

The migration scheme is resumed in the following steps:

1. The point spread function is calculated for a given soil type and depth. The

depth is chosen to be the most likely depth for an object. In our application

a burial depth of 6 cm is always chosen. The calculation of the point

spread function only has to be done once.

2. The 3D Fourier transform of the recorded data is calculated by (7.26).

3. The data is filtered by the Wiener filter as in (7.27).

4. The inverse 3D Fourier Transform of the filtered data is calculated,

represented in (7.28), resulting in the migrated image.

As already mentioned, this migration scheme is very simple and not computational

intensive. Suppose a C-scan of 32*32*256 points representing an area of 64 cm by 64

cm with a step of 2 cm in both lateral  directions. The 3D Fourier transformation, the

filtering and the inverse transformation of this C-scan (steps 2-4 of the migration

scheme) only takes 76 Mflops, which means that it can easily be implemented in real

time. The migration of a C-scan of 64*64*256 points takes approximately 246

Mflops.
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7.4.3. Discussion

Influence of the spatial invariance approximation of the point spread function

The key-point of the whole migration method lies in the approximation of considering

the point spread function as space invariant. It permits to calculate ),,(ˆ tyxΛ  by

(7.25) in one step. This approximation is based on the assumption that the shape of the

point spread function does not change very much with depth. Suppose there is only

one object in the ground, at approximately a depth of 10 cm. Ideally, the

deconvolution of the raw C-scan should be done with a point-spread function,

calculated for objects at 10 cm of depth. As a priori we do not know the depth of the

buried object, the raw C-scan will be deconvolved with a point spread function

calculated for the most probable depth of an object, i.e. 6 cm. To have an idea of the

influence of this error on the migration results, the following verification was done.

The point spread function is calculated for a depth of 6 cm. This point spread function

is then used to migrate synthetic images of point targets respectively at 2 cm, 6 cm, 10

cm and 15 cm of depth in the ground. For all of the three cases, the same water level

parameter µ  is used in the Wiener filter to perform the deconvolution. The results

after migration are shown in Fig. 7-11. The migrated image of the point target at 6 cm

(Fig. 7-11 (b)) gives the best focussed image, which is logical because the point

spread function, used for the deconvolution, was calculated for targets at 6 cm of

depth. The results after migration of the other three point targets at 2 cm, 10 cm and

15 cm of depth give less focussed but still acceptable results.
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Fig. 7-11: The influence of the space invariant approximation of the point spread

function

(a) migrated image of the point targets at 2 cm

(b) migrated image of the point targets at 6 cm

(c) migrated image of the point targets at 10 cm

(d) migrated image of the point targets at 15 cm

For comparison, the result of the Kirchhoff migration method on the synthetic image

of the point targets at 6 cm is given in Fig. 7-12. It is clear that the result after the

Kirchhoff migration is less focussed than any of the results in Fig. 7-11, which brings

us to the conclusion that the approximation of considering the point spread function as

space invariant is acceptable.
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Fig. 7-12: Migrated image of the point targets at 6 cm after Kirchhoff migration

Note that for the migration of the synthetic images, the Kirchhoff migration method is

put in an unfair position compared to the migration by deconvolution. The synthetic

images are obtained by forward modelling, using the same model as for the

calculation of the point spread function. Applying the migration methods on real

images however, we also noticed that the migration by deconvolution gave

systematically better focussed images than the Kirchhoff migration. Fig. 7-13 shows a

B-scan of a PMN mine at 5 cm of depth, after migration by deconvolution (Fig. 7-13

(a)) and after Kirchhoff migration (Fig. 7-13 (b)). It can be seen that the image on the

left is slightly more focussed.  Furthermore on images with a lot of clutter or a very

weak reflection of the object, the object is in general more visible when the image is

restored by the migrated by deconvolution method than by the Kirchhoff migration

method.
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Fig. 7-13: PMN at 5 cm of depth, (a) after migration by deconvolution, and (b) after

Kirchhoff migration



UWB signal processing

7-35

Spatial resolution in x- and y- direction

In general, the spatial resolution of a GPR system depends on a lot of system and

ground parameters, e.g. the dimensions of the combined antenna footprint, the

bandwidth of the system, the migration method that is used, the losses in the ground,

etc. The migrated image in Fig. 7-11 (b) gives an idea of the spatial resolution one

could expect from the laboratory UWB GPR after migration by deconvolution. The

spatial resolution in the x -direction of the single point target in Fig. 7-11 (b) is 2 cm

(the spatial resolution is measured as the 3dB width of the grey-values of the target in

the migrated image). Two point scatterers with equal strength can be easily

distinguished from each other if they are separated by 4 cm, as shown in Fig. 7-14.

