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Abstract 

 

A common way of describing antennas in the time domain is by means of their impulse response. 

When the time domain antenna equations are expressed in terms of the normalised impulse response 

(normalised IR), they become very simple to use, because all frequency dependent antenna 

characteristics are included in the normalised IR. This paper describes a method for measuring the 

normalised IR experimentally, using a vector network analyser. The normalised IRs of different air and 

dielectric-filled TEM horn antennas are compared and discussed. The normalised IR is found to be a 

powerful tool for simulating antenna behaviour directly in the time domain. Thanks to the introduction 

of the virtual source, (i.e. an apparent point in the antenna from which the radiated field degrades by a 

factor 1/r), the time domain antenna equations can also be used near the TEM horns, although still in 

the far field of the antenna. Some examples of time domain simulations and system modelling using the 

normalised IR are presented. In each example, the simulations are compared with measured data. 

 

 

1. INTRODUCTION 

 

In an effort to increase the directivity or the antenna gain for a broadband and non-dispersive antenna, 

many researchers have considered a TEM horn. A travelling wave TEM horn consists of a pair of 

triangular conductors forming a V structure, capable of radiating and receiving a fast transient pulse 

[1]. It is assumed that the TEM horn guides essentially the TEM mode within the frequency range of 

interest by maintaining a constant characteristic impedance and that, by neglecting the edge diffraction 

effect, a linearly polarised spherical wave is radiated. 
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The conventional design of the TEM horn is based on the infinitely long biconical antenna [2][3]. 

Many variants are possible, e.g. resistive loading of the antenna [4], tapering the antenna plates, 

gradually changing the separation angle between the antenna plates [5], placing a dielectric lens at the 

aperture [6], and filling the whole antenna with a dielectric [7]. The question is how to compare 

performances of these different variants of TEM horns. 

When using TEM horn antennas, classical antenna parameters such as gain, radiation pattern, and 

phase centre, have less meaning  [8]. All these parameters are frequency dependent, hence they have to 

be expressed over the whole frequency band of interest. As time domain antennas have intrinsically a 

large bandwidth, describing the antenna performances with the frequency dependent parameters is 

complicated. On the other hand, other antenna parameters become more important for time domain 

antennas, such as ringing in the antenna, antenna bandwidth, and the capability of radiating a clean 

pulse. These are all important parameters for applications in the field of ultra-wideband radar systems, 

where the performance often depends on the quality of the raw data prior to processing. Furthermore, 

there is a need for describing the antenna performances in a compact way, which can be used for 

modelling, or for comparing performances of different time domain antennas.  

A common way of describing systems in the time domain is by means of an impulse response (IR), 

which is the equivalent of the transfer function in the frequency domain. The IR completely describes 

the linear time-invariant system.  

 

 

2. TIME DOMAIN ANTENNA EQUATIONS  

 

In this section, the antenna equations are first expressed in terms of conventional IR and later (Section 

2.C) in terms of normalised IR. To simplify the expressions, we only consider antenna performance on 

boresight for dominant linear polarisation of the E-field. The extension to the more general case is 

possible however, without too much effort. Further we consider the input and output impedance of the 

equipment used, matched to 50 Ω (denoted Zc ). We define Vs  as the voltage generated by the source 

in a 50 Ω load and Vrec  as the voltage measured by an oscilloscope with a 50 Ω input impedance. 
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A. Transmitting antenna 

 

First consider the case of the transmitting antenna, near the coordinate origin 
r r
r = 0 . As input we 

consider a voltage Vs  applied at the input reference plane (Fig. 1). 
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Figure 1: Transmitting antenna configuration 

 

The radiated field 
r r
E r trad ( , )  in a point P in the far field, for 

r
r → ∞ , can be described as [9][10]: 
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where r is defined to be r r= r
, 
r

r

ra
r

rr = , Vant is the excitation voltage at the antenna feed, τ Tx  the 

voltage transmission coefficient from the feed cable to the antenna, Za  the antenna input impedance, 

assumed to be a real constant, and  Z0 120= π . The convolution with the dirac-function 

