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Appendix  B. Kirchhoff and Stolt migration

B.1. Kirchhoff migration

The Kirchhoff migration technique finds its origin in the field of seismics. Although

the Kirchhoff migration has been developed for the backpropagation of scalar

pressure wavefields, it is often applied (with success) to electromagnetic waves. The

basic idea in the Kirchhoff-migration is to back-propagate the scalar wavefront,

measured in the data-plane (as defined in the exploding source model), to the object

plane at 0=t , using an integral solution method to the scalar wave equation.

Suppose a scalar field ),( trb , satisfying the scalar 3D wave equation
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The configuration and the co-ordinate system are shown in Fig. 1. The array of

receivers recording the data )','( trb  in the data plane at the air-ground interface

(denoted here as 'S ), will be replaced by an array of secondary sources, each driven

in reverse time by the recorded data. In the configuration:

r  is the co-ordinate of the observer,

t  the real time of the observer,
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'r  the co-ordinate of the sources,

't  the real time of the sources,

'S  the data plane, containing the secondary sources

),( trb  the scalar wavefield

)','( trb represents the measurements of this scalar field in the data plane.
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Fig. 1: Configuration and co-ordinate system for the Kirchhoff migration

In seismics, the air-ground interface is considered as a perfect reflector, hence the

problem has the following boundary conditions:

              0),( ' =Strb

    ∞→→ rfortrb 0),(                                 (B. 2)

The backwards Green’s function )',',( trtrG for the scalar wave equation in half space

medium without losses is given by

)',',',',,,()',',',',,,( tzyxtzyxgtzyxtzyxgG −−=                         (B. 3)

with
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the Green’s function for an imploding point source in a homogeneous medium.

µε1=v is  the propagation velocity of the medium.

The field solution ),( trb is given by the integral Kirchhoff [1], derived from Green’s

theorem as

')','(
''

)','('
4
1

),(
'

dStrb
n

G
n
G

trbdttrb
S ∂

∂
−

∂
∂

−= ∫∫∫π                          (B. 5)

where 'n  is the vector normal to the surface 'S  and pointing outwards. The term 
'n

G
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in (B.5) can be written as
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Introducing (B.6) together with (B.3) into (B5), the latter equation can be simplified

to

'
'

)','('
4
2),(

'
dS

n
gtrbdttrb

S∫∫∫ ∂
∂−=

π                                             (B. 7)

The partial derivative of the Green’s function )',',( trtrg equals
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If necessary, the second order term in 2' −− rr  can be taken into account [2], but in

the far field the second order term is neglected.

The term 
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with the angle θ  as defined in Fig. 1.

Substituting (B.8) and (B.9) in equation (B.7), the field solution ),( trb  becomes
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Finally, the migrated image is found from the wavefield ),( trb  in (B.10) at time

0=t , hence
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B.2. Stolt migration

The method is, just like the Kirchhoff migration, based on the back-propagation of the

scalar wave equation and can thereby best be explained using the exploding source

model. Important here is that only upcoming waves are assumed. Note also that the

propagation velocity used in the exploding source model is half the value of the true

medium velocity.

Consider a scalar field component ),,,( tzyxb  resulting from an exploding source.

This component has to satisfy the scalar wave equation
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Applying a Fourier transformation on (B.12), with respect to the x , y  and the t  co-

ordinate, results in
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The Fourier transformation along the x  and y  co-ordinates only makes sense if the

propagation velocity does not vary in the x  and y  directions. In the Fourier

transformation, the following sign convention is used. For the forward transformation,

the sign of the argument in the exponential is negative if the variable is time and

positive if the variable is space. So the 3 dimensional forward Fourier transformation

of ),,,( tzyxb  is defined as

∫∫∫ −+= dxdydtetzyxbzkkB tiyikxik
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yx ωω ),,,(),,,(                   (B. 14)

Defining a wavenumber zk  as
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and substituting (B.15) in (B.13), equation (B.13) has as general solution
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The constants C and D in  (B.16) are found using the following two boundary

conditions:

− assuming only upward coming waves, the first constant becomes 0=C .

− for z=0, the Fourier transformation of the measured data is found, hence

),0,,( ωyx kkBD = .

Finally (B.16) becomes
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Equation (B.17) represents the Fourier transform of the wavefront at depth z . The

migrated image will be the inverse Fourier transform of (B.17) at time 0=t :

ωω ddkdkekkBzyxbzyxO yx
zkykxki
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zyx∫∫∫ ++−== )(),0,,()0,,,(),,(ˆ               (B. 18)

Equation (B.18) is the general representation of the f-k migration, also called the

Phase Shift Migration. The method can deal with variations of velocity in function of

depth. In the special case where cstvzv ==)( , equation (B.18) can be further

developed by a change of variables from ωd  to zdk . According to the definition of

zk  in (B.15)
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hence ωd  can be written as:
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Replacing ωd  in (B.18) by the expression in (B.20), the migrated image becomes
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The advantage of (B.21) over (B.18) is that (B.21) can be calculated using an inverse

3D Fourier transformation of  the measured data ),0,,( ωyx kkB , scaled by 
ω

zkv²
, i.e.

the Jacobian of the transformation from ω  to zk .  This means a serious reduction of

the number of floating point operations for the migration and a gain in calculation

time.

Although the method seems to be simple, the implementation of the Stolts migration

algorithm can be tricky. The Fourier transformation with respect to the x , y  and the

t  co-ordinate of the measured data provides equally spaced samples of ),0,,( ωyx kkB

on a rectangular grid in the ),,( ωyx kk  domain. This data is mapped into the

),,( zyx kkk  domain by the change of variables given by (B.19), where zk  is a non-

linear function of xk , yk and ω , resulting in an unevenly spaced data set. This

mapping is graphically represented in Fig. 2. For simplicity we consider only the 2D

case with the co-ordinates x  and t . Fig. 2 shows the mapping of the evenly spaced

points in the ),( ωxk  domain, identified by black squares, into the unevenly spaced

points in the ),( zx kk  domain, identified by circles. The unevenly spaced data set in the

),( zx kk  domain represents a problem for the inverse Fourier transformation.
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Therefore the unevenly spaced data set has to be interpolated to fit an evenly spaced

rectangular grid. Interpolating from an unevenly spaced data set is complicated, but

can in this case be easily avoided.
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Fig. 2: Mapping in of the ),( ωxk domain into the ),( zx kk domain

Suppose the data in the ),( ωxk  domain is spaced by ω∆ , and ωω ∆= .nn . If the

wavenumber vector zk  is put equal to the evenly spaced values nω , the ),( zx kk

domain has an evenly spaced grid. For each point ),( zx kk on the grid, the

corresponding ω  can be calculated using (B.19). The value of ω  will probably be

different from any of the values nω . However ),0,( ωxkB , needed for (B.21), can now

be found by interpolating from an evenly spaced data ),0,( nxkB ω , which is less

complicated than interpolating from unevenly spaced data. It is shown in [3] that the

exact interpolation equation is

∑ ∆−∆=
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where =)(ωh sinc )(
ω

ω
∆

 is the sinc interpolation function.
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