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Appendix  A. Measurement of short pulse response

and frequency response function of non-canonical 3D

objects

A.1. Measurement set-up

In order to study experimentally the transient backscattering of 3D objects, a Time

Domain Scattering Range (TDSR) has been developed at the RMA [1]. The system

consists of the following parts (Fig. 1). On the transmitting side, a 2 meter long

monocone antenna on a square ground plane (3 m x 3 m) is coaxially fed by a fast

step-function generator. On the receiving side, a broadband electric field sensor,

which is connected to a 20 GHz digitising oscilloscope through a set of UWB low

noise amplifiers, detects the transient wave. The 3D Device Under Test (DUT) is put

on the ground plane and is illuminated by a transient spherical wave, radiated between

the monocone and the ground plane. The backscattering on the DUT is measured by

the broadband electric field sensor. Because the long monocone antenna radiates a

step function and because the electric field sensor is a time derivative sensor, its

output yields in fact the impulse response of the device under test.

Three solid state generators are available in the laboratory to feed the antenna. The

first two generators generate a repetitive step function (50V/350ps, 10V/45ps) with a

high waveform purity. The third generator yields a 2kV/200ps impulse waveform.

The fastest generator (10V/45ps) confers to the TDSR a sub-centimetre radial
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resolution on the target, which makes it possible to resolve the different scattering

centres of the target and to quantify their relative amplitudes. The oscilloscope is

coupled to a personal computer for collecting and analysing the data.
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Fig. 1: The Time Domain Scattering Range at the RMA

A.2. Measurement of the FRF of 3D objects by dual channel

analysis

The main objective in dual channel systems analysis is to measure input-output

relationships of linear systems. In our case the 3D object in free space will be

considered as a linear system. Two fundamental functions of this analysis, the

Frequency Response Function (FRF) and the Coherence Function, are dealt with in

some detail.

Every time-invariant, stable and linear system is completely described in the time

domain by its Impulse Response (IR) )(th , which mathematically relates the input

)(tx  and the output )(ty  of the system according to the convolution integral. In the

frequency domain this relationship is given by

Y f H f X f( ) ( ) ( )=                                                    (A. 1)
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where )( fX  and )( fY are the Fourier transform of input )(tx and the output )(ty .

)( fH  is called the Frequency Response Function. )( fH  and )(th  are related by the

Fourier transform  and contain the same information.

Theoretically, the FRF )( fH  can be calculated using (A.1) by dividing )( fY  by

)( fX . In practice this is impossible because (A.1) degrades very fast in the presence

of noise. The best way to handle the noise problem is to perform multiple

measurements of input and output and estimate the FRF in the least squares sense to

obtain the best linear fit in the frequency band covered by the input signal )(tx . There

exist different FRF estimators [2]. In our application the power of the output signal is

far less than the power in the input signal, so the S/N ratio of the output signal will be

very low.  In this case the best estimator is
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where  *  indicates the complex conjugation and K the number of measurements of

input and output signal.

Equation (A.2) will minimise uncorrelated measurement noise at the output in a least

square sense.

For K → ∞  equation (A.2) becomes
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with S xx  and S yx  the autospectrum and the cross-spectrum of the input and output

signals.
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Another useful Dual Channel function is the so-called Coherence Function γ 2 ( )f ,

given by

γ 2
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=       with 0 12< <γ ( )f                                (A. 4)

For a given frequency, a low Coherence (< 0.8) will indicate that one or more of the

following conditions exist:

- extraneous noise is present in the measurement at that frequency

- the system is not linear

- there are other inputs, besides )(tx , influencing the output.

Hence γ 2 ( )f  will give an idea of the quality of the measurements and of the

assumptions that are made about the system. A coherence γ 2 ( )f > 0.8 is needed for

an accurate interpretation of the measured data.

The measurement set-up for the dual channel analysis is represented in Fig. 2.
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Fig. 2: Measurement set-up for dual channel analysis
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Assume the 3D target as a linear system with Impulse Response )(th . Let )(1 ta  be the

IR of the transmitting antenna, )(2 ta  the IR of the electric field sensor, and )(tp  the

signal generated by the source. Not taking into account the spreading loss in the free

space, one can say that
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with )( fX  the Fourier transform of the pulse sent by the monocone and captured by

the electric field sensor. )( fY  is the Fourier transform of  the signal  backscattered by

the target, and captured by the electric field sensor, taking into account the delay

caused by the travelling time of  the signal. d  is twice the distance between the target

and the electric field sensor. By measuring  K times the input )(tx  and the output

)(ty , (A.2) yields an estimation of the FRF ~( )H f c

d
j

e
ω−

 of the 3D object.  The delay

c

d
j

e
ω−

, which only influences the phase, is a function of the travelling time and can be

calculated.

The advantage of this test set-up is that one can measure the input and the output

signals, separated in time by 
c
d , with the same sensor. This means that the measured

FRF of the 3D object does not depend on the IR )(2 ta  of the electric field sensor. The

excitation signal  p t a t( ) ( )⊗ 1  is of great importance because the measured FRF is

only meaningful at the frequencies excited by this input signal. Since the noise

spectral density can be regarded as more or less uniform over the frequency range of

interest, the signal to noise ratio will become too small for frequencies with too little

power and, as a consequence, the coherence function will be less than 0.8. Fig. 3.

shows the coherence function of a typically dual channel measurement performed

with the TDSR when the fastest generator (10V/45ps) is used. At frequencies less

than 800 MHz or above 13 GHz the coherence function is less than 0.8, meaning that
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the TDSR at the RMA can only be used to measure the FRF of 3D objects in that

frequency range.
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Fig. 3: Coherence function

A.3. Measurement results on Teflon cylinders and AP mines

in free space

In a first step, tests are performed on three Teflon cylinders with dimensions

comparable to a typical AP mine. The dimensions (in mm) of the cylinders are given

in Fig. 4.
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Fig. 4: The three Teflon cylinders

The cylinders are positioned on the ground plane such that the top of the cylinder is

oriented towards the transmitting antenna (their surface is perpendicular to the

propagation direction of the incoming wave). Fig. 5, Fig. 6 and Fig. 7 show for each
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of these cylinders the backscattered signal as a function of time (upper plot) and the

magnitude of the FRF as a function of frequency (lower plot). Note that the

magnitude of the FRF is not represented in dB’s!
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Fig. 5: Short pulse response and FRF of Tef 1 Fig. 6: Short pulse response and FRF of Tef 2
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Fig. 7: Short pulse response and FRF of Tef 3

In a second step, tests were performed on two types of AP mines. The first type is the

Belgian PRB M35 mine, which is a small AP mine. The dimensions of the PRB M35

are the same as the dimensions of TEF1 (∅ 64mm, height 38mm). The TNT of the

mine is replaced by a silicone with electrical parameters comparable to those of TNT.

The second type of AP mine is a PMN mine (∅ 115mm, height 55mm). Fig. 8 and

Fig. 9 show for each of these AP mines the backscattered signal as a function of time

(upper plot) and the magnitude of the FRF as a function of frequency (lower plot).
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Fig. 8: Short pulse response and FRF of PRB
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Fig. 9: Short pulse response and FRF of PMN

A.4. Discussion

Tests have been performed on Teflon cylinders and on AP mines in free space. In the

backscattered signal of the objects, the scattering centres or the different

backscattering mechanisms clearly appear. On the other hand, looking at the

magnitude of the FRFs of the different objects, the peaks in the FRF are not sharp.

This indicates that the resonances in the late time response of the objects are damped

instantaneously in free space.
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