Note that these resolution figures must be considered as best cases. First of all, the

deconvolution is done with the point spread function calculated for the exact depth.

Secondly the results are obtained on synthetic images generated by the same system

model and with very little noise present in the images, hence the deconvolution with

the Wiener filter will be very successful, leading to a high resolution. If more noise is

present in the images, the resolution of the migrated image will decrease due to a

decreasing bandwidth of the Wiener filter. Further, the resolution will also decrease if

the ground becomes more lossy. Higher losses will reduce the width of the hyperbole,

which is equivalent to a reduction of the length of the synthetic antenna.
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Fig. 7-14: (a) Synthetic B-scan of two point targets at 6 cm of depth, separated by 4

cm, (b) same B-scan after migration by deconvolution
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Analogy with imaging techniques

It is shown in Section 7.4.1 that under certain assumptions the acquisition process by

the GPR is a convolution between the structure present in the subsurface and the point

spread function of the system. Similar conclusions are found in the electromagnetic

imaging theory, using the same assumptions, but a different target modelling.

Electromagnetic imaging is a linearised inversion scheme that approximates the field

inside the scatterer by the incoming field and thereby can be seen as a subclass of the

inverse scattering problems. In electromagnetic imaging, three domains are defined:

the source and receiver domain where respectively the sources and receivers are

located and the scattering domain, where the objects are located. The objects are

modelled by an object function, also called a contrast function )(r
r

χ , which is related

to the constitutive parameters of the object. In general, the scattered field in the

frequency domain ),( ωrEsct

r
 at a point r

r
 belonging to the receiver domain is

described by an integral representation

∫ ∈
−=

sctDrsct rdrErrrgrE
'

'),'()'(),',(),( r
rrrrrr

ωχωω                            (7. 29)

where ),',( ωrrg
rr

 is the Green function and sctD  the scattering domain. Note that for

simplicity, the scalar version is described. )(r
r

χ  serves as an unknown in the inverse

scattering problem. A way to linearise the inversion problem is to introduce the Born

approximation [21]. For weak scatterers, i.e. scatterers with a low contrast, the total

field in the volume integral in (7.29) can be approximated by the incoming field,

),'(),'( ωω rErE inc

rr
≈                                               (7. 30)

Hence (7.29) becomes

∫ ∈
−=

sctDr incsct rdrErrrgrE
'

'),'()'(),',(),( r
rrrrrr

ωχωω                     (7. 31)
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It is shown in [24] that by considering a monostatic GPR configuration and describing

the finite length antennas with an effective point source approximation, equation

(7.31) can by rewritten as

∫ ∈
−=

sctDrsct rdSrrrWrE
'

')()'(),',(),( r
rrrrr

ωχωω                   (7. 32)

where ),',( ωrrW
rr

 is called the two-way wave field extrapolator, describing the

propagation of the scalar field from the source to the location 'r
r

 in the scattering

domain, and back to the receiver. )(ωS  contains the frequency information of the

source. For antennas at a fixed height above the ground and the object at a given depth

cstzz o == , and no lateral variation of the propagation velocity in the subsurface, the

two-way wave field extrapolator is only function of the difference 'rr
rr

−  and (7.33)

can be written as

∫ −−−=
sctD ooooaoaaasct dVyxSzyyxxWyxE ),()(),,,(),,( χωωω            (7. 33)

where ),,( cstzyx aaa =  are the co-ordinates of the antennas, and

),,( cstzyx ooo =  are the co-ordinates of the object.

This means that in the space-frequency domain the scattered field can be presented as

a spatial convolution between the contrast function at a depth oz  and the two-way

wave field extrapolator for that depth oz . Note that for this result the same

assumptions had to be made as in Section 7.4.1, i.e. objects at a fixed depth and no

lateral variations in the propagation velocity.