δ ( ),t td TX− in (2.1) introduces a total delay td TX, , which corresponds to the propagation time 

between the input of the antenna system where Vs  is applied (input reference plane) and the 

observation point P where 
r r
E r trad ( , )  is evaluated.   
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For uniformity reasons, we use 
r
hTx as kernel for the convolution in (2.1) and derive the input signal 

Vs .  Taking into account the simplification of working only on boresight for dominant linear 

polarisation of the E-field, (2.1) can than be rewritten as: 

 

E r t
r c f

h t
dVs t

dt
t trad

Tx

g
Tx d TX( , ) ( )

( )
( ),= ⊗ ⊗ −

τ
π

δ
2                                    (2. 2) 

 

As discussed in [10], for finite r r= r
, one should limit the highest frequency for such result to be 

valid. Recognising these limitations, we introduce another problem. Due to the finite but non-zero 

dimension of the antenna, the location of the coordinate system origin 
r r
r = 0 becomes ambiguous. To 

solve this, let us define an apparent point in the antenna from which the radiated field 

E r trad ( , ) degrades with a factor 1/r (free space loss) in the far field. We call this point the "virtual 

source" of the antenna. It can be considered as the origin of the radiated impulse TEM wave. Assuming 

that the position of the virtual source is frequency independent over the frequency band of interest (this 

has been verified experimentally for a dielectric filled TEM horn), it can easily be located. The virtual 

source will in general be located between the antenna feed and the aperture. When defining the origin 

of the coordinate system 
r r
r = 0  in this point, equation (2.2) is valid for finite r r= r

. 

A disadvantage of using expression (2.2) is that Za  is a function of frequency, so τ Rx  and f g are not 

constant. It will be shown that this difficulty can be eliminated by introducing a normalised IR. 

 

B. Receiving antenna 

 

Consider now the case of the receiving antenna, with a uniform plane-wave incident E-field 

r r
E r tinc ( , ) , evaluated in the virtual source point of the receiving antenna (Fig. 2).  
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Figure 2: Receiving antenna configuration 

 

Considering the direction of incidence to be at boresight for dominant polarisation, the output voltage 

V trec ( )  measured by an oscilloscope in the output reference plane is related to the incident field by 

[9][10]: 

 

V t h t E t t trec Rx Rx inc d RX( ) ( ) ( ) ( ),= ⊗ ⊗ −τ δ                                         (2. 3) 

with  τ Rx
c

c a

Z

Z Z
=

+
2

  

 

wherehRx is the impulse response of the receiving antenna at boresight incidence for dominant 

polarisation, and td RX,  represents the total propagation time between the virtual source point of the 

receiving antenna and the output reference plane where V trec ( ) is measured. 

Note that according to the Rayleigh-Carson reciprocity theorem, the ratio of the transmit frequency 

response function of an antenna to the receive frequency response function of the same antenna, is 

proportional to frequency [1]. So the IR of the transmitting antenna has to be proportional to the time 

derivative of the IR of the receiving antenna. This can be seen by comparing expression (2.1) and (2.3). 

Expressions (2.2) and (2.3) are defined such that, if the transmitting and receiving antennas are the 

same, h hRx Tx= .  
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C.   Normalisation of the IR 

 

The disadvantage of using expressions (2.2) and (2.3) is that in reality Za  is a function of frequency, 

so that τ Rx and f g  are not a constant.  It would be logical and easier to integrate this frequency 

dependent term Za  in the IR, which is in any event unique for each antenna. This can be done by 

normalising expressions (2.2) and (2.3), as proposed in  [9]. When normalising, in the antenna 

equations, the voltages and electric fields to the local characteristic impedance, the normalised IRs 

hN Tx,  and hN Rx, can be defined as: 

 

h
Z

Z f
hN Tx

c

a

Tx

g

Tx, =
τ

  and 
h

Z

Z f
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a

c

Rx

g
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                                   (2.4) 

 

Expressions (2.2) and (2.3) can be rewritten as:  
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If the transmitting and receiving antenna are the same, than h hN Rx N Tx, ,= . Combining expressions 

(2.5) and (2.6), the received voltage, measured with a 50 ohm oscilloscope at the receiving antenna, can 

be related to the input voltage by: 

 

V t
R c

h t h t
dVs t

dt
t t trec N Tx N Rx d TX d RX( ) ( ) ( )

( )
( ), , , ,= ⊗ ⊗ ⊗ − −1
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δ

             (2. 7) 
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where R is defined as the distance between the two virtual points of the antennas at boresight, and 

t td TX d RX, ,+  represents the total delay in the combined system. This delay is of importance for the 

measurement of the normalised impulse response. 

 

Expressions (2.5), (2.6) and (2.7) are extremely simple. They can be used without any assumption 

about the frequency dependent antenna impedance. Knowing the normalised IR of the antennas, one 

can calculate, as a function of the input signal, the exact radiated E-field at any point P in the far field 

on boresight of the transmitting antenna. One can also calculate the received voltage for an incoming 

E-field. 

 

 

3. MEASUREMENT OF THE NORMALISED IR  

 

Before measuring the normalised IR of an antenna, we first have to locate the virtual source of the 

antenna. This can be done experimentally by using two identical antennas on boresight. The virtual 

source can be seen as the origin of the radiated impulse, from which the 1/R free space loss is initiated. 

Let d be the distance between the two antenna apertures, which is easy to measure. For different values 

of d, the measured voltage Vrec  degrades with 1/R in the far field.  
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Figure 3: Set-up for locating the virtual source (VS) of an antenna 

 

In Figure 4 we present d versus the inverse peak-to-peak value of the received voltage Vrec . The zero 

of the line fitted through these points in the least-squares sense gives the difference between R and d. 

In this example (R - d) is 8 cm, so the virtual source is located at 4 cm from the antenna aperture 

towards the antenna feed. The knowledge of the exact location of the virtual source is important when  
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(2.5), (2.6) or (2.7) are used near the antennas (but still in the far field) or for exact measurement of the 

normalised IR of an antenna.  
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Figure 4: d versus the inverse point to point value of the received voltage Vrec  

 

Now hN Tx,  and hN Rx, can be measured, by using two identical antennas and a vector network analyser 

(VNA). Converting (2.7) into the frequency domain, the normalised transfer function of the antennas is 

expressed as: 

 

H
R cV

j V
eN

rec

s

j t td TX d RX( )
( )

( )
( ), ,ω π ω

ω ω
ω= +2

                                                     (3.1) 

Considering the two antennas on boresight in the far field, with a distance R between the two virtual 

sources, as a two-port, one can measure the S12 parameter with a VNA over the frequency band of 

interest, covering at least the whole frequency range of the antenna. 
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The quantity t td TX d RX, ,+ , total delay between the reference planes of port 1 and port 2, can be 

replaced by R

c

' , where R' is the distance between the two reference planes of the VNA and c the speed 

of light. 

 

Expression (3.1) can then be written as: 

H
Rc

j
S eN

j R c( ) ( ) ' /ω π
ω

ω ω=
2

12
                                                 (3.2) 

In expression (3.2) the square root is taken from a complex number. To do so, one first has to unwrap 

the phase, otherwise the result is non-physical. The unwrapping is far more easy by taking into account 

the term e j R cω ' / , hence its importance. 

Once the frequency vectorHN ( )ω  is found, h tN ( ) can be extracted by a frequency-time 

transformation [11]. The desired time resolution of the IR is obtained by zeropadding the frequency 

vector.  

 

 

4. RESULTS ON TEM HORNS 

 

The normalised IR describes the antenna performances in a very compact way. In this section the 

performances on boresight of four different TEM horns are compared. Table 4.1 summarises the 

physical characteristics of the tested antennas. (L is the length of the antenna plates and Aap the area of 

the antenna aperture). 