Consideration on the modelling of the target

In the electromagnetic imaging approach the target is modelled by a contrast function

and the Born approximation is applied. This means that the scattering sources are
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considered to be independent of each other. In the approach we took in Section 7.4.1,

the object is modelled by a set of independent point scatterers, each characterised by

an IR ),( ooo tr
r

Λ  that can be different from a Dirac function in time. In both cases it is

shown that the acquisition process by a GPR is a convolution, but due to the

difference in modelling the object, the interpretation of the results after migration are

different. The difference however between the two models and the interpretation of

the results is subtle. The space that we want to image has in reality four dimensions:

x , y , z  to indicate the position of targets, and the time dimension t , containing

information on the two-way travelling time to the targets and on their impulse

responses. If raw C-scan data are recorded the number of dimensions is reduced from

four to three by considering the time axis parallel to the z -axis. Doing so we make a

mistake that leads to an unfocussed image. To avoid this defocusing, migration

methods are applied in order to physically bring the time axis parallel to the z -axis. If

we now represent the migrated C-scan in a three dimensional space, the image will be

focussed, but we will still be unable to separate the z co-ordinate from the time

variable. In the electromagnetic imaging this ambiguity is solved by taking an object

function )'(r
r

χ  that is only function of the spatial co-ordinates and not function of ω .

As a consequence, each reflection in the migrated image at a given depth has to be

produced by a change in contrast at that depth. This model will work good if the Born

approximation holds. In the application of AP mines, the Born approximation does

not always hold. In actual applications, a permittivity contrast of over a 100% is easily

obtained and the boundaries of an object will be overestimated. In the development of

the migration method in Section 7.4.1 we anticipated on this by modelling the object

as a set of small point scatterers, each with an IR )(tzoΛ  different from a Dirac

function. In this approach the ambiguity between time and depth is deliberately not

solved. Each reflection in the migrated image is a scattering centre produced by a

point scatterer at that location or above that location, because each isotropic point

scatterer can have an IR different from a Dirac function. As already said, the

difference lies in the interpretation of the migrated image. In our approach we

recognise that the depth information on an object does not correspond with the

physical dimensions of the object.  To illustrate the above, let us go back to Fig. 5-2 in

Chapter 5, representing the backscattered time domain signal on a dielectric cylinder

in free space. In the signal, certain scattering centres appeared later in time than the
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reflection on the back of the target. In the Born approximation, this would mean that

there are reflections coming from behind the object, where there is no dielectric

contrast present. This is physically impossible. The explanation is simple. The

scattering centres, which appear later in time, are the products of other scattering

mechanisms like creeping waves etc., which in the Born approximation are not

allowed. In the modelling we applied in our migration method, we can deal with these

other scattering mechanism by considering impulse responses that can be different

from a Dirac impulse. The only scattering centre of which we are sure that it will be

correctly positioned in each A-scan is the scattering centre corresponding with the

specular reflection on the object, indicating the top contour of the object.

7.4.4. Results of the migration method

Considering the poor results of the UWB signal processing techniques on A-scans, we

decided to concentrate our work on the interpretation of C-scans in the hope to

retrieve information on the shape and dimensions of the buried target. In the previous

section we concluded that the depth information is ambiguous, hence the most reliable

information on the shape and dimensions of the object will be found in the x - and the

y -directions. Therefore we will systematically show projections of the whole (or a

part of the) C-scans on a horizontal plane. The projections are the results of the

summation of the energy per A-scan:

∑
=

=
2

1

2),,(),(
n

ni

iyxbyxc       with     Nnn ≤<≤ 211                    (7. 34)
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Results of indoor trials

The migration by deconvolution is applied on data taken by the laboratory UWB

GPR, with the antennas mounted on the indoor xy-scanning table, as described in

Chapter 6. The data are acquired over an area of 50 cm by 50 cm with a step of 1 cm

in both x - and y -direction. Fig. 7-15, Fig. 7-16 and Fig. 7-17 show respectively the

results of the migration method on a PMN mine, a brick of dimensions 15*9*6 cm

and a piece of 20 cm barbed wire, all buried at 5 cm of depth in sand. The 3D

representations of the raw data (subplots (b)) and the migrated data (subplot (c)), are

obtained by performing a Hilbert transform on each individual A-scan to find its

envelope. The data are then plotted by the iso-surface 3D plot function of MatLab,

highlighting all the pixels of a given intensity. The vertical axis is a time axis in 10ths