 L (cm) Aap (cm²) Filling 

Antenna 1 10 10*4 air 

Antenna 2 10 10*4 dielectric 

Antenna 3 12 12*6 dielectric 

Antenna 4 12 12*6 dielectric 

Table 4.1: The physical characteristics of the tested antennas 
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Antenna 1 is a conventional air-filled TEM horn. Antennas 2, 3 and 4 are filled with a dielectric to 

increase their electrical size. The dielectric is characterised by a real relative dielectric constant of 

ε r ≈ 3and a loss tangent of 0.0084 at 1 GHz. Antenna 4 is the same as antenna 3 but an absorber is 

placed at the outside end of the antenna plates to reduce the current at the end of the antenna plates. 

For each antenna, S12 was measured between 40 MHz and 20 GHz, with a frequency step of 40 MHz, 

by placing two identical antennas on boresight. The normalised IRs of the antennas are shown in Figure 

5. Note that the dimensions of h tN ( )  are given in m/ns, which corresponds with the dimensions 

needed in (2.5) and (2.6).  
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Figure 5: (a) h tN ( )  of antenna 1 (b) h tN ( )  of antenna 2 

 (c) h tN ( )  of antenna 3 (d) h tN ( )  of antenna 4 

 

For a detailed comparison of the antennas, we summarise some important characteristics of the 

normalised IR in Table 4.2, i.e. the maximum value of the normalised IR, the full width at half 
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maximum value (FWHM) of the impulse, the area under the impulse, and the tail fluctuation as a 

portion of the maximum value. 

 

 Max ofh tN ( )  

[m/ns] 

FWHM 

[ps] 

Area under 

impulse [m] 

tail fluctuation  

[% of max] 

Antenna 1 1.01 38 0.038 13% 

Antenna 2 0.73 56 0.041 33% 

Antenna 3 0.98 60 0.059 22% 

Antenna 4 1.01 60 0.062 11% 

Table 4.2: Important characteristics of the normalised IR 

 

The FWHM value of the normalised IR is related to the bandwidth of the antenna. The area under the 

impulse is related to the effective antenna height [9]. It can be seen that filling the antenna with the 

dielectric reduces the bandwidth, but increases the area under the impulse. The presence of the absorber 

material at the end of the antenna plates of antenna 4 has a positive influence on the antenna 

performance. The comparison with antenna 3 shows that the absorber material does not affect the 

bandwidth nor the area under the impulse, but it considerably decreases the fluctuations in the tail of 

the response. Thus antenna 4 will be capable of radiating transient pulses with less ringing. It would be 

difficult to demonstrate this antenna property with the classical frequency domain characterisation of 

an antenna. 

 

 

5. TIME DOMAIN SIMULATIONS USING THE NORMALISED IR 

 

The normalised impulse response is a powerful tool that can be used for simulation and system design 

purposes. Some examples are presented in this section. For each example the simulated data are 

compared with measured data. The antenna used in the simulations is antenna 4 described in the 

previous section. 

 

 



 12 

A. Two antennas on boresight 

 

The first simulation is straightforward. Two antennas are put on boresight at a distance of R = 90 cm. A 

very short transient impulse with a maximum amplitude of 2.5 V in a 50 Ω load and a FWHM of 90 ps 

is used as a driving voltage Vs  (Fig. 6a). 