of ps. In the lower right corner of each image, the two-dimensional C-scan

representation, given by (7.34), of the migrated image is shown. For clarity, the

ground reflection is omitted in Fig. 7-16 and Fig. 7-17. Looking on the objects from

above, the round shape of the PMN mine becomes very clear, whereas the shape of

the brick is more rectangular. This means that the (oval) footprint of the antennas has

successfully been deconvolved from the recorded data. The shape of the barbed wire

in Fig. 7-17 (d) can be easily distinguished from the other two shapes and even

contains the three sets of pins, present on the real wire. Note that the dimensions of

the objects in the migrated images approach the x - and y -dimensions of the real

objects. These three examples show that it is possible to extract the shape and

dimensions of a buried object out of the migrated data collected by the UWB GPR.

The same three data sets were also migrated by the Kirchhoff migration method. The

migrated images were less focussed and the oval shape of the antenna footprint was

still visible in the migrated image.
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Raw data of PMN mine
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Fig. 7-15: Migration by deconvolution applied on a PMN mine (diameter of 11 cm)

buried at 5 cm

(a) Photo of PMN mine

(b) 3D C-scan representation of raw data

(c) 3D C-scan representation of migrated data

(d) 2D C-scan representation of migrated data
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Raw data

(a)                                                                          (b)
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Fig. 7-16: Migration by deconvolution applied on a brick (15*9*6cm)  buried at 5 cm

(a) Photo of the brick

(b) 3D C-scan representation of raw data

(c) 3D C-scan representation of migrated data

(d) 2D C-scan representation of migrated data
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Raw data

(a)                                                                          (b)

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

y 
[c

m
]

x [cm]

(c)                                                                          (d)

Fig. 7-17: Migration by deconvolution applied on barbed wire (length of 20cm)

buried at 5 cm

(a) Photo of the barbed wire

(b) 3D C-scan representation of raw data

(c) 3D C-scan representation of migrated data

(d) 2D C-scan representation of migrated data
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The aim of migration is to focus reflections on objects back into the true physical

shape of the object but also into its true position. To illustrate the latter, we show in

Fig. 7-18 (a) the raw date on an oblique mine. The mine was buried under an angle of

about 30° in dry sand, with the highest point of the mine at a depth of 5 cm. In the raw

B-scan at the left, the strongest reflections on the mine are found in the lower right

corner of the image, whereas in reality the mine is situated in the middle of the image,

indicated by the rectangular box in the image. The explanation for this shift is simple.

When the antennas are right above the oblique mine, the mine will have a strong

reflection in a direction away from the receiving antenna. For the antennas in the

direction perpendicular to the flat top of the mine, the reflections on the mine towards

the receiving antenna will be stronger than in the case the antennas are right above the

oblique mine, leading to a displacement of the target in the raw data. After migration

by deconvolution however, the target is found in its true position, as shown in Fig.

7-18 (b). The migrated image not only shows the object in its true position, but also

clearly shows that the object is oblique. Indeed, due to the different backscatter

mechanism in the object, the dimensions of the object in the z -direction can be

overestimated, but the position (in time or space) of the first reflection on the object

(the specular reflection) will be correct and reliable. Hence the reconstruction of the

top contour of buried objects will be correct. Other migration methods, like Kirchhoff

migration and Stolt migration were also applied on the same data, but with less good

results than the migration by deconvolution method. Fig. 7-18 (c) shows the result

after Kirchhoff migration. The migrated image is better than the raw one, but the

Kirchhoff migration is not able to bring the target completely back in its actual

position.
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Fig. 7-18: Oblique PMN mine under an angle of 30°

(a) Raw data

(b) After migration by deconvolution

(c) After Kirchhoff migration

Results of outdoor trials

The previous results are obtained on data that is acquired in the laboratory, where all

conditions are well controlled and where the air-ground interface is flat. In reality this

is not the case. Ground characteristics like permittivity and attenuation are often not

known and have to be estimated. The air-ground interface can be very rough and can

introduce additional clutter, which eventually might interfere with the reflections on

the target, like presented on Fig. 7-19. Furthermore, the ground is not always

homogeneous and it can be expected that the UWB GPR, which yields a high

resolution, is sensible to these inhomogeneities.
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In this subsection some results of outdoor trials are presented. The trials were held on

the test site in Meerdaal, in August 2000. At that moment, the objects were already

more than three years in place. After a lot of rain during the summer, the soil was

quite wet and it seemed that the attenuation of the soil was too high to get good results

on the smallest AP mines. We already discussed this problem, which is partially due

to the laboratory UWB GPR. The larger AP mines and mine-like targets gave good

results.