The transient voltage signal Vrec at the output of the receiving antenna is calculated using (2.7) and 

measured using a digitising oscilloscope. Figure 6b shows the calculated waveform and the measured 

waveform. Both time and voltage data of the two waveforms correspond well. 
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Figure 6a: Driving signal Vs  Figure 6b: Two antennas on boresight, simulated 

and measured data 

  

 

B. Reflection on a planar air-ground interface 

 

In a second example the reflection on a planar dry sand interface is simulated. The bistatic 

configuration, typical for ground penetrating radar, is represented in Figure 7. The two antennas are 

focused at a point on the interface. The distance between the virtual sources of the TEM horns is 22.8 
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cm. The H-field polarisation of the antennas are in the same plane, the E-field polarisation of both the 

antennas is parallel to the interface. The driving voltage Vs  is the same as in the previous simulation.  

d=33.3 cm

Tx Antenna Rx Antenna

22.8 cm

ε µ0 0,

r
E

ε µ2 0,

θ1 θ1

θ2

 

Figure 7: Bistatic configuration 

 

The dry sand is characterised by an ε r  of 2.55 and an µ r  of 1 in the frequency band of interest, and is 

assumed to be homogeneous and lossless. The reflection coefficient for parallel polarisation is given by 

ΓA =
−
+

ε θ ε θ
ε θ ε θ

0 1 2 2

0 1 2 2

cos cos

cos cos
, which is  - 0.248 in this case. The total path loss in the simulation 

is due to the free-space loss over a distance 2d and to the reflection loss from the air-sand interface. The 

simulated data is obtained by multiplying the result of  (2.7) by ΓA . Despite the fact that the air-sand 

interface is near the antennas, the result of the simulation is very similar to the measured data (Fig. 8). 

Note that the direct coupling between transmitting and receiving antennas, which is not taken into 

account in the simulation, will also introduce errors. 
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Figure 8: Reflection on a planar dry sand interface, simulated and measured data 

 

C. The echo of a metallic disc 

 

In the last simulation, the normalised antenna equations are used in combination with commercial 

FDTD software. The bistatic antenna configuration, almost the same as in the previous example, is 

represented in Figure 9. An aluminium disc with a radius of 3.2 cm and 1cm thick is placed at the focus 

point of the two antennas. 

d=33.3 cm
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ε µ0 0,
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Figure 9: Bistatic configuration for metallic disc 

Expression (2.5) is used to calculate the radiated E-field at the metallic disc.  This wave, assumed to be 

planar, is introduced in a FDTD programme, which calculates the backscattered field at a point 
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corresponding to the virtual source of the receiving antenna. Using this backscattered field as an 

incoming field for expression (2.6), we calculate the received voltage at the output of the receiving 

antenna. The simulated data and the measured data are given in Figure 10. Again, the correspondence 

is good. An advantage of this simulation scheme is that we do not need to model the antennas in the 

FDTD programme. 
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Figure 10: Echo of a metallic disc, simulated and measured data 

 

 

6. CONCLUSIONS 

 

The normalised IR describes time domain antenna performances, which are sometimes difficult to see 

in classical antenna parameters, in a compact way. The advantage of using the normalised IR over any 

other impulse response is that all frequency dependent characteristics are included in the normalised 

IR. This has two important consequences. First, the time-domain antenna equations become very 

simple and accurate to use, without any assumptions about antenna impedance. Second, the normalised 

IR permits a comparison between different variants of time domain antennas, taking into account all 

these frequency dependent terms.  
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It has been shown that the normalised IR is easy to measure, using two identical antennas and a vector 

network analyser. Due to the finite but non-zero size of the antenna, the distance from an observation 

point to the antenna becomes ambiguous for points close to the antenna. The introduction of an 

apparent point in the antenna, called the virtual source - which can be seen as the origin of the radiated 

impulse TEM wave - resolves this shortcoming. The position of the virtual source in the antenna can 

easily be located.  

Thanks to the introduction of the virtual source the antenna equations can now be used near the 

antenna. This is clearly shown in the examples of the time domain simulations. The examples also 

demonstrate the simplicity and accuracy of the time domain simulations, using the normalised IR. Such 

simulations can also be applied for simulating system performance with e.g. different transient impulse 

generators or for radar range estimation. 

Although the antenna equations and the normalised IR are limited in this paper to antennas on 

boresight and to dominant linear polarisation of the E-field, the extension to the more general case is 

possible and will be considered in the future.  
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