Buried Object Clutter

Fig. 7-19: Clutter introduced by the rough air-ground interface and inhomogeneities

in the ground

The data represented in the next three figures is acquired over an area of 50 cm by 50

cm in steps of 2 cm (which is still small enough to avoid aliasing in the x - and y -

direction).
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Fig. 7-20 shows a 2D representation of a B-scan and a C-scan of a PMN mine, buried

in gravel at a depth of 5 cm, before and after migration. In the images of the raw data

there is a lot of clutter present and the shape of the mine is not clear. After migration,

most of the clutter disappeared and the circular shape and dimensions of the mine

becomes correct.
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Fig. 7-20: PMN mine in gravel at 5 cm of depth 

(a) B-scan of raw data

(b) B-scan of migrated data

(c) 2D C-scan representation of raw data

(d) 2D C-scan representation of migrated data
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Fig. 7-21 shows a PMN mine that was laid on the surface of the ground. On the

migrated B-scan, the mine is clearly distinguishable from the air-ground interface.

The migrated B-scan even shows that the mine is a little oblique. Just like in previous

figure, the shape of the target becomes more clear in the 2D C-scan representation

after migration.
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Fig. 7-21 : PMN mine laid on the surface

(a) B-scan of raw data

(b) B-scan of migrated data

(c) 2D C-scan representation of raw data

(d) 2D C-scan representation of migrated data
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Fig. 7-22 shows the result on an (empty) wine bottle buried in sand at a depth of about

7 cm. During the years the bottle is probably partially filled with sand, which explains

the low contrast in the images, even after migration.. The result after migration

however is interesting. The 2D C-scan representation of the migrated data reveals that

the shape of the object is not round and that the object is oriented from the left to the

right in the image and not vertically like one could expect from the 2D C-scan

representation of the raw data.
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Fig. 7-22 : Bottle in sand  at a depth of  7 cm

(a) B-scan of raw data

(b) B-scan of migrated data

(c) 2D C-scan representation of raw data

(d) 2D C-scan representation of migrated data
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7.5. Summary

Because anti personnel landmines are small objects and often shallowly laid, a large

bandwidth is needed for a better depth resolution and a more detailed echo. In a first

part of the chapter we presented some UWB signal processing techniques on A-scans,

based on Prony-type methods and on time-frequency analysis. Despite the larger

bandwidth of the system, UWB signal processing techniques on the A-scans seem to

have limited success. This is probably due to the low Q factor of the targets. None of

these methods seems to be robust enough to be used for classification purposes. The

conclusions drawn out of the study on the UWB signal processing techniques on A-

scans are considered as preliminary. However they did not convince us to invest more

in this direction.

We therefore oriented our work towards the exploitation of the C-scans, to investigate

the possibility of retrieving information on the shape and dimensions of the targets.

The raw C-scans recorded by a GPR are often difficult to interpret for an operator.

Due to the beam-width of the antennas, a target in the ground is already seen by the

GPR system even when it is not exactly under the antennas. As a consequence, the

recorded data will be unfocussed. Focussing techniques to reduce the influence of the

beamwidth of the antennas are called migration techniques. Most of the existing

migration techniques however do not take into account the characteristics of the

acquisition system and the ground characteristics. We therefore proposed a migration

technique, called the migration by deconvolution. The novelty of the algorithm is that

it uses the time domain model of the GPR and hence does take into account the

system and ground characteristics. The migration method is simple and fast. We

calculate by forward modelling a synthetic point spread function of the UWB GPR.

This point spread function is then used to be deconvolved from the recorded data. The

method is evaluated on data coming from the UWB GPR and aspects like spatial

resolution and the influence of the assumptions are discussed. Results of this

migration method on cluttered data, obtained by the UWB GPR system during in- and

out-door trials are found to be very good. Not only does the UWB GPR give enough

depth resolution to distinguish the reflections on the targets from the air-ground

reflections, but it has, after migration of the data, also enough resolution in the lateral
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directions to give an idea of the shape and, in favorable circumstances, of the

dimensions of the buried object.